İZOİNDOLO-OKSAZİNON VE PİRROLO-OKSAZİNON TÜREVLERİNİN SENTEZİ

Proje No: 107T717

Prof. Dr. Mustafa ODABAŞOĞLU Seval ÇÖPÜR Hasan Alptuğ AKGÜN

> Nisan 2011 DENİZLİ

İZOİNDOLO-OKSAZİNON VE PİRROLO-OKSAZİNON TÜREVLERİNİN SENTEZİ

Proje No: 107T717

Prof. Dr. Mustafa ODABAŞOĞLU

Pamukkale Üniversitesi Denizli Meslek Yüksekokulu Kimya Teknolojisi Programı Öğretim Üyesi

Seval ÇÖPÜR

Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Kimya Müh. Anabilim Dalı Yüksek Lisans Öğrencisi

Hasan Alptuğ AKGÜN

Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Kimya Müh. Anabilim Dalı Yüksek Lisans Öğrencisi

ÖNSÖZ

Pek çoğunun biyolojik aktiviteye sahip olmaları heterosiklik bileşikler üzerine olan ilginin her geçen gün daha çok artmasına sebep olmuştur. Proje kapsamında yapılan çalışmalarla yeni bir yöntemle sentezi gerçekleştirilen bazı yeni izoindolo-oksazolon ve pirrolo-oksazolon bileşikleri literatüre kazandırılmıştır. Çalışma sentezlenen bileşiklerin biyolojik aktif olma ihtimali yüksek olma beklentisine dayandırılarak gerçekleştirilmiştir. Bu beklentimiz, sentezlenen bileşiklerden üçü üzerine yapılan biyolojik aktivite çalışmalarından alınan olumlu cevaplarla desteklenmiştir. Yapılacak daha detaylı araştırmalar bu bileşiklerin biyokimya, tıp ve eczacılık gibi diğer alanlarda da kullanım alanı bulma ihtimalini yükseltecektir.

Bu projenin yürütülebilmesi için mali destek sağlayan TÜBİTAK'a, proje önerisinin verilmesinden itibaren her adımda yakın ilgi ve desteklerini gördüğüm TÜBİTAK Temel Bilimler Araştırma Grubu çalışanlarına ve raporları değerlendiren değerli bilim insanlarına teşekkür ederim. X-lşınları Difraksiyon Analizi için verileri toplayan Prof. Dr. Orhan BÜYÜKGÜNGÖR'e, biyolojik aktivite ölçümlerini yapan Dr. Serpil UĞRAŞ'a ve IR spektrumlarını çeken Araş.Gör. Sevil SÖYLEYİCİ'ye yardım ve desteklerinden dolayı teşekkür ederim. Ayrıca, bu projede görev alan bursiyerler Seval ÇÖPÜR ve Hasan Alptuğ AKGÜN'e ve projenin her aşamasında gönüllü olarak araştırmalarda yer alan Hakkı Yasin ODABAŞOĞLU'na teşekkürlerimi sunarım.

Prof. Dr. Mustafa ODABAŞOĞLU

İÇİNDEKİLER

ÖNSÖZ	iii	
İÇİNDEKİLER	vii	
SİMGELER VE KISALTMALAR	viii	i
TABLOLAR	ix	
ŞEKİLLER	xi	
ÖZET	xv	
SUMMARY	xvi	i
1.GİRİŞ	1	
2. GENEL BİLGİLER	5	
3. GEREÇ VE YÖNTEMLER	9	
3.1. Laboratuvar İşlemlerinde Kullanılan Maddeler	9	
3.2. Laboratuvar İşlemlerinde Kullanılan Cihazlar	10	
3.3. Genel İşlemler	10	
3.4. Deneyler	11	
3.4.1. 5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M1) Bileşiğ	inin 11	
Sentezi		
3.4.2. 3-Klor- <i>5H</i> ,6a <i>H</i> -Benzo[4,5][1,3]oksazino[2,3- <i>a</i>]izoindol-11-on (<i>i</i>	M2) 11	
Bileşiğinin Sentezi		
3.4.3. 5-Metil- <i>5H</i> ,6a <i>H</i> -Benzo[4,5][1,3]oksazino[2,3- <i>a</i>]izoindol-11-on (<i>i</i>	<i>M3</i>) 12	
Bileşiğinin Sentezi		
3.4.4. 5-Fenil- <i>5H</i> ,6a <i>H</i> -Benzo[4,5][1,3]oksazino[2,3- <i>a</i>]izoindol-11-on (<i>I</i>	<i>M4</i>) 14	
3.4.5. 6a-Metii-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (<i>I</i>	<i>V</i> /5) 14	
Bileşiginin Sentezi		
3.4.0. $\text{Oa-Permission}, \text{Oa-Permission} = \text{Dermission} = 1,3 JOKSazino[2,3-a]izoindoi-11-on (in the second secon$	<i>VIO)</i> 14	
3 4 7 62-(4-klorfenil)-5H 62H-Benzo[4 5][1 3]oksazino[2 3-2]izoindol-11	-on 15	
(M7) Bilesičinin Sentezi	-011 10	
3.4.8. 1.3-Dibrom-5H.6aH-benzo[4.5][1.3]oksazino[2.3-a]izoindol-11-on (M8) 15	
Bileşiğinin Sentezi	-, -•	
3.4.9. 3,4-Metilendioksi-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-	11- 16	
on (M9) Bileşiğinin Sentezi		

- **3.4.10.** 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M10*) **17** Bileşiğinin Sentezi
- **3.4.11.** 3-Hidroksi-3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on
 17 (*M11*) Bileşiğinin Sen tezi
- **3.4.12.** *5H*,6a*H*-6-Oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M12*) Bileşiğinin **18** Sentezi
- **3.4.13.** 3-İyot-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M13*) **18** Bileşiğinin Sentezi
- **3.4.14.** 5H,6aH-6-Oksa-3,11a-diaza-benzo[a]fluoren-11-on (M14) Bileşiğinin **19** Sentezi
- **3.4.15.** 9,10-Dimetoksi-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on **19** (*M15*) Bileşiğinin Sentezi
- **3.4.16.** 9,10-Dimetoksi-5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on**20** (*M16*) Bileşiğinin Sentezi
- **3.4.17.** 9,10-Dimetoksi-3-iyot-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren- **20** 11-on (*M17*) Bileşiğinin Sentezi
- 3.4.18. 9,10-Dimetoksi-5H,6aH-6-oksa-3,11a-diaza-benzo[a]fluoren-11-on
 20 (*M18*) Bileşiğinin Sentezi
- **3.4.19.** 6a-Metil-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M19*) **21** Bileşiğinin Sentezi
- **3.4.20.** 9,10-Dimetoksi-3-iyot-6a-metil-*5H*,6a*H*-6-oksa-1,11a-diaza- **21** benzo[*a*]fluoren-11-on (*M20*) Bileşiğinin Sentezi
- **3.4.21.** 6a-Metil-*5H*,6a*H*-6-oksa-3,11a-diaza-benzo[*a*]fluoren-11-on (*M*21) **22** Bileşiğinin Sentezi
- **3.4.22.** 6a-Fenil-*5H*,6a*H*-6-oksa-3,11a-diaza-benzo[*a*]fluoren-11-on (*M*22) **22** Bileşiğinin Sentezi
- 3.4.23. 6a-Fenil-3-iyot-5H,6aH-6-oksa-3,11a-diaza-benzo[a]fluoren-11-on
 23 (M23) Bileşiğinin Sentezi
- 3.4.24. 6a-(4-Klorfenil)-5H,6aH-6-oksa-3,11a-diaza-benzo[a]fluoren-11-on
 23 (M24) Bileşiğinin Sentezi
- **3.4.25.** 6a-(4-Klorfenil)-3-iyot-*5H*,6a*H*-6-oksa-3,11a-diaza-benzo[*a*]fluoren- **24** 11-on (*M*25) Bileşiğinin Sentezi
- **3.4.26.** 2,3-dikloro-3aH,5H-4-oksa-9b-aza-siklopenta[*a*]naftalin-1-on (*M*26) **24** Bileşiğinin Sentezi
- 3.4.27. 2,3-dikloro-3aH,5H-4-oksa-9,9b-diaza-siklopenta[a]naftalin-1-on 24

(M27) Bileşiğinin Sentezi

3.4.28. 2,3-dikloro-3aH,5H-4-oksa-7-iodo-9,9b-diaza-siklopenta[a]naftalin-1-	25		
on (<i>M</i> 28) Bileşiğinin Sentezi			
3.4.29 . 2,3-dikloro-3aH,5H-4-oksa-7-iyodo-9,9b-diaza-siklopenta[a] naftalin-	25		
1-on (<i>M</i> 29) Bileşiğinin Sentezi			
3.4.30. 2,3-dibromo-3aH,5H-4-oksa-9b-aza-siklopenta[a]naftalin-1-on (M30)	26		
Bileşiğinin Sentezi			
3.4.31. 2,3-dibromo-3aH,5H-4-oksa-9,9b-diaza-siklopenta[a]naftalin-1-on	26		
(<i>M</i> 31) Bileşiğinin Sentezi			
3.4.32. 2,3-dibromo-3aH,5H-4-oksa-7-iodo-9,9b-diaza-siklopenta[a] naftalin-	26		
1-on (<i>M3</i> 2) Bileşiğinin Sentezi			
3.4.33. 2,3-dibromo-3aH,5H-4-oksa-7-iodo-9,9b-diaza-siklopenta[a] naftalin-	27		
1-on (<i>M33</i>) Bileşiğinin Sent ezi			
4. BULGULAR, SONUÇLAR VE TARTIŞMA	28		
4.1. Sentez	28		
4.2. IR Spektrumlarının İncelenmesi	34		
4.3. X-lşınları Difraksiyon Yöntemiyle Kristalografik ve Moleküler Yapıların	39		
İncelenmesi			
4.3.1. 5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (<i>M1</i>) Bileşiğinin	39		
X-Işınları Difraksiyon Yöntemiyle İncelenmesi			
4.3.2. 9,10-Dimetoksi-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on	46		
(M15) Bileşiğinin X-Işınları Difraksiyon Yöntemiyle İncelenmesi			
4.3.3. 3-İyot- <i>5H</i> ,6a <i>H</i> -6-oksa-1,11a-diaza-benzo[<i>a</i>]fluoren-11-on (<i>M13</i>)	53		
Bileşiğinin X-Işınları Difraksiyon Yöntemiyle İncelenmesi			
4.3.4. 9,10-Dimetoksi- <i>5H</i> ,6a <i>H</i> -6-oksa-1,11a-diaza-benzo[a]fluoren-11-on	59		
(M16) Bileşiğinin X-Işınları Difraksiyon Yöntemiyle İncelenmesi			
4.3.5. 6a-Metil- <i>5H</i> ,6a <i>H</i> -6-oksa-1,11a-diaza-benzo[<i>a</i>]fluoren-11-on (<i>M5</i>)	67		
Bileşiğinin X-Işınları Difraksiyon Yöntemiyle İncelenmesi			
4.3.6. 3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3- <i>a</i>]izoindol-6(10b <i>H</i>)-on (<i>M10</i>)	74		
Bileşiğinin X-Işınları Difraksiyon Yöntemiyle İncelenmesi			
4.3.7. 3-Hidroksi-3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3- <i>a</i>]izoindol-6(10b <i>H</i>)-on	80		
(M11) Bileşiğinin X-Işınları Difraksiyon Yöntemiyle İncelenmesi			
4.3.8. 2,3-Dibrom-3a <i>H</i> ,5 <i>H</i> -4-oksa-9b-aza-siklopenta[a]naftalin-1-on (<i>M30</i>)	87		
Bileşiğinin X-Işınları Difraksiyon Yöntemiyle İncelenmesi			
4.4. NMR Spektrumlarının İncelenmesi 10			

4.4.1. 5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M1) Bileşiğinin	100
NMR Spektroskopisiyle İncelenmesi	
4.4.2. 9,10-Dimetoksi-5 <i>H</i> ,6a <i>H</i> -Benzo[4,5][1,3]oksazino[2,3- <i>a</i>]izoindol-11-on	103
(M15) Bileşiğinin NMR Spektroskopisiyle İncelenmesi	
4.4.3. 9,10-Dimetoksi-5 <i>H</i> ,6a <i>H</i> -6-oksa-1,11a-diaza-benzo[<i>a</i>]fluoren-11-on	105
(M16) Bileşiğinin NMR Spektroskopisiyle İncelenmesi	
4.4.4. 6a-Metil-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M5)	107
Bileşiğinin NMR Spektroskopisiyle İncelenmesi	
4.4.5. 3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3- <i>a</i>]izoindol <i>-</i> 6(10b <i>H</i>)-on (<i>M10</i>) Bileşiğinin	109
NMR Spektroskopisiyle İncelenmesi	
4.4.6. 2,3-dikloro-3a <i>H</i> ,5 <i>H</i> -4-oksa-9b-aza-siklopenta[<i>a</i>]naftalin-1-on (<i>M</i> 26)	111
Bileşiğinin NMR Spektroskopisiyle İncelenmesi	
4.4.7. 9,10-Dimetoksi-3-İyot-5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-	113
on (M17) Bileşiğinin NMR Spektroskopisiyle İncelenmesi	
4.4.8. 3-İyot- <i>5H</i> ,6a <i>H</i> -6-oksa-1,11a-diaza-benzo[<i>a</i>]fluoren-11-on (<i>M13</i>)	114
Bileşiğinin NMR Spektroskopisiyle İncelenmesi	
4.4.9. Allilik etkileşmeler	115
4.5. Kütle Spektrumlarının İncelenmesi	118
4.5.1. 5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M1) Bileşiğinin	118
Kütle Spektrumunun İncelenmesi	
4.5.2. 3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3- <i>a</i>]izoindol-6(10b <i>H</i>)-on (<i>M10</i>)	120
Bileşiğinin Kütle Spektrumunun İncelenmesi	
4.5.3. 3-Hidroksi-3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3- <i>a</i>]izoindol-6(10b <i>H</i>)-on	122
(M11 Bileşiğinin Kütle Spektrumunun İncelenmesi	
4.5.4. 9,10-Dimetoksi- <i>5H</i> ,6a <i>H</i> -Benzo[4,5][1,3]oksazino[2,3- <i>a</i>]izoindol-11-on	124
(M15) Bileşiğinin Kütle Spektrumunun İncelenmesi	
4.5.5. 6a-Metil- <i>5H</i> ,6a <i>H</i> -6-oksa-3,11a-diaza-benzo[<i>a</i>]fluoren-11-on (<i>M</i> 2 <i>1</i>)	126
Bileşiğinin Kütle Spektrumunun İncelenmesi	
4.5.5. 6a-(4-Klorfenil)- <i>5H</i> ,6a <i>H</i> -Benzo[4,5][1,3]oksazino[2,3- <i>a</i>]izoindol-11-on	128
(<i>M7</i>) Bileşiğinin Kütle Spektrumu	
4.6. Biyolojik Aktivite Çalışmaları	129
4.5.1. (<i>M1</i>), (<i>M5</i>) ve (<i>M15</i>) Bileşiklerinin Biyolojik Aktivitelerinin İncelenmesi	129
5. SONUÇ	132
6. KAYNAKLAR	134
7. EKLER	137

- EK1. 3-(2-(hidroksimetil)fenilamino)-6,7-dimetoksiisobenzofuran-1(3*H*)-on **137** bileşiğinin molekül yapısı ve kristal parametreleri
- EK2. FİNLANDİYA JYVÄSKYLÄ Üniversitesi Nanosecience Center Kimya **143** Bölümde ortak çalışma için davet mektubu
- EK3. IUCr General Congress XXI, Summer 2008, Osaka, Japan, sunulan poster 144
- EK4. XXII. Ulusal Kimya Kongresi, Kıbrıs, sunulan Bildiri (Özet) 145
- EK5. 25th European Crystallographic Meeting, Summer 2009, Istanbul, Turkey, **147** sunulan poster

SİMGELER VE KISALTMALAR

IR İnfraret Spektroskopisi NMR Nükleer Magnetik Rezonans THF Tetrahidrofuran DMF Dimetilformamit TLC İnce Tabaka Kromotografisi TMS Tetrametil Silan ESI Elektron Spray İyonlaşma GC-MS Gaz Kromatografisi- Kütle Spektrometresi

TABLOLAR

Tablo 3.1. Laboratuvar İşlemlerinde Kullanılan Kimyasal Maddeler	9
Tablo 3.2. Yapı Aydınlatma Çalışmalarında Kullanılan Cihazlar	10
Tablo 4.1. Proje kapsamında sentezlenen bileşiklerin karakteristik C=O gerilme	38
titreşimleri	
Tablo 4.2. M1 için Kristal Verileri ve Yapısal Özellikler	41
Tablo 4.3. M1 için Atomik koordinatlar ve izotropik veya ekivalent izotropik yerdeğiştirmeparametreleri (Ų)	42
Tablo 4.4. M1 için Atomik yer değiştirme parametreleri (Å ²)	42
Tablo 4.5. M1 için Bağ Uzunlukları [Å], Bağ Açıları [°], Torsiyon Açıları [°]	43
Tablo 4.6. M1 için Hidrojen-bağ geometrisi (Å, °)	44
Tablo 4.7. M15 için Kristal Verileri ve Yapısal Özellikler	46
Tablo 4.8. M15 için Atomik koordinatlar ve izotropik veya ekivalent izotropik yerdeğiştirme parametreleri (Ų)	47
Tablo 4.9. M15 için Atomik yer değiştirme parametreleri (Å ²)	48
Tablo 4.10. M15 için Bağ Uzunlukları [Å, Bağ Açıları [°], Torsiyon Açıları [°]	49
Tablo 4.11. M15 için Hidrojen-bağ geometrisi (Å, °)	51
Tablo 4.12. M13 için Kristal Verileri ve Yapısal Özellikler	53
Tablo 4.13. M13 için Atomik koordinatlar ve izotropik veya ekivalent izotropik yerdeğiştirme parametreleri (Ų)	54
Tablo 4.14. M13 için Atomik yer değiştirme parametreleri (Å ²)	55
Tablo 4.15. M13 için Bağ Uzunlukları [Å], Bağ Açıları [°], Torsiyon Açıları [°]	55
Tablo 4.16. M13 için Hidrojen-bağ geometrisi (Å, °)	57
Tablo 4.17. M16 için Kristal Verileri ve Yapısal Özellikler	59
Tablo 4.18. M16 için Atomik koordinatlar ve izotropik veya ekivalent izotropik yerdeğiştirme parametreleri (Ų)	60
Tablo 4.19. M16 için Atomik yer değiştirme parametreleri (Å ²)	61
Tablo 4.20. M16 için Bağ Uzunlukları [Å], Bağ Açıları [°], Torsiyon Açıları [°]	62
Tablo 4.21. M16 için Hidrojen-bağ geometrisi (Å, °)	64
Tablo 4.22. M5 için Kristal Verileri ve Yapısal Özellikler	67
Tablo 4.23. M5 için Atomik koordinatlar ve izotropik veya ekivalent izotropik yerdeğiştirme parametreleri (Ų)	68
Tablo 4.24. M5 için Atomik yer değiştirme parametreleri (Å ²)	69
Tablo 4.25. M5 için Bağ Uzunlukları [Å], Bağ Açıları [°], Torsiyon Açıları [°]	70

Tablo 4.26. M5 için Hidrojen-bağ geometrisi (Å, º)	71
Tablo 4.27. M10 için Kristal Verileri ve Yapısal Özellikler	75
Tablo 4.28. M10 için Atomik koordinatlar ve izotropik veya ekivalent izotropik yerdeğiştirme parametreleri (Ų)	75
Tablo 4.29. M10 için Atomik yer değiştirme parametreleri (Å ²)	76
Tablo 4.30. M10 için Bağ Uzunlukları [Å], Bağ Açıları [°], Torsiyon Açıları [°]	77
Tablo 4.31. M10 için Hidrojen-bağ geometrisi (Å, °)	78
Tablo 4.32. M11 için Kristal Verileri ve Yapısal Özellikler	81
Tablo 4.33. M11 için Atomik koordinatlar ve izotropik veya ekivalent izotropik yerdeğiştirme parametreleri (Ų)	81
Tablo 4.34. M11 için Atomik yer değiştirme parametreleri (Å ²)	82
Tablo 4.35. M11 için Bağ Uzunlukları [Å], Bağ Açıları [°], Torsiyon Açıları [°]	83
Tablo 4.36. M11 için Hidrojen-bağ geometrisi (Å, °)	84
Tablo 4.37. M30 için Kristal Verileri ve Yapısal Özellikler	88
Tablo 4.38. M30 için Atomik koordinatlar ve izotropik veya ekivalent izotropik yerdeğiştirme parametreleri (Ų)	89
Tablo 4.39. M30 için Atomik yer değiştirme parametreleri (Å ²)	90
Tablo 4.40. M30 için Bağ Uzunlukları [Å], Bağ Açıları [°], Torsiyon Açıları [°]	91
Tablo 4.41. M30 için Hidrojen-bağ geometrisi (Å, °)	93
Tablo 4.42. Kristal yapısı incelenen izoindolo-oksazinon bileşiklerinde dihedral açılar (°)	95
Tablo 4.43. Kristal yapısı incelenen izoindolo-oksazinon bileşiklerinde karakteristik bağ uzunlukları (Å)	97
Tablo 4.44. M1-M33 bileşiklerinin karakteristik NMR verileri (ppm)	115
Tablo 4.45. Kristal yapısı incelenen izoindolo-oksazinon bileşiklerinde allilik etkileşme gösterebilecek protonlar arasındaki dihedral açı	117
Tablo 4.46. Proje kapsamında sentezlenen bazı bileşiklerin bazı G(+) ve G(-)bakterilerine karşı etkileri	129

ŞEKİLLER

Şekil 4.1: 5,6-Dimetoksiftaldehidik asit'in FT-IR spektrumu	28
Şekil 4.2: 5,6-Dimetoksiftaldehidik asit + 2-aminobenzil alkolün reaksiyon ürününün IR spektrumu	29
Şekil 4.3: 3-[2-(hidroksimetil)anilino]isobenzofuran-1(3H)-on bileşiğinin molekül yapısı ve kristal parametreleri	30
Şekil 4.4. 3-(2-(hidroksimetil)fenilamino)-6,7-dimetoksiisobenzofuran-1(3H)-on bileşiğinin molekül yapısı ve kristal parametreleri	31
Şekil 4.5. Ftaldehidik asit'in IR spektrumu	34
Şekil 4.6. 5H,6aH-benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M1) bileşiğinin IR spektrumu	35
Şekil 4.7a. IR Spektroskopisi yardımıyla yapı karakterizasyonu (M15)	35
Şekil 4.7b. IR Spektroskopisi yardımıyla yapı karakterizasyonu (M2)	36
Şekil 4.7c. IR Spektroskopisi yardımıyla yapı karakterizasyonu (M8)	36
Şekil 4.7d. IR Spektroskopisi yardımıyla yapı karakterizasyonu (M10)	36
Şekil 4.8. <i>5H</i> ,6a <i>H</i> -Benzo[4,5][1,3]oksazino[2,3- <i>a</i>]izoindol-11-on (<i>M1</i>) Bileşiğinin molekül yapısı	39
Şekil 4.9. 5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M1) bileşiğinde moleküller arası etkileşmeler	45
Şekil 4.10. 9,10-Dimetoksi-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M15) Bileşiğinin molekül yapısı	46
Şekil 4.11. 9,10-Dimetoksi- <i>5H</i> ,6a <i>H</i> -Benzo[4,5][1,3]oksazino[2,3- <i>a</i>]izoindol-11-on (<i>M15</i>) bileşiğinin C-H…π etkileşmeleriyle oluşturduğu dimerik yapı	51
Şekil 4.12. 9,10-Dimetoksi-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M15) bileşiğinde moleküller arası	52
Şekil 4.13. 9,10-Dimetoksi-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M15) moleküllerinin kristal yapıda yerleşimi	52
Şekil 4.14. 3-İyot-6-5H,6aH-oksa-1,11a-diaza-benzo[a]fluoren-11-on (M13) Bileşiğinin molekül yapısı	53
Şekil 4.15. 3-İyot- <i>5H</i> ,6a <i>H</i> -6-oksa-1,11a-diaza-benzo[<i>a</i>]fluoren-11-on (<i>M13</i>) bileşiğinde moleküller arası etkileşmeler	57
Şekil 4.16. 3-İyot-5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (M13) moleküllerinin kristal yapıda yerleşimi	58
Şekil 4.17. 9,10-Dimetoksi- <i>5H</i> ,6a <i>H</i> -6-oksa-1,11a-diaza-benzo[<i>a</i>]fluoren-11-on (<i>M16</i>) Bileşiğinin molekül yapısı	59
Şekil 4.18. 9,10-Dimetoksi-5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (M16) bileşiğinde C3 zincirini gösteren moleküller arası etkileşmeler	65
Şekil 4.19. 9,10-Dimetoksi5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (M16) bileşiğinde hidrojen bağlı C7 zinciri	65
Şekil 4.20. 9,10-Dimetoksi <i>5H</i> ,6a <i>H</i> -6-oksa-1,11a-diaza-benzo[<i>a</i>]fluoren-11-on (<i>M16</i>) bileşiğinde hidrojen bağlı R_4^4 (24) motifi ve C-H π etkileşmeleri zinciri	66
Şekil 4.21. 6a-Metil- <i>5H</i> ,6a <i>H</i> -6-oksa-1,11a-diaza-benzo[<i>a</i>]fluoren-11-on (<i>M5</i>)	67

Bileşiğinin molekül yapısı

Şekil 4.22. 6a-Metil- <i>5H</i> ,6a <i>H</i> -6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (<i>M5</i>) bileşiğinde sentrosimetrik hidrojen bağlı R₂²(14) motifi	72
Şekil 4.23. 6a-Metil- <i>5H</i> ,6a <i>H</i> -6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (<i>M5</i>) bileşiğinde hidrojen bağlı R ₂ ² (12) ve R ₂ ² (14) motifleri	72
Şekil 4.24. 6a-Metil- <i>5H</i> ,6a <i>H</i> -6-oksa-1,11a-diaza-benzo[<i>a</i>]fluoren-11-on (<i>M5</i>) bileşiğinde hidrojen bağlı $R_2^2(12)$, $R_2^2(14)$, $R_4^2(8)$ ve $R_4^2(14)$ halka motifleri	73
Şekil 4.25. 6a-Metil- <i>5H</i> ,6a <i>H</i> -6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (<i>M5</i>) bileşiğinde C-H etkileşmeleri ve moleküllerin katı fazda dizilişi	73
Şekil 4.26. 3,4-dihidro-2H-[1,3]oksazino[2,3-a]izoindol-6(10bH)-on (<i>M10</i>) Bileşiğinin molekül yapısı	74
Şekil 4.27. 3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3- <i>a</i>]izoindol-6(10b <i>H</i>)-on molekülünde C halkasının konformasyonu	75
Şekil 4.28. 3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3- <i>a</i>]izoindol-6(10b <i>H</i>)-on (<i>M10</i>) bileşiğinde hidrojen bağlı $R_2^2(10)$ motifli dimerler	78
Şekil 4.29. 3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3- <i>a</i>]izoindol-6(10b <i>H</i>)-on (<i>M10</i>) bileşiğinde hidrojen bağlı $R_2^2(10)$ ve $R_6^6(31)$ motifleri	79
Şekil 4.30. 3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3- <i>a</i>]izoindol-6(10b <i>H</i>)-on (<i>M10</i>) bileşiğinde moleküllerin kristal yapıda yerleşimi	79
Şekil 4.31. 3-Hidroksi-3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3- <i>a</i>]izoindol-6(10b <i>H</i>)-on (<i>M11</i>) Bileşiğinin molekül yapısı	80
Şekil 4.32. 3-Hidroksi-3,4-dihidro-2H-[1,3]oksazino [2,3-a]izoindol-6(10bH)-on molekülünde C halkasının konformasyonu	80
Şekil 4.33. 3-Hidroksi-3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3- <i>a</i>]izoindol-6(10b <i>H</i>)-on (<i>M11</i>) bileşiğinde hidrojen bağlı O3-H1O1 C7 zincirlerinin C10-H10O1 hidrojen bağları ile oluşturduğu R ₃ ³ (15) ve R ₃ ² (7) motifleri	85
Şekil 4.34. 3-Hidroksi-3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3- <i>a</i>]izoindol-6(10b <i>H</i>)-on (<i>M11</i>) bileşiğinde hidrojen bağlı R ₃ ² (7) ve R ₅ ⁴ (23) motifleri	86
Şekil 4.35. 3-Hidroksi-3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3- <i>a</i>]izoindol-6(10b <i>H</i>)-on (<i>M11</i>) bileşiğinin kristal yapıda dizilişi	86
Şekil 4.36. 2,3-Dibrom-3aH,5H-4-oksa-9b-aza-siklopenta[a]naftalin-1-on (<i>M30</i>) Bileşiğinin molekül yapısı ve pirrol-2-on düzlemleri arasındaki açı	87
Şekil 4.37. 2,3-Dibrom-3aH,5H-4-oksa-9b-aza-siklopenta[a]naftalin-1-on (30) bileşiğinde hidrojen bağlı S6 ve hidrojen bağı ve heteroatom etkileşmesi içeren R ₆ ⁶ (31) ve motifleri	94
 Şekil 4.38. 5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M1) bileşiğinin; (a) 400 MHz ¹H-NMR spektrumu (b) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum (c) Spektrumun aromatik protonları içeren kısmı (Çözücü CDCl₃) 	100
 Şekil 4.39. 5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M1) bileşiğinin; (a) ¹³C-NMR spektrumu (Çözücü CDCl₃) (b) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum 	101
 Şekil 4.40. 9,10-Dimetoksi-5<i>H</i>,6a<i>H</i>-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (<i>M15</i>) bileşiğinin; (a) 400 MHz ¹H-NMR spektrumu 	103

- (b) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum
- (c) Spektrumun aromatik protonları içeren kısmı (Çözücü CDCl₃)
- **Şekil 4.41.** 9,10-Dimetoksi-5*H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on **104** (*M15*) bileşiğinin;
 - (a) ¹³C-NMR spektrumu (Çözücü CDCl₃)
 - (b) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum
- **Şekil 4.42.** 9,10-Dimetoksi-5*H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M16*) **105** bileşiğinin;
 - (a) 400 MHz ¹H-NMR spektrumu (Çözücü CDCl₃)
 - (b) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum
- **Şekil 4.43.** 9,10-Dimetoksi-5*H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M16*) **106** bileşiğinin;
 - (a) ¹³C-NMR spektrumu (Çözücü CDCl₃)
 - (b) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum
- **Şekil 4.44.** 6a-Metil-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on **107** (*M5*)bileşiğinin;
 - (a) 300 MHz ¹H-NMR spektrumu (Çözücü DMSO)
 - (b) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum
 - (c) Spektrumun bazı bölgelerinin detaylı görünüşü
- **Şekil 4.45.** 6a-Metil-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M5*) **108** bileşiğinin;
 - (a) ¹³C-NMR spektrumu (Çözücü DMSO)
 - (b) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum
- Şekil 4.46. 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M10*) bileşiğinin;
 109 (a) 300 MHz ¹H-NMR spektrumu (Çözücü DMSO)
 - (b) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum
- **Şekil 4.47.** 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M10*) bileşiğinin; **110** (a) ¹³C-NMR spektrumu (Çözücü DMSO)
 - (b) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum
- **Şekil 4.48.** 2,3-dikloro-3a*H*,5*H*-4-oksa-9b-aza-siklopenta[*a*]naftalin-1-on (*M*26) **111** bileşiğinin;
 - (a) 300 MHz ¹H-NMR spektrumu (Çözücü DMSO)
 - (b) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum
- **Şekil 4.49.** 2,3-dikloro-3a*H*,5*H*-4-oksa-9b-aza-siklopenta[*a*]naftalin-1-on (*M*26) **112** bileşiğinin;
 - (a) ¹³C-NMR spektrumu (Çözücü DMSO)
 - (b) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum
- Şekil 4.50. 9,10-Dimetoksi-3-İyot-5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on 113 (M17) bileşiğinin 400 MHz ¹H-NMR spektrumu (Çözücü CDCl₃)
- Şekil 4.51. ChemDraw Ultra 8.0 ile çizdirilmiş 9,10-Dimetoksi-3-İyot-5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (*M17*) bileşiğinin tahmini ¹³C-NMR spektrumu
- Şekil 4.52. 3-İyot-5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (M13) bileşiğinin 114

	400 MHz ¹ H-NMR spektrumu (Çözücü CDCl ₃)	
Şek	kil 4.53. ChemDraw Ultra 8.0 ile çizdirilmiş 3-İyot- <i>5H</i> ,6a <i>H</i> -6-oksa-1,11a-diaza- benzo[<i>a</i>]fluoren-11-on (<i>M13</i>) bileşiğinin tahmini ¹³ C-NMR spektrumu	114
Şek	kil 4.54. İndolooksazinon bileşiklerinde; (a) alilik etkileşme için dihedral açı (b)1,3-oksazin halkasında oksijenin titreşimi	116
Şek	kil 4.55. 5 <i>H</i> ,6a <i>H</i> -Benzo[4,5][1,3]oksazino[2,3- <i>a</i>]izoindol-11-on (M1) bileşiğinin kütle spektrumu	119
Şek	kil 4.56. 3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3- <i>a</i>]izoindol <i>-</i> 6(10b <i>H</i>)-on (<i>M10)</i> bileşiğinin kütle spektrumu	121
Şek	kil 4.57. 3-Hidroksi-3,4-dihidro-2 <i>H</i> -[1,3]oksazino[2,3 <i>-a</i>]izoindol-6(10b <i>H</i>)-on (<i>M11</i>) bileşiğinin kütle spektrumu	123
Şek	kil 4.58 . 9,10-Dimetoksi- <i>5H</i> ,6a <i>H</i> -Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (<i>M15</i>) bileşiğinin kütle spektrumu	125
Şek	kil 4.59. 6a-Metil- <i>5H</i> ,6a <i>H</i> -6-oksa-3,11a-diaza-benzo[a]fluoren-11-on (<i>M21</i>) bileşiğinin kütle spektrumu	127
Şek	 kil 4.60. 6a-(4-klorfenil)-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11- on (M7) bileşiğinin kütle spektrumu 	128
Şek	kil 4.61. S <i>taphylococcus aureus</i> bakterisi üzerine; 1. kanamisinin (antibiyotik) 2. M5 bileşğinin (34mm inhb.zonu) etkisi	130

ÖZET

İzoindolin-1-on (2,3-dihidro-1*H*-izoindolin-1-on) (**1**) ve 1,3-benzoksazin (**2**) çekirdekleri ya basit yapısal bir birim olarak yada çok kompleks sistemlerin bir parçası olarak sentetik ve doğal ürünlerin yapısında yaygın bir şekilde bulunmaktadır. Geniş bir yelpazedeki biyolojik aktivitelerinden dolayı, izoindolin-1-on ve 1,3-benzoksazin sentezleri çok dikkat çekmiştir. Bu çalışmada, önemli biyolojik aktivitelere sahip olmaları beklenen, izoindolin-1-on ve 1,3-benzoksazin birimlerini bir arada bulunduran izoindolo-oksazinon (**3**) türevleri, ve ayrıca pirrol-2-on ve 1,3-benzoksazin birimlerini içeren pirrolo-oksazinon (**4**) bileşikleri tek kademeli bir reaksiyonla sentezlenerek yapıları aydınlatılmıştır. Sentezlenen bileşiklerin yapı aydınlatmaları NMR, IR, UV-VIS, kütle ve X-ışınları yardımıyla yapılmıştır. Üç bileşiğin biyolojik aktivitesi incelenmiştir ve 6a-Metil-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M5*) bileşiğinin biyolojik aktivitesinin referansa göre 3 kat daha fazla olduğu bulunmuştur.

İsoindolin-1-on (2,3-dihidro-1*H*isoindolin-1-on)

1,3-Benzoksazin 2,4-dihidro-1*H*-benzo [*d*][1,3]oksazin

5,6a-Dihidro-isoindolo-[2,1-*a*][3,1]benzoksazin-11-on

2,3-dihalojeno-3aH,5H-4-oksa-9b-aza-siklopenta[*a*]naftalin-1-on X = Cl, Br

SUMMARY

Izoindolin-1-one (2,3-dihydro-1*H*-izoindolin-1-one) (1) ve 2,4-dihydro-1*H*-benzo[*d*][1,3]oxazine (2) units are commonly present in synthetic and natural products as simple structures or as a part of complex systems. The syntheses of izoindolin-1-one and 1,3-benzoksazine derivatives have drawn much attention due to the wide range of their biological activities. In this project, one-pot syntheses of izoindolo-oksazinone (3) derivatives containing izoindolin-1-one and 1,3-benzoksazine units and pirrolo-oksazinone (4) derivatives bearing pirrol-2-one and 1,3-benzoksazine units were carried out and their structures identified. Characterizations of these compounds were achieved by using NMR, IR, UV-VIS, mass, X-ray analysis. Biological activities of the synthesized three compounds were investigated. Biological activity of the 6a-Methyl-*5H*,6a*H*-Benzo[4,5][1,3]oxazino[2,3-*a*]isoindolo-11-one (*M5*) compound was found to be 3 times more by reference.

isoindolin-1-one (2,3-dihydro-1*H*isoindoline-1-one)

5,6a-Dihydro-isoindolo-[2,1-*a*][3,1]benzoxazine-11-one

1,3-Benzoxazine 2,4-dihydro-1*H*-benzo [d][1,3]oxazine

2,3-dihalogeno-3aH,5H-4-oxa-9b-aza-cyclopenta[*a*]naphtalene-1-one X = Cl, Br

1.GIRİŞ

İzoindolin-1-on (2,3-dihidro-1*H*-izoindolin-1-on) (1) ve 1,3-benzoksazin (2) çekirdekleri ya basit yapısal bir birim olarak yada çok kompleks sistemlerin bir parçası olarak sentetik ve doğal ürünlerin yapısında yaygın bir şekilde bulunmaktadır. Geniş bir yelpazedeki biyolojik aktivitelerinden dolayı, izoindolin-1-on ve 1,3-benzoksazin sentezleri çok dikkat çekmiştir. Her biri önemli biyolojik aktivitelere sahip olan (1) ve (2) birimlerinin aynı molekülde yer almaları halinde meydana gelecek olan izoindolo-oksazinon (3) ve pirrolo-oksazinon (4) bileşiklerinin cok daha etkin ve cok daha farklı biyolojik aktivitelere sahip olabileceği düşüncesi bizleri bu bileşiklerin basit bir şekilde sentezi için araştırma yapmaya sevk etmiştir.

5,6a-Dihidro-izoindolo-[2,1-*a*][3,1]benzoksazin-11-on

2,3-dihalojeno-3aH,5H-4-oksa-9b-aza-siklopenta[a]naftalin-1-on X = Cl, Br

4

İzoindolin-1-on (2,3-dihidro-1*H*-izoindolin-1-on) (1) pek çok doğal ürün ve farmösetik molekülde anahtar rol oynayan bir bileşiktir. Örneğin, (S)-PD-172938 olarak bilinen (S)-3-{2-[4-(3,4-dimetilfenil)piperazin-1-il]etil}izoindolin-1-on (5) bileşiği dopamin D₄ reseptörüne karşı affinitesi olan bir bileşiktir¹. DN 2327 (pazinaclone), 2-(7-kloro-1,8-naftiridin-2-il)-3-[(1,4dioksaa-8-azaspiro[4,5]dec-8-il)karbonilmetil]izoindolin-1-one (6a) ise ilaç olma yolundadır². CI-1043 [(S)-pagaclone], (S)-2-(7-kloro-1,8-naftiridin-2-il)-3-(5-metil-2-oksohekzil)izoindolin-1-on (6b) genel korku, endişe ve panik tipi rahatsızlıklar için³, chlorthalidone, 2-kloro-5-(1hidroksi-3-oksoizoindolin-1-il)benzensulfonamid (7), ise diüretik ve yüksek tansiyona karşı kullanılan sentetik bir ilaçtırlar⁴. **Lennoxamine**⁵ (8), **nuevamine** (9) ve **chilenine** (10) ise çeşitli sarıçalı (*barerry*) bitkilerinden izole edilen ve yapılarında izoindolin-1-on çekirdeği taşıyan ve ishal önleyici (anti-diarrheal), mikrop giderici (anti-microbial) ve ateş düşürücü (anti-inflammatory) özelliklere sahip olan doğal alkaloidlerdir.

Pakistan'da yaygın bir şekilde bulunan *creeper Fumaria parviflora Lam (Fumariaceae)* bitkisinden hazırlanan ekstrakt, tamamlayıcı tıp alanında kan temizleyici (blood purifier), solucan düşürücü (anti-helmintic), deri hastalıkları ve ishal (diyare) tedavisinde kullanılır. Bu ekstraktın biyolojik aktivitesi yapısında bulunan **narceine imide** {(Z)-3-[(6-(2-(dimetilamino)-

etil]-4-metoksibenzo[*b*][1,3]dioksal-5-il)metilen)-6,7-dimetoksiizoindolin-1-on}, **fumaramidine**, **fumaramine** ve **fumaridine** bileşiklerinden kaynaklandığı tespit edilmiştir ve bu bileşikler de yapılarında izoindolin-1-on birimleri bulundururlar⁶. Mantar öldürücü (anti-fungal) ve tansiyon düşürücü (anti-hipertansiv) olarak kullanılan ayrıca potansiyel anti-kanser ilacı olan **staurosporine** (**11**)⁷, anti-HIV-1 aktiviteye sahip 9b-amil-2,3-dihidrothiazolo[2,3-*a*]izoindol-5(9*bh*)-on (**12**)⁸ ve yaklaşık 30 yıldır ağrı kesici (analgesic) ve ateş düşürücü (anti-inflamatory) olarak kullanılan **indoprofen** (**13**) de izoindolin-1-on çekirdeği içeren bileşiklerden bazılarıdır.

Geçtiğimiz birkaç yıl içinde yapılan çalışmalar izoindolin halka sisteminin çok geniş terapatik aktivite¹⁰ gösteren bir yapıtaşı olduğunu ortaya koymakla kalmamış, **talidomid**'in {2-(2,6-diokso-3-piperidinil)-1*H*-izoindolo-1,3(2*H*)-dion} çeşitli izoindol türevlerinin damar açıcı (anti-angiogenic) aktivite¹¹ gösterdiğini ve TNF- α (Tumor Necrosis Factor-alpha) inhibisyonunda¹² etkili olduğunu da göstermiştir.

Benzo-1,3-oksazin birimleri taşıyan bileşiklerin biyolojik aktiviteleriyle ilgili çok sayıda calışma da mevcuttur. Steroidal seçici bir PR (Progesteron reseptör) antagonist, hormona bağlı kanser tedavisinde¹³, fibroidler ve endometriosisler gibi kronik durumlara bağlı hormon tedavisinde¹⁴ kullanılmakla beraber bu tür PR modülatörlerin meme ağrısı (mastalgia), baş ağrısı, mide bulantısı, CNS (merkezi sinir sistemi) üzerine etkileri ve kardiovascular komplikasyonlar gibi önemli yan etkileri de mevcuttur¹⁵. Yapılarında benzo-1,3-oksazin birimleri taşıyan ve steroidal olmayan dolayısıyla yan etki göstermeyen potansiyel PR antagonistler olan 6-aril-1,4-dihidro-2H-benzo[d][1,3]oksazinler¹⁶ (14-16), 6-aril-1,4-dihidro-2H-benzo[d][1,3]oksazin-2-on¹⁷ (17) ve 6-aril-1,4-dihidro-2H-benzo[d][1,3]oksazin-2tiyonların¹⁸ (18) pek çok türevi önemli aktiviteye sahip olduğu belirlenmiş ve bu tür bileşiklerin aktivite göstermelerinde benzo-1,3-oksazin çekirdeğinin önemli rol oynadığı ortaya konulmuştur¹⁸. **17** ile benzer yapıya sahip olan ve AIDS tedavisinde kullanılan efavirenz (SUSTIVATM) (19) ve efavirenzden daha yüksek aktivite gösteren 5-F, 6-NO₂ ve 6NH₂ efavirenz türevlerinin biyolojik aktiviteleri de benzoksazin birimlerinden kaynaklanmaktadır¹⁹. Amino asitleri tanımak için kiral reseptörler olarak kullanılan bazı bileşikler de benzo-1,3-oksazin birimleri içerirler²⁰. Benzoksazin türevleri önemli antiviral²¹ aktiviteye sahip olmakla beraber, anti-bakteriyal²², anti-sıtma²³ aktivite de gösteren ayrıca seratonin ve dopamin reseptörü²⁴ olarak da kullanılan bileşiklerdir.

R = H; Me; 3-F; 3-Cl; 3-CN, 4-F; 3-CN, 5-F; 3-Cl, 5-F; $R_1 = Me$; $R_2 = Me$; Ph; Siklohekzil; $R_3 = Me$; CF_3 ; Pr^i ; Bu^t ; Ph; COOEt ; $R_4 = H$; Me; $R_5 = H$; Me; X = O, S

Pirrolo[2,1-*b*][1,3]oksazinon sistemini içeren bileşiklerin de biyolojik aktivite gösteren bileşikler olduğu bilinmektedir. Pirrolo[2,1-*b*][1,3]oksazin-6-on²⁶ **21** ve türevleri olan bisiklik amitlerin merkezi sinir sistemi (CNS) üzerinde etkili olduğu ve bu sebeple anti-depresant olarak kullanılabilecekleri 30 yılı aşkın bir süredir bilinmektedir.

5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (**3**) ve türevleri, 2,3-dihalojeno-3aH,5H-4-oksa-9b-aza-siklopenta[a]naftalin-1-on (**4**) ve türevleri, yukarıda bahsedildiği gibi çeşitli biyolojik aktivite gösteren izoindolin-1-on ve 1,3-benzoksazin, pirrol ve 1,3-benzoksazin çekirdeklerini yapısında taşıyan bileşiklerdir. Geniş biyolojik aktiviteye sahip iki birimi yapısında taşıyan bu bileşiklerin biyolojik aktivitelerinin daha da artması muhtemel bir sonuç olarak beklenilmektedir.

Bu çalışmada kullanılmak üzere seçilen amino alkoller, sentezlenecek bileşiklerin doğal kaynaklardan izole edilen moleküllerde rastlanan yan grupları içerecek ürünler verebilecek alkoller olmasına dikkat edilmiştir. Pek çok doğal bileşikte bulunan metoksi ve metilendioksi gruplarının sentezlenen ürünlerde yer alması için uygun bileşikleri kullanılmıştır. Böylece elde edilen ürünlerin biyolojik aktivitelerinin yükseltilmesi ve çeşitlendirilmesi beklenmektedir.

2. GENEL BİLGİLER

Yapılan literatür araştırmaları izoindolo[2,1-*a*][3,1]oksazinlerin sentezinin genellikle antranilik asit ya da esterlerinden çıkarak yapıldığını göstermiştir. Başlangıç maddesi olarak kullanılan antranilik asit ya da esterlerin 2-açil (veya formil)benzoik²⁷ asit ya da ftalikanhidrit²⁸ ile kondenzasyonu izoindolo[2,1-*a*][3,1]oksazin-5,11-dionları (**22**) oluşturmuştur.

R= H, OH, Me, C_6H_5 , p-MeOC₆H₄

1995 yılında yapılan bir başka çalışmada²⁹ 1*H*-izoindolo[2,1-*a*]indol-11-karbaldehidin
(23) Baeyer-Villiager oksidasyonu ile (22) (%34, R=H) bileşiğinin oluştuğu gösterilmiştir.
(24) nolu bileşikler ise ftaldehit ve sübstitüe asetofenonların reaksiyonuyla sentezlenen 5,11dionlar üzerinden hazırlanan izoindolo[2,1-a][3,1]oksazin türevleridir³⁰. Bu türevlerin sentezinde verimin %25-35 gibi çok düşük olması önemli bir dezavantaj olarak göze çarpmaktadır.

1H-izoindolo[2,1-a]indol-11-karbaldehit

Son yıllarda yapılan bir çalışmada yüksek verimle (yaklaşık %90) birkaç izoindolo[2,1*a*][3,1]oksazin türevi Pigon ve arkadaşları tarafından sentezlenmiştir. Bu çalışmada izoindolo[2,1-*a*][3,1]oksazin türevlerinin sentezi aşağıda verilen yolla gerçekleştirilmiştir²⁵.

Reaksiyonun birinci adımında meydana gelen ftalimit (25) indirgenirse izoindolin-1-on
(26) oluşur. Oluşan (26) bileşiğinin *p*-toluensülfonik asit ile etkileştirilmesi ile 2/1 oranında
(27) ve (28) nolu izoindolo[2,1-a][3,1]oksazin türevleri sentezlenmiştir.

izoindolo[1,2-c][2,4]benzoksazepin (32-33)nolu türevi bileşiklerin ise 2metilbenzofenon üzerinden gerçekleştirilen reaksiyonlardan oluştuğu rapor edilmiştir^{25,32}. Aşağıda gösterildiği reaksiyonun birinci adımında 2-meilbenzofenon 2gibi

brommetilbenzofenona (**29**) dönüştürülmüş, oluşan 2-brommetilbenzofenon ftalimitle etkileştirilerek 2-benzoilbenzil ftalimit (**30**) elde edilmiştir. 2-Benzoilbenzil ftalimit'in NaBH₄ ile indirgenme ürününün (**31**) *p*-toluensülfonik asit ile etkileştirilmesiyle izoindolo[1,2-c][2,4]benzoksazepin bileşikleri hazırlanmıştır.

Aeberli ve Houlihan 1968 yılında yaptığı çalışmada³¹ antranilik asit ile 2-asetil ve 2benzoilbenzoik asitlerle izoindolo[2,1-*a*][3,1]oksazin-5,11-dionları (**22**) sentezlediği çalışmada γ -ketoasitleride kullanarak pirrolo[2,1-*a*][3,1]benzoksazin-1,5-dionları da sentezlemeyi başarmıştır. Reaksiyonda antranilik asit ile 4-oksopentanoik asitin kullanılmasıyla 3a-metil-1,2,3,3a-tetrahidro-5*H*-pirrolo[2,1-*a*][3,1]benzoksazin-1,5-dion (**34**), 3-benzoilpropiyonik asit kullanılınca 3a-fenil-1,2,3,3a-tetrahidro-5*H*-pirrolo[2,1-*a*][3,1]benzoksazin-1,5-dion (**35**) oluşmaktadır.

7

Yukarıda verilen bilgiler izoindolo-oksazinonların sentezi için birkaç adımın gerekli olduğunu göstermektedir. İzoindolin-1-on ve 1,3-benzoksazin birimlerinin aynı molekülde bulunmasının izoindolo-oksazinonlara önemli özellikler kazanabileceği beklentisi ile bu bileşikleri daha kolay bir yoldan daha yüksek verimle sentezleyebilecek bir yolun araştırılması, projenin ortaya çıkmasına kaynak teşkil eden ana düşünce olmuştur.

Bu düşünceyi gerçekleştirmek üzere ftaldehidik asit ve türevleri ile aminoalkoller Şema 1'de özetlendiği gibi etkileştirilmiştir. Bu proje kapsamında yapılan çalışmalar, uygulanan reaksiyonun tek basamakta ve yüksek verimle tetrasiklik izoindolo-oksazinon türevlerini hazırlamaya imkân tanıyan bir reaksiyon olduğunu göstermiştir.

3. GEREÇ VE YÖNTEMLER

3.1. Laboratuvar İşlemlerinde Kullanılan Maddeler

Tablo 3.1. Laboratuvar İşlemlerinde Kullanılan Kimyasal Maddeler

S.NO	BİLEŞİK	KOD	FİRMA
1	2-karboksibenzaldehit	A11201	Alfa Aesar
2	2 2-karboksi-3,4-metoksibenzaldehit Al		Alfa Aesar
3 Mucoklorik asit B24523		B24523	Alfa Aesar
(2,3-dikloromelealdehydic acid)			
4	Mukobromik asit (2.3-dibromomelealdehydic acid)	A15998	Alfa Aesar
5	2-asetilbenzoik asit	A10216	Alfa Aesar
6	2-benzoilbenzoik asit	A13281	Alfa Aesar
7	2-(4-klorbenzoil)benzoik asit	L02746	Alfa Aesar
8	Ftalik anhidrit	41771	Alfa Aesar
9	2-Aminobenzil alkol	A13180	Alfa Aesar
10	2-Aminopiridin-3-metanol	H50050	Alfa Aesar
11	2-Amino5iyodopiridin-3-metanol	H50011	Alfa Aesar
12	4-Aminopiridin-3-metanol	H50033	Alfa Aesar
13	6-Nitropiperonil alkol	A18140	Alfa aesar
14	6-Nitroveratril alkol	L00719	Alfa Aesar
15	2'-Aminoasetofenon	A10895	Alfa Aesar
16	2-aminobenzofenon	A12580	Alfa Aesar
17	2'-amino-4',5'-metilendioksiasetofenon	A16771	Alfa Aesar
18	2-amino-5-klorbenzofenon	A15720	Alfa Aesar
19	2-Amino-5-nitrobenzofenon	B23773	Alfa Aesar
20	Demir (ganül; 1-2 mm- (0.04-0.08in) %99.98	39708	Alfa aesar
21	Sodyum borhidrür NaBH ₄	38788	Alfa aesar
22	Lityum aluminyumhidrür LiAlH ₄	A18116	Alfa aesar
23	23 Silica gel, for column chromatography, 42725 Alfa ae		Alfa aesar
24	Silica gel,/TLC-cards	105735	Merck
25	Glasiyel asetik asit		Merck
26	3 Etil alkol Me		Merck
27	Metil alkol Merc		Merck
28	İzopropanol Mercl		Merck
29	Tetrahidrofuran THF Merc		Merck
30	Dietil eter Merc		Merck
31	Diklormetan Merc		Merck
32	Kloroform CHCl ₃		Merck

33	Dimetilformamit DMF		Merck
34	Asetonitril		Merck
35	Aseton		Merck
36	n-Hekzan		Merck
37	Petrol eteri		Merck
38	Toluen		Merck
39	Etilasetat		Merck
40	Kloroform-d CDCl ₃	103420	Merck
41	Döteryum oksit D ₂ O	113366	Merck
42	Dimetilsülfoksit-d6	103424	Merck
43	2-Amino-5-klorbenzoik asit	<u>A14329</u>	Alfa aesar
44	Etil asetat		Bir-pa
45	Aseton		Bir-pa
46	n-Hekzan		Bir-pa

3.2. Laboratuvar İşlemlerinde Kullanılan Cihazlar

Tablo 3.2. Yapı Aydınlatma Çalışmalarında Kullanılan Cihazlar

Adı	Modeli
NMR Spektrometresi	Bruker 300 MHz
NMR Spektrometresi	Bruker 400 MHz
Kütle Spektrometresi	Agilent-1100
FT-IR	Mattson 1000 FT-IR
X-Işını Diffraktometresi	Stoe IPDSII

3.3. Genel İşlemler

İzoindolo-oksazinonların sentezi, kullanılan maddelerin hava oksijeni ve neminden etkilenmemesi sebebiyle, normal atmosferde yapıldı. Sentezi gerçekleştirilen bileşiklerin reaksiyon takibi ince tabaka kromatografisi ile gerçekleştirildi ve uygun çözücülerde kristallendirme ve gerek görüldüğünde, özellikle verimi düşük olan sentezlerde kolon kromatografisi teknikleri kullanılarak saflaştırma işlemleri uygulandı.

Bir-Pa'dan temin edilen etil asetat, aseton ve n-hekzan fraksiyonlu destilasyon ile saflaştırıldıktan sonra kullanıldı.

3.4. Deneyler

3.4.1. 5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M1) Bileşiğinin Sentezi

M1 bileşiğinin sentezi için 100 mL lik balonda 50 mL DMF de çözülen ftaldehidik asit (2-formilbenzoik asit) (1.5 g, 10.0 mmol) üzerine (1.23 g, 10.0 mmol) 2-aminobenzil alkol ilave edildi. Reaksiyon karışımı TLC ile kontrol edilerek geri soğutucu altında 30 dakika kaynatıldı. Döner buharlaştırıcıda vakum uygulanarak çözücünün uzaklaştırılması sonucu elde edilen katı etil alkolden kristallendirildi. Ayrıca, M1 in etil alkoldeki çözeltisinin oda sıcaklığında buharlaştırılması ile X-ışınlarında incelenmek üzere düzgün kristaller hazırlandı. (**M1**) (2.25 g), (e.n:189-191 °C), %90 verimle elde edildi.

3.4.2. 3-Klor-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (*M2*) Bileşiğinin Sentezi

2-amino-5-klorbenzoik asit 2-amino-5-klorbenzil alkol

M2 bileşğinin sentezinde kullanılacak olan 2-amino-5-klorbenzil alkol ticari olarak bulunmadığından 2-amino-5-klorbenzoik asidin indirgenmesiyle elde edilmiştir. İndirgeme reaksiyonunda McKennon ve Meyers'in³³ α -amino asitlerin indirgenmesinde uyguladığı

yöntem kullanılmıştır. Bu yönteme göre, 250 mL lik yuvarlak dipli üç boyunlu bir balona geri soğutucu ve damlatma hunisi yerleştirilerek sodyum üzerinden kurutulmuş 100 mL THF ilave edildi. Daha sonra bu çözücüye NaBH₄ (0,95 g, 25 mmol) ve 2-amino-5-klorbenzoik asit (1,72 g, 10 mmol) eklendi. Balonun üçüncü boynu sistemi azot atmosferine almak için kullanıldı ve reaksiyon balonu buz banyosunda soğutularak sıcaklık 0 °C ye düşürüldü. Reaksiyon karışımına 50 mL kuru THF da çözülmüş iyot (2,54 g, 10 mmol) 30 dakikada damla damla ilave edildi. İyot ilavesi tamamlandıktan sonra gaz geçişi durdurularak karışım 18 saat geri soğutucu altında kaynatıldı. Oda sıcaklığına soğutulan karışıma berrak oluncaya kadar metanol ilave edildi. 30 dakika karıştırıldıktan sonra döner buharlaştırıcıda çözücü uzaklaştırıldı elde edilen katı üzerine 100 mL %20 lik KOH çözeltisi eklenerek 4 saat oda sıcaklığında karıştırıldı. Karışım 3x100 mL diklormetan ile ekstrakte edildi ve birleştirilen organik fazlar sodyum sülfat ile kurutulduktan sonra uçuruldu. Bir sonraki adımda kullanılmak üzere 1,27 g (%80) 2-amino-5-klorbenzil alkol elde edildi.

M2 bileşiğinin sentezi için 100 mL lik balonda 25 mL DMF de çözülen ftaldehidik asit (2-formilbenzoik asit) (0.75 g, 5.0 mmol) üzerine (0.79 g, 5.0 mmol) 4-klor-2-aminobenzil alkol ilave edildi. Reaksiyon karışımı TLC ile kontrol edilerek geri soğutucu altında 60 dakika kaynatıldı. Döner buharlaştırıcıda vakum uygulanarak çözücünün uzaklaştırılması sonucu elde edilen katı etil alkolden kristallendirildi. (**M2**) (1.24 g), (e.n:221-222 °C), %91 verimle elde edildi.

3.4.3. 5-Metil-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M3*) Bileşiğinin Sentezi

2-aminoasetofenon

1-(2-aminofenil)etanol

M3 ün sentezi için gerekli olan 1-(2-aminofenil)etanol, 2-aminoasetofenon kullanılarak 2-amino-5-klorbenzil alkolün sentezinde uygulanan yöntemle % 85 verimle elde edilmiştir.

M3 bileşiğinin sentezi için 100 mL lik balonda 25 mL DMF de çözülen ftaldehidik asit (2-formilbenzoik asit) (0.75 g, 5.0 mmol) üzerine (0.68 g, 5.0 mmol) 1-(2-aminofenil)etanol ilave edildi. Reaksiyon karışımı TLC ile kontrol edilerek geri soğutucu altında 2 saat kaynatıldı. Döner buharlaştırıcıda vakum uygulanarak çözücünün uzaklaştırılması sonucu elde edilen katı etil alkolden kristallendirildi. (**M3**) (1.13 g), (e.n:138-140 °C), %78 verimle elde edildi.

3.4.4. 5-Fenil-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M4*) Bileşiğinin Sentezi

2-aminobenzofenon

(2-aminofenil)(fenil)metanol

M4 ün sentezi için gerekli olan (2-aminofenil)(fenil)metanol, 2-aminobenzofenon kullanılarak 2-amino-5-klorbenzil alkolün sentezinde uygulanan yöntemle % 75 verimle elde edilmiştir.

M4 bileşiğinin sentezi için 100 mL lik balonda 25 mL DMF de çözülen ftaldehidik asit (2-formilbenzoik asit) (0.75 g, 5.0 mmol) üzerine (0.99 g, 5.0 mmol) (2aminofenil)(fenil)metanol ilave edildi. Reaksiyon karışımı TLC ile kontrol edilerek geri soğutucu altında 4 saat kaynatıldı. Döner buharlaştırıcıda vakum uygulanarak çözücünün uzaklaştırılması sonucu elde edilen katı etil alkolden kristallendirildi. (**M3**) (1.1 g), (e.n:210-212 °C), %70 verimle elde edildi.

3.4.5. 6a-Metil-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (*M5*) Bileşiğinin Sentezi

M5 bileşiğinin sentezi için 100 mL lik balonda 50 mL DMF de çözülen 2-asetilbenzoik asit (3.28 g, 20.0 mmol) üzerine 2 damla derişik H_2SO_4 ilave edilerek 30 dakika karıştırıldı. Sonra 2-asetilbenzoik asit çözeltisine 2-aminobenzil alkol (2.46 g, 20.0 mmol) ilave edilerek 4 saat oda sıcaklığında karıştırıldıktan sonra TLC ile kontrol edilerek geri soğutucu altında 48 kaynatıldı. Reaksiyon karışımı yavaş buharlaştırmaya bırakıldı ve 1 hafta sonra ürün kristaller halinde çöktü. (**M5**) için verim (4.11 g) %80, e.n:136-138 °C dir.

3.4.6. 6a-Fenil-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (*M6*) Bileşiğinin Sentezi

M6 bileşiği, M5 bileşiğinin sentezi için uygulanan yöntemle 72 saatte %40 verimle sentezlendi. Erime noktası 218-221 °C.

3.4.7. 6a-(4-klorfenil)-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (*M*7) Bileşiğinin Sentezi

²⁻⁽⁴⁻klorbenzoil)benzoik asit

M7 bileşiği, M6 bileşiğinin sentezi için uygulanan yöntemle %35 verimle sentezlendi. Erime noktası 241-244 °C.

3.4.8. 1,3-Dibrom-5H,6aH-benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (*M8*) Bileşiğinin Sentezi

M8 bileşiğinin sentezinde kullanılacak olan 2-amino-3,5-dibrombenzil alkol 2aminobenzil alkolün bromlanmasıyla elde edilmiştir. Bu sentez için 2-aminobenzil alkol (1,23 g, 10 mmol) 25 ml glasiyel asetik asitte çözüldü ve üzerine glasiyel asetik asitte çözülerek hazırlanan brom (3,2 g, 20 mmol) çözeltisi damla damla ilave edildi. Reaksiyon tamamlandıktan sonra % 10 luk Na₂CO₃ çözeltisiyle nötralleştirilen reaksiyon karışımından çöken 2-amino-3,5-dibrombenzil alkol süzülerek ayrıldı. Verim kantitatiftir.

M8 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %90 verimle sentezlendi. Erime noktası 262-264 °C.

3.4.9. 3,4-Metilendioksi-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M*9) Bileşiğinin Sentezi

6-nitropiperonil alkol

6-aminopiperonil alkol

Sentezde kullanılacak olan ve ticari olarak bulunmayan 6-aminopiperonil alkol, literatürden faydalanılarak³⁴ 6-nitropiperonil alkolün indirgenmesiyle elde edildi. İndirgeme reaksiyonu için 6-nitropiperonil alkol (1,97 g, 10 mmol) 50 mL etanolde çözüldü ve üzerine 2 M CuSO₄ çözeltisi (2 mmol CuSO₄) eklendi. Reaksiyon karışımı 0 °C ye soğutulduktan sonra azar azar NaBH₄ (1,9 g, 50 mmol) eklendi. NaBH₄ ilavesi tamamlandıktan sonra reaksiyon karışımı 2 saat geri soğutucu altında kaynatıldı. Soğutulan karışıma etil asetat eklenerek organik faz ayrıldı ve su ile yıkandı. MgSO₄ ile kurutulan etil asetatın buharlaştırıldıktan sonra elde edilen ham ürün kolon kromatografisi (silica gel) ile saflaştırıldı.

M9 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %95 verimle sentezlendi. Erime noktası 156-158 °C.

3.4.10. 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M10*) Bileşiğinin Sentezi

M10 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %92 verimle sentezlendi. Erime noktası 89-90 °C.

3.4.11. 3-Hidroksi-3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M11*) Bileşiğinin Sentezi

M11 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %95 verimle sentezlendi. Erime noktası 224-226 °C.

3.4.12. 5H,6aH-6-Oksa-1,11a-diaza-benzo[a]fluoren-11-on (M12) Bileşiğinin Sentezi

M12 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %85 verimle sentezlendi. Erime noktası 192-194 °C.

3.4.13. 3-İyot-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M13*) Bileşiğinin Sentezi

M13 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %87 verimle sentezlendi. Erime noktası 300-301 °C.

M14 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %75 verimle sentezlendi. Erime noktası 246-248 °C.

3.4.15. 9,10-Dimetoksi-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M15*) Bileşiğinin Sentezi

M15 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %85 verimle sentezlendi. Erime noktası 204-206 °C.

3.4.14. 5H,6aH-6-Oksa-3,11a-diaza-benzo[a]fluoren-11-on (M14) Bileşiğinin Sentezi

3.4.16.9,10-Dimetoksi-5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on(M16)Bileşiğinin Sentezi

M16 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %82 verimle sentezlendi. Erime noktası 229-231°C.

3.4.17. 9,10-Dimetoksi-3-iyot-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M17*) Bileşiğinin Sentezi

M17 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %87 verimle sentezlendi. Erime noktası 250-252 °C.

3.4.18. 9,10-Dimetoksi-*5H*,6a*H*-6-oksa-3,11a-diaza-benzo[*a*]fluoren-11-on (*M18*) Bileşiğinin Sentezi

M18 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %80 verimle sentezlendi. Erime noktası 211-213 °C.

3.4.19. 6a-Metil-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M*19) Bileşiğinin Sentezi

M19 bileşiği, M5 bileşiğinin sentezi için uygulanan yöntemle %80 verimle sentezlendi. Erime noktası 153-155 °C.

3.4.20. 9,10-Dimetoksi-3-iyot-6a-metil-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11on (*M20*) Bileşiğinin Sentezi

M20 bileşiği, M5 bileşiğinin sentezi için uygulanan yöntemle %78 verimle sentezlendi. Erime noktası 235-238 °C.

3.4.21. 6a-Metil-*5H*,6a*H*-6-oksa-3,11a-diaza-benzo[*a*]fluoren-11-on (*M21*) Bileşiğinin Sentezi

M21 bileşiği, M5 bileşiğinin sentezi için uygulanan yöntemle %55 verimle sentezlendi. Erime noktası 172-175 °C.

3.4.22. 6a-Fenil-*5H*,6a*H*-6-oksa-3,11a-diaza-benzo[*a*]fluoren-11-on (*M*22) Bileşiğinin Sentezi

M22 bileşiği, M6 bileşiğinin sentezi için uygulanan yöntemle %38 verimle sentezlendi. Erime noktası 239-242 °C. 3.4.23. 6a-Fenil-3-iyot-5H,6aH-6-oksa-3,11a-diaza-benzo[a]fluoren-11-on (*M23*) Bileşiğinin Sentezi

M23 bileşiği, M6 bileşiğinin sentezi için uygulanan yöntemle %33 verimle sentezlendi. Erime noktası 263-266 °C.

3.4.24.6a-(4-Klorfenil)-5H,6aH-6-oksa-3,11a-diaza-benzo[a]fluoren-11-on(M24)Bileşiğinin Sentezi

M24 bileşiği, M6 bileşiğinin sentezi için uygulanan yöntemle %30 verimle sentezlendi. Erime noktası 258-261°C. 3.4.25. 6a-(4-Klorfenil)--3-iyot-*5H*,6a*H*-6-oksa-3,11a-diaza-benzo[*a*]fluoren-11-on (*M*25) Bileşiğinin Sentezi

M25 bileşiği, M6 bileşiğinin sentezi için uygulanan yöntemle %30 verimle sentezlendi. Erime noktası 284-287 °C.

3.4.26. 2,3-dikloro-3aH,5H-4-oksa-9b-aza-siklopenta[a]naftalin-1-on (*M*26) Bileşiğinin Sentezi

M26 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %80 verimle sentezlendi. Erime noktası 156-159 °C.

3.4.27. 2,3-dikloro-3aH,5H-4-oksa-9,9b-diaza-siklopenta[*a*]naftalin-1-on (*M*27) Bileşiğinin Sentezi

M27 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %84 verimle sentezlendi. Erime noktası 170-173 °C.

3.4.28. 2,3-dikloro-3aH,5H-4-oksa-7-iodo-9,9b-diaza-siklopenta[a]naftalin-1-on (*M28*) Bileşiğinin Sentezi

M28 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %75 verimle sentezlendi. Erime noktası 233-236 °C.

3.4.29. 2,3-dikloro-3aH,5H-4-oksa-7-iyodo-9,9b-diaza-siklopenta[a]naftalin-1-on (*M29*) Bileşiğinin Sentezi

M29 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %65 verimle sentezlendi. Erime noktası 179-182 °C. 3.4.30. 2,3-dibromo-3aH,5H-4-oksa-9b-aza-siklopenta[a]naftalin-1-on (*M*30) Bileşiğinin Sentezi

M30 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %78 verimle sentezlendi. Erime noktası 176-178 °C.

3.4.31. 2,3-dibromo-3aH,5H-4-oksa-9,9b-diaza-siklopenta[a]naftalin-1-on (*M31*) Bileşiğinin Sentezi

M31 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %82 verimle sentezlendi. Erime noktası 185-188 °C.

3.4.32. 2,3-dibromo-3aH,5H-4-oksa-7-iodo-9,9b-diaza-siklopenta[a]naftalin-1-on (*M32*) Bileşiğinin Sentezi

M32 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %75 verimle sentezlendi. Erime noktası 303-306 °C.

3.4.33. 2,3-dibromo-3aH,5H-4-oksa-7-iodo-9,9b-diaza-siklopenta[*a*]naftalin-1-on (*M*33) Bileşiğinin Sentezi

M29 bileşiği, M1 bileşiğinin sentezi için uygulanan yöntemle %75 verimle sentezlendi. Erime noktası 180-183 °C.

4. BULGULAR, SONUÇLAR VE TARTIŞMA

4.1. Sentez

5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (*M1*) Bileşiğinin Sentezi ilk olarak alkol ortamında gerçekleştirildi. Reaksiyon eşit mol sayında ftalik asidin 2-aminbenzil alkol ile geri soğutucu altında kaynatılmasıyla gerçekleştirildi. Aynı reaksiyon şartlarında 5,6dimetoksiftaldehidik asitle yapılan reaksiyon sonucunda oluşması beklenen tetrasiklik bileşiğin oluşmadığı IR spektrumlarının incelenmesinden anlaşıldı. Şekil 4.1 ftaldehidik asidin, Şekil 4.2 ise 5,6-dimetoksiftaldehidik asit ile 2-aminobenzil alkolün geri soğutucu altında 1 saat kaynatılması sonucu elde edilen bileşiğin IR spektrumunu göstermektedir.

Şekil 4.1: 5,6-Dimetoksiftaldehidik asit'in FT-IR spektrumu

Şekil 4.2 reaksiyon devam ederken oluşan çökeleğin saflaştırılmasıyla elde edilen ürüne ait spektrumdur. Spektrumlar karşılaştırıldığında, 5,6-dimetoksiftaldehidik asit için 3437 cm⁻¹ de görülen OH gerilme absorpsiyonuna karşılık Şekil 4.2 'de 3432 cm⁻¹ de benzer bir absorpsiyonun olduğu, 1760 cm⁻¹deki C=O gerilme absorpsiyonuna çok benzer bir absorpsiyonun ise 1750 cm⁻¹de olduğu görülmektedir. Bu veriler ilk bakışta 5,6dimetoksiftaldehidik asidin reaksiyona girmediği gibi bir izlenim verse de spektrumların biraz daha dikkatli incelenmesi hailinde Şekil 4.2'deki 3341 cm⁻¹deki absorpsiyon ve oluşan ürünün erime noktasının farklı oluşu bu izlenimi ortadan kaldırmaktadır.

Şekil 4.2: 5,6-Dimetoksiftaldehidik asit + 2-aminobenzil alkolün reaksiyon ürününün IR spektrumu

Bu reaksiyondan oluşabilecek ürünlerden birinin bir ftalit olduğu daha önce yaptığımız bir çalışmadan bilinmekteydi³⁵. Bu çalışmada ftaldehidik asit ile 2-aminobenzil alkol, oda sıcaklığında, alkol ortamında etkileştirilmiş ve oluşan reaksiyon ürününün kristal yapısı aydınlatılması sonucu {3-[2-(hidroksimetil)anilino]isobenzofuran-1(3H)-on}, [3-(2-hidroksimetil)anilinoftalit] olduğu ortaya konulmuştur (Şema 4.1, Şekil 4.3).

{3-[2-(hidroksimetil)anilino]isobenzofuran-1(3H)-on} [3-(2-hidroksimetil)anilinoftalit]

Benzer bir reaksiyon ürününün meydana gelip gelmediğini araştırmak üzere oluşan ürünün tek kristali hazırlanarak x-ışınları difraksiyon yöntemiyle yapısı aydınlatıldığında ürünün bir ftalit olduğu görülmüştür (Şema 4.2, Şekil 4.4).

3-(2-(hidroksimetil)fenilamino)-6,7-dimetoksiisobenzofuran-1(3H)-on [3-(2-hidroksimetil)anilino-6,7-dimetoksiftalit]

Mr = 315.32; monoclinic, P 21/c a = 7.9274(5)Å, b = 9.1473(6)Å, c = 22.0664(12)Å; α =90.00(0)°, β = 103.102(4)°, γ = 90.00(0)°, Z = 4; V = 1558.47(16) Å³; D_x = 1.344 Mg m⁻³; T = 296 K R_{int} = 0.082, R = 0.048, S = 1.002

3-(2-(hidroksimetil)fenilamino)-6,7-dimetoksiisobenzofuran-1(3*H*)-on bileşiğinin x-ışınları yapısı görülünce IR spektrumunda gözlenen absorpsiyonlar daha kolay anlamlandırıldı. 3432 cm⁻¹ de gözlenen absorpsiyonun hidroksimetil grubuna ait O-H gerilmesine, 3341 cm⁻¹ deki absorpsiyonun sekonder N-H gerilimine, 1750 cm⁻¹deki absorpsiyonun ise ftalit C=O gerilme absorpsiyonuna karşılık geldiği anlaşıldı.

Literatür incelemelerinden doymuş beş üyeli laktonların 1750 cm⁻¹de C=O absorpsiyonu gösterdiği, konjuge çift bağların bu absorpsiyonu 30 cm⁻¹ kadar küçülttüğüne işaret etmektedir³⁷. Bir benzolakton olan arilaminoftalitlerinde 1750 cm⁻¹de C=O gerilmesine karşılık gelen absorpsiyon göstermesi beklenen bir sonuçtur.

¹ 3-(2-(hidroksimetil)fenilamino)-6,7-dimetoksiisobenzofuran-1(3*H*)-on bileşiğinin molekül yapısı ve kristal parametreleri için Ek'e bakınız

5,6-Dimetoksiftaldehidik asit ile 2-amino benzil alkolden sentezlenmesi amaçlanan tetrasiklik bileşiğin sentezlenememesi, projenin sunumunda B planı olarak gösterilen sentez yolunun kullanılması fikrini akla getirdi fakat Şema 4.3 de gösterildiği gibi bu yolun ilk uygulaması etil alkol ortamında gerçekleştirilmiştir. Hâlbuki 3-(2-(hidroksimetil)fenilamino)-6,7-dimetoksiisobenzofuran-1(3*H*)-on bileşiği bu ortamda çöktüğünden tetrasiklik ürüne dönüşememiştir. DMF ortamında da ftalidin tetrsiklik ürüne dönüştüğü tespit edildikten sonra

etil alkol ortamında çözünürlük problemi olan sentezlerin bu ortamda gerçekleştirilebileceği sonucuna varılmış ve reaksiyonlarda çözücü olarak DMF kullanılarak sentezi hedeflenen bileşikler elde edilmiştir.

3-Arilaminoftalit'in izoindolobenzoksazine dönüşümünün Şema 4.4 de verilen mekanizma üzerinden yürüdüğü tahmin edilmektedir.

4.2. IR Spektrumlarının İncelenmesi

Şekil 4.5 ftaldehidik asit'in, Şekil 4.6 ise *5H*,6a*H*-benzo[4,5][1,3]oksazino[2,3*a*]izoindol-11-on (*M1*) bileşiğinin IR spektrumunu göstermektedir. Spektrumlardan her iki bileşiğin karbonil grubu absorpsiyonlarındaki farklılık ve ftaldehidik asit spektrumundaki OH gerilme titreşiminin kaybolması, ftaldehidik asit ve 2-aminobenzil alkolden sentezi hedeflenen M1 bileşiğinin sentezlendiğini gösteren önemli işaretlerdir. Düşük sıcaklıkta ftaldehidik asit ve 2-aminobenzil alkolden elde edilen 3-[2-(hidroksimetil)anilino]isobenzofuran-1(3H)-on bileşiğinin IR spektrumunda C=O absorpsiyonunun 1752 cm⁻¹ de gözlenmesi tetrasiklik bileşiklerin sentezinde IR spektroskopisinin daha pratik kullanılıp kullanılamayacağı konusunda biraz daha ayrıntılı inceleme yapma gereğini ortaya çıkardı. Bu amaçla 5,6dimetoksiftaldehidik asit ve 2-aminobenzil alkolün verdiği ürünlerin IR spektrumları incelendi.

Şekil 4.5. Ftaldehidik asit'in IR spektrumu

Şekil 4.7 dan görülebileceği gibi IR spektrumlarının yalnız karbonil absorpsiyonlarının karşılaştırılması ürün hakkında karar vermek için yeterlidir. Şekil 4.6 ftaldehidik asitlerin C=O gerilmesine ait absorpsiyonun 1760 cm⁻¹, ftalitlerin absorpsiyonun 1750 cm⁻¹ ve sentezi hedeflenen ürünlerin absorpsionun ise 1710-1730 cm⁻¹ civarında olacağını göstermektedir. Elbette bu kaba bir yaklaşım olup molekül yapılarındaki farklılıkların bazı farklı sonuçlar ortaya çıkarabileceğinin de unutulmaması gerekir. Bununla birlikte sentez hakkında pratik bir

Şekil 4.6. *5H*,6a*H*-benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M1*) bileşiğinin IR spektrumu

Şekil 4.7a. IR Spektroskopisi yardımıyla yapı karakterizasyonu (M15)

Şekil 4.7b. IR Spektroskopisi yardımıyla yapı karakterizasyonu (M2)

Şekil 4.7c. IR Spektroskopisi yardımıyla yapı karakterizasyonu (M8)

Şekil 4.7d. IR Spektroskopisi yardımıyla yapı karakterizasyonu (M10)

şekilde IR spektrumlarının kullanılabileceğini ve IR spektrumlarının önemli bilgiler verebileceğini göstermesi bakımından dikkate değer bir sonuç olarak göz ardı edilmemesi gerektiğine vurgu yapılabilir.

Literatürde beşli laktam halkalarına ait C=O gerilmesinden kaynaklanan absorpsiyonun yaklaşık 1705 cm⁻¹ de gözlendiği vurgulanmaktadır³⁷. Bu durumda karbonil grubuna konjuge çift bağ taşıyan laktamların daha küçük frekanslarda absorpsiyon yapması beklenir. Çünkü Karbonil grubuna konjuge durumda bulunan çift bağ, C=O çiftbağını zayıflatacağından, C=O gerilme frekansının yaklaşık 30 cm⁻¹ kadar küçülmesine sebep olur. Fakat, elde dilen veriler bu yaklaşımı desteklememektedir. Bu absorpsiyon M15 örneğinde olduğu gibi daha büyük frekanslarda gözlenir. Absorpsiyonun daha büyük frekansa kaymasının sebebi molekül yapısıyla izah edilebilir. Molekülde azot atomu aynı zamanda başka bir aromatik halkaya konjugedir. Azot atomunda bulunan n elektronlarının C=O grubuyla rezonasa girebileceği gibi aromatik halka ile de rezonansa girmesi mümkündür. Bu durum C=O bağının güçlenmesine sebep olduğundan absorpsiyon frekansını büyütür. Ayrıca, laktam halkasına bitişik altılı halkadaki oksijen atomumun induktif etkisi ve aromatik halkaların taşıdığı sübstitüentlerin eleketronik etkileri bu frekansın büyümesine katkı sağlayan diğer faktörlerdir.

Sentezlenen bileşiklerin IR spektrumlarından gözlenen karakteristik C=O gerilme titreşimleri Tablo 4.1 verilmiştir. Veriler, yukarıda yapılan genellemeyi destekler sonuçları göstermektedir.

Göz ardı edilmemesi gereken bir durumda moleküller arası etkileşmeler olmalıdır. Molekül yapısı ve bağlı sübstitüentlerin elektronik etkisi dikkate alınarak IR absorpsiyonlarını yorumlamak her zaman doğru netice vermeyebilir. Çünkü moleküller arası etkileşmelerin katı fazda nasıl olduğu tam olarak bilinmeden yapılabilecek yorumlarda hata olması mümkündür. Örneğin C=O grubunun yapacağı hidrojen bağı, bağın kuvvetine göre absorpsiyonu 50 cm⁻¹ kadar daha küçük frekanslara kaydırabilir³⁷. Kristal yapısı bilinmeyen bileşiklerle ilgili yorumlarda bu durumun gözden kaçırılmaması gerekir.

	C=0		C=0
Bileşik	Gerilme	Bileşik	Gerilme
	Titreşimi		Titreşimi
	(cm ⁻¹)		(cm ⁻¹)
M1	1710	M18	1718
M2	1726	M19	1722
M3	1713	M20	1723
M4	1715	M21	1726
M5	1715	M22	1728
M6	1716	M23	1730
Μ7	1720	M24	1730
M8	1716	M25	1732
M9	1719	M26	1726
M10	1706	M27	1720
M11	1710	M28	1724
M12	1722	M29	1716
M13	1730	M30	1722
M14	1733	M31	1721
M15	1717	M32	1726
M16	1720	M33	1724
M17	1719		

Tablo 4.1. Proje kapsaminda	a sentezlenen bileşiklerin	karakteristik C=O	gerilme titreşimleri
	2		J

- 4.3. X-lşınları Difraksiyon Yöntemiyle Kristalografik ve Moleküler Yapıların İncelenmesi
- 4.3.1. 5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (*M1*) Bileşiğinin X-lşınları Difraksiyon Yöntemiyle İncelenmesi

Şekil 4.8. 5H,6aH-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M1*) Bileşiğinin molekül yapısı

Şekil 4.8'de M1 bileşiğinin molekül yapısı görülmektedir. Şekilden, molekülün izoindolin-1-on kısmının düzlemsel olduğu anlaşılabilir. X-ışınları verileri de yapının düzlemsel ve A (C1-C6 halkası) ile B (N1/C1/C6/C7/C8 halkası) halkaları arasındakidihedral açının 2.06° olduğunu göstermektedir. C halkasının (N1/C8/O2/C9/C10/C15 halkası) zarf konformasyonuna yakın, bozulmuş koltuk konformasyonunda olduğu görülmektedir (Cremer & ve Pople Puckering parametreleri; Puckering Amplitude Q=0.4807°, θ =128.86°, φ =209.5117°)³⁶. D halkasının bulunduğu düzlem ile A ve B halkalarının bulunduğu düzlemler arasındaki açı (dihedral açı) ise sırasıyla 21,22° ve 22,47° dir.

4,5,6,7-Tetraklor-N-(2-hidroksimetil)ftalimit ve aşrı stirenin uygun şartlardaki reaksiyonundan sentezlenen 7,8,9,10-Tetraklor-10b-(2-hidroksi-1-feniletil)-3,4-dihidro-2*H*-1,3-oksazino[2,3-*a*]isoindol-6(10b*H*)-on³⁸ bileşiği (**36**) proje kapsamında sentezlenen bileşiklerin halka sistemini içeren bir bileşiktir. X-ışınları difraksiyon analizi yapılan bileşikte C1=O, C1-C2, C1-N, C7-C8, C8-N bağ uzunlukları sırasıyla 1.219(3)Å, 1.495(3)Å, 1.365(3)Å, 1.532(3)Å ve 1.461(3) Å dur. Yedili hetero halka içeren benzer (**32**) ve (**33**) nolu bileşikler için

benzer bağ uzunluklarının 1.227(3) ve 1.224(3), 1.490(3) ve 1.486(3), 1.368(4) ve 1.370(4), 1.510(4) ve 1.1.506(4), 1.447(3) ve 1.449(3) Å olduğu rapor edilmiştir^{32a}. **M1** bileşiği için bulunan C1=O, C1-C2, C1-N, C7-C8, C8-N bağ uzunlukları ise 1.2179(18), 1.481(2), 1.3751(19), 1.496(2) ve 1.4553(18)Å dur. Bağ uzunlukları dikkate alındığında hata sınırları içinde eşit oldukları görülmektedir. (32), (33), (36) ve M1 bileşiklerindeki N-C8-O-C9 torsiyon açıları sırasıyla 47.9(3), 51.1(3), 24.7 (3), 64.78(16) Å dur. Torsiyon açıları altı üyeli heterosiklik yapı içeren (36) nolu bileşikte yapının kayık konformasyonuna en yakın olduğunu gösterirken heterosiklik altılı halkaya bitişik durumda aromatik halka taşımasından dolayı M1 molekülünde bu halkanın kayık konformasyonundan önemli ölçüde saptığına işaret edere. N-C10 bağları dikkate alındığında M1 deki C-N bağının [1.4097(18)Å] diğer bileşiklerdeki C-N bağına göre [(32) de 1520(4)Å, (33) de 1522(4)Å , (36) da 1.472(3)Å] önemli oranda kısa olduğu görülebilir. Bu durum N atomu üzerinde yer alan ortaklanmamış elektron çiftinin aromatik halka ile rezonansa girdiğinin bir ispatıdır. IR spektrumlarının yorumlanmasında laktamlarda C=O grubuna konjuge durumda bulunan C=C bağlarının absorpsiyonu yaklaşık 1680 cm-1 e kaydırdığını fakat laktam azotuna bir bağın konjuge olması C=O bağını güçlendirdiğinden absorpsiyonun 1700 cm⁻¹ den daha büyük frekansta gözlendiğine vurgu yapılmıştır. M1 bileşiğindeki N-C10 bağ uzunluğu bu rezonansın varlığını doğrulamaktadır.

Crystal data	
C ₁₅ H ₁₁ NO ₂ $M_r = 237.25$ Orthorhombic, <i>Pbca</i> Hall symbol: -P 2ybc a = 7.9222 (5) Å b = 21.2422 (14) Å c = 13.3723 (11) Å V = 2250.4 (3) Å ³ Z = 8	$F(000) = 992$ $D_x = 1.401 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 17123 reflection \theta = 1.8-27.2° \mu = 0.09 mm^{-1} T = 293 K Prismatic plate, Pale brown 0.68 \times 0.41 \times 0.12 mm
Data collection	1
STOE IPDS 2 diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus plane graphite Detector resolution: 6.67 pixels mm ⁻¹ w-scan rotation method Absorption correction: Integration $T_{min} = 0.953, T_{max} = 0.990$ 16598 measured reflections	2215 independent reflections 1361 reflections with $I > 2\sigma(I)$ $R_{int} = 0.053$ $\theta_{max} = 26.0^{\circ}, \theta_{min} = 1.9^{\circ}$ $h = -9 \rightarrow 9$ $k = -26 \rightarrow 26$ $l = -16 \rightarrow 16$
Refinement	-
Refinement on F^2 Least-squares matrix: Full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.079$ S = 0.93	2215 reflections 208 parameters 0 restraints Primary atom site location: Structure-invariant direct methods

Tablo 4.2. M1 için Kristal Verileri ve Yapısal Özellikler

Secondary atom site location: Difference Fourier map Hydrogen site location: Inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0415P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$	$\begin{array}{l} (\Delta/\sigma)_{max} = 0.001 \\ \Delta\rho_{max} = 0.09 \ e \ {\rm \AA}^{-3} \\ \Delta\rho_{min} = -0.10 \ e \ {\rm \AA}^{-3} \\ Extinction \ correction: \ SHELXL, \\ Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} \\ Extinction \ coefficient: \ 0.0031 \ (5) \end{array}$
--	--

Tablo 4.3. M1 için Atomik koordinatlar	ve izotropik veya ekivalent izotropik yer değiştirme
parametreleri (Å ²)	

	X	у	Z	U _{iso} */U _{eq}
C1	0.3564 (2)	0.57058 (7)	0.52541 (11)	0.0548 (4)
C2	0.29139 (19)	0.50944 (7)	0.56222 (11)	0.0521 (4)
C3	0.1960 (2)	0.46459 (8)	0.51288 (14)	0.0634 (4)
C4	0.1440 (2)	0.41291 (8)	0.56682 (15)	0.0700 (5)
C5	0.1862 (2)	0.40593 (8)	0.66642 (15)	0.0685 (5)
C6	0.2840 (2)	0.45021 (7)	0.71538 (14)	0.0609 (4)
C7	0.33553 (19)	0.50211 (7)	0.66133 (11)	0.0509 (4)
C8	0.4401 (2)	0.55717 (7)	0.69326 (10)	0.0504 (4)
C9	0.4670 (2)	0.64367 (8)	0.79991 (12)	0.0597 (4)
C10	0.5202 (2)	0.68209 (7)	0.71102 (12)	0.0555 (4)
C11	0.5872 (3)	0.74200 (8)	0.72352 (15)	0.0689 (5)
C12	0.6396 (3)	0.77711 (9)	0.64287 (15)	0.0732 (5)
C13	0.6251 (2)	0.75292 (9)	0.54794 (16)	0.0703 (5)
C14	0.5586 (2)	0.69394 (8)	0.53209 (13)	0.0630 (4)
C15	0.50755 (18)	0.65811 (7)	0.61397 (12)	0.0522 (4)
N1	0.44419 (15)	0.59641 (5)	0.60407 (8)	0.0506 (3)
01	0.33551 (17)	0.59441 (5)	0.44351 (9)	0.0747 (4)
02	0.36502 (14)	0.59043 (5)	0.77285 (7)	0.0582 (3)
H3	0.167 (2)	0.4693 (7)	0.4438 (14)	0.073 (5)*
H4	0.078 (2)	0.3814 (8)	0.5366 (13)	0.071 (5)*
H5	0.147 (2)	0.3697 (9)	0.7019 (13)	0.074 (5)*
H6	0.306 (2)	0.4462 (8)	0.7878 (14)	0.077 (5)*
H8	0.558 (2)	0.5450 (7)	0.7134 (11)	0.060 (4)*
H9A	0.396 (2)	0.6718 (7)	0.8453 (13)	0.070 (5)*
H9B	0.570 (2)	0.6291 (7)	0.8372 (12)	0.066 (5)*
H11	0.597 (2)	0.7566 (8)	0.7906 (14)	0.083 (6)*
H12	0.693 (2)	0.8201 (9)	0.6508 (13)	0.084 (6)*
H13	0.664 (2)	0.7762 (8)	0.4928 (14)	0.076 (5)*
H14	0.549 (2)	0.6742 (7)	0.4668 (14)	0.070 (5)*

Tablo 4.4. M1 için Atomik yer değiştirme parametreleri (Ų)

	U ¹¹	U ²²	U^{33}	U ¹²	U ¹³	U^{23}
C1	0.0602 (10)	0.0571 (9)	0.0470 (9)	0.0068 (7)	-0.0010 (7)	0.0009 (7)
C2	0.0543 (9)	0.0518 (8)	0.0503 (9)	0.0064 (7)	0.0002 (7)	-0.0041 (7)
C3	0.0706 (11)	0.0599 (10)	0.0597 (10)	0.0026 (9)	-0.0051 (9)	-0.0071 (8)
C4	0.0730 (12)	0.0579 (10)	0.0790 (13)	-0.0066 (9)	-0.0046 (10)	-0.0091 (10)
C5	0.0772 (12)	0.0549 (10)	0.0733 (12)	-0.0041 (9)	0.0057 (10)	0.0046 (9)
C6	0.0709 (11)	0.0538 (9)	0.0580 (10)	0.0013 (8)	0.0032 (9)	0.0039 (8)
C7	0.0511 (8)	0.0500 (8)	0.0517 (8)	0.0060 (7)	0.0021 (7)	-0.0017 (7)
C8	0.0541 (9)	0.0533 (8)	0.0439 (8)	0.0048 (7)	-0.0014 (7)	0.0013 (7)
C9	0.0651 (11)	0.0619 (10)	0.0521 (9)	-0.0036 (9)	-0.0009 (9)	-0.0061 (8)
C10	0.0557 (9)	0.0551 (9)	0.0557 (10)	0.0040 (7)	0.0001 (8)	-0.0004 (7)
C11	0.0794 (12)	0.0577 (10)	0.0697 (12)	-0.0022 (9)	-0.0057 (11)	-0.0063 (9)
C12	0.0830 (13)	0.0516 (10)	0.0851 (14)	-0.0063 (9)	-0.0042 (11)	0.0047 (9)
C13	0.0765 (12)	0.0585 (10)	0.0760 (12)	-0.0037 (9)	0.0006 (10)	0.0171 (9)
C14	0.0696 (11)	0.0615 (10)	0.0578 (10)	0.0003 (9)	0.0000 (9)	0.0074 (8)
C15	0.0504 (9)	0.0500 (8)	0.0562 (9)	0.0034 (7)	-0.0009 (7)	0.0040 (7)
N1	0.0562 (7)	0.0512 (7)	0.0445 (7)	0.0000 (6)	0.0001 (6)	0.0027 (5)
01	0.1008 (9)	0.0715 (7)	0.0517 (7)	-0.0062 (7)	-0.0137 (6)	0.0088 (6)
O2	0.0638 (7)	0.0621 (6)	0.0487 (6)	-0.0049 (5)	0.0061 (5)	-0.0038 (5)

 Tablo 4.5. M1 için Bağ Uzunlukları [Å], Bağ Açıları [°], Torsiyon Açıları [°]

			~
C1—O1	1.2179 (18)	C8—H8	1.004 (17)
C1—N1	1.3751 (19)	C9—O2	1.4361 (19)
C1—C2	1.481 (2)	C9—C10	1.502 (2)
C2—C7	1.379 (2)	C9—H9A	1.020 (17)
C2—C3	1.384 (2)	С9—Н9В	1.006 (17)
C3—C4	1.377 (3)	C10—C11	1.389 (2)
C3—H3	0.956 (18)	C10—C15	1.398 (2)
C4—C5	1.381 (3)	C11—C12	1.375 (3)
C4—H4	0.941 (17)	C11—H11	0.952 (19)
C5—C6	1.384 (2)	C12—C13	1.374 (3)
C5—H5	0.956 (18)	C12—H12	1.012 (19)
C6—C7	1.380 (2)	C13—C14	1.376 (2)
C6—H6	0.987 (18)	C13—H13	0.939 (19)
С7—С8	1.496 (2)	C14—C15	1.393 (2)
C8—O2	1.4092 (17)	C14—H14	0.971 (18)
C8—N1	1.4553 (18)	C15—N1	1.4097 (18)
01-C1-N1	126.22 (15)	O2—C9—H9A	107.6 (10)
01—C1—C2	128.01 (15)	C10—C9—H9A	107.9 (9)
N1—C1—C2	105.76 (12)	O2—C9—H9B	109.9 (9)
C7—C2—C3	121.25 (15)	C10—C9—H9B	109.4 (9)
C7—C2—C1	109.27 (13)	H9A—C9—H9B	109.3 (13)
C3—C2—C1	129.44 (15)	C11—C10—C15	118.23 (15)

C4—C3—C2	117.57 (17)	C11—C10—C9	120.65 (15)
C4—C3—H3	121.2 (10)	C15—C10—C9	121.10 (14)
C2—C3—H3	121.2 (10)	C12—C11—C10	121.18 (18)
C3—C4—C5	121.21 (18)	C12—C11—H11	122.5 (11)
C3—C4—H4	120.6 (11)	C10-C11-H11	116.3 (11)
C5—C4—H4	118.2 (11)	C13—C12—C11	119.76 (18)
C4—C5—C6	121.27 (17)	C13—C12—H12	118.0 (10)
C4—C5—H5	119.0 (10)	C11—C12—H12	122.2 (10)
C6—C5—H5	119.7 (10)	C12—C13—C14	121.00 (18)
C7—C6—C5	117.45 (17)	C12—C13—H13	120.0 (11)
С7—С6—Н6	122.1 (10)	C14—C13—H13	118.9 (11)
C5—C6—H6	120.2 (10)	C13—C14—C15	119.18 (17)
C2—C7—C6	121.23 (15)	C13—C14—H14	124.1 (10)
C2—C7—C8	109.05 (13)	C15—C14—H14	116.7 (10)
C6—C7—C8	129.72 (14)	C14—C15—C10	120.64 (15)
02-C8-N1	109.95 (12)	C14—C15—N1	122.51 (15)
O2—C8—C7	111.95 (13)	C10-C15-N1	116.84 (13)
N1—C8—C7	103.08 (12)	C1—N1—C15	128.52 (12)
O2—C8—H8	108.6 (9)	C1-N1-C8	112.78 (12)
N1-C8-H8	110.3 (9)	C15—N1—C8	117.61 (12)
С7—С8—Н8	112.9 (9)	C8—O2—C9	110.34 (12)
O2—C9—C10	112.72 (13)		
01—C1—C2—C7	-176.28 (16)	C11—C12—C13—C14	0.0 (3)
N1-C1-C2-C7	2.51 (16)	C12—C13—C14—C15	-0.8 (3)
O1—C1—C2—C3	1.6 (3)	C13—C14—C15—C10	1.3 (3)
N1-C1-C2-C3	-179.58 (15)	C13-C14-C15-N1	-177.57 (15)
C7—C2—C3—C4	1.2 (2)	C11—C10—C15—C14	-1.0 (2)
C1—C2—C3—C4	-176.47 (16)	C9-C10-C15-C14	-179.45 (16)
C2—C3—C4—C5	-0.3 (3)	C11-C10-C15-N1	177.97 (14)
C3—C4—C5—C6	-0.8 (3)	C9-C10-C15-N1	-0.5 (2)
C4—C5—C6—C7	1.0 (3)	O1-C1-N1-C15	10.0 (3)
C3—C2—C7—C6	-1.0 (2)	C2-C1-N1-C15	-168.81 (13)
C1—C2—C7—C6	177.11 (14)	O1-C1-N1-C8	177.62 (16)
C3—C2—C7—C8	179.07 (14)	C2-C1-N1-C8	-1.21 (17)
C1—C2—C7—C8	-2.82 (17)	C14—C15—N1—C1	-30.1 (2)
C5—C6—C7—C2	-0.1 (2)	C10-C15-N1-C1	151.02 (15)
C5—C6—C7—C8	179.78 (16)	C14—C15—N1—C8	162.86 (15)
C2—C7—C8—O2	120.12 (13)	C10-C15-N1-C8	-16.1 (2)
C6—C7—C8—O2	-59.8 (2)	O2-C8-N1-C1	-119.92 (13)
C2C7C8N1	2.01 (16)	C7—C8—N1—C1	-0.41 (17)
C6—C7—C8—N1	-177.92 (15)	O2—C8—N1—C15	49.16 (18)
O2-C9-C10-C11	165.99 (16)	C7—C8—N1—C15	168.66 (12)
O2—C9—C10—C15	-15.6 (2)	N1 C8 O2 C0	-64 78 (16)
	15.0 (2)	NI-00-02-09	04.78(10)

C9—C10—C11—C12	178.65 (18)	C10—C9—O2—C8	48.07 (19)
C10-C11-C12-C13	0.3 (3)		

Tablo 4.6. M1 için Hidrojen-bağ geometrisi (Å, °)

D—H…A	D—H	H…A	D···A	<i>D</i> —H…A	
C14—H14…O1	0.971 (18)	2.416 (17)	2.999 (2)	118.2 (12)	
C6—H6···O1 ⁱ	0.987 (18)	2.517 (18)	3.332 (2)	139.7 (14)	
C12—H12…O1 ⁱⁱ	1.012 (19)	2.483 (19)	3.345 (2)	142.8 (13)	
C9 H9ACg1	1.020(17)	2.7616	3.6232(2)	142.34	
Simetri kodlarr: (i) -x+1/2, -y+1, z+1/2; (ii) x+1/2, -y+3/2, -z+1.					

Tablo 4.6 ve Şekil 4.9 katı fazda moleküller arası üç tane C-H...O ve bir tane C-H... π etkileşmesinin olduğunu göstermektedir. C14—H14…O1 etkileşmesi S6 motifini³⁹ oluştururken diğer etkileşmeler hidrojen bağlı üç boyutlu bir ağın meydana gelmesini sağlar.

Şekil 4.9. *5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M*1) bileşiğinde moleküller arası etkileşmeler [*(i) x*-1/2, 3/2-*y*, 1-*z*; *(ii) x*+1/2, *y*, 3/2-*z*; *(iii)* 1/2-*x*, *y*-1/2, 1/2-*z*].

4.3.2. 9,10-Dimetoksi-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M15*) Bileşiğinin X-Işınları Difraksiyon Yöntemiyle İncelenmesi

Şekil 4.10. 9,10-Dimetoksi-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M15*) Bileşiğinin molekül yapısı

M1 ve **M15** moleküllerinin x-ışınları verileri karşılaştırıldığında A, B ve D halkaları arasındaki dihedral açının yakın olduğu görülebilir. **M1** de A/B, A/D ve B/D dihedral açıları sırasıyla 2.06(2), 21.22(3), 22.27(2)° iken **M15** molekülünde 1.77(9), 26.83(8), 25.19(9)° dir. **M15** molekülündeki A/B dihedral açısının **M1** e göre daha küçük oluşundan dolayı, metoksi gruplarının elektronik etkisiyle **M15** molekülünde A ve B halkaları arasında daha kuvvetli bir rezonansın olduğu söylenebilir. **M15** molekülünde 1.2173(16)Å olan C10=O3 bağı **M1** molekülünde karşılık gelen bağ [1.2179(18)] ile yaklaşık aynı uzunluktadır. C halkası için N1— C8—O2—C14 ve N1—C9—C13—C14 torsiyon açıları sırasıyla 66.64(14)°, 178.18 (14) ° ve Cremer & ve Pople Puckering parametreleri; Puckering Amplitude Q=0.4948(17)°, θ =50.48(20)°, ϕ =25.7(3)° şeklidedir.

Crystal data	
$C_{17}H_{15}NO_4$ $M_r = 297.30$ Monoclinic, $P2_1/c$ a = 10.6388 (4) Å b = 10.7739 (3) Å c = 16.0762 (7) Å $\beta = 131.169$ (3)° V = 1387.11 (9) Å ³ Z = 4	F(000) = 624 $D_x = 1.424 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 28447 reflections $\theta = 1.9-28.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K Prism, Colorless $0.52 \times 0.43 \times 0.31 \text{ mm}$
Data collection	<u></u>
STOE IPDS 2 diffractometer	2876 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus	2568 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.058$
plane graphite	$\theta_{\text{max}} = 26.5^{\circ}, \theta_{\text{min}} = 2.5^{\circ}$
Detector resolution: 6.67 pixels mm ⁻¹ w-scan rotation method Absorption correction: Integration $T_{min} = 0.955, T_{max} = 0.982$ 19346 measured reflections	$h = -13 \rightarrow 13$ $k = -13 \rightarrow 13$ $l = -20 \rightarrow 20$
Refinement	<u> </u>
Refinement on F^2 Least-squares matrix: Full $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.109$ S = 1.07 2876 reflections 235 parameters 0 restraints	Primary atom site location: Structure-invariant direct methods Secondary atom site location: Difference Fourier map Hydrogen site location: Inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0509P)^2 + 0.3235P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.30 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.21 \ {\rm e} \ {\rm \AA}^{-3}$

	X	у	Ζ	$U_{\rm iso}^*/U_{\rm eq}$
C1	1.04458 (18)	0.48713 (14)	0.81407 (12)	0.0451 (3)
C2	1.0776 (2)	0.56050 (15)	0.75900 (13)	0.0491 (4)
C3	0.97074 (19)	0.56035 (14)	0.64446 (13)	0.0473 (3)
C4	0.82982 (17)	0.48780 (13)	0.58649 (11)	0.0408 (3)
C5	0.79132 (17)	0.41866 (12)	0.64034 (11)	0.0393 (3)
C6	0.89781 (18)	0.41607 (12)	0.75443 (12)	0.0415 (3)
C7	1.3049 (2)	0.5353 (3)	0.98952 (15)	0.0833 (7)
H7A	1.3649	0.5216	1.0665	0.125*
H7B	1.2904	0.6228	0.9747	0.125*
H7C	1.3667	0.5007	0.9708	0.125*
C8	0.8220 (3)	0.40168 (17)	0.86268 (17)	0.0656 (5)
H8A	0.8027	0.3410	0.8969	0.098*
H8B	0.7223	0.4494	0.8106	0.098*
H8C	0.9111	0.4558	0.9182	0.098*
C9	0.69719 (17)	0.46909 (13)	0.46471 (12)	0.0406 (3)
C10	0.63040 (17)	0.35315 (13)	0.55663 (12)	0.0403 (3)
C11	0.62805 (19)	0.39468 (16)	0.30373 (13)	0.0491 (4)
C12	0.47577 (18)	0.33472 (13)	0.27503 (12)	0.0432 (3)
C13	0.3535 (2)	0.28313 (15)	0.17132 (14)	0.0526 (4)
C14	0.2105 (2)	0.23210 (16)	0.14290 (15)	0.0587 (4)
C15	0.1897 (2)	0.23137 (16)	0.21879 (15)	0.0563 (4)
C16	0.30945 (19)	0.28012 (15)	0.32299 (14)	0.0491 (3)
C17	0.45267 (17)	0.33257 (12)	0.35121 (12)	0.0402 (3)
N1	0.57811 (14)	0.38809 (11)	0.45533 (9)	0.0408 (3)
01	1.14791 (14)	0.47781 (12)	0.92600 (9)	0.0582 (3)
02	0.86615 (15)	0.34116 (9)	0.80731 (9)	0.0510 (3)
O3	0.55665 (14)	0.28255 (11)	0.57082 (9)	0.0538 (3)
04	0.76024 (12)	0.40965 (10)	0.42056 (8)	0.0469 (3)
H2	1.176 (2)	0.6130 (16)	0.8015 (14)	0.053 (4)*
H3	0.997 (2)	0.6116 (16)	0.6081 (14)	0.053 (4)*
H9	0.6382 (17)	0.5473 (14)	0.4229 (12)	0.036 (4)*
H11A	0.599 (2)	0.4801 (17)	0.2692 (15)	0.059 (5)*
H11B	0.669 (2)	0.3451 (18)	0.2759 (15)	0.062 (5)*
H13	0.369 (2)	0.2839 (18)	0.1178 (16)	0.063 (5)*
H14	0.121 (2)	0.1958 (19)	0.0688 (17)	0.071 (6)*
H15	0.090 (3)	0.1962 (19)	0.1994 (17)	0.071 (6)*
H16	0.299 (2)	0.2775 (17)	0.3783 (15)	0.059 (5)*

Tablo 4.8. M15 için Atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme.parametreleri (Ų)

Tablo 4.9. M15 için Atomik yer değiştirme parametreleri (Å²)

	<i>U</i> ¹¹	U^{22}	U^{33}	<i>U</i> ¹²	U^{13}	U^{23}
C1	0.0476 (8)	0.0485 (8)	0.0415 (7)	0.0006 (6)	0.0304 (7)	0.0002 (6)

C2	0.0476 (8)	0.0527 (8)	0.0497 (8)	-0.0095 (7)	0.0331 (7)	-0.0031 (7)
C3	0.0486 (8)	0.0504 (8)	0.0485 (8)	-0.0070 (6)	0.0343 (7)	0.0029 (6)
C4	0.0430 (7)	0.0406 (7)	0.0448 (7)	0.0005 (5)	0.0314 (6)	0.0032 (6)
C5	0.0434 (7)	0.0371 (6)	0.0469 (7)	0.0007 (5)	0.0338 (6)	0.0011 (5)
C6	0.0505 (8)	0.0386 (7)	0.0476 (7)	0.0013 (6)	0.0375 (7)	0.0020 (6)
C7	0.0601 (11)	0.1250 (19)	0.0480 (10)	-0.0280 (12)	0.0283 (9)	-0.0006 (11)
C8	0.0910 (13)	0.0607 (10)	0.0835 (12)	-0.0021 (9)	0.0740 (12)	-0.0020 (9)
C9	0.0407 (7)	0.0415 (7)	0.0455 (7)	-0.0001 (6)	0.0310 (6)	0.0036 (6)
C10	0.0444 (7)	0.0398 (7)	0.0487 (8)	0.0013 (5)	0.0358 (7)	0.0005 (6)
C11	0.0507 (8)	0.0592 (9)	0.0469 (8)	-0.0010 (7)	0.0362 (8)	0.0007 (7)
C12	0.0464 (8)	0.0408 (7)	0.0475 (8)	0.0042 (6)	0.0330 (7)	0.0016 (6)
C13	0.0628 (10)	0.0504 (8)	0.0518 (9)	-0.0011 (7)	0.0408 (8)	-0.0063 (7)
C14	0.0589 (10)	0.0550 (9)	0.0547 (9)	-0.0082 (8)	0.0342 (9)	-0.0145 (8)
C15	0.0498 (9)	0.0529 (9)	0.0645 (10)	-0.0108 (7)	0.0369 (8)	-0.0105 (8)
C16	0.0482 (8)	0.0495 (8)	0.0564 (9)	-0.0042 (6)	0.0373 (8)	-0.0038 (7)
C17	0.0402 (7)	0.0379 (7)	0.0452 (7)	0.0024 (5)	0.0292 (6)	0.0004 (5)
N1	0.0404 (6)	0.0446 (6)	0.0445 (6)	-0.0030 (5)	0.0311 (5)	-0.0007 (5)
01	0.0532 (6)	0.0746 (8)	0.0425 (6)	-0.0107 (5)	0.0297 (5)	0.0000 (5)
02	0.0738 (7)	0.0437 (5)	0.0573 (6)	-0.0039 (5)	0.0525 (6)	0.0007 (4)
O3	0.0567 (6)	0.0603 (7)	0.0583 (6)	-0.0134 (5)	0.0438 (6)	-0.0019 (5)
04	0.0424 (5)	0.0603 (6)	0.0471 (6)	0.0012 (4)	0.0334 (5)	0.0018 (5)

 Tablo 4.10.
 M15 için Bağ Uzunlukları [Å, Bağ Açıları [°], Torsiyon Açıları [°]

C1—01	1.3610 (17)	C9—O4	1.4108 (16)
C1—C2	1.393 (2)	C9—N1	1.4621 (16)
C1—C6	1.404 (2)	С9—Н9	1.000 (15)
C2—C3	1.388 (2)	C10—O3	1.2173 (16)
C2—H2	0.972 (18)	C10—N1	1.3822 (18)
C3—C4	1.374 (2)	C11—O4	1.4332 (18)
C3—H3	0.969 (18)	C11—C12	1.507 (2)
C4—C5	1.3925 (18)	C11—H11A	1.012 (19)
C4—C9	1.4925 (19)	C11—H11B	0.962 (19)
C5—C6	1.383 (2)	C12—C13	1.388 (2)
C5—C10	1.486 (2)	C12—C17	1.3990 (19)
C6—O2	1.3655 (16)	C13—C14	1.383 (2)
C7—O1	1.404 (2)	C13—H13	0.976 (19)
C7—H7A	0.9600	C14—C15	1.376 (2)
C7—H7B	0.9600	C14—H14	0.99 (2)
C7—H7C	0.9600	C15—C16	1.377 (2)
C8—O2	1.4101 (19)	C15—H15	0.96 (2)
C8—H8A	0.9600	C16—C17	1.3917 (19)
C8—H8B	0.9600	C16—H16	0.970 (18)
C8—H8C	0.9600	C17—N1	1.4141 (18)

O1—C1—C2	124.05 (14)	C4—C9—H9	113.6 (8)
O1—C1—C6	115.46 (13)	O3-C10-N1	125.58 (13)
C2-C1-C6	120.49 (13)	O3—C10—C5	128.88 (13)
C3—C2—C1	120.90 (14)	N1-C10-C5	105.54 (11)
C3—C2—H2	119.7 (10)	O4—C11—C12	112.28 (12)
C1-C2-H2	119.4 (10)	O4-C11-H11A	107.4 (10)
C4—C3—C2	118.38 (13)	C12—C11—H11A	109.8 (10)
C4—C3—H3	122.2 (10)	O4-C11-H11B	108.6 (11)
С2—С3—Н3	119.4 (10)	C12-C11-H11B	109.9 (11)
C3—C4—C5	121.26 (13)	H11A—C11—H11B	108.8 (15)
C3—C4—C9	129.34 (12)	C13—C12—C17	118.65 (14)
C5—C4—C9	109.40 (12)	C13—C12—C11	120.52 (13)
C6—C5—C4	121.06 (13)	C17—C12—C11	120.80 (13)
C6—C5—C10	129.89 (12)	C14—C13—C12	120.89 (15)
C4—C5—C10	109.04 (12)	C14—C13—H13	120.0 (11)
O2—C6—C5	121.01 (13)	C12-C13-H13	119.1 (11)
O2-C6-C1	121.07 (13)	C15—C14—C13	119.59 (16)
C5—C6—C1	117.81 (12)	C15—C14—H14	118.4 (11)
01—C7—H7A	109.5	C13—C14—H14	122.0 (11)
01—C7—H7B	109.5	C14—C15—C16	121.09 (15)
Н7А—С7—Н7В	109.5	C14—C15—H15	120.0 (12)
01—C7—H7C	109.5	C16—C15—H15	118.9 (12)
Н7А—С7—Н7С	109.5	C15—C16—C17	119.30 (15)
Н7В—С7—Н7С	109.5	C15—C16—H16	122.1 (11)
O2—C8—H8A	109.5	C17—C16—H16	118.6 (11)
O2	109.5	C16—C17—C12	120.46 (14)
H8A—C8—H8B	109.5	C16—C17—N1	122.37 (13)
O2	109.5	C12-C17-N1	117.16 (12)
H8A—C8—H8C	109.5	C10-N1-C17	127.86 (12)
H8B—C8—H8C	109.5	C10-N1-C9	113.06 (11)
O4-C9-N1	110.11 (11)	C17—N1—C9	116.94 (11)
O4—C9—C4	111.66 (11)	C1	117.90 (13)
N1-C9-C4	102.87 (10)	C6—O2—C8	116.16 (12)
O4—C9—H9	109.9 (8)	C9-04-C11	109.21 (11)
N1-C9-H9	108.4 (8)		
O1-C1-C2-C3	176.49 (15)	C12—C13—C14—C15	-0.6 (3)
C6—C1—C2—C3	-3.2 (2)	C13—C14—C15—C16	-0.3 (3)
C1—C2—C3—C4	1.2 (2)	C14—C15—C16—C17	1.0 (3)
C2—C3—C4—C5	1.9 (2)	C15—C16—C17—C12	-0.6 (2)
C2—C3—C4—C9	-178.91 (14)	C15-C16-C17-N1	177.81 (14)
C3—C4—C5—C6	-3.1 (2)	C13—C12—C17—C16	-0.3 (2)
C9—C4—C5—C6	177.58 (12)	C11—C12—C17—C16	178.18 (14)
C3—C4—C5—C10	178.32 (13)	C13-C12-C17-N1	-178.80 (13)
C9—C4—C5—C10	-1.00 (15)	C11-C12-C17-N1	-0.3 (2)

C4—C5—C6—O2	-175.11 (12)	O3-C10-N1-C17	-14.4 (2)
C10—C5—C6—O2	3.1 (2)	C5-C10-N1-C17	165.27 (12)
C4—C5—C6—C1	1.1 (2)	O3-C10-N1-C9	-177.04 (13)
C10—C5—C6—C1	179.32 (13)	C5-C10-N1-C9	2.63 (15)
01—C1—C6—O2	-1.5 (2)	C16—C17—N1—C10	34.5 (2)
C2-C1-C6-02	178.19 (13)	C12-C17-N1-C10	-147.04 (13)
O1-C1-C6-C5	-177.70 (13)	C16—C17—N1—C9	-163.46 (13)
C2—C1—C6—C5	2.0 (2)	C12-C17-N1-C9	15.03 (17)
C3—C4—C9—O4	65.12 (19)	O4-C9-N1-C10	115.98 (12)
C5—C4—C9—O4	-115.62 (12)	C4—C9—N1—C10	-3.16 (15)
C3-C4-C9-N1	-176.83 (14)	O4—C9—N1—C17	-48.70 (15)
C5-C4-C9-N1	2.42 (15)	C4—C9—N1—C17	-167.84 (11)
C6—C5—C10—O3	0.3 (2)	C2-C1-01-C7	-6.9 (3)
C4—C5—C10—O3	178.71 (14)	C6—C1—O1—C7	172.82 (17)
C6-C5-C10-N1	-179.37 (13)	C5—C6—O2—C8	-111.21 (17)
C4C5C10N1	-0.95 (15)	C1—C6—O2—C8	72.74 (19)
O4—C11—C12—C13	-162.98 (13)	N1-C9-04-C11	66.64 (14)
O4—C11—C12—C17	18.6 (2)	C4—C9—O4—C11	-179.74 (11)
C17—C12—C13—C14	0.9 (2)	C12—C11—O4—C9	-51.20 (16)
C11—C12—C13—C14	-177.55 (15)		

Tablo 4.11. M15 için Hidrojen-bağ geometrisi (Å, °)

D—H…A	D—H	Н…А	D…A	D—H…A		
C8—H8C…O1	0.96	2.45	3.014 (4)	117		
C16—H16…O3	0.97 (2)	2.434 (19)	2.999 (2)	117.0 (18)		
C15—H15…Cg2 ⁱ	0.96 (2)	2.58 (3)	3.455 (2)	150.2 (19)		
C8—H8 <i>B</i> ··· <i>Cg</i> 1 ⁱⁱ 0.96 2.97 3.685 (2) 132						
Simetri kodları: (i) x-1, -y-1/2, z-3/2; (ii) -x+1, -y, -z.						

Kristal yapıda molekülleri bir arada tutan kuvvetler C-H... π etkileşmeleridir. Şekil 4.11 den görülebileceği gibi iki molekül içi hidrojen bağı yapan moleküller C8-H8B...Cg2 [Cg2=C12-C17 halkasının (D halkası) merkezi] C-H... π etkileşmesi ile sentrosimetrik dimerler meydana getirirler. Bu dimerik yapılar C15—H15···*Cg*1 (Cg1=A halkası) C-H... π etkileşmeleriyle birbirlerine bağlanır (Şekil 4.12) ve C-H... π ektileşmesiyle oluşan bir moleküler ağ oluşur (Şekil 4.13).

Şekil 4.11. 9,10-Dimetoksi-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M15*) bileşiğinin C-H...π etkileşmeleriyle oluşturduğu dimerik yapı

 Şekil
 4.12.
 9,10-Dimetoksi-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on
 (M15)

 bileşiğinde moleküller arası etkileşmeler [(i) 1-x, 1-y, 1-z; (ii)- x, y+1/2, 1/2-z].

Şekil 4.13. 9,10-Dimetoksi-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M15) moleküllerinin kristal yapıda yerleşimi [(i) 1-x, 1-y, 1-z].

4.3.3. 3-İyot-5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (*M13*) Bileşiğinin X-lşınları Difraksiyon Yöntemiyle İncelenmesi

Şekil 4.14. 3-İyot-6-*5H*,6a*H*-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M13*) Bileşiğinin molekül yapısı

M13 moleküllerinde A/B, A/D ve B/D dihedral açılar sırasıyla 2.7(3), 13.0(3), 15.7(3)° dir. A/D ve B/D halkaları arasındaki dihedral açıların daha küçük oluşu N1 atomu üzerindeki ortaklanılmamış elektronların çiftinin D halkası ile daha kuvvetli bir rezonansa girdiğin bir

göstergesi olarak kabul edilebilir. Bu düşünce 1.398(7) Å olan N1-C9 bağının **M1** [1.4097 (18)Å] ve **M15** [1.4141 (18) Å] bileşiklerinde karşılık gelen C-N bağlarından daha kısa oluşu ile de desteklenir. Moleküldeki diğer bağ uzunlukları beklenen değerlerdedir. C halkası için N1—C8—O2—C14 ve N1—C9—C13—C14 torsiyon açıları sırasıyla –66.9 (5)°, –5.7 (8) ° ve Cremer & ve Pople Puckering parametreleri; Puckering Amplitude Q=0.4953°, θ =55.05°, ϕ =29.8048° şeklidedir.

Crystal data C₁₄H₉IN₂O₂ $\gamma = 93.405 (5)^{\circ}$ $M_r = 364.13$ $V = 607.30(7) \text{ Å}^3$ Triclinic, P1 Z = 2a = 7.8344 (5) ÅMo K α radiation, $\lambda = 0.71073$ Å b = 8.1270 (5) Å $\mu = 2.64 \text{ mm}^{-1}$ c = 9.9652 (6) Å T = 296 K $\alpha = 96.499(5)^{\circ}$ 0.29 × 0.19 × 0.04 mm $\beta = 104.666 (5)^{\circ}$ **Data collection** STOE IPDS 2 1678 independent reflections diffractometer Radiation source: sealed X-ray tube, 12 x 0.4 mm 1459 reflections with $I > 2\sigma(I)$ long-fine focus $R_{int} = 0.066$ plane graphite $\theta_{max} = 26.0^\circ, \ \theta_{min} = 2.5^\circ$ Detector resolution: 6.67 pixels mm⁻¹ $h = -9 \rightarrow 9$ w-scan rotation method Absorption correction: Integration $k = -10 \rightarrow 10$ $T_{\min} = 0.478, T_{\max} = 0.867$ $l = -12 \rightarrow 12$ 5241 measured reflections Refinement

Tablo 4.12. M13 için Kristal Verileri ve Yapısal Özellikler

Refinement on F ²	Primary atom site location: Structure-invariant direct methods
Least-squares matrix: Full	Secondary atom site location: Difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: Inferred from neighbouring sites
$wR(F^2) = 0.096$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0608P)^2]$ where $P = (F_o^2 + 2F_o^2)/3$
1678 reflections	$(\Delta/\sigma)_{max} < 0.001$
172 parameters	$\Delta \rho_{\rm max} = 0.64 \ {\rm e} \ {\rm \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.97 \text{ e} \text{ Å}^{-3}$

Tablo 4.13. M13 için Atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirmeparametreleri (Ų)

	Ū			
	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.0914 (7)	0.7949 (6)	0.3479 (5)	0.0368 (10)
C2	0.0596 (8)	0.9529 (6)	0.3120 (6)	0.0431 (12)
H2	0.1050	1.0481	0.3752	0.052*
C3	-0.0420 (8)	0.9625 (6)	0.1788 (6)	0.0455 (12)
H3	-0.0667	1.0665	0.1525	0.055*
C4	-0.1088 (8)	0.8214 (6)	0.0823 (6)	0.0458 (12)
H4	-0.1763	0.8325	-0.0070	0.055*
C5	-0.0749 (7)	0.6624 (6)	0.1191 (6)	0.0416 (11)
H5	-0.1191	0.5668	0.0561	0.050*
C6	0.0263 (7)	0.6545 (5)	0.2518 (6)	0.0367 (10)
C7	0.0887 (7)	0.5053 (6)	0.3165 (6)	0.0400 (11)
C8	0.1865 (8)	0.7455 (5)	0.4851 (6)	0.0401 (11)
H8	0.1217	0.7736	0.5556	0.048*
C9	0.2875 (7)	0.4819 (5)	0.5539 (5)	0.0349 (10)
C10	0.3567 (8)	0.2419 (6)	0.6454 (6)	0.0445 (12)
H10	0.3422	0.1266	0.6385	0.053*
C11	0.4775 (7)	0.3280 (6)	0.7615 (6)	0.0397 (11)
C12	0.5058 (7)	0.4987 (6)	0.7691 (6)	0.0426 (11)
H12	0.5879	0.5595	0.8453	0.051*
C13	0.4116 (8)	0.5779 (6)	0.6628 (6)	0.0392 (11)
C14	0.4444 (9)	0.7644 (6)	0.6651 (6)	0.0513 (15)
H14A	0.3987	0.8220	0.7374	0.062*
H14B	0.5710	0.7954	0.6877	0.062*
N1	0.1809 (6)	0.5627 (4)	0.4516 (5)	0.0378 (9)
N2	0.2604 (6)	0.3147 (5)	0.5436 (5)	0.0403 (10)
01	0.0629 (7)	0.3612 (4)	0.2607 (5)	0.0603 (12)
02	0.3609 (6)	0.8150 (4)	0.5326 (4)	0.0462 (9)

1	0.60866 (5)	0.20079 (4)	0.92148 (4)	0.05040 (17)
	()			

	<i>U</i> ¹¹	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.043 (3)	0.032 (2)	0.037 (3)	0.006 (2)	0.012 (2)	0.0052 (19)
C2	0.047 (3)	0.029 (2)	0.050 (3)	0.005 (2)	0.008 (2)	0.006 (2)
C3	0.047 (3)	0.038 (2)	0.052 (3)	0.008 (2)	0.010 (3)	0.014 (2)
C4	0.046 (3)	0.045 (3)	0.044 (3)	0.004 (2)	0.005 (2)	0.014 (2)
C5	0.043 (3)	0.035 (2)	0.045 (3)	0.002 (2)	0.008 (2)	0.003 (2)
C6	0.039 (3)	0.028 (2)	0.043 (3)	0.0015 (19)	0.011 (2)	0.0045 (19)
C7	0.045 (3)	0.031 (2)	0.043 (3)	0.006 (2)	0.009 (2)	0.005 (2)
C8	0.050 (3)	0.0256 (19)	0.043 (3)	0.005 (2)	0.009 (2)	0.0013 (19)
C9	0.040 (3)	0.030 (2)	0.036 (3)	0.0065 (19)	0.010 (2)	0.0050 (18)
C10	0.050 (3)	0.028 (2)	0.056 (3)	0.006 (2)	0.012 (3)	0.011 (2)
C11	0.040 (3)	0.041 (2)	0.039 (3)	0.009 (2)	0.010 (2)	0.010 (2)
C12	0.045 (3)	0.036 (2)	0.042 (3)	0.001 (2)	0.004 (2)	0.002 (2)
C13	0.049 (3)	0.028 (2)	0.039 (3)	0.004 (2)	0.009 (2)	0.0047 (19)
C14	0.068 (4)	0.028 (2)	0.045 (3)	-0.003 (2)	-0.007 (3)	0.004 (2)
N1	0.048 (2)	0.0243 (17)	0.039 (2)	0.0045 (17)	0.0059 (19)	0.0046 (15)
N2	0.047 (2)	0.0255 (17)	0.045 (2)	0.0013 (17)	0.0054 (19)	0.0046 (16)
01	0.088 (3)	0.0278 (17)	0.049 (2)	0.007 (2)	-0.008 (2)	-0.0015 (16)
02	0.053 (2)	0.0335 (16)	0.047 (2)	0.0002 (17)	0.0028 (18)	0.0093 (15)
1	0.0520 (3)	0.0481 (2)	0.0502 (3)	0.01243 (16)	0.00539 (16)	0.01709 (16)

Fablo 4.14. M1	3 için Atomik	yer değiştirme	parametreleri	$(Å^2)$
-----------------------	---------------	----------------	---------------	---------

Tablo 4.15. M13 icin Bağ Uzunlukları	[Å].	Bağ Acıları [°1. Torsiv	von Acıları	[°]
Table mention of Dag Chanadan	L' 1,	bug / içilali [], 10101	yon y tynan	L J

C1—C6	1.384 (7)	C8—H8	0.9800
C1—C2	1.392 (7)	C9—N2	1.351 (6)
C1—C8	1.493 (7)	C9—C13	1.384 (8)
C2—C3	1.377 (8)	C9—N1	1.398 (7)
C2—H2	0.9300	C10—N2	1.323 (7)
C3—C4	1.392 (8)	C10—C11	1.381 (8)
C3—H3	0.9300	C10—H10	0.9300
C4—C5	1.405 (7)	C11—C12	1.382 (7)
C4—H4	0.9300	C11—I1	2.082 (5)
C5—C6	1.369 (8)	C12—C13	1.377 (7)
C5—H5	0.9300	C12—H12	0.9300
C6—C7	1.488 (6)	C13—C14	1.519 (6)
C7—O1	1.220 (6)	C14—O2	1.434 (7)
C7—N1	1.370 (7)	C14—H14A	0.9700
C8—O2	1.389 (7)	C14—H14B	0.9700
C8—N1	1.481 (5)		
C6—C1—C2	120.8 (5)	N2-C9-C13	123.5 (5)
C6—C1—C8	109.9 (4)	N2-C9-N1	118.3 (5)
C2—C1—C8	129.2 (5)	C13—C9—N1	118.2 (4)
-------------	------------	----------------	------------
C3—C2—C1	117.2 (5)	N2-C10-C11	123.5 (4)
C3—C2—H2	121.4	N2-C10-H10	118.2
C1—C2—H2	121.4	C11—C10—H10	118.2
C2—C3—C4	122.1 (5)	C10—C11—C12	118.5 (5)
C2—C3—H3	118.9	C10—C11—I1	119.9 (4)
C4—C3—H3	118.9	C12—C11—I1	121.6 (4)
C3—C4—C5	120.3 (5)	C13—C12—C11	119.5 (5)
C3—C4—H4	119.8	C13—C12—H12	120.3
C5—C4—H4	119.8	C11—C12—H12	120.3
C6—C5—C4	117.0 (5)	C12—C13—C9	117.8 (4)
C6—C5—H5	121.5	C12—C13—C14	120.8 (5)
C4—C5—H5	121.5	C9—C13—C14	121.4 (5)
C5—C6—C1	122.5 (4)	O2-C14-C13	111.3 (4)
C5—C6—C7	128.5 (5)	O2-C14-H14A	109.4
C1—C6—C7	108.9 (5)	C13—C14—H14A	109.4
01-C7-N1	127.0 (5)	O2-C14-H14B	109.4
O1—C7—C6	127.0 (5)	C13—C14—H14B	109.4
N1-C7-C6	105.9 (4)	H14A—C14—H14B	108.0
02-C8-N1	110.3 (4)	C7—N1—C9	130.7 (4)
O2-C8-C1	113.2 (4)	C7—N1—C8	112.9 (4)
N1-C8-C1	102.1 (4)	C9-N1-C8	115.7 (4)
O2	110.3	C10—N2—C9	117.1 (5)
N1-C8-H8	110.3	C8—O2—C14	110.6 (4)
C1	110.3		
C6—C1—C2—C3	1.4 (8)	N2-C9-C13-C12	-3.2 (8)
C8—C1—C2—C3	-176.1 (5)	N1-C9-C13-C12	174.8 (5)
C1-C2-C3-C4	-0.9 (9)	N2-C9-C13-C14	176.3 (5)
C2—C3—C4—C5	0.4 (9)	N1-C9-C13-C14	-5.7 (8)
C3—C4—C5—C6	-0.4 (8)	C12—C13—C14—O2	167.8 (5)
C4—C5—C6—C1	1.0 (8)	C9—C13—C14—O2	-11.7 (8)
C4—C5—C6—C7	-177.2 (5)	O1—C7—N1—C9	9.7 (10)
C2-C1-C6-C5	-1.5 (8)	C6—C7—N1—C9	-170.4 (5)
C8—C1—C6—C5	176.4 (5)	01—C7—N1—C8	-179.9 (6)
C2-C1-C6-C7	177.0 (5)	C6—C7—N1—C8	-0.1 (6)
C8—C1—C6—C7	-5.1 (6)	N2-C9-N1-C7	-23.8 (8)
C5—C6—C7—O1	1.5 (10)	C13-C9-N1-C7	158.2 (5)
C1—C6—C7—O1	-176.9 (6)	N2-C9-N1-C8	166.1 (4)
C5-C6-C7-N1	-178.4 (5)	C13-C9-N1-C8	-11.9 (7)
C1-C6-C7-N1	3.2 (6)	O2-C8-N1-C7	-123.4 (5)
C6—C1—C8—O2	123.3 (4)	C1-C8-N1-C7	-2.8 (6)
C2-C1-C8-O2	-59.0 (7)	O2-C8-N1-C9	48.5 (6)
C6-C1-C8-N1	4.7 (6)	C1-C8-N1-C9	169.1 (4)
C2-C1-C8-N1	-177.5 (5)	C11-C10-N2-C9	1.9 (8)

N2-C10-C11-C12	-3.1 (9)	C13—C9—N2—C10	1.3 (8)
N2-C10-C11-I1	175.8 (4)	N1-C9-N2-C10	-176.6 (5)
C10-C11-C12-C13	1.0 (8)	N1-C8-02-C14	-66.9 (5)
I1—C11—C12—C13	-177.8 (4)	C1C8C14	179.4 (4)
C11—C12—C13—C9	1.9 (8)	C13—C14—O2—C8	47.8 (7)
C11—C12—C13—C14	-177.7 (5)		

Tablo 4.16. M13 için Hidrojen-bağ geometrisi (Å, °)

<i>D</i> —H…A	<i>D</i> —H	H…A	D····A	<i>D</i> —H…A
C2—H2···N2 ⁱ	0.93	2.61	3.539(7)	174
C3—H3…O1 ⁱ	0.93	2.55	3.254(6)	133
C10—H10…O2 ⁱ	0.93	2.66	3.529(6)	156
Sİmetrİ Kodları: (i) x, y+1, z.				

Şekil 4.15. 3-İyot-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M13*) bileşiğinde moleküller arası etkileşmeler [*(i) x, y-1, z*].

Kristal yapıda molekülleri bir arada tutan kuvvetler C-H...N ve C-H...O etkileşmeleridir. Şekil 4.15 den görülebileceği aynı düzlemdeki hidrojen bağları $R_2^2(8)$ ve $R_2^2(9)$ motiflerini meydana getiriler. Hidrojen bağlı düzlemler a ekseni boyunca paralel bir şekilde kristal yapıda yer alırlar (Şekil 4.16).

Şekil 4.16. 3-İyot-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M13*) moleküllerinin kristal yapıda yerleşimi [*(i)* 1-*x*, 1-*y*, 1-*z*].

4.3.4. 9,10-Dimetoksi-5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (*M16*) Bileşiğinin X-lşınları Difraksiyon Yöntemiyle İncelenmesi

Şekil 4.17. 9,10-Dimetoksi-5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (*M16*) Bileşiğinin molekül yapısı

M16 moleküllerinde A/B, A/D ve B/D dihedral açılar sırasıyla $0.30(5)^{\circ}$, 24.17(8)°, 24.04(6)° dir. A/B dihedral açısı **M1**, **M15** ve **M13** bileşiklerin için bulunan dihedral açıdan oldukça küçüktür. diğer bileşiklere göre daha düşüktür. **M15** molküllerinde olduğu gibi metoksi gruplarının elektronik etkisi bu iki halka arsında daha kuvvetli bir rezonans oluşmasına imkan tanıyarak A ve B halkalarının aynı düzlemde olmasın sağlayar. B/D halkaları arasındaki dihedral açının 24.04(6)° oluşu N1-C11 bağının [1.411(3) Å] **M13** molekülünde karşılık gelen bağdan [1.398(7) Å] biraz daha uzun olması sonucunu doğurmuştur. Moleküldeki diğer bağ uzunlukları beklenen değerlerdedir. C halkası için N1—C10—O2—C16 ve N1—C11—C15—C16 torsiyon açıları sırasıyla 64.86 (2)°, -31.90 (2)° ve Cremer & ve Pople Puckering parametreleri; Puckering Amplitude Q=0.44826(23)°, $\theta = 129.01(29)^{\circ}$, $\phi = 207.4(4)^{\circ}$ şeklidedir.

Crystal data	
C ₁₆ H ₁₄ N ₂ O ₄ $M_r = 298.29$ Monoclinic, $P2_1/c$ a = 8.0271 (7) Å	$F(000) = 624$ $D_x = 1.431 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7087 reflections $\theta = 2.0-28.0^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$ $T = 296 \text{ K}$ Prism, Light yellow $0.25 \times 0.17 \times 0.12 \text{ mm}$
	$0.25 \times 0.17 \times 0.12 \text{ mm}$

Tablo 4.17. M16 için Kristal Verileri ve Yapısal Özellikler

	[]
b = 20.6099 (18) A	
c = 8.5924 (7) A	
$\beta = 103.060 \ (7)^{\circ}$	
$V = 1384.7 (2) \text{ Å}^3$	
Z = 4	
Data collection	
STOE IPDS 2 diffractometer	7848 measured reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm	2646 independent reflections
long-fine focus	$R_{int} = 0.080$
plane graphite	$\theta_{max} = 26.0^\circ, \ \theta_{min} = 2.0^\circ$
Detector resolution: 6.67 pixels mm ⁻¹	$h = -9 \rightarrow 9$
w-scan rotation method	$k = -25 \rightarrow 25$
Absorption correction: Integration	k = 25, 25
$T_{\min} = 0.979, \ T_{\max} = 0.990$	$l = -10 \rightarrow 10$
Refinement	
Refinement on F^2	Primary atom site location: Structure-invariant direct methods
Least-squares matrix: Full	Secondary atom site location: Difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: Inferred from neighbouring sites
$wR(F^2) = 0.112$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 0.92	$w = 1/[\sigma^2(F_o^2) + (0.0451P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
2646 reflections	$(\Delta/\sigma)_{max} < 0.001$
199 parameters	$A_{0} = 0.15 \text{ s}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.15 \text{ e} \text{ Å}^{-3}$

Tablo 4.18. M16 için	Atomik koordinatlar	ve izotropik veya	ekivalent izotropik	yer değiştirme
parametre	eleri (Å ²)			

	X	У	Z	U _{iso} */U _{eq}
C1	0.1720 (3)	0.57931 (11)	0.3834 (3)	0.0437 (6)
C2	0.0135 (3)	0.59516 (12)	0.4076 (3)	0.0494 (6)
H2	-0.0765	0.5657	0.3849	0.059*
C3	-0.0082 (4)	0.65654 (12)	0.4669 (3)	0.0551 (7)
H3	-0.1146	0.6685	0.4833	0.066*
C4	0.1261 (4)	0.70009 (11)	0.5018 (3)	0.0531 (7)
C5	0.2885 (3)	0.68376 (11)	0.4800 (3)	0.0480 (6)

C6	0.3086 (3)	0.62247 (11)	0.4189 (3)	0.0429 (6)
C7	-0.0474 (5)	0.78258 (15)	0.5784 (4)	0.0860 (11)
H7A	-0.0813	0.7553	0.6565	0.103*
H7B	-0.1307	0.7795	0.4790	0.103*
H7C	-0.0397	0.8267	0.6149	0.103*
C8	0.5078 (5)	0.73294 (16)	0.6673 (4)	0.0914 (11)
H8A	0.5594	0.6919	0.7026	0.110*
H8B	0.4299	0.7449	0.7323	0.110*
H8C	0.5952	0.7654	0.6763	0.110*
C9	0.4618 (3)	0.59235 (11)	0.3802 (3)	0.0462 (6)
C10	0.2307 (3)	0.51782 (11)	0.3212 (3)	0.0434 (6)
H10	0.2195	0.4813	0.3913	0.052*
C11	0.4950 (3)	0.48647 (10)	0.2428 (3)	0.0422 (5)
C12	0.7366 (4)	0.44372 (12)	0.1922 (3)	0.0560 (7)
H12	0.8553	0.4431	0.2117	0.067*
C13	0.6477 (4)	0.40050 (12)	0.0826 (3)	0.0588 (7)
H13	0.7044	0.3714	0.0299	0.071*
C14	0.4724 (4)	0.40169 (12)	0.0534 (3)	0.0574 (7)
H14	0.4087	0.3734	-0.0213	0.069*
C15	0.3900 (3)	0.44456 (11)	0.1339 (3)	0.0448 (6)
C16	0.2004 (4)	0.44662 (12)	0.1063 (3)	0.0556 (7)
H16A	0.1514	0.4424	-0.0073	0.067*
H16B	0.1619	0.4100	0.1597	0.067*
N1	0.4099 (2)	0.53029 (9)	0.3245 (2)	0.0423 (5)
N2	0.6634 (3)	0.48676 (9)	0.2731 (2)	0.0506 (5)
01	0.1134 (3)	0.76217 (8)	0.5559 (3)	0.0748 (6)
02	0.4192 (3)	0.72799 (8)	0.5089 (2)	0.0606 (5)
O3	0.6023 (3)	0.61538 (8)	0.3895 (3)	0.0670 (5)
04	0.1392 (2)	0.50532 (7)	0.16308 (19)	0.0490 (4)

 Tablo 4.19. M16 için Atomik yer değiştirme parametreleri (Ų)

	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
C1	0.0386 (16)	0.0474 (12)	0.0448 (13)	0.0007 (11)	0.0090 (11)	0.0044 (10)
C2	0.0401 (16)	0.0580 (14)	0.0510 (14)	-0.0032 (12)	0.0122 (11)	-0.0019 (12)
C3	0.0445 (17)	0.0623 (16)	0.0611 (17)	0.0032 (13)	0.0177 (13)	-0.0032 (13)
C4	0.0599 (19)	0.0480 (13)	0.0532 (15)	0.0074 (13)	0.0163 (13)	-0.0036 (11)
C5	0.0507 (18)	0.0477 (13)	0.0467 (14)	-0.0047 (12)	0.0130 (12)	0.0026 (11)
C6	0.0387 (15)	0.0482 (12)	0.0419 (13)	-0.0009 (11)	0.0095 (11)	0.0011 (10)
C7	0.090 (3)	0.0739 (19)	0.093 (2)	0.0273 (19)	0.0194 (19)	-0.0186 (18)
C8	0.106 (3)	0.095 (2)	0.065 (2)	-0.044 (2)	0.0024 (19)	0.0002 (18)
C9	0.0395 (16)	0.0508 (13)	0.0470 (13)	-0.0036 (12)	0.0069 (11)	0.0017 (11)
C10	0.0395 (15)	0.0460 (12)	0.0445 (13)	-0.0012 (11)	0.0089 (11)	0.0022 (10)
C11	0.0418 (16)	0.0421 (12)	0.0431 (12)	0.0051 (11)	0.0107 (11)	0.0066 (10)
C12	0.0407 (17)	0.0630 (16)	0.0659 (17)	0.0099 (13)	0.0151 (13)	0.0082 (14)

C13	0.061 (2)	0.0543 (15)	0.0669 (18)	0.0084 (13)	0.0257 (15)	0.0000 (13)
C14	0.059 (2)	0.0509 (14)	0.0647 (17)	-0.0030 (13)	0.0185 (14)	-0.0101 (12)
C15	0.0458 (16)	0.0432 (12)	0.0454 (13)	-0.0003 (11)	0.0102 (11)	0.0021 (10)
C16	0.0504 (18)	0.0526 (14)	0.0627 (16)	-0.0031 (12)	0.0108 (13)	-0.0096 (12)
N1	0.0318 (12)	0.0480 (10)	0.0464 (11)	-0.0007 (9)	0.0076 (9)	-0.0015 (9)
N2	0.0390 (14)	0.0565 (12)	0.0558 (13)	0.0053 (10)	0.0100 (10)	0.0015 (10)
01	0.0777 (16)	0.0573 (11)	0.0941 (15)	0.0067 (10)	0.0293 (12)	-0.0164 (11)
02	0.0690 (14)	0.0572 (10)	0.0556 (11)	-0.0187 (9)	0.0144 (10)	-0.0035 (8)
O3	0.0423 (13)	0.0632 (11)	0.0972 (15)	-0.0122 (9)	0.0196 (10)	-0.0154 (10)
04	0.0388 (11)	0.0543 (9)	0.0506 (9)	0.0013 (8)	0.0030 (8)	-0.0074 (7)

Γablo 4.20. Μ16 için Bağ Uzunlukları [[Å],	Bağ Açıları [°],	Torsiyon Açıları [°]
---	------	------------------	---------------------	---

C1—C2	1.374 (3)	C9—O3	1.209 (3)
C1—C6	1.391 (3)	C9—N1	1.396 (3)
C1—C10	1.493 (3)	C10—O4	1.415 (3)
C2—C3	1.390 (3)	C10—N1	1.455 (3)
C2—H2	0.9300	C10—H10	0.9800
C3—C4	1.382 (4)	C11—N2	1.318 (3)
C3—H3	0.9300	C11—C15	1.406 (3)
C4—O1	1.373 (3)	C11—N1	1.411 (3)
C4—C5	1.400 (4)	C12—N2	1.341 (3)
C5—O2	1.370 (3)	C12—C13	1.374 (4)
C5—C6	1.391 (3)	C12—H12	0.9300
C6—C9	1.481 (3)	C13—C14	1.372 (4)
C7—O1	1.412 (4)	C13—H13	0.9300
C7—H7A	0.9600	C14—C15	1.380 (3)
С7—Н7В	0.9600	C14—H14	0.9300
С7—Н7С	0.9600	C15—C16	1.487 (4)
C8—O2	1.390 (3)	C16—O4	1.432 (3)
C8—H8A	0.9600	C16—H16A	0.9700
C8—H8B	0.9600	C16—H16B	0.9700
C8—H8C	0.9600		
C2—C1—C6	121.7 (2)	O4—C10—C1	111.17 (19)
C2-C1-C10	129.4 (2)	N1-C10-C1	103.53 (18)
C6—C1—C10	108.9 (2)	O4—C10—H10	110.5
C1—C2—C3	118.0 (2)	N1-C10-H10	110.5
C1—C2—H2	121.0	C1-C10-H10	110.5
C3—C2—H2	121.0	N2-C11-C15	124.6 (2)
C4—C3—C2	121.0 (3)	N2-C11-N1	119.3 (2)
C4—C3—H3	119.5	C15—C11—N1	116.1 (2)
С2—С3—Н3	119.5	N2-C12-C13	124.3 (3)
O1—C4—C3	124.4 (3)	N2-C12-H12	117.8
O1—C4—C5	114.3 (2)	C13-C12-H12	117.8

C3—C4—C5	121.3 (2)	C14—C13—C12	117.8 (2)
O2—C5—C6	121.5 (2)	C14—C13—H13	121.1
O2—C5—C4	121.0 (2)	C12—C13—H13	121.1
C6—C5—C4	117.4 (2)	C13—C14—C15	120.5 (3)
C5—C6—C1	120.7 (2)	C13—C14—H14	119.8
C5—C6—C9	129.7 (2)	C15—C14—H14	119.8
C1—C6—C9	109.6 (2)	C14—C15—C11	116.4 (3)
01—C7—H7A	109.5	C14—C15—C16	121.8 (2)
01—C7—H7B	109.5	C11—C15—C16	121.8 (2)
H7A—C7—H7B	109.5	O4—C16—C15	112.8 (2)
01—C7—H7C	109.5	O4—C16—H16A	109.0
H7A—C7—H7C	109.5	C15—C16—H16A	109.0
H7B—C7—H7C	109.5	O4-C16-H16B	109.0
O2—C8—H8A	109.5	C15—C16—H16B	109.0
O2-C8-H8B	109.5	H16A—C16—H16B	107.8
H8A—C8—H8B	109.5	C9-N1-C11	128.1 (2)
O2—C8—H8C	109.5	C9-N1-C10	112.68 (19)
H8A—C8—H8C	109.5	C11—N1—C10	117.69 (19)
H8B—C8—H8C	109.5	C11—N2—C12	116.4 (2)
O3—C9—N1	125.7 (2)	C4—O1—C7	117.6 (2)
O3—C9—C6	129.1 (2)	C5—O2—C8	115.3 (2)
N1—C9—C6	105.2 (2)	C10—O4—C16	109.73 (18)
O4-C10-N1	110.31 (18)		
C6—C1—C2—C3	1.0 (3)	N2-C11-C15-C14	-0.8 (3)
C10—C1—C2—C3	-179.8 (2)	N1-C11-C15-C14	179.8 (2)
C1—C2—C3—C4	-0.6 (4)	N2-C11-C15-C16	179.6 (2)
C2-C3-C4-01	177.9 (2)	N1-C11-C15-C16	0.2 (3)
C2—C3—C4—C5	-0.5 (4)	C14—C15—C16—O4	-162.7 (2)
01—C4—C5—O2	-1.2 (3)	C11—C15—C16—O4	16.9 (3)
C3—C4—C5—O2	177.4 (2)	O3-C9-N1-C11	-12.2 (4)
O1—C4—C5—C6	-177.4 (2)	C6-C9-N1-C11	166.3 (2)
C3—C4—C5—C6	1.2 (3)	O3-C9-N1-C10	-177.4 (2)
O2—C5—C6—C1	-177.0 (2)	C6-C9-N1-C10	1.0 (2)
C4—C5—C6—C1	-0.8 (3)	N2-C11-N1-C9	31.3 (3)
O2—C5—C6—C9	2.4 (4)	C15-C11-N1-C9	-149.3 (2)
C4—C5—C6—C9	178.6 (2)	N2-C11-N1-C10	-164.1 (2)
C2-C1-C6-C5	-0.3 (3)	C15-C11-N1-C10	15.3 (3)
C10—C1—C6—C5	-179.7 (2)	O4-C10-N1-C9	118.5 (2)
C2—C1—C6—C9	-179.8 (2)	C1C10N1C9	-0.5 (2)
C10—C1—C6—C9	0.8 (2)	O4-C10-N1-C11	-48.4 (2)
C5—C6—C9—O3	-2.2 (4)	C1-C10-N1-C11	-167.45 (18)
C1—C6—C9—O3	177.2 (2)	C15-C11-N2-C12	0.3 (3)
C5-C6-C9-N1	179.4 (2)	N1-C11-N2-C12	179.66 (19)
C1-C6-C9-N1	-1.1 (2)	C13-C12-N2-C11	-0.1 (4)

C2-C1-C10-O4	62.1 (3)	C3—C4—O1—C7	0.5 (4)
C6—C1—C10—O4	-118.6 (2)	C5-C4-01-C7	179.0 (2)
C2-C1-C10-N1	-179.5 (2)	C6—C5—O2—C8	-100.1 (3)
C6-C1-C10-N1	-0.2 (2)	C4—C5—O2—C8	83.8 (3)
N2-C12-C13-C14	0.4 (4)	N1-C10-O4-C16	64.9 (2)
C12—C13—C14—C15	-0.9 (4)	C1-C10-O4-C16	179.11 (19)
C13—C14—C15—C11	1.0 (4)	C15—C16—O4—C10	-49.0 (3)
C13—C14—C15—C16	-179.4 (2)		

Tablo 4.21. M16 için Hidrojen-bağ geometrisi (Å, °)

<i>D</i> —H…A	D—H	H…A	D····A	<i>D</i> —H…A	
C3—H3···O3 ⁱ	0.93	2.49	1.1619	130	
C8—H8 <i>B</i> …O2 ⁱⁱ	0.96	2.46	3.2729	142	
C7—H7 <i>B</i> …Cg1 [#]	0.96	2.97	3.5586	121	
Simetri kodları: (i) x+1, y, z, (ii) x, -y-1/2, z-3/2.					

Kristal yapıda molekülleri bir arada tutan kuvvetler C-H... π ve C-H..O etkileşmeleridir. C8-H8...O2 etkileşmeleri (001) yönünde hidrojen bağlı C3 zincirlerini meydana getirirler (Şekil 4.18). Ayrıca C3-H3...O3 etkileşmesi (100) yönünde bir başka hidrojen bağlı C7 zincirlerini oluşturur (Şekil 4.19). Bu iki zincir birlikte değerlendirildiğinde R₄⁴(24) motiflerini oluşturdukları görülür. Meydana gelen bu hidrojen bağlı halkalar C-H... π etkileşmeleriyle de güçlendirilir (Şekil 4.20). C-H... π etkileşmesi Tablo 4.21 de C7-H7B...Cg1 [Cg1=C1-C6] şeklinde verilmiştir.

Şekil 4.18. 9,10-Dimetoksi--*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M16*) bileşiğinde C3 zincirini gösteren moleküller arası etkileşmeler [*(i)* x,3/2- y, z+1/2].

Şekil 4.19. 9,10-Dimetoksi--*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M16*) bileşiğinde hidrojen bağlı C7 zinciri [*(i) x-1, y, z*].

Şekil 4.20. 9,10-Dimetoksi--*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M16*) bileşiğinde hidrojen bağlı $R_4^4(24)$ motifi ve C-H... π etkileşmeleri zinciri [*(i)* x+1, y, *z; (ii)* x+1, 3/2-y, *z*-1/2; (*iii)* x, y, *z*-1/2].

4.3.5. 6a-Metil-5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (*M5*) Bileşiğinin X-Işınları Difraksiyon Yöntemiyle İncelenmesi

Şekil 4.21. 6a-Metil-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M5*) Bileşiğinin molekül yapısı

M5 moleküllerinde A/B, A/D ve B/D halkaları arasındaki dihedral açılar sırasıyla $3.21(6)^{\circ}$, 29.40(6)°, 29.12(6)° dir. **M1, M15, M13** ve **M16** molekülleri ile karşılaştırıldığında $3.21(6)^{\circ}$ lik A/B dihedral açısıyla A ve B düzlemleri arasındaki açının en büyük olduğu molekül M19 olduğu ortaya çıkar. Burada B halkasına bağlı olan ve düzlemin normali ile $4.14(7)^{\circ}$ lik açı yaparak ekvatoryal⁴⁰ pozisyonda bulunan metil grubunun etkisinin olduğu söylenebilir. Düzlemler arası açının büyümesi **M1** e göre bazı karakteristik bağların uzamasına sebep olmuştur. C7—O1, C7—N1, C16—N1 bağ uzunlukları sırasıyla 1.2227(13)Å, 1.3723(14)Å, 1.4149(14)Å iken **M1** de karşılık gelen bağlar 1.219(3)Å, 1.365(3)Å, 1.4097(18)Å dur. C halkası için N1—C8—O2—C10 [-62.12 (11)°], C10—C11—C16—N1 [-0.31 (16)°] torsiyon açıları ve Cremer & ve Pople Puckering parametreleri; Puckering Amplitude Q=0.4602(10)°, $\theta = 50.96(14)^{\circ}$, $\phi = 32.66(18)^{\circ}$ şeklidedir

Crystal data		
C ₁₆ H ₁₃ NO ₂	F(000) = 528	
$M_r = 251.27$	$D_{\rm x} = 1.358 {\rm Mg m}^{-3}$	
Monoclinic, P21/c	Mo K α radiation, $\lambda = 0.71073$ Å	
a = 9.4263 (4) Å	Cell parameters from 25568 reflections	
b = 7.4881 (3) Å	$\theta = 2.2 - 28.0^{\circ}$	

c = 17.6854 (7) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\beta = 100.017 (3)^{\circ}$	T = 296 K
$V = 1229.30 (9) \text{ Å}^3$	Block, Colorless
Z = 4	0.59 × 0.45 × 0.36 mm
Data collection	
STOE IPDS 2 diffractometer	2549 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus	2259 reflections with $I > 2\sigma(I)$
plane graphite	$R_{int} = 0.040$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{max} = 26.5^\circ, \ \theta_{min} = 2.2^\circ$
w-scan rotation method	$h = -11 \rightarrow 11$
Absorption correction: Integration	$k = -0 \rightarrow 0$
$T_{\min} = 0.955, T_{\max} = 0.976$	n - 9 '9
16176 measured reflections	$l = -22 \rightarrow 22$
Refinement	
Refinement on F^2 Least-squares matrix: Full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.092$ S = 1.07 2549 reflections 173 parameters 0 restraints Primary atom site location: Structure-invariant direct methods	Secondary atom site location: Difference Fourier map Hydrogen site location: Inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0428P)^2 + 0.1711P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.19 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.11 \text{ e } \text{Å}^{-3}$ Extinction correction: <i>SHELXL</i> , Fc*=kFc $[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0134 (19)

Tablo 4.23. M5 için Atomik koordinatlar	ve izotropik veya ekivalent izotropik yer değiştirme
parametreleri (Å ²)	

	X	У	Z	U _{iso} */U _{eq}
C1	0.16058 (11)	0.42288 (15)	0.59621 (6)	0.0448 (3)
C2	0.11398 (13)	0.46792 (19)	0.66350 (7)	0.0569 (3)
H2	0.0869	0.5842	0.6727	0.068*
C3	0.10908 (15)	0.3335 (2)	0.71675 (8)	0.0656 (4)
H3	0.0782	0.3596	0.7627	0.079*
C4	0.14957 (15)	0.1609 (2)	0.70247 (8)	0.0654 (4)
H4	0.1469	0.0732	0.7394	0.078*
C5	0.19396 (14)	0.11580 (17)	0.63431 (7)	0.0564 (3)
H5	0.2192	-0.0009	0.6245	0.068*
C6	0.19938 (12)	0.25040 (15)	0.58146 (6)	0.0445 (3)
C7	0.18831 (11)	0.54056 (14)	0.53357 (6)	0.0434 (3)
C8	0.24650 (12)	0.24223 (13)	0.50459 (6)	0.0421 (2)

C9	0.15083 (14)	0.12413 (15)	0.44756 (7)	0.0507 (3)
H9A	0.1562	0.0033	0.4660	0.061*
H9B	0.1825	0.1289	0.3989	0.061*
H9C	0.0531	0.1654	0.4417	0.061*
C10	0.45418 (13)	0.20196 (15)	0.44787 (7)	0.0517 (3)
H10A	0.4199	0.1022	0.4147	0.062*
H10B	0.5581	0.1919	0.4614	0.062*
C11	0.41734 (12)	0.37346 (15)	0.40452 (6)	0.0452 (3)
C12	0.49272 (13)	0.42461 (18)	0.34746 (7)	0.0543 (3)
H12	0.5646	0.3504	0.3353	0.065*
C13	0.46329 (15)	0.58311 (19)	0.30836 (7)	0.0611 (3)
H13	0.5158	0.6161	0.2707	0.073*
C14	0.35572 (16)	0.69239 (18)	0.32537 (7)	0.0596 (3)
H14	0.3361	0.7996	0.2991	0.072*
C15	0.27652 (14)	0.64472 (15)	0.38106 (7)	0.0499 (3)
H15	0.2026	0.7179	0.3915	0.060*
C16	0.30872 (12)	0.48571 (14)	0.42128 (6)	0.0419 (2)
N1	0.23422 (10)	0.43153 (11)	0.48030 (5)	0.0416 (2)
01	0.17697 (10)	0.70313 (11)	0.53003 (5)	0.0576 (2)
02	0.39308 (8)	0.19080 (10)	0.51606 (5)	0.0480 (2)

Tablo 4.24. M5 için Atomik yer değiştirme parametreleri (Ų)

	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
C1	0.0437 (5)	0.0450 (6)	0.0461 (6)	0.0015 (4)	0.0094 (4)	-0.0008 (5)
C2	0.0568 (7)	0.0631 (8)	0.0529 (7)	0.0056 (6)	0.0156 (5)	-0.0038 (6)
C3	0.0643 (8)	0.0882 (10)	0.0471 (7)	0.0050 (7)	0.0172 (6)	0.0046 (7)
C4	0.0639 (8)	0.0780 (9)	0.0557 (7)	0.0013 (7)	0.0143 (6)	0.0212 (7)
C5	0.0617 (7)	0.0498 (7)	0.0582 (7)	0.0002 (6)	0.0123 (6)	0.0129 (6)
C6	0.0458 (6)	0.0420 (6)	0.0457 (6)	-0.0003 (4)	0.0077 (4)	0.0033 (5)
C7	0.0437 (5)	0.0366 (5)	0.0505 (6)	0.0046 (4)	0.0102 (5)	-0.0011 (4)
C8	0.0473 (6)	0.0316 (5)	0.0481 (6)	0.0039 (4)	0.0102 (4)	0.0035 (4)
C9	0.0583 (7)	0.0392 (6)	0.0545 (7)	-0.0018 (5)	0.0096 (5)	-0.0026 (5)
C10	0.0530 (6)	0.0439 (6)	0.0607 (7)	0.0077 (5)	0.0171 (5)	-0.0002 (5)
C11	0.0471 (6)	0.0426 (6)	0.0462 (6)	-0.0007 (4)	0.0090 (5)	-0.0033 (5)
C12	0.0530 (6)	0.0609 (7)	0.0509 (6)	-0.0029 (6)	0.0145 (5)	-0.0053 (6)
C13	0.0668 (8)	0.0691 (8)	0.0501 (7)	-0.0110 (7)	0.0173 (6)	0.0049 (6)
C14	0.0746 (8)	0.0514 (7)	0.0521 (7)	-0.0080 (6)	0.0087 (6)	0.0111 (5)
C15	0.0608 (7)	0.0390 (6)	0.0496 (6)	0.0006 (5)	0.0085 (5)	0.0032 (5)
C16	0.0477 (6)	0.0366 (5)	0.0419 (5)	-0.0020 (4)	0.0088 (4)	-0.0005 (4)
N1	0.0494 (5)	0.0315 (4)	0.0456 (5)	0.0031 (4)	0.0125 (4)	0.0022 (4)
01	0.0702 (6)	0.0356 (4)	0.0711 (6)	0.0095 (4)	0.0240 (4)	-0.0006 (4)
02	0.0494 (4)	0.0421 (4)	0.0530 (5)	0.0090 (3)	0.0103 (3)	0.0060 (3)

C1—C6	1.3795 (16)	С9—Н9В	0.9600
C1—C2	1.3802 (16)	C9—H9C	0.9600
C1—C7	1.4740 (15)	C10—O2	1.4264 (14)
C2—C3	1.384 (2)	C10—C11	1.5050 (16)
C2—H2	0.9300	C10—H10A	0.9700
C3—C4	1.384 (2)	C10—H10B	0.9700
C3—H3	0.9300	C11—C12	1.3855 (16)
C4—C5	1.3848 (19)	C11—C16	1.3959 (16)
C4—H4	0.9300	C12—C13	1.3774 (19)
C5—C6	1.3816 (16)	C12—H12	0.9300
C5—H5	0.9300	C13—C14	1.376 (2)
C6—C8	1.5031 (16)	C13—H13	0.9300
C7—O1	1.2227 (13)	C14—C15	1.3822 (18)
C7—N1	1.3723 (14)	C14—H14	0.9300
C8—O2	1.4145 (13)	C15—C16	1.3931 (15)
C8—N1	1.4799 (13)	C15—H15	0.9300
C8—C9	1.5152 (16)	C16—N1	1.4149 (14)
C9—H9A	0.9600		
C6—C1—C2	121.76 (11)	Н9А—С9—Н9С	109.5
C6—C1—C7	109.28 (9)	H9B—C9—H9C	109.5
C2—C1—C7	128.80 (11)	O2-C10-C11	112.91 (9)
C1—C2—C3	117.53 (13)	O2-C10-H10A	109.0
C1-C2-H2	121.2	C11—C10—H10A	109.0
C3—C2—H2	121.2	O2-C10-H10B	109.0
C4—C3—C2	120.81 (13)	C11-C10-H10B	109.0
C4—C3—H3	119.6	H10A—C10—H10B	107.8
C2—C3—H3	119.6	C12—C11—C16	118.44 (11)
C3—C4—C5	121.41 (13)	C12—C11—C10	120.32 (11)
C3—C4—H4	119.3	C16—C11—C10	121.23 (10)
C5—C4—H4	119.3	C13—C12—C11	121.33 (12)
C6—C5—C4	117.62 (12)	C13—C12—H12	119.3
C6—C5—H5	121.2	C11—C12—H12	119.3
C4—C5—H5	121.2	C14—C13—C12	119.62 (12)
C1—C6—C5	120.86 (11)	C14—C13—H13	120.2
C1—C6—C8	109.81 (9)	C12-C13-H13	120.2
C5—C6—C8	129.32 (11)	C13—C14—C15	120.80 (12)
01—C7—N1	126.32 (10)	C13—C14—H14	119.6
01—C7—C1	127.47 (10)	C15—C14—H14	119.6
N1-C7-C1	106.18 (9)	C14—C15—C16	119.20 (12)
O2—C8—N1	109.12 (8)	C14—C15—H15	120.4
O2—C8—C6	108.44 (9)	C16—C15—H15	120.4
N1-C8-C6	101.71 (8)	C15-C16-C11	120.59 (11)

 Tablo 4.25. M5 için Bağ Uzunlukları [Å], Bağ Açıları [°], Torsiyon Açıları [°]

O2—C8—C9	112.96 (9)	C15—C16—N1	121.99 (10)
N1—C8—C9	111.00 (9)	C11-C16-N1	117.42 (9)
C6—C8—C9	112.98 (9)	C7—N1—C16	126.30 (9)
C8—C9—H9A	109.5	C7—N1—C8	112.87 (9)
С8—С9—Н9В	109.5	C16—N1—C8	117.71 (8)
H9A—C9—H9B	109.5	C8—O2—C10	113.00 (8)
C8—C9—H9C	109.5		
C6—C1—C2—C3	0.81 (18)	C12—C13—C14—C15	-0.2 (2)
C7—C1—C2—C3	-174.04 (12)	C13—C14—C15—C16	1.36 (19)
C1—C2—C3—C4	0.0 (2)	C14—C15—C16—C11	-1.47 (17)
C2—C3—C4—C5	-1.1 (2)	C14—C15—C16—N1	178.35 (11)
C3—C4—C5—C6	1.3 (2)	C12—C11—C16—C15	0.45 (16)
C2—C1—C6—C5	-0.52 (18)	C10—C11—C16—C15	179.52 (10)
C7—C1—C6—C5	175.22 (10)	C12-C11-C16-N1	-179.38 (10)
C2—C1—C6—C8	-179.49 (10)	C10-C11-C16-N1	-0.31 (16)
C7—C1—C6—C8	-3.75 (12)	O1-C7-N1-C16	16.12 (18)
C4—C5—C6—C1	-0.55 (18)	C1-C7-N1-C16	-162.08 (10)
C4—C5—C6—C8	178.20 (11)	01-C7-N1-C8	175.51 (11)
C6—C1—C7—O1	-174.19 (11)	C1-C7-N1-C8	-2.68 (12)
C2-C1-C7-01	1.2 (2)	C15-C16-N1-C7	-38.06 (16)
C6—C1—C7—N1	3.98 (12)	C11—C16—N1—C7	141.77 (11)
C2-C1-C7-N1	179.34 (11)	C15-C16-N1-C8	163.42 (10)
C1—C6—C8—O2	116.99 (10)	C11—C16—N1—C8	-16.75 (14)
C5—C6—C8—O2	-61.87 (15)	O2-C8-N1-C7	-113.91 (10)
C1-C6-C8-N1	2.04 (11)	C6—C8—N1—C7	0.52 (11)
C5—C6—C8—N1	-176.82 (11)	C9-C8-N1-C7	120.97 (10)
C1—C6—C8—C9	-117.00 (10)	O2-C8-N1-C16	47.40 (12)
C5—C6—C8—C9	64.14 (15)	C6—C8—N1—C16	161.84 (9)
O2-C10-C11-C12	165.32 (10)	C9-C8-N1-C16	-77.71 (12)
O2-C10-C11-C16	-13.74 (16)	N1-C8-O2-C10	-62.12 (11)
C16—C11—C12—C13	0.72 (18)	C6—C8—O2—C10	-172.12 (9)
C10-C11-C12-C13	-178.37 (11)	C9-C8-O2-C10	61.86 (12)
C11—C12—C13—C14	-0.84 (19)	C11—C10—O2—C8	45.85 (13)

Tablo 4.26	. M5 için	Hidrojen-bağ	geometrisi	(Å,	°)
------------	-----------	--------------	------------	-----	----

D—H···A	D—H	Н…А	D…A	D—H···A	
C15—H15…O1	0.93	2.50	2.9788 (15)	112	
C9—HA…O1 ⁱ	0.96	2.51	3.4643 (14)	173	
C9—H9C…O1 ⁱⁱ	0.96	2.51	3.4357 (16)	162	
C10—H10 <i>B</i> …O1 [™]	0.97	2.60	3.5034 (16)	156	
C4—H4…Cg1 [™] 0.93 2.98 3.6185 (15) 127					
Simetri kodları: (i) x, y-1, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1; (iv) x, -y-1/2, z-1/2					

Kristal yapıda molekülleri bir arada tutan kuvvetler C-H... π ve C-H...O etkileşmeleridir. C10-H10B...O1 etkileşmesi R₂²(14) motifli dimerik bir yapı meydana getirir (Şekil 2.22). Bu dimerik yapılar C9H9A...O1 etkileşmeleriyle oluşan iki R₂²(12) hidrojen bağlı halka ile bitişik durumda bulunur (Şekil 2.23). R₂²(14) R₂²(12) hidrojen bağlı zincirler C9-H9C...O1 hidojen bağları ile birbirlerine bağlanarak hidrojen bağlı bir ağ meydana gelir (Şekil 4.24). Hidrojen bağlı ağ ise C4-H4...Cg1 (Cg1=C11-C16) ile güçlendirilir (Şekil 4.25).

Şekil 4.22. 6a-Metil-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M5*) bileşiğinde sentrosimetrik hidrojen bağlı $R_2^2(14)$ motifi [*(i)* 1-x,1-y, 1-z].

Şekil 4.23. 6a-Metil-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (*M5*) bileşiğinde hidrojen bağlı $R_2^2(12)$ ve $R_2^2(14)$ motifleri [*(i)* 1-*x*, 1- *y*, 1-*z*; *(ii)* -*x*, 1- *y*, 1-*z*; *(ii) x*, +1*y*, *z*].

Şekil 4.24. 6a-Metil-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M5*) bileşiğinde hidrojen bağlı $R_2^2(12)$, $R_2^2(14)$, $R_4^2(8)$ ve $R_4^2(14)$ halka motifleri [*(i)* 1-*x*, 1- *y*, 1-*z; (ii)* - *x*, 1- *y*, 1-*z; (i) x*, +1*y*, *z*].

Şekil 4.25. 6a-Metil-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M5*) bileşiğinde C-H... π etkileşmeleri ve moleküllerin katı fazda dizilişi [*(i)* -x+1, ½-y, -z].

4.3.6. 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M10*) Bileşiğinin X-Işınları Difraksiyon Yöntemiyle İncelenmesi

Şekil 4.26. 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M10*) Bileşiğinin molekül yapısı

M10 moleküllerinde A/B halkaları arasındaki dihedral açı 1.02° dir ve bu açı yukarıda incelenen moleküller arasında en küçük A/B dihedral açıdır. C8—O2, C8—N1, C7—N1 bağ uzunlukları sırasıyla 1.217 (2) Å 1.362 (2) Å, 1.448 (2) Å olan **M10** moleküllerindeki bu bağ uzunlukları benzer yapı gösteren **36** nolu bileşikte karşılık gelen bağlar [1.219(3)Å, 1.365(3)Å, 1.461(3) Å] ile hemen hemen aynıdır.

Aromatik halkaya bitişik olmayan C halkası tam bir koltuk konformasyonunda olup N1—C7—O1—C9 ve C9—C10—C11—N1 için torsiyon açıları sırasıyla 58.0 (2)°, -46.5 (3)°; Cremer & ve Pople Puckering parametreleri ise Puckering Amplitude Q=0.5310°, θ =10.96°, ϕ =326.0998° şeklidedir (Şekil 4.27).

Şekil 4.27. 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on molekülünde C halkasının konformasyonu.

Crystal data	
$C_{11}H_{11}NO_2$ $M_r = 189.21$ Orthorhombic, <i>Fdd2</i> $a = 33.0608 (16) \text{ Å}$ $b = 25.0195 (15) \text{ Å}$ $c = 4.5730 (2) \text{ Å}$ $V = 3782.6 (3) \text{ Å}^3$ $Z = 16$ $F(000) = 1600$	$D_x = 1.329 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8507 reflections $\theta = 1.6-28.0^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K Prism, Colorless $0.78 \times 0.59 \times 0.44 \text{ mm}$
Data collection	
STOE IPDS II diffractometer Radiation source: fine-focus sealed tube graphite ∞ scans Absorption correction: Integration (<i>X-RED32</i> ; Stoe & Cie, 2002) $T_{min} = 0.936$, $T_{max} = 0.968$ 5036 measured reflections	1108 independent reflections 1028 reflections with $I > 2\sigma(I)$ $R_{int} = 0.058$ $\theta_{max} = 26.5^{\circ}, \ \theta_{min} = 2.0^{\circ}$ $h = -40 \rightarrow 40$ $k = -30 \rightarrow 30$ $l = -4 \rightarrow 5$
Refinement	
Refinement on F^2 Least-squares matrix: Full $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.091$	Secondary atom site location: Difference Fourier map Hydrogen site location: Inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.057P)^2 + 0.6304P]$
S = 1.05 1108 reflections	where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$
127 parameters 1 restraint Primary atom site location: Structure-invariant direct methods	$\begin{split} &\Delta\rho_{max}=0.12~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.12~e~{\rm \AA}^{-3}\\ &Absolute~structure:~Flack~H~D~(1983),~Acta\\ &Cryst.~A39,~876881;~708~Friedel~pairs \end{split}$

Tablo 4.27. M10 için Kristal Verileri ve Yapısal Özellikler

Tablo 4.28. M10 için Atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri (Å²)

	X	У	Z	U _{iso} */U _{eq}
C1	0.46689 (6)	0.15474 (7)	0.6128 (4)	0.0530 (4)
C2	0.48763 (7)	0.18782 (8)	0.8036 (5)	0.0661 (5)
H2	0.4770	0.2207	0.8589	0.079*
C3	0.52467 (7)	0.17071 (10)	0.9102 (7)	0.0748 (6)

H3	0.5391	0.1924	1.0380	0.090*
C4	0.54021 (6)	0.12189 (10)	0.8288 (6)	0.0703 (6)
H4	0.5651	0.1111	0.9031	0.084*
C5	0.51949 (5)	0.08835 (8)	0.6372 (5)	0.0605 (5)
H5	0.5301	0.0553	0.5839	0.073*
C6	0.48284 (5)	0.10568 (7)	0.5293 (4)	0.0497 (4)
C7	0.45410 (5)	0.07924 (7)	0.3217 (4)	0.0504 (4)
H7	0.4670	0.0742	0.1305	0.060*
C8	0.42687 (6)	0.16165 (7)	0.4711 (5)	0.0568 (5)
C9	0.40848 (6)	0.00956 (8)	0.2430 (6)	0.0658 (6)
H9A	0.4001	-0.0254	0.3122	0.079*
H9B	0.4188	0.0055	0.0456	0.079*
C10	0.37275 (6)	0.04658 (9)	0.2408 (6)	0.0640 (5)
H10A	0.3611	0.0482	0.4351	0.077*
H10B	0.3523	0.0329	0.1082	0.077*
C11	0.38529 (6)	0.10241 (8)	0.1447 (5)	0.0641 (5)
H11A	0.3903	0.1028	-0.0642	0.077*
H11B	0.3638	0.1276	0.1864	0.077*
N1	0.42149 (4)	0.11768 (6)	0.3000 (4)	0.0537 (4)
01	0.44008 (4)	0.03013 (5)	0.4301 (4)	0.0571 (4)
O2	0.40305 (5)	0.19836 (6)	0.5003 (5)	0.0830 (5)

Tablo 4.29. M10 için Atomik yer değiştirme parametreleri (Å²)

	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
C1	0.0647 (10)	0.0451 (8)	0.0491 (10)	-0.0016 (7)	0.0070 (9)	0.0057 (8)
C2	0.0836 (13)	0.0511 (9)	0.0635 (13)	-0.0043 (9)	0.0019 (11)	-0.0054 (9)
C3	0.0793 (13)	0.0749 (13)	0.0701 (14)	-0.0187 (11)	-0.0038 (13)	-0.0062 (13)
C4	0.0553 (10)	0.0805 (13)	0.0752 (14)	-0.0060 (10)	0.0007 (11)	0.0054 (12)
C5	0.0525 (9)	0.0609 (10)	0.0679 (14)	0.0014 (8)	0.0106 (10)	-0.0007 (10)
C6	0.0530 (8)	0.0460 (8)	0.0501 (10)	-0.0020 (7)	0.0122 (8)	0.0017 (7)
C7	0.0551 (9)	0.0461 (8)	0.0499 (9)	0.0025 (7)	0.0107 (8)	0.0006 (7)
C8	0.0736 (11)	0.0455 (9)	0.0513 (11)	0.0067 (8)	0.0003 (10)	0.0042 (8)
C9	0.0672 (11)	0.0506 (10)	0.0797 (15)	-0.0036 (8)	-0.0028 (12)	-0.0064 (10)
C10	0.0607 (10)	0.0644 (11)	0.0668 (13)	-0.0035 (9)	-0.0050 (11)	-0.0018 (10)
C11	0.0695 (12)	0.0665 (11)	0.0561 (11)	0.0037 (9)	-0.0083 (10)	0.0067 (10)
N1	0.0618 (8)	0.0448 (7)	0.0546 (9)	0.0056 (7)	-0.0007 (8)	0.0043 (7)
01	0.0602 (7)	0.0421 (6)	0.0692 (9)	0.0006 (5)	-0.0006 (7)	0.0039 (6)
02	0.1006 (11)	0.0604 (8)	0.0881 (12)	0.0327 (8)	-0.0138 (11)	-0.0087 (9)

Tablo 4.30	M10 icin Bağ	Uzunlukları (Å)	Bağ Açıları [°]	Torsivon	Acıları [°]
Tablo 4.50.	MITO IÇILI DAY		bay Açıları [],	TOTSIYON	Açıları []

C1—C2	1.384 (3)	С7—Н7	0.9800
C1—C6	1.390 (2)	C8—O2	1.217 (2)
C1—C8	1.483 (3)	C8—N1	1.362 (2)
C2—C3	1.386 (3)	C9—O1	1.445 (3)

C2—H2	0.9300	C9—C10	1.501 (3)
C3—C4	1.376 (4)	C9—H9A	0.9700
C3—H3	0.9300	С9—Н9В	0.9700
C4—C5	1.393 (3)	C10—C11	1.522 (3)
C4—H4	0.9300	C10—H10A	0.9700
C5—C6	1.378 (3)	C10—H10B	0.9700
C5—H5	0.9300	C11—N1	1.443 (3)
C6—C7	1.497 (3)	C11—H11A	0.9700
C7—O1	1.404 (2)	C11—H11B	0.9700
C7—N1	1.448 (2)		
C2C1C6	120.87 (18)	O2—C8—C1	128.12 (19)
C2C1C8	130.36 (17)	N1-C8-C1	105.87 (15)
C6—C1—C8	108.76 (16)	O1-C9-C10	110.67 (17)
C1—C2—C3	118.4 (2)	01—C9—H9A	109.5
C1-C2-H2	120.8	C10—C9—H9A	109.5
C3-C2-H2	120.8	O1-C9-H9B	109.5
C4—C3—C2	120.6 (2)	С10—С9—Н9В	109.5
C4—C3—H3	119.7	Н9А—С9—Н9В	108.1
C2—C3—H3	119.7	C9-C10-C11	110.73 (17)
C3—C4—C5	121.4 (2)	C9-C10-H10A	109.5
C3—C4—H4	119.3	C11-C10-H10A	109.5
C5—C4—H4	119.3	C9-C10-H10B	109.5
C6—C5—C4	117.90 (19)	C11—C10—H10B	109.5
C6—C5—H5	121.0	H10A—C10—H10B	108.1
C4—C5—H5	121.0	N1-C11-C10	109.08 (17)
C5-C6-C1	120.87 (18)	N1-C11-H11A	109.9
C5—C6—C7	130.24 (17)	C10-C11-H11A	109.9
C1—C6—C7	108.88 (16)	N1-C11-H11B	109.9
01-C7-N1	111.07 (14)	C10—C11—H11B	109.9
O1—C7—C6	111.85 (16)	H11A—C11—H11B	108.3
N1-C7-C6	102.86 (15)	C8-N1-C11	127.23 (17)
01—C7—H7	110.3	C8—N1—C7	113.57 (16)
N1-C7-H7	110.3	C11—N1—C7	118.38 (16)
C6—C7—H7	110.3	C7—O1—C9	109.96 (16)
02-C8-N1	126.0 (2)		
C6—C1—C2—C3	-0.2 (3)	C2-C1-C8-N1	178.7 (2)
C8—C1—C2—C3	178.4 (2)	C6-C1-C8-N1	-2.6 (2)
C1—C2—C3—C4	-0.3 (4)	O1-C9-C10-C11	56.9 (3)
C2—C3—C4—C5	0.2 (4)	C9-C10-C11-N1	-46.5 (3)
C3—C4—C5—C6	0.4 (4)	O2-C8-N1-C11	-7.4 (4)
C4—C5—C6—C1	-0.9 (3)	C1-C8-N1-C11	172.00 (18)
C4—C5—C6—C7	179.6 (2)	02-C8-N1-C7	-176.8 (2)
C2—C1—C6—C5	0.9 (3)	C1—C8—N1—C7	2.6 (2)

C8—C1—C6—C5	-178.00 (18)	C10—C11—N1—C8	-123.3 (2)
C2-C1-C6-C7	-179.55 (18)	C10—C11—N1—C7	45.6 (2)
C8—C1—C6—C7	1.60 (19)	01—C7—N1—C8	118.14 (18)
C5—C6—C7—O1	60.2 (2)	C6-C7-N1-C8	-1.7 (2)
C1—C6—C7—O1	-119.34 (17)	01-C7-N1-C11	-52.3 (2)
C5-C6-C7-N1	179.47 (19)	C6-C7-N1-C11	-172.06 (17)
C1-C6-C7-N1	-0.08 (19)	N1-C7-01-C9	58.0 (2)
C2-C1-C8-02	-1.9 (4)	C6—C7—O1—C9	172.29 (15)
C6—C1—C8—O2	176.8 (2)	C10—C9—O1—C7	-62.7 (2)

Tablo 4.31. M10 için Hidrojen-bağ geometrisi (Å, °)

D—H···A	D—H	Н…А	D…A	D—H…A
C5—H5···O1 ⁱ	0.93	2.458	3.387(4)	178
C9—H9A···O2 ⁱⁱ	0.97	2.745	3.444 (5)	130
C10—H10 <i>B</i> ···O2 ^Ⅲ	0.97	2.680	3.4354 (4)	135
C7—H7···Cg1 ⁱ [∨]	0.93	2.75	3.5239 (15)	137
Simetri kodları: (i) -x+1,-y,+z; (ii) -x+3/4,+y-1/4,+z+1/4 ; (iii) -x+3/4,+y-1/4,+z-3/4				

Moleküller arası etkileşmeler dikkate alındığında üç C-H..O ve bir C-H... π etkileşmesinin moleküllerin kristal yapıda belli bir düzende sıralanmasını sağladığı görülebilir. C5-H5...O1 etkileşmesi R₂²(10) motifli bir dimerik bir yapı oluştururken (Şekil 4.28) C9H9A...O2 ve C10-H10B...O2 etkileşmeleri bu dimerleri birbirine bağlayarak R₆⁶(31) motifini oluşturur (Şekil 4.29). Şekil 4.30 dan görülebileceği gibi R₂²(10) R₆⁶(31)R₂²(10) motifli düzleler C7-H7...Cg1 (Cg1=C11-C16) etkileşmeleriyle üç boyutlu ağ örgüyü meydana getirir.

Şekil 4.28. 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M10*) bileşiğinde hidrojen bağlı $R_2^2(10)$ motifli dimerler [*(i)* 1-x,-y, z].

Şekil 4.29. 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M10*) bileşiğinde hidrojen bağlı $R_2^2(10)$ ve $R_6^6(31)$ motifleri [*(i)* 3/4-x, 3/4-y, z+3/4].

Şekil 4.30. 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M10*) bileşiğinde moleküllerin kristal yapıda yerleşimi.

4.3.7. 3-Hidroksi-3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M11*) Bileşiğinin X-lşınları Difraksiyon Yöntemiyle İncelenmesi

Şekil 4.31. 3-Hidroksi-3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M11*) Bileşiğinin molekül yapısı

M11 moleküllerinde A/B halkaları arasındaki dihedral açı 1.78°, C8—O1, C8—N1, C7—N1 bağ uzunlukları sırasıyla 1.227 (3) Å, 1.341 (3) Å, 1.449 (3) Å olan **M11** moleküllerindeki bu bağ uzunluklarından biraz farklılık gösterir. C8-O1 bağ uzunluğu **M10** moleküllerinde karşılık gelen bağlara göre biraz daha uzundur. Bu bağ uyzamasının başlıca sebebi hidrojen bağıdır. **M10** da zayıf C-H...O hidrojen bağlarına karşılık **M11** de kuvvetli O-H...O hidrojen bağlarının oluşu C8—O1 (C=O) bağını zayıflatarak uzamasını sağlamıştır.

M10 moleküllerinde olduğu gibi aromatik halkaya bitişik olmayan C halkası tam bir koltuk konformasyonunda olup **M11** de N1—C7—O1—C9 ve C9—C10—C11—N1 için -56.3 (2)°, 46.4 (2)° olan torsiyon açıları **M10** ile deneysel hata sınırları içinde eşittir [58.0 (2)°, -46.5 (3)°]. Cremer & ve Pople Puckering parametreleri ise Puckering Amplitude Q=0.5197°, θ =7.91°, ϕ =329.3861° şeklidedir (Şekil 4.32).

Şekil 4.32. 3-Hidroksi-3,4dihidro-2*H*-[1,3]oksazino [2,3-*a*]izoindol-6(10b*H*)-on molekülünde C halkasının konformasyonu.

Crystal data	
C ₁₁ H ₁₁ NO ₃ $M_r = 205.21$ Monoclinic, P2 ₁ Hall symbol: P2yb $\alpha = 4.7404$ (5) Å b = 11.6159 (16) Å c = 9.0472 (10) Å $\beta = 99.559$ (9)° V = 491.26 (10) Å ³ Z = 2	F(000) = 216 $D_x = 1.387 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 15026 reflections $\theta = 2.3-28.1^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K Prism, Colorless $0.67 \times 0.47 \times 0.16 \text{ mm}$
Data collection	
STOE IPDS II diffractometer Radiation source: fine-focus sealed tube graphite ω scans Absorption correction: Integration (X-RED32; Stoe & Cie, 2002) $T_{min} = 0.948$, $T_{max} = 0.986$ 4087 measured reflections Refinement	1060 independent reflections 1022 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 26.5^{\circ}, \ \theta_{min} = 2.3^{\circ}$ $h = -5 \rightarrow 5$ $k = -14 \rightarrow 14$ $l = -11 \rightarrow 11$
Refinement on F^2 Least-squares matrix: Full $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.081$ S = 1.07 1060 reflections 137 parameters 1 restraint Primary atom site location: Structure-invariant direct methods	Secondary atom site location: Difference Fourier map Hydrogen site location: Inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0454P)^2 + 0.0384P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.09 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.13 \text{ e } \text{Å}^{-3}$ Absolute structure: Flack H D (1983), Acta Cryst. A39, 876-881; 953 Friedel pairs merged

Tablo 4.32. M11 için Kristal Verileri ve Yapısal Özellikler

Tablo 4.33. M11 için Atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirmeparametreleri (Ų)

	x	у	Z	U _{iso} */U _{eq}
C1	0.3758 (4)	0.77043 (19)	0.6344 (2)	0.0485 (5)
C2	0.1647 (5)	0.8441 (3)	0.5654 (3)	0.0685 (7)
H2	0.1398	0.9167	0.6046	0.082*
C3	-0.0059 (6)	0.8065 (3)	0.4378 (3)	0.0818 (10)

H3	-0.1525	0.8536	0.3909	0.098*
C4	0.0353 (6)	0.6994 (4)	0.3768 (3)	0.0853 (10)
H4	-0.0814	0.6764	0.2888	0.102*
C5	0.2499 (6)	0.6259 (3)	0.4460 (3)	0.0697 (7)
H5	0.2802	0.5545	0.4049	0.084*
C6	0.4163 (4)	0.66248 (19)	0.5777 (2)	0.0503 (5)
C7	0.6484 (4)	0.60249 (19)	0.6814 (2)	0.0501 (5)
H7	0.8048	0.5803	0.6287	0.060*
C8	0.5845 (4)	0.78660 (18)	0.7736 (2)	0.0489 (5)
C9	0.7501 (6)	0.4611 (2)	0.8667 (3)	0.0673 (7)
H9A	0.9179	0.4374	0.8260	0.081*
H9B	0.6730	0.3935	0.9089	0.081*
C10	0.8374 (4)	0.5479 (2)	0.9893 (3)	0.0565 (5)
H10	0.9928	0.5155	1.0625	0.068*
C11	0.9415 (4)	0.6576 (2)	0.9257 (3)	0.0608 (6)
H11A	0.9548	0.7186	0.9997	0.073*
H11B	1.1300	0.6455	0.9000	0.073*
N1	0.7416 (3)	0.69009 (15)	0.79291 (19)	0.0466 (4)
01	0.6180 (4)	0.87091 (16)	0.8564 (2)	0.0756 (5)
O2	0.5401 (4)	0.50570 (13)	0.74762 (19)	0.0579 (4)
O3	0.6069 (3)	0.57829 (15)	1.06414 (18)	0.0564 (4)
H1	0.5322	0.5197	1.0902	0.085*

Tablo 4.34. M11 için Atomik yer değiştirme parametreleri (Å²)

	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
C1	0.0446 (9)	0.0488 (11)	0.0540 (11)	-0.0033 (8)	0.0138 (8)	0.0083 (9)
C2	0.0566 (12)	0.0709 (16)	0.0798 (16)	0.0076 (11)	0.0162 (12)	0.0272 (14)
C3	0.0604 (13)	0.109 (3)	0.0741 (17)	0.0004 (15)	0.0062 (12)	0.0456 (19)
C4	0.0744 (16)	0.130 (3)	0.0472 (12)	-0.0332 (19)	-0.0026 (11)	0.0220 (17)
C5	0.0825 (16)	0.0814 (18)	0.0461 (11)	-0.0237 (14)	0.0131 (11)	-0.0004 (12)
C6	0.0520 (10)	0.0551 (12)	0.0460 (9)	-0.0090 (9)	0.0148 (8)	0.0023 (9)
C7	0.0558 (10)	0.0479 (11)	0.0504 (11)	0.0012 (9)	0.0198 (8)	-0.0032 (9)
C8	0.0465 (9)	0.0422 (10)	0.0602 (12)	-0.0054 (8)	0.0156 (8)	-0.0023 (9)
C9	0.0882 (17)	0.0491 (12)	0.0687 (15)	0.0213 (12)	0.0250 (12)	0.0080 (12)
C10	0.0442 (10)	0.0653 (14)	0.0597 (12)	0.0139 (9)	0.0076 (8)	0.0111 (11)
C11	0.0401 (9)	0.0749 (15)	0.0653 (12)	-0.0040 (10)	0.0022 (9)	0.0086 (12)
N1	0.0422 (7)	0.0464 (9)	0.0516 (9)	-0.0035 (7)	0.0089 (6)	0.0002 (8)
01	0.0769 (11)	0.0536 (9)	0.0952 (13)	-0.0056 (8)	0.0107 (9)	-0.0251 (10)
02	0.0805 (10)	0.0380 (7)	0.0567 (9)	-0.0022 (7)	0.0162 (7)	-0.0023 (7)
O3	0.0521 (7)	0.0620 (9)	0.0566 (8)	0.0026 (7)	0.0132 (6)	0.0007 (8)

C1—C6	1.380 (3)	С7—Н7	0.9800
C1—C2	1.384 (3)	C8—O1	1.227 (3)
C1—C8	1.479 (3)	C8—N1	1.341 (3)
C2—C3	1.366 (4)	C9—O2	1.437 (3)
C2—H2	0.9300	C9—C10	1.506 (4)
C3—C4	1.388 (5)	C9—H9A	0.9700
С3—Н3	0.9300	С9—Н9В	0.9700
C4—C5	1.394 (5)	C10—O3	1.422 (3)
C4—H4	0.9300	C10-C11	1.514 (3)
C5—C6	1.382 (3)	C10—H10	0.9800
C5—H5	0.9300	C11-N1	1.451 (3)
C6—C7	1.494 (3)	C11—H11A	0.9700
C7—O2	1.410 (3)	C11—H11B	0.9700
C7—N1	1.449 (3)	O3—H1	0.8200
C6—C1—C2	121.9 (2)	01—C8—C1	128.4 (2)
C6—C1—C8	108.50 (18)	N1-C8-C1	106.46 (18)
C2—C1—C8	129.6 (2)	O2-C9-C10	112.46 (18)
C3—C2—C1	117.7 (3)	O2—C9—H9A	109.1
C3—C2—H2	121.1	C10—C9—H9A	109.1
C1-C2-H2	121.1	O2-C9-H9B	109.1
C2—C3—C4	121.3 (3)	С10—С9—Н9В	109.1
С2—С3—Н3	119.3	Н9А—С9—Н9В	107.8
C4—C3—H3	119.3	O3—C10—C9	112.2 (2)
C3—C4—C5	120.7 (3)	O3-C10-C11	107.26 (19)
C3—C4—H4	119.7	C9-C10-C11	110.5 (2)
C5—C4—H4	119.7	O3-C10-H10	108.9
C6—C5—C4	117.9 (3)	C9-C10-H10	108.9
C6—C5—H5	121.0	C11—C10—H10	108.9
C4—C5—H5	121.0	N1-C11-C10	108.94 (18)
C1—C6—C5	120.3 (2)	N1-C11-H11A	109.9
C1—C6—C7	108.89 (18)	C10-C11-H11A	109.9
C5—C6—C7	130.8 (2)	N1-C11-H11B	109.9
02—C7—N1	110.74 (16)	C10-C11-H11B	109.9
O2—C7—C6	110.88 (16)	H11A—C11—H11B	108.3
N1—C7—C6	102.55 (16)	C8—N1—C7	113.42 (17)
02—C7—H7	110.8	C8-N1-C11	126.7 (2)
N1—C7—H7	110.8	C7-N1-C11	118.39 (18)
C6—C7—H7	110.8	C7—O2—C9	110.52 (19)
01-C8-N1	125.1 (2)	C10—O3—H1	109.5
	0 1 (3)		179 6 (2)
C8 - C1 - C2 - C3	-178 4 (2)	02 - 01 - 00 - 11 - 03	64.5 (3)
C1 - C2 - C3 - C4	-17(4)	02 - 00 - 010 - 000	-55 2 (3)
			JJ. (J)

 Tablo 4.35.
 M11 için Bağ Uzunlukları [Å], Bağ Açıları [°], Torsiyon Açıları [°]

C2—C3—C4—C5	1.2 (4)	O3-C10-C11-N1	-76.3 (2)
C3—C4—C5—C6	0.9 (4)	C9-C10-C11-N1	46.4 (2)
C2-C1-C6-C5	2.0 (3)	O1-C8-N1-C7	177.8 (2)
C8—C1—C6—C5	-179.19 (18)	C1-C8-N1-C7	-3.5 (2)
C2—C1—C6—C7	-177.02 (19)	O1-C8-N1-C11	12.1 (3)
C8—C1—C6—C7	1.8 (2)	C1—C8—N1—C11	-169.20 (17)
C4—C5—C6—C1	-2.4 (3)	O2-C7-N1-C8	-113.90 (19)
C4—C5—C6—C7	176.3 (2)	C6—C7—N1—C8	4.4 (2)
C1—C6—C7—O2	114.62 (18)	O2-C7-N1-C11	53.1 (2)
C5—C6—C7—O2	-64.3 (3)	C6—C7—N1—C11	171.44 (16)
C1-C6-C7-N1	-3.62 (19)	C10-C11-N1-C8	117.5 (2)
C5-C6-C7-N1	177.5 (2)	C10-C11-N1-C7	-47.6 (2)
C6—C1—C8—O1	179.6 (2)	N1-C7-02-C9	-56.3 (2)
C2-C1-C8-01	-1.7 (3)	C6—C7—O2—C9	-169.43 (17)
C6-C1-C8-N1	0.9 (2)	C10-C9-O2-C7	60.2 (3)

Tablo 4.36. M11 için Hidrojen-bağ geometrisi (Å, °)

D—H···A	<i>D</i> —H	H…A	D···A	<i>D</i> —H…A	
O3—H1…O1 ⁱ	0.82	1.96	2.777 (2)	174	
C4—H4O3 ⁱⁱ	0.93	2.57	3.4921	170	
C10—H10…O1 [™]	0.98	2.51	3.4123	152	
C7—H7···Cg1 ^{iv}	0.98	2.96	3.6394	127	
Simetri kodları: (i) 1-x,-1/2+y,-z; (ii) 1+x,y,1+z; (iii) -x,-1/2+y,-z; (iv) -1+x, y, z.					

Kristal yapıda molekülleri bir arada tutan etkileşmeler C-H...O, C-H...O ve C-H... π etkileşmeleridir (Tablo 4.26). O3-H1...O1 hidrojen bağları (010) yönünde C7 zinciri oluştururlar (Şekil 4.33). Bu zincirlere uygun mesafedeki bir molekülün C10-H10...O1 hidrojen bağlarıyla bağlanması ise R₃³(15) ve R₃²(7) motiflerinin meydana gelmesine sebep olur (Şekil 4.33). R₃³(15) ve R₃²(7) motifleri ise bir başka molekülle yaptıkları C4-H4...O3 hidrojen bağı ile R₅⁴(23) motifini meydana getiriler (Şekil 4.34). Bu hidrojen bağlı sistem C7-H7...p etkileşmeleriyle kuvvetlendirilerek kristal yapıda hidrojen bağlı bir ağ meydana getirirler (Tablo 4.36, Şekil 4.35).

O3-H1...O1 hidrojen bağlarıyla oluşturulan C7 zinciri

Şekil 4.33. 3-Hidroksi-3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M*11) bileşiğinde hidrojen bağlı O3-H1...O1 C7 zincirlerinin C10-H10...O1 hidrojen bağları ile oluşturduğu R₃³(15) ve R₃²(7) motifleri [(*i*) x-1/2, y+1/2, -z; (*ii*) x-1/2, y-1/2, -z; (*iii*) x, y-1, z; (*iv*) x+1/2, y-1/2, -z].

Şekil 4.34. 3-Hidroksi-3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M*11) bileşiğinde hidrojen bağlı $R_3^2(7)$ ve $R_5^4(23)$ motifleri [*(i)* –*x*+1/2,1 y, z-1; (*ii*) *x*-1/2, *y*-1/2, 1-z; (*iii*) *x*, *y*, *z*-1; (*iv*) *x*+1, *y*, *z*].

Şekil 4.35. 3-Hidroksi-3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M11*) bileşiğinin kristal yapıda dizilişi

4.3.8. 2,3-Dibrom-3a*H*,5*H*-4-oksa-9b-aza-siklopenta[a]naftalin-1-on (*M30*) Bileşiğinin X-Işınları Difraksiyon Yöntemiyle İncelenmesi

Şekil 4.36. 2,3-Dibrom-3a*H*,5*H*-4-oksa-9b-aza-siklopenta[a]naftalin-1-on (*M30*) Bileşiğinin molekül yapısı ve pirrol-2-on düzlemleri arasındaki açı

Asimetrik birimde iki molekül içeren 2,3-Dibrom-3a*H*,5*H*-4-oksa-9b-azasiklopenta[*a*]naftalin-1-on kristalinde **M30** moleküllerinde A/C, A/F, A/D, C/F, C/D ve D/F halkaları arasındaki dihedral açılar sırasıyla 26,5(2)°, 4,4(2)°, 26,4(2)°, 22,2(3)°, 1,8(2)°, 22,1(2)° dir. Karbonil grupları için bulunan bağ uzunlukları [(C11—O2=1.210 (5) Å, C31— O4=1.215 (5)Å] ve diğer bağ uzunlukları beklenen değerler arasındadır.

M30 moleküllerinde B halkasına ait N1—C8—O1—C7 ve N1—C1—C6—C7 torsiyon açıları 65.3 (5)°, -1.6 (6)° ve E halkasına ait olan N2—C28—O3—C27 ve N2—C21—C26— C27 torsiyon açıları -65.5 (4)°, -1.2 (6)°; Cremer & ve Pople Puckering parametreleri B halkası için; Puckering Amplitude Q=0.4838(43)°, θ =49.67(55)°, ϕ =338.3(7)° E halkası için; Puckering Amplitude Q=0.4903(45)°, θ =51.84(54)°, ϕ =338.5(7)° şeklidedir (Şekil 4.36).

Crystal data	
C ₁₁ H ₇ Br ₂ NO ₂	<i>Z</i> = 4
$M_r = 345.00$	F(000) = 664
Triclinic, P1	$D_{\rm x} = 2.096 {\rm Mg} {\rm m}^{-3}$
<i>a</i> = 7.2440 (7) Å	Mo K α radiation, $\lambda = 0.71073$ Å
b = 9.5965 (9) Å	Cell parameters from 37548 reflections
c = 16.4574 (15) Å	$\theta = 2.2-28.1^{\circ}$
α = 78.040 (7)°	$\mu = 7.40 \text{ mm}^{-1}$
β = 88.640 (7)°	<i>T</i> = 296 K
γ = 77.745 (7)°	Plate, Colorless
V = 1093.49 (18) Å ³	0.76 × 0.32 × 0.03 mm
Data collection	
STOE IPDS II	4296 independent reflections
diffractometer	3144 reflections with $L > 2\sigma(D)$
Radiation source: fine-focus sealed tube	$R_{int} = 0.064$
graphite	$\theta_{\rm min} = 26.0^{\circ}$ $\theta_{\rm min} = 2.2^{\circ}$
Absorption correction: Integration	omax 20.0 , omin 2.2
(X-RED32; Stoe & Cie, 2002)	$h = -8 \rightarrow 8$
$T_{\min} = 0.046, \ T_{\max} = 0.803$	$k = -11 \rightarrow 11$
18725 measured reflections	$l = -20 \rightarrow 20$
Refinement	
Refinement on F^2	Primary atom site location: Structure-invariant direct methods
Least-squares matrix: Full	Secondary atom site location: Difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: Inferred from neighbouring sites
$wR(F^2) = 0.083$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.11	$w = 1/[\sigma^2(F_o^2) + (0.0351P)^2 + 0.0244P]$ where $P = (F_o^2 + 2F_c^2)/3$
4296 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
289 parameters	$\Lambda_{0mm} = 0.76 \text{ e} \text{ Å}^{-3}$
0 restraints	$A_{2} = -0.40 = \dot{A}^{-3}$
• • • • • • • • • • • • • • • • • • •	$\Delta p_{\min} = -0.40 \text{ CA}$

Şekil 4.37. M30 için Kristal Verileri ve Yapısal Özellikler

	X	У	Z	U _{iso} */U _{eq}
C1	0.1831 (6)	0.6119 (5)	0.2101 (3)	0.0377 (10)
C2	0.1602 (6)	0.6181 (6)	0.1257 (3)	0.0444 (11)
H2	0.1456	0.5362	0.1067	0.053*
C3	0.1594 (7)	0.7482 (7)	0.0705 (3)	0.0549 (14)
H3	0.1462	0.7528	0.0139	0.066*
C4	0.1776 (7)	0.8699 (7)	0.0974 (3)	0.0554 (13)
H4	0.1770	0.9567	0.0596	0.066*
C5	0.1970 (6)	0.8626 (6)	0.1814 (3)	0.0495 (12)
H5	0.2072	0.9460	0.1998	0.059*
C6	0.2016 (6)	0.7348 (5)	0.2390 (3)	0.0374 (10)
C7	0.2212 (7)	0.7290 (5)	0.3305 (3)	0.0452 (11)
H7A	0.3100	0.7876	0.3391	0.054*
H7B	0.0999	0.7708	0.3512	0.054*
C8	0.1693 (6)	0.4935 (5)	0.3579 (2)	0.0350 (9)
H8	0.0372	0.5297	0.3707	0.042*
C9	0.2392 (6)	0.3395 (5)	0.4031 (3)	0.0370 (10)
C10	0.2893 (6)	0.2523 (5)	0.3501 (3)	0.0369 (10)
C11	0.2663 (6)	0.3414 (5)	0.2627 (3)	0.0371 (10)
C21	0.2576 (6)	0.6154 (5)	0.7097 (3)	0.0375 (10)
C22	0.2774 (6)	0.6211 (6)	0.6248 (3)	0.0435 (11)
H22	0.3264	0.5368	0.6052	0.052*
C23	0.2237 (7)	0.7529 (7)	0.5701 (3)	0.0522 (13)
H23	0.2336	0.7570	0.5132	0.063*
C24	0.1552 (7)	0.8793 (6)	0.5989 (3)	0.0543 (14)
H24	0.1208	0.9682	0.5618	0.065*
C25	0.1384 (7)	0.8724 (6)	0.6827 (3)	0.0512 (12)
H25	0.0932	0.9577	0.7018	0.061*
C26	0.1872 (6)	0.7413 (5)	0.7396 (3)	0.0389 (10)
C27	0.1667 (7)	0.7369 (5)	0.8311 (3)	0.0472 (11)
H27A	0.2702	0.7711	0.8512	0.057*
H27B	0.0497	0.8020	0.8404	0.057*
C28	0.3249 (6)	0.4943 (5)	0.8567 (3)	0.0351 (9)
H28	0.4416	0.5240	0.8677	0.042*
C29	0.3286 (6)	0.3422 (5)	0.9019 (3)	0.0368 (10)
C30	0.3272 (6)	0.2568 (5)	0.8488 (3)	0.0351 (9)

C31

N1

N2

0.3079 (6)

0.1887 (5)

0.3123 (5)

0.3451 (5)

0.4812 (4)

0.4838 (4)

0.7620 (3)

0.2709 (2)

0.7692 (2)

0.0367 (10)

0.0365 (8)

0.0362 (8)

Tablo 4.38. M30 için Atomik koordinatlar ve izotropik veya ekivalent izotropik yer değiştirme parametreleri (Å²)

01	0.2854 (4)	0.5828 (4)	0.37691 (18)	0.0433 (8)
02	0.3102 (5)	0.2969 (4)	0.1997 (2)	0.0512 (8)
O3	0.1661 (4)	0.5925 (4)	0.87697 (19)	0.0433 (7)
04	0.2887 (5)	0.3022 (4)	0.69888 (19)	0.0503 (8)
Br1	0.25189 (8)	0.29492 (6)	0.51828 (3)	0.05063 (15)
Br2	0.38169 (7)	0.05377 (6)	0.37174 (3)	0.05362 (15)
Br3	0.33613 (8)	0.29699 (6)	1.01703 (3)	0.05186 (15)
Br4	0.34317 (8)	0.05793 (6)	0.86922 (3)	0.05437 (15)

Tablo 4.39. M30 için Atomik yer değiştirme parametreleri (Å²)

	U ¹¹	U ²²	U ³³	U ¹²	U ¹³	U ²³
C1	0.038 (2)	0.039 (3)	0.033 (2)	-0.0043 (19)	0.0009 (17)	-0.005 (2)
C2	0.043 (2)	0.051 (3)	0.037 (2)	-0.005 (2)	0.0023 (18)	-0.010 (2)
C3	0.052 (3)	0.069 (4)	0.036 (3)	-0.007 (3)	0.004 (2)	-0.001 (3)
C4	0.058 (3)	0.048 (4)	0.051 (3)	-0.010 (2)	0.008 (2)	0.008 (3)
C5	0.048 (3)	0.037 (3)	0.059 (3)	-0.005 (2)	0.004 (2)	-0.003 (2)
C6	0.042 (2)	0.029 (3)	0.039 (2)	-0.0059 (18)	0.0048 (18)	-0.004 (2)
C7	0.068 (3)	0.028 (3)	0.041 (3)	-0.011 (2)	0.004 (2)	-0.009 (2)
C8	0.043 (2)	0.032 (2)	0.031 (2)	-0.0104 (18)	0.0038 (17)	-0.0093 (19)
C9	0.045 (2)	0.037 (3)	0.031 (2)	-0.014 (2)	0.0025 (18)	-0.0079 (19)
C10	0.043 (2)	0.030 (3)	0.041 (2)	-0.0141 (19)	0.0005 (18)	-0.008 (2)
C11	0.041 (2)	0.038 (3)	0.035 (2)	-0.010 (2)	0.0008 (17)	-0.012 (2)
C21	0.040 (2)	0.037 (3)	0.034 (2)	-0.0096 (19)	-0.0038 (17)	-0.003 (2)
C22	0.048 (3)	0.046 (3)	0.037 (2)	-0.014 (2)	-0.0022 (19)	-0.005 (2)
C23	0.058 (3)	0.064 (4)	0.032 (2)	-0.022 (3)	-0.006 (2)	0.007 (2)
C24	0.063 (3)	0.042 (3)	0.050 (3)	-0.012 (2)	-0.013 (2)	0.012 (3)
C25	0.056 (3)	0.037 (3)	0.056 (3)	-0.008 (2)	-0.004 (2)	-0.002 (2)
C26	0.039 (2)	0.035 (3)	0.041 (2)	-0.0093 (19)	-0.0032 (18)	-0.005 (2)
C27	0.066 (3)	0.030 (3)	0.044 (3)	-0.005 (2)	0.002 (2)	-0.011 (2)
C28	0.037 (2)	0.033 (3)	0.033 (2)	-0.0037 (18)	-0.0026 (17)	-0.0059 (19)
C29	0.044 (2)	0.034 (3)	0.028 (2)	-0.0047 (19)	-0.0035 (17)	-0.0003 (19)
C30	0.038 (2)	0.032 (3)	0.034 (2)	-0.0056 (18)	-0.0011 (17)	-0.0053 (19)
C31	0.041 (2)	0.035 (3)	0.034 (2)	-0.0067 (19)	0.0006 (17)	-0.008 (2)
N1	0.050 (2)	0.031 (2)	0.0289 (18)	-0.0092 (16)	0.0020 (14)	-0.0069 (16)
N2	0.049 (2)	0.031 (2)	0.0267 (18)	-0.0049 (16)	-0.0043 (14)	-0.0040 (15)
01	0.0603 (19)	0.0335 (19)	0.0384 (17)	-0.0141 (15)	-0.0043 (14)	-0.0075 (14)
02	0.069 (2)	0.048 (2)	0.0373 (18)	-0.0039 (17)	0.0012 (15)	-0.0186 (16)
O3	0.0546 (18)	0.0357 (19)	0.0371 (17)	-0.0028 (15)	0.0034 (13)	-0.0091 (15)
04	0.077 (2)	0.044 (2)	0.0347 (17)	-0.0149 (17)	-0.0024 (15)	-0.0164 (16)
Br1	0.0734 (3)	0.0457 (3)	0.0300 (2)	-0.0097 (2)	0.0021 (2)	-0.0045 (2)
Br2	0.0639 (3)	0.0302 (3)	0.0666 (3)	-0.0081 (2)	-0.0050 (2)	-0.0109 (2)
Br3	0.0731 (3)	0.0480 (3)	0.0293 (2)	-0.0060 (2)	-0.0026 (2)	-0.0027 (2)
Br4	0.0674 (3)	0.0308 (3)	0.0644 (3)	-0.0124 (2)	0.0025 (2)	-0.0067 (2)

C1—C2	1.390 (6)	C21—C26	1.391 (7)
C1—C6	1.392 (6)	C21—C22	1.393 (6)
C1—N1	1.426 (6)	C21—N2	1.416 (6)
C2—C3	1.382 (7)	C22—C23	1.378 (7)
C2—H2	0.9300	C22—H22	0.9300
C3—C4	1.364 (8)	C23—C24	1.384 (8)
C3—H3	0.9300	C23—H23	0.9300
C4—C5	1.379 (7)	C24—C25	1.369 (7)
C4—H4	0.9300	C24—H24	0.9300
C5—C6	1.380 (7)	C25—C26	1.387 (7)
C5—H5	0.9300	C25—H25	0.9300
C6—C7	1.505 (6)	C26—C27	1.501 (6)
C7—O1	1.437 (6)	C27—O3	1.435 (6)
C7—H7A	0.9700	C27—H27A	0.9700
С7—Н7В	0.9700	C27—H27B	0.9700
C8—O1	1.403 (5)	C28—O3	1.405 (5)
C8—N1	1.462 (5)	C28—N2	1.469 (5)
C8—C9	1.497 (6)	C28—C29	1.489 (6)
C8—H8	0.9800	C28—H28	0.9800
C9—C10	1.323 (6)	C29—C30	1.318 (6)
C9—Br1	1.854 (4)	C29—Br3	1.854 (4)
C10—C11	1.507 (6)	C30—C31	1.495 (6)
C10—Br2	1.842 (5)	C30—Br4	1.847 (5)
C11—O2	1.210 (5)	C31—O4	1.215 (5)
C11—N1	1.374 (6)	C31—N2	1.368 (6)
C2—C1—C6	120.8 (4)	C23—C22—H22	120.3
C2-C1-N1	122.3 (4)	C21—C22—H22	120.3
C6—C1—N1	116.9 (4)	C22—C23—C24	120.6 (5)
C3—C2—C1	118.8 (5)	C22—C23—H23	119.7
C3—C2—H2	120.6	C24—C23—H23	119.7
C1-C2-H2	120.6	C25—C24—C23	119.5 (5)
C4—C3—C2	121.4 (5)	C25—C24—H24	120.3
C4—C3—H3	119.3	C23—C24—H24	120.3
C2—C3—H3	119.3	C24—C25—C26	121.7 (5)
C3—C4—C5	119.1 (5)	C24—C25—H25	119.2
C3—C4—H4	120.4	C26—C25—H25	119.2
C5—C4—H4	120.4	C25—C26—C21	118.2 (4)
C4—C5—C6	121.8 (5)	C25—C26—C27	120.5 (5)
C4—C5—H5	119.1	C21—C26—C27	121.3 (4)

 Tablo 4.40. M30 için Bağ Uzunlukları [Å], Bağ Açıları [°], Torsiyon Açıları [°]
C6—C5—H5	119.1	O3—C27—C26 111.8 (4)	
C5—C6—C1	118.0 (4)	O3—C27—H27A	109.3
C5—C6—C7	121.1 (4)	C26—C27—H27A	109.3
C1—C6—C7	120.8 (4)	O3—C27—H27B	109.3
O1—C7—C6	112.2 (4)	C26—C27—H27B	109.3
O1—C7—H7A	109.2	H27A—C27—H27B	107.9
C6—C7—H7A	109.2	O3-C28-N2	110.2 (3)
01—C7—H7B	109.2	O3—C28—C29	111.7 (4)
С6—С7—Н7В	109.2	N2-C28-C29	102.7 (3)
Н7А—С7—Н7В	107.9	O3—C28—H28	110.7
01—C8—N1	110.4 (3)	N2-C28-H28	110.7
O1—C8—C9	110.2 (3)	C29—C28—H28	110.7
N1—C8—C9	102.4 (4)	C30—C29—C28	110.3 (4)
O1—C8—H8	111.2	C30—C29—Br3	129.5 (4)
N1—C8—H8	111.2	C28—C29—Br3	120.2 (3)
C9—C8—H8	111.2	C29—C30—C31	109.9 (4)
C10—C9—C8	110.8 (4)	C29—C30—Br4	129.3 (3)
C10—C9—Br1	129.1 (4)	C31—C30—Br4	120.9 (3)
C8—C9—Br1	120.1 (3)	O4-C31-N2	127.7 (4)
C9-C10-C11	109.4 (4)	O4—C31—C30	126.8 (4)
C9—C10—Br2	129.0 (4)	N2-C31-C30	105.5 (3)
C11—C10—Br2	121.6 (3)	C11—N1—C1	126.9 (4)
02-C11-N1	128.5 (4)	C11—N1—C8	112.2 (3)
O2-C11-C10	126.4 (4)	C1—N1—C8	117.7 (4)
N1-C11-C10	105.1 (4)	C31—N2—C21	128.6 (3)
C26—C21—C22	120.7 (4)	C31—N2—C28	111.4 (3)
C26—C21—N2	117.2 (4)	C21—N2—C28	117.5 (4)
C22—C21—N2	122.1 (4)	C8—O1—C7	109.6 (3)
C23—C22—C21	119.3 (5)	C28—O3—C27	109.7 (4)
C6—C1—C2—C3	1.1 (7)	O3-C28-C29-Br3	-59.9 (4)
N1-C1-C2-C3	-178.9 (4)	N2-C28-C29-Br3	-178.0 (3)
C1—C2—C3—C4	-1.0 (7)	C28—C29—C30—C31	-4.2 (5)
C2—C3—C4—C5	-0.1 (8)	Br3—C29—C30—C31	176.4 (3)
C3—C4—C5—C6	1.1 (8)	C28—C29—C30—Br4	176.4 (3)
C4—C5—C6—C1	-1.0 (7)	Br3-C29-C30-Br4	-3.1 (6)
C4—C5—C6—C7	-179.5 (4)	C29—C30—C31—O4	-174.5 (4)
C2-C1-C6-C5	-0.1 (6)	Br4—C30—C31—O4	5.1 (6)
N1-C1-C6-C5	179.9 (4)	C29—C30—C31—N2	4.3 (5)
C2-C1-C6-C7	178.3 (4)	Br4—C30—C31—N2 -176.2 (3)	
N1-C1-C6-C7	-1.6 (6)	O2—C11—N1—C1 -16.3 (7)	
C5—C6—C7—O1	-160.6 (4)	C10—C11—N1—C1 162.9 (4)	
C1—C6—C7—O1	21.0 (6)	O2-C11-N1-C8	-175.5 (4)
O1—C8—C9—C10	-118.0 (4)	C10-C11-N1-C8	3.6 (4)
N1-C8-C9-C10	-0.5 (4)	C2-C1-N1-C11	35.6 (6)

O1—C8—C9—Br1	60.5 (4)	C6-C1-N1-C11	-144.4 (4)
N1-C8-C9-Br1	178.0 (3)	C2-C1-N1-C8	-166.2 (4)
C8—C9—C10—C11	2.7 (5)	C6-C1-N1-C8	13.8 (5)
Br1—C9—C10—C11	-175.6 (3)	01-C8-N1-C11	115.2 (4)
C8—C9—C10—Br2	-179.3 (3)	C9-C8-N1-C11	-2.1 (4)
Br1—C9—C10—Br2	2.4 (6)	01-C8-N1-C1	-46.1 (5)
C9-C10-C11-O2	175.3 (4)	C9-C8-N1-C1	-163.5 (3)
Br2—C10—C11—O2	-3.0 (6)	O4-C31-N2-C21	14.5 (8)
C9-C10-C11-N1	-3.9 (4)	C30-C31-N2-C21	-164.2 (4)
Br2—C10—C11—N1	177.9 (3)	O4—C31—N2—C28	176.1 (4)
C26—C21—C22—C23	-1.0 (6)	C30-C31-N2-C28	-2.6 (4)
N2-C21-C22-C23	-179.2 (4)	C26-C21-N2-C31	149.3 (4)
C21—C22—C23—C24	1.6 (7)	C22-C21-N2-C31	-32.5 (7)
C22—C23—C24—C25	-0.9 (7)	C26—C21—N2—C28	-11.4 (5)
C23—C24—C25—C26	-0.5 (7)	C22—C21—N2—C28	166.9 (4)
C24—C25—C26—C21	1.1 (7)	O3-C28-N2-C31	-118.8 (4)
C24—C25—C26—C27	-179.8 (4)	C29-C28-N2-C31	0.3 (4)
C22—C21—C26—C25	-0.3 (6)	O3-C28-N2-C21	45.0 (5)
N2-C21-C26-C25	177.9 (4)	C29-C28-N2-C21	164.2 (4)
C22—C21—C26—C27	-179.5 (4)	N1-C8-01-C7	65.3 (5)
N2-C21-C26-C27	-1.2 (6)	C9—C8—O1—C7	177.7 (4)
C25—C26—C27—O3	161.7 (4)	C6—C7—O1—C8	-52.5 (5)
C21—C26—C27—O3	-19.2 (6)	N2-C28-O3-C27	-65.5 (4)
O3—C28—C29—C30	120.6 (4)	C29—C28—O3—C27	-179.1 (3)
N2-C28-C29-C30	2.5 (5)	C26—C27—O3—C28	52.3 (5)

Tablo 4.41. M30 için Hidrojen-bağ geometrisi (Å, °)

D—H…A	<i>D</i> —H	H…A	D····A	<i>D</i> —H…A
C2—H2…O2	0.93	2.55	3.041 (7)	113.35
C7—H7···Br2 ⁱ	0.97	2.87	3.739 (5)	149.81
C22—H22…O4	0.93	2.51	3.035 (7)	115.67
C—BrO	C—Br	BrO	СО	C—BrO
C9—Br1O4	1.854 (4)	3.007(3)	4.823	165.05(17)
C29—Br3O2	1.854 (4)	3.008(3)	4.831	166.86(17)
Br-O van der Waals yarıçapları toplamı		3,37 Å		
Simetri kodları: (i) x, y+1, z.				

M30 de molekülleri kristal yapıda C-H...O molekül içi, C-H...O ve C-H...Br moleküller arası etkileşmeler ve C-Br...O heteroatom etkileşmeleri ile bir arada dururlar (Tablo 4.41). e C-H... π etkileşmeleridir (Tablo 4.26). C2—H2···O2 molekül içi etkileşmeler S6 hidrojen bağlı halkayı oluştururken C9—Br1...O4 ve C29—Br3...O2 heteroatom etkileşmeleri (001) yönünde C5 zincirlerini meydana getirirler. Bu zincirlerin C7—H7…Br2 etkileşmeleriyle $R_6^6(31)$ motiflerini oluştururlar (Şekil 4.37).

Şekil 4.37. 2,3-Dibrom-3a*H*,5*H*-4-oksa-9b-aza-siklopenta[a]naftalin-1-on (30) bileşiğinde hidrojen bağlı S6 ve hidrojen bağı ve heteroatom etkileşmesi içeren R₆⁶(31) ve motifleri [(*i*) x, y-1, z; (*ii*) x, y, 1+z; (*iii*) x, y+1].

		Dihedral açı (°)		
Bileşik	A/B	B/D	A/D	
	2.06(2)	22.27(2)	21.22(3)	
	2.7(3)	15.7(3)	13.0(3)	
	1.77(9)	25.19(9)	26.83(8)	
	0.30(5)	24.17(8)	24.04(6)	
	3.21(4)	29.40 (7)	29.12(6)	

 Tablo 4.42. Kristal yapısı incelenen izoindolo-oksazinon bileşiklerinde dihedral açılar (°)

	1,02	-	-
О	1,78	-	-
Br N S	-	26.5(2) 22. 1(2)	-

$\begin{array}{c} 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ 0 \end{array}$					
	Bağ	ý uzunluğu	(Å)		
Bileşik	1	2	3	4	
	1.218	1.375	1.410	1.481	
	1.220	1.371	1.398	1.388	
	1.217	1.382	1.414	1.485	
	1.209	1.396	1.411	1.481	
	1.223	1.372	1.414	1.474	

Tablo 4.43. Kristal yapısı incelenen izoindolo-oksazinon bileşiklerinde
karakteristik bağ uzunlukları (Å)

	1.217	1.362	1.443	1.483
О	1.227	1.341	1.451	1.479
Br N Br	1.212 1.221	1.373 1.368	1.427 1.416	1.506 1.495

4.4. NMR Spektrumlarının İncelenmesi

4.4.1. 5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (*M1*) Bileşiğinin NMR Spektroskopisiyle İncelenmesi

Şekil 4.38. 5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (*M1*) bileşiğinin;

- (d) 400 MHz ¹H-NMR spektrumu
- (e) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum
- (f) Spektrumun aromatik protonları içeren kısmı (Çözücü CDCl₃)

Şekil 4.38 a ve b karşılaştırıldığında her iki spektrumun şekil olarak çok benzer olduğu, hatta deneysel spektrumda piklerin daha iyi ayrıldığı görülebilir. Spektrumdan bu bileşik serisi için karakteristik piklerin 5 ve 6 nolu pikler olacağı söylenebilir. Bu piklerin bulunduğu yerde başka piklerin olmayışı kolayca tanınmalarına imkân tanımaktadır. Beşli halkada yer alan ve 5 nolu absorpsiyon pikini veren CH protonu oksijen ve azot atomlarının elektronegatif etkisiyle [-C-O ve -N-C=O], 5.95 ppm de rezonansa gelmiştir. 6 nolu absorpsiyon pikini veren CH₂ grubu ise aromatik halka ve oksijenin elektronegatif etkisiyle 5.20 ppm de rezonans olmuştur. Bu bölgede bir AB sistemi oluşturan CH₂ grubunda $J_{AB} = 14,88$ Hz dir.

Şekil 4.39. 5*H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (*M1*) bileşiğinin;

- (c) ¹³C-NMR spektrumu (Çözücü CDCl₃)
- (d) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum

Sekil 38a dan aromatik protonların 8.5-7.1 ppm bölgesinde absorpsiyon vaptığı görülebilir. C=O grubunun +M etkisinden dolayı aromatik halkanın 1 pozisyonunda meydana getireceği kısmi pozitif yükün etkisiyle burada yer alan proton aşağı alana kayması beklenir. Hatta bu protonun spektrumun en solunda absorpsiyon yapması beklenebilir. Diğer bir ifadevle 8,43 ppm deki dublet 1 nolu protona ait olmalıdır. Diğer bilesiklerin ¹H-NMR spektrumlarının incelenmesi bu pikin analizine önemli bir katkı yapabilir. Eğer spektrumda 8,43 ppm deki absorpsiyon 1 nolu protona ait ise aynı pozisyonda metoksi grubu taşıyan **M15** bileşiğinin ¹H-NMR spektrumunda bu pikin olmaması gerekir. Şekil 41a bu düsüncemizin yanlıs olduğuna isaret etmektedir. Cünkü Sekil 41a, 8,40 ppm de benzer bir dublet olduğunu göstermektedir. Buna göre 8,43 ppm deki absorpsiyon aşağı alanda rezonasa gelebilecek olan 10 nolu protona ait olmalıdır. Burada bir başka soruya da cevap bulunması gerekmektedir; 10 nolu protonun 8,43 ppm de (d, J=8,20 Hz) absorpsiyon vermesi nasıl izah edilebilir? Elbette bulunduğu pozisyon ve komşu heterosiklik halkaların elektronik etkisi bu protonun aşağı alanda rezonansa gelmesine katkı sağlar fakat daha önemli bir etki x-ışınlar difraksiyon verileriyle ortaya konulan yapıdan çıkarılabilir. Şekil 4.4 ve Şekil 4.10 bu pozisyondaki protonların karbonil gruplarıyla molekül içi C-H...O hidrojen bağı yaptıklarını göstermektedir. İşte bu yüzden 10 nolu proton beklenenden daha fazla aşağı alanda rezonansa gelir. Şekil 40a da 8,40 ppm de gözlenen dublet de bu düşünceyi doğrular. Buna göre 1 nolu protona ait olan absorpsiyon 7,94 ppm deki dublet olmalıdır. Aromatik protonlardan 8 nolu proton 8.5-7.1 ppm bölgesinde en yüksek alanda rezonansa gelen protondur ve 8.15 ppm deki triplet bu protona aittir (*J*=7,32 Hz).

Şekil 4.40 5*H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M1*) bileşiğinin ¹³C-NMR spektrumunu göstermektedir. Şekil 4.39 dan¹H-NMR spektrumunda olduğu gibi, bu bileşik serilerinde kullanılabilecek karakteristik piklerin C=O, CH ve CH₂ karbonlarına ait pikler olduğu görülebilir. C=O, CH ve CH₂ karbonlarına ait pikler sırasıyla 165,50 ppm, 85,43 ppm ve 68.76 ppm de gözlenmiştir.

Şekil 4.40. 9,10-Dimetoksi-5*H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M15*) bileşiğinin;

- (d) 400 MHz ¹H-NMR spektrumu
- (e) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum
- (f) Spektrumun aromatik protonları içeren kısmı (Çözücü CDCl₃)

Şekil 4.40 a ve b karşılaştırıldığında her iki spektrumun şekil olarak çok benzer olduğu görülebilir. Tahmini spektrumda eşdeğer kabul edilen 1 ve 2 nolu OCH₃ protonları üst üste çakışmış durumda görünmelerine rağmen deneysel veriler metoksi protonlarının farklı kimyasal kayma değerlerine sahip olduğunu göstermektedir. Molekül yapısı ve elektronik etkiler dikkate alındığında, 4,13 ppm deki singlet 1 nolu protona 3.96 ppm deki singlet ise 2 nolu protonlara ait olmalıdır. Karakteristik CH protonu (5 nolu proton) 5,84 ppm de singlet verirken CH₂ protonları 5,17 ppm de AB sistemi verir (J_{AB} = 14,92 Hz.).

M1 bileşiğinin ¹H-NMR spektrumunda olduğu gibi M15 bileşiğine ait aromatik protonlar 8.5-7.1 ppm bölgesinde absorpsiyon yapar (Şekil 4.40a,c). Aromatik protonlar için bölgenin değişmeyişi bu sınırları belirleyen protonlara ait halkanın aynı oluşuyla izah edilebilir. 10 nolu proton en solda (8.40 ppm, d) 8 nolu proton ise aromatik protonların en sağında (7.13 ppm, t) rezonansa gelir.

- **Şekil 4.41.** 9,10-Dimetoksi-5*H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M15*) bileşiğinin;
 - (c) ¹³C-NMR spektrumu (Çözücü CDCl₃)
 - (d) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum

9,10 - Dimetoksi - 5*H*,6a*H* - Benzo [4,5] [1,3] oksazino [2,3-*a*] izoindol – 11 - on (*M15*) bileşiğinin ¹³C-NMR spektrumu Şekil 4.41 de verilmiştir. Spektrumdan karakteristik C=O, CH ve CH₂ karbonlarına ait piklerin 163,57 ppm, 84,18 ppm ve 68.25 ppm de olduğu görülmektedir.

4.4.3. 9,10-Dimetoksi-5*H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M16*) Bileşiğinin NMR Spektroskopisiyle İncelenmesi

Şekil 4.42. 9,10-Dimetoksi-5*H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M16*) bileşiğinin;
 (c) 400 MHz ¹H-NMR spektrumu (Çözücü CDCl₃)

(d) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum

Şekil 4.42a da 9,10-Dimetoksi-5*H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (**M16**) bileşiği için verilen ¹H-NMR spektrumunda, tahmini spektrumda eşdeğer kabul edilen 1 ve 2 nolu OCH₃ protonlarının, **M15** bileşiğinde olduğu gibi, farklı kimyasal kayma değerlerine sahip olduğunu göstermektedir. Spektrumdan piridin azotunun etkisiyle 9 nolu protonun 8,56 ppm (J = 6,84 Hz, d) de, 7 nolu protonun 7.51 ppm (J = 6,84 Hz, d) 8 nolu protonun ise 7.14 ppm (J = 6,84 Hz, t) de rezonansa geldiği görülebilir. Şekil 4.40a da olduğu gibi 4,18 ppm deki singlet 1 nolu protona 3.99 ppm deki singlet ise 2 nolu protonlara ait olmalıdır. Karakteristik CH protonu (5 nolu proton) 5,93 ppm de singlet verirken CH₂ protonları 5,15 ppm de AB sistemi verir ($J_{AB} = 14,84$ Hz). 3 ve 4 nolu protonlar ise 7,27 ppm de bir başka AB sistemi verirler ($J_{AB} = 8,08$ Hz).

(c) ¹³C-NMR spektrumu (Çözücü CDCl₃)

(d) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum

Şekil 4.43, 9,10-Dimetoksi-5*H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-oniçin karakteristik C=O, CH ve CH₂ piklerin 162,60 ppm, 84,76 ppm ve 67.16 ppm de olduğu göstermektedir.

4.4.4. 6a-Metil-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (*M5*) Bileşiğinin NMR Spektroskopisiyle İncelenmesi

Şekil 4.44. 6a-Metil-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M5*)bileşiğinin;

- (d) 300 MHz ¹H-NMR spektrumu (Çözücü DMSO)
- (e) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum
- (f) Spektrumun bazı bölgelerinin detaylı görünüşü

Şekil 4.44a da 6a-Metil-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M5*) (**M5**) bileşiği için verilen ¹H-NMR spektrumu tahmini spektrum olan Şekil 4.44b ile çok benzer olduğu görülebilir. Bu bileşikte karakteristik CH protonu CH₃ grubu ile yedeğiştirmiş durumdadır ve (5 nolu proton) bu protonlar 1,71 ppm de singlet verirken CH₂ protonları 5,10 ppm de AB sistemi verir (J_{AB} = 15,94 Hz.).

¹H-NMR spektrumu **M5** bileşiğine ait aromatik protonların 8.10-7.17 ppm bölgesinde absorpsiyon yaptığını göstermektedir (Şekil 4.44c). Spektrumun **M1** bileşiğinin spektrumundan çok farklı olmaması molekül iskeletinin aynı oluşundan ileri gelir. Aromatik protonların absorpsion bölgesi de hemen hemen aynıdır. 10 nolu proton en solda (8.08 ppm, d) 8 nolu proton ise aromatik protonların en sağında (7.19 ppm, t) rezonansa gelir.

Şekil 4.45. 6a-Metil-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M5) bileşiğinin;
 (c) ¹³C-NMR spektrumu (Çözücü DMSO)
 (d) Ober Deserve Ultra 2.0 ile siz divisi tek mini en eleterme

(d) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum

Şekil 4.45, 6a-Metil-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M5*) için karakteristik C=O, <u>C</u>-CH₃, CH₂ ve CH₃ piklerinin sırasıyla 164,79 ppm, 88,20 ppm, 62.78 ppm ve 20,67 ppm de olduğunu göstermektedir.

4.4.5. 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M10*) Bileşiğinin NMR Spektroskopisiyle İncelenmesi

Şekil 4.46. 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M10*) bileşiğinin;
 (c) 300 MHz ¹H-NMR spektrumu (Çözücü DMSO)
 (d) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum

Şekil 4.46a da ¹H-NMR spektrumu verilen (**M10**) bileşiğinin ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrumu Şekil 46b de verilmiştir. 5 nolu pikin bu yapı için karakteristik olduğu ve 5,65 ppm de singlet olarak gözlendiği şekilden görülmektedir. Aromatik protonlar 7,8-7,4 ppm aralığında 6 ve 7 nolu protonlar sırasıyla 4,16 ppm ve 1,60 ppm de gözlenmiştir.

Şekil 4.47. 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M10*) bileşiğinin;
 (c) ¹³C-NMR spektrumu (Çözücü DMSO)

(d) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum

¹H-NMR spektrumundan daha net bilgiler veren Şekil 4.47a, 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M10*) bileşiğinin için karakteristik C=O, CH ve $O-\underline{C}H_2$ absorpsiyonlarının sırasıyla 165,12 ppm, 84,77 ppm ve 66.86 ppm de olduğunu göstermektedir.

4.4.6. 2,3-dikloro-3a*H*,5*H*-4-oksa-9b-aza-siklopenta[*a*]naftalin-1-on (*M*26) Bileşiğinin NMR Spektroskopisiyle İncelenmesi

Şekil 4.48. 2,3-dikloro-3a*H*,5*H*-4-oksa-9b-aza-siklopenta[a]naftalin-1-on (*M*26) bileşiğinin;
 (c) 300 MHz ¹H-NMR spektrumu (Çözücü DMSO)
 (d) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum

Şekil 4.48a,b de 2,3-dikloro-3a*H*,5*H*-4-oksa-9b-aza-siklopenta[*a*]naftalin-1-on (*M26*) bileşiği için verilen ¹H-NMR spektrumunun, tahmini spektruma oldukça benzer olduğu görülmektedir. 6 nolu proton 7.98 ppm de bir dublet (J = 8,19 Hz), 4 nolu proton ise aromatik protonların absorpsiyon bölgesinin en sağında bir triplet (J = 6,62 Hz) vermiştir. Karakteristik CH protonu (1 nolu proton) 5,93 ppm de singlet verirken CH₂ protonları 5,14 ppm de AB sistemi verir ($J_{AB} = 15,12$ Hz). 3 ve 5 nolu protonlar ise 7,2-7,4 ppm bölgesinde absorpsiyon

yapmışlardır. 5 nolu protonun rezonansa geldiği yer 7,25 ppm (J = 7,09 Hz) iken 3 nolu protonun absorpsiyonu 7,23 ppm (J = 6,96 Hz) de gerçekleşmiştir.

(d) ChemDraw Ultra 8.0 ile çizdirilmiş tahmini spektrum

Şekil 4.47a, 2,3-dikloro-3aH,5H-4-oksa-9b-aza-siklopenta[*a*]naftalin-1-on bileşiğinin için karakteristik C=O, CH ve CH₂ absorpsiyonlarının sırasıyla 160,03 ppm, 84,71 ppm ve 67.93 ppm de olduğunu göstermektedir.

4.4.7. 9,10-Dimetoksi-3-İyot-5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (M17) Bileşiğinin NMR Spektroskopisiyle İncelenmesi

Şekil 4.50. 9,10-Dimetoksi-3-İyot-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M17*) bileşiğinin 400 MHz ¹H-NMR spektrumu (Çözücü CDCl₃)

Şekil 4.51. ChemDraw Ultra 8.0 ile çizdirilmiş 9,10-Dimetoksi-3-İyot-*5H*,6a*H*-6-oksa-1,11adiaza-benzo[*a*]fluoren-11-on (*M17*) bileşiğinin tahmini ¹³C-NMR spektrumu

Şekil 4.50 de 9,10-Dimetoksi-3-iyot-5*H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11on (**M17**) bileşiğine ait ¹H-NMR spektrumu verilmiştir. Spektrumdan piridin azotu ve iyot atomunun etkisiyle 8 ve 7 nolu protonlar sırasıyla 8,72 ppm ve 7.79 ppm deki singletleri verirler. 4,17 ppm deki singlet 1 nolu protona 3.98 ppm deki singlet ise 2 nolu protonlara ait olmalıdır. Karakteristik CH protonu (5 nolu proton) 5,89 ppm de singlet verirken CH_2 protonları 5,10 ppm de AB sistemi verir (J_{AB} = 13,08 Hz). 3 ve 4 nolu protonlar ise 7,28 ppm de bir başka AB sistemi verirler (J_{AB} = 8,00 Hz). Şekil 4.51 de bu spektrumu desteler.

4.4.8. 3-İyot-5H,6aH-6-oksa-1,11a-diaza-benzo[a]fluoren-11-on (*M13*) Bileşiğinin NMR Spektroskopisiyle İncelenmesi

Şekil 4.52. 3-İyot-*5H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (*M13*) bileşiğinin 400 MHz ¹H-NMR spektrumu (Çözücü CDCl₃)

Şekil 4.53. ChemDraw Ultra 8.0 ile çizdirilmiş 3-İyot-*5H*,6a*H*-6-oksa-1,11a-diazabenzo[*a*]fluoren-11-on (*M13*) bileşiğinin tahmini ¹³C-NMR spektrumu

3-iyot-5*H*,6a*H*-6-oksa-1,11a-diaza-benzo[*a*]fluoren-11-on (**M13**) bileşiğinin Şekil 4.52 deki ¹H-NMR spektrumu karakteristik CH protonun (5 nolu proton) 5,91 ppm de singlet, CH₂ protonlarının (6 nolu proton) 5,05 ppm de AB sistemi verdiğini (J_{AB} = 15,36 Hz). göstermektedir. Piridin azotu ve iyot atomunun etkisiyle 8 ve 7 nolu protonlar sırasıyla 8,66

ppm ve 7.71 ppm deki singletleri verirler. 7. 93 ppm de gözlenen dublet (J = 7,48 Hz). 2, 3 ve 4 nolu protonlar ait sırasıyla triplet, triplet ve dublet sinyalleri 7,55-7.65 ppm aralığında gözlenir. Şekil 4.53 de bu spektrumu desteler.

Tablo 4.44 proje kapsamında sentezlenen bileşiklere ait karakteristik NMR verilerini göstermektedir.

	¹ H-	NMR		¹³ C-NMR	
Bileşik	СН	CH ₂	C=O	СН	CH ₂
M1	5.95	5.20	165.5	85.4	68.8
M2	5.93	5.15			
M3	5.96	5.31(CH)			
M4	6.03	5.65(CH)			
M5	-	5.17	164.8	88.2	62.8
M6	-	5.10	167.3	102.2	65.8
М7	-	5.15			
M8	6.00	5.12			
M9	5.90	5.20			
M10	5.65	4.20	165.1	84.8	66.9
M11	5.65	4.45			
M12	5.90	5.18			
M13	5.91	5.05			
M14	5.88	5.24			
M15	5.84	5.17	163.6	84.2	68.3
M16	5.93	5.15	162.6	84.8	67.2
M17	5.89	5.10			
M18	5.86	5.22			
M19	-	5.14			
M20	-	5.07	-	-	
M21	-	5.20	168.4	89.1	66.2
M22	-	5.14			
M23	-	5.15			
M24	-	5.14			
M25	-	5.16			
M26	5.93	5.14	160.0	84.7	66.9
M27	5.90	5.10			
M28	5.95	5.15			
M29	5.90	5.22			
M30	5.95	5.14			
M31	5.88	5.10			
M32	5.92	5.13			
M33	5.92	5.25			

Tablo 4.44. M1-M33 bileşiklerinin karakteristik NMR verileri (ppm)

4.4.9. Allilik etkileşmeler

¹H NMR spektrumları incelendiğinde uzun mesafe etkileşmelerinin pek gözlenemediği görülmüştür. Alifatik protonlardan CH protonu aromatik halka protonlarıyla allilik etkileşme gösterebilecek bir pozisyonda yer alır. Fakat spektrumların hiç birinde CH protonlarına ait sinyalde bir yarılma gözlenememiştir. Şekil 4.54 bu tür protonların yer aldığı düzlemler arası açıyı göstermektedir. X-ışınları difraksiyon incelemeleri yapılan bileşiklerde belirlenen açılar Tablo 4.45 de verilmiştir. Açıya bağlı olarak gözlenebilecek allilik etkileşmeler 0.0-3.0 Hz olabilmektedir⁴¹. Allilik etkileşme, C-H s-bağı ile p-orbitalleri arasındaki bir iletişim sonucu meydana geldiğinden, dihedarl açı Φ=90° olduğu zaman allilik etkileşme maksimum olurken Φ=0° de allilik etkileşme gözlenmez. X-ışınları difraksiyon analizi yapılan bileşiklerde bu açı 551,2-62,8° arasında değişmektedir (Tablo 4.45). Bu açılar teorik olarak yaklaşık 2 Hz lik allilik etkileşmeler görmemiz gerektiğine işaret eder. Spektrumlar çözelti ortamında alındığından 1,3-benzoksazin halkasındaki oksijenin titreşimi muhtemelen bu etkileşmenin gözlenmesine imkân tanımamıştır.

Bu açıya bağlı olarak meydana gelebilecek yarılmayı gözleyebilmek amacıyla özellikle X-ışınları difraksiyon incelemeleri yapılan bileşiklerin katı ¹HNMR çalışmalarının yapılması planlanmaktadır. Aldığım davet üzerine² 15 eylül-15 aralık 2011 tarihleri arasında çalışma yapacağım FİNLANDİYA JYVÄSKYLÄ Üniversitesi Nanosecience Center Kimya Bölümde X-ışınları difraksiyon incelemeleri yapılan bileşiklerin katı ¹HNMR spektrumları alınarak, allilik etkileşmelerle gözlenen yarılmanın X-ışınları difraksiyon incelemeleriyle bulunan açılara göre gözlenmesi beklenen yarılma sabitlerine uygunluğu araştırılacaktır.

² Ek 2: davet mektubu

Şekil 4.54. İndolooksazinon bileşiklerinde;

(b) alilik etkileşme için dihedral açı

(b)1,3-oksazin halkasında oksijenin titreşimi

 Tablo 4.45.
 Kristal yapısı incelenen izoindolo-oksazinon bileşiklerinde allilik etkileşme gösterebilecek protonlar arasındaki dihedral açı

Bileşik	Dihedral açı (°)
M1	61.4
M10	52.0
M11	51.2
M13	62.8
M15	52.2
M16	55.6

4.5. Kütle Spektrumlarının İncelenmesi

4.5.1. 5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (*M1*) Bileşiğinin Kütle Spektrumunun İncelenmesi

GS-MS spektrumları kaydedilen bazı bileşiklerin parçalanma ürünlerinin oluşumu incelenmiş ve karşılık gelen tahmini parçalanma ürünleri şemalarda gösterilmiştir. M1 için kullanılan çözücü CHCl₃ + DMF, M10 için kullanılan çözücü CH₃OH, M11 ve M15 için kullanılan çözücü DMF, M21 için kullanılan çözücü ise CHCl₃ dür.

Şekil 4.55 de verilen kütle spektrumuna göre, 5*H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3*a*]izoindol-11-on bileşiğinin parçalanma ürünlerinin oluşumu Şema 4.4 de gösterilmiştir.

Şema 4.4

4.5.2. 3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M10*) Bileşiğinin Kütle Spektrumunun İncelenmesi

Şekil 4.56 de verilen kütle spektrumuna göre, 3,4-dihidro-2*H*-[1,3]oksazino[2,3*a*]izoindol-6(10b*H*)-on (*M10*) bileşiğinin parçalanma ürünlerinin oluşumu Şekil 4.5 de gösterilmiştir.

Abundance 24000 o 14000-МП0 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 165 170 175 180 185 190 195 200 205 210 215 220 m/z-->

4.5.3. 3-Hidroksi-3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M11*) Bileşiğinin Kütle Spektrumunun İncelenmesi

Şekil 4.57 de verilen kütle spektrumuna göre, 3-Hidroksi-3,4-dihidro-2*H*-[1,3]oksazino[2,3-*a*]izoindol-6(10b*H*)-on (*M11*) bileşiğinin parçalanma ürünlerinin oluşumu Şekil 4.6 de gösterilmiştir.

Şekil 4.57. 3-Hidroksi-3,4-dihidro-2H-[1,3]oksazino[2,3-a]izoindol-6(10bH)-on (M11) bileşiğinin kütle spektrumu

4.5.4. 9,10-Dimetoksi-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M*15) Bileşiğinin Kütle Spektrumunun İncelenmesi

Şekil 4.58 de verilen kütle spektrumuna göre, 9,10-Dimetoksi-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M15) bileşiğinin parçalanma ürünlerinin oluşumu Şekil 4.7 de gösterilmiştir.

Şekil 4.58. 9,10-Dimetoksi-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (M15) bileşiğinin kütle spektrumu

4.5.5. 6a-Metil-5H,6aH-6-oksa-3,11a-diaza-benzo[a]fluoren-11-on (*M21*) Bileşiğinin Kütle Spektrumunun İncelenmesi

Şekil 4.59 de verilen kütle spektrumuna göre, 6a-Metil-5H,6aH-6-oksa-3,11a-diazabenzo[a]fluoren-11-on (M21) bileşiğinin parçalanma ürünlerinin oluşumu Şekil 4.8 de gösterilmiştir.

129

Şekil 4.59. 6a-Metil-5H,6aH-6-oksa-3,11a-diaza-benzo[a]fluoren-11-on (M21) bileşiğinin kütle spektrumu

4.5.5. 6a-(4-Klorfenil)-5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on (*M7*) Bileşiğinin Kütle Spektrumu

6a-(4-klorfenil)-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11-on (*M7*) bileşiğinin kütle spektrumu farklı bir teknikle alınmış ve spektrum Şekil 4.60 da verilmiştir.

Şekil 4.60. 6a-(4-klorfenil)-*5H*,6a*H*-Benzo[4,5][1,3]oksazino[2,3-*a*]izoindol-11- on (*M7*) bileşiğinin kütle spektrumu

4.5.1. (*M1*), (*M5*) ve (*M15*) Bileşiklerinin Biyolojik Aktivitelerinin İncelenmesi

			Madd	le	
	M1	M5	M15	Sefpodoksim	N.K
G(+) Bakteri					
Bacillus subtilis (ATCC 6633)	<5mm	<5mm	-	-	-
Staphylococcusepidermidis(ATCC 12228)	-	-	-	8mm	-
<i>Enterococcus faecalis</i> (ATCC 29212)	-	<5mm	10mm	-	-
<i>Staphylococcus aureus</i> (ATCC 25923)	-	34mm	-	23mm	-
G(-) Bakteri					
<i>Klepsiella pneumonia</i> (ATCC 13883)	<5mm	-	<5mm	<8mm	-
Pseudomanas aeruginosa (ATCC 27853)	<5mm	<5mm	12mm	-	-
Proteus vulgaris (ATCC 13315)	9mm	-	12mm	29mm	-
<i>Salmonella typhiminium</i> (ATCC 14028)	10mm	8mm	10mm	8mm	-
Enterobacter cloacae (ATCC 13047)	-	-	-	<5mm	-
Yersinia Pseudotuberculosis (ATCC 911)	<5mm	10mm	-	10mm	-
Escherichia coli (ATCC 25922)	<5mm	12mm	-	<5mm	-

Tablo 4.46. Proje kapsamında sentezlenen bazı bileşiklerin bazı G(+) ve G(-) bakterilerine karşı etkileri

- Sadece DMSO emdirilen diskler negatif kontrol (N.K) amacıyla kullanıldı
- Suşlar American Type Culture Collection (ATCC) dan elde edildi⁴²
- Bakterikültürleri Mueller Hinton Agar (Merck) and Mueller Hinton Broth (Merck) besiyerleri kullanılarak büyütüldü

Tablo 4.46 M1, M5 ve M15 nolu bileşiklerin bazı bakterilere karşı sefadoksim'den daha etkili olduğunu göstermiştir. Özellikle M5 bileşiğinin *Bacillus subtilis, Enterococcus faecalis, Staphylococcus aureus, Pseudomanas aeruginosa, Salmonella typhiminium* ve *Escherichia coli* ye karşı pozitif kontrol olarak kullanılan sefadoksim'den çok daha etkili olduğu görülmektedir. Bu bileşiğin M1 ve M15 e göre daha etkin olması muhtemelen yapısında kiral merkea taşımasından ileri gelmektedir. Şekil 4.61 M5 bileşiğinin *Staphylococcus aureus* a karşı etkisinin kanamisin (antibiyotik) ile karşılaştırılmasını göstermektedir. Şekilden M5 in etkisinin karşılaştırma maksatlı kullanılan antibiyotikten yaklaşık 3 kat daha fazla olduğu görülebilir.

Şekil 4.61. Staphylococcus aureus bakterisi üzerine;
1. kanamisinin (antibiyotik)
2. M5 bileşğinin (34mm inhb.zonu) etkisi

(S)- 6a-Metil-5H,6aH-Benzo[4,5]

(*R*)- 6a-Metil-*5H*,6a*H*-Benzo[4,5] [1,3]oksazino[2,3-*a*]izoindol-11-on

(S)- 6a-Metil-5H,6aH-Benzo[4,5] [1,3]oksazino[2,3-a]izoindol-11-on

M5 ve kiral merkez taşıyan diğer türevlerin etkisini daha detaylı bir şekilde incelenmesi üzerine çalışmalara devam edilecektir. Bu amaçla öncelikle enantiyomerler ayrılacak ve biyolojik aktiviteleri tekrar incelenecektir. Eğer enantiyomerlerden bir etkisiz yada daha az etkili ise (ki bu beklenen sonuçtur) yukarıda bulunan etki değerlerinin çok daha üzerine çıkılabileceği açıktır.

Bu projede, İzoindolin-1-on (2,3-dihidro-1*H*-izoindolin-1-on) ve 1,3-benzoksazin çekirdeklerini aynı molekülde bulunduran yeni izoindolo-oksazinon ve pirrolo-oksazinon bileşikleri sentezlenmiştir. Sentezi gerçekleştirilen bileşiklerin yapıları IR, NMR, Kütle spektroskopileri ve X-ışınları difraksiyon teknikleri kullanılarak aydınlatılmıştır. Bu amaçla tüm bileşiklerin IR ve ¹H-NMR spektrumları ile genel fikir vermesi bakımından 8 bileşiğin ¹³C-NMR'ı, 5 bileşiğin Kütle spektrumları ve tek kristali hazırlanan 8 bileşiğin X-ışınları verileri incelenmiştir. İncelemeler projenin hedefi olan yeni izoindolo-oksazinon ve pirrolo-oksazinon bileşiklerinin aminoalkoller ve ftaldehidik asitler kullanılarak sentezinin gerçekleştirildiğini göstermektedir. Proje kapsamında sentezlenmesi düşünülen ve bazı amino alkollerin hazırlanma ve saflaştırılma işlemlerinden henüz tatmin edici neticelerin alınamamış olması sebebiyle ileri sentezlere geçilememiş fakat aminoalkollerin hazırlanma işleminin tamamlanmasından sonra sentez için hiçbir engelin olmadığı sonucuna varılmıştır.

Sentezlerden elde edilen bazı veriler bilimsel toplantılarda sunulmuştur (EK3-5).

X-ışınları verileri ile NMR verilerini karşılaştırmak amacıyla bileşiklerin katı NMR'larının incelenmesinin faydalı olacağı düşünülmektedir. Bu maksatla FİNLANDİYA JYVÄSKYLÄ Üniversitesi Nanosecience Center Kimya Bölümde ortak çalışma planlanmış 2011 güz döneminde bu çalışma ve yeni hazırlanacak olan tek kristallerin incelenmesi için girişimler başlatılmıştır.

Pamukkale Üniversitesi Fen Bilimleri Enstitüsü Kimya Mühendisliği Anabilimdalı Yüksek Lisans Öğrencisi Olan Hasan Alptuğ AKGÜN'ün "Bazı İzoindolo-Oksazinon Bileşiklerinin Sentezi, Yapısal Özelliklerinin Spektroskopik, Deneysel X-Işını Kırınımı Ve Teorik Yöntemlerle İncelenmesi" adlı tez çalışması ile yapısal incelemeler tamamlanacaktır. Bu tez çalışmasında, X-ışınları difraksiyon verileri kullanılarak Gaussian paket programı yardımıyla, tek kristali hazırlanıp yapıları incelenen moleküllerin gaz fazındaki yalıtılmış durumda kararlı yapıları Yoğunluk Fonksiyoneli Teorisi (YFT) temel alınarak incelenecek ve YFT çerçevesinde potansiyel enerji yüzeyleri üzerindeki global minimumlara karşılık gelen en kararlı geometriyi bulmak üzere geometri optimizasyonu, yük yoğunluğu, dipol momentler, moleküler elektrostatik potansiyeller, sınır orbitalleri (HOMO ve LUMO) ve sertlik değerleri B3LYP/6-31G(d,p) hesaplamaları yoluyla belirlenerek spektroskopik ve x-ışıları kırınımı ile elde edilen deneysel sonuçlar teorik olarak desteklenecektir.

Ayrıca sentezlenen bileşiklerin biyolojik aktiviteleri daha detaylı incelenecek ve enantiyomerlerin farklı özellik gösterip göstermediği ortaya konulacaktır. Bu çalışmalar neticesinde M5 gibi yüksek biyolojik aktivite gösterenler üzerinde ileri araştırmalar yapılarak ilaç olarak kullanılabilirlikleri belirlenecektir. M5 in gösterdiği anlamlı biyolojik aktivitenin üzerinde daha geniş durulması halince bu çalışmadan ülkemiz adına önemli neticeler alınabileceği düşünülmektedir.

Projenin sunumunda çalışmanın son döneminde hazırlanması taahhüt edilen makalenin hazırlanmamış olmasının yegâne sebebi bileşikler üzerine yapılması düşünülen çeşitli araştırmaların henüz tamamlanmamış olmasındır. Elde edilen verilerden en az 2 makalenin hazırlanabileceğinden şüphe duyulmamalıdır. Kütle spektroskopisi üzerine yapılan çalışmalar biraz daha genişletilerek yukarıda bahsedilen yüksek Lisans çalışmasından kullanabileceğimiz verilere ulaştığımız an makaleler hazırlanarak uygun dergilere gönderilecektir.

6. KAYNAKLAR

- 1. Belliotti, T. R., Brink, W. A., Kesten, S. R. *Bioorg. Med. Chem. Lett.* **1998**, 8, 1449-1502.
- 2. Wada, T., Fukuda, N. *Psychopharmacology* **1991**, 103, 314-322.
- Stuk, T. L., Assink, B. K., Bates, R. C. Jr., Erdman, D.T., Fedij, V., Jennings, S. M., Lassig, J. A., Smith, T. L. Org. Proc. Res. Dev. 2003, 7, 851-855.
- a. Labios, M., Romero, M., Gabriel, F., Fuster, E., Tatay, E., Valles, R. *Rev. Clin. Esp.* 1990, 187, 158-161.
 b. Batista, Mc, Costa, Ch., Dalbosco, Is. *Hypertension* 1997, *29*, 184-184.
- a. Fuchs, J. R., Funk, R. L. Org. Lett. 2001, 3, 3923-3925. b. Yoda, H., Nakahama, A., Koketsu, T., Takabe, K. Tettrahedron Lett. 2002, 43, 4667-4669. c. Koseki, Y., Katsura, S., Kusano, S., Sakata, H., Sato, H., Monzene, Y., Nagasaka, T. Heterocycles. 2003, 59, 527-540.
- a. Ikram, M., Hussain, S. F. *Compendium of Medicinal Plants*; PCSIR: Peshawar, Pakistan, **1978**.
 b. Santavy, F., Manske, R. H. F., Rodrigo, R. *The Alkaloids*. Academic Press: New York, **1979**, vol. XVII, p. 385.
 c. Hussain, S. F., Minard, R. D., Freyer, A. J., Shamma, M. *J. Nat. Prod.* **1981**, 44, 169-178.
- a. Omura, S., Sasaki, Y., Iwai, Y., Takeshimi, H. *J.Antibiotics*, **1995**, *48*, 535. b. Link, J. T., Raghavan, S., Gallant, M., Danishefsky, S. J., Chou, T. C., Ballas, L. M. J. Am. Chem. Soc., **1996**, *118*, 2825. c. Wood, J. L., Stolz, B. M., Goodman, S. N. *J. Am. Chem.Soc.*, **1996**, *118*, 10656. d. Traxler, P. M. *Exp.Opin.Ther.Patents*, **1997**, *7*, 571. e. Strawn, L. M.and Shawver, L. K. *Exp.Opin.Invest.Drugs*, **1998**, *7*, 553.
- Mertens, A., Zilch, H., Konig, B., Schafer, W., Poll, T., Kampe, W., Seidel, H., Leser, U., Leinert, H. J. Med. Chem. 1993, 36, 2526.
- a. Huskisson, E. C., Scott, J. *Rheumatology*, **1979**, *18*, 49-52.
 b. Huskisson, E. C., Scott, J., Christophidis, N. *Rheumatology*, **1981**, *20*, 174-176.
- a. Comins, D. L., Schilling, S., Zhang, Y. *Org. Lett.* 2005, *7*, 95. b. Bishop, A. C., Ubersax, J. A., Petsch, D. T., Matheos, D. P., Gray, N. S., Blethrow, J., Shimizu, E., Tsien, J. Z, Schultz, P. G., Rose, M. D.; Wood, J. L., organ, D. O., Shokat, K. M. *Nature* 2000, *407*, 395–401. c. Fischer, P. M. *Curr. Med. Chem.* 2004, *11*, 1563–1583. d. McGovern, S. L., Shoichet, B. K. *J. Med. Chem.* 2003, *46*, 1478–1483. e. Hardcastle, I. R., Ahmed, S. U., Atkins, H., Calvert, A. H., Curtin, N. J., Farnie, G., Golding, B. T., Griffin, R. J., Guyenne, S., Hutton, C., Källblad, P., Kemp, S. J., Kitching, M. S., Newell, D. R., Norbedo, S., Northen, J. S., Reid, R. J., Saravanan, K., Willems, H. M. G., Lunec, *J. Bioorg. Med. Chem. Lett.* 2005, *15*, 1515–1520.
- Luzzio, F. A., Mayorov, A. V., Ng, S. S. W., Kruger, E. A.; Figg, W. D. J. Med. Chem. 2003, 46, 3793–3799.
- Muller, G. W., Chen, R., Huang, S.-Y., Corral, L. G., Wong, L. M., Patterson, R. T., Chen, Y., Kaplan, G., Stirling, D. I. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1625–1630.
- Horwitz, K. B., Tung, L., Takimoto, G. S. In Horm. Cancer, Vedeckis, W. V., Ed., Birkhaeuser: Boston, 1996; p 283.
- Murphy, A. A., Kettel, L. M., Morales, A. J., Roberts, V. J., Yen, S. S. J. Clin. Endo. Metab. 1993, 76, 513.

- a. Karas, R. H., Van Eickels, M., Lydon, J. P., Roddy, S., Kwoun, M., Aronovitz, M., Baur, W. E., Conneely, O., O'Malley, B. W., Mendelsohn, M. E. *J. Clin. Investigation* 2001, *108*, 611. b. Rosano, G. M. C., Fini, M. Int. J. Fertility and Women's Medicine 2001, *46*, 248. c. Skouby, S. O., Petersen, K. R. Int. J. Fertility 1991, 36, 32. d. Wellington, K., Perry, C. M. *Drugs* 2002, 62, 491.
- Zhang, P., Terefenko, E. A., Fensome, A., Zhang, Z. Zhu, Y., Cohen, J., Winneker, R., Wrobel, J., Yardley, J. *Bioorg. Med. Chem. Lett.* 2002, *12*, 787–790.
- Zhang, P., Terefenko, E. A., Fensome, A., Wrobel, J., Winneker, R., Lundeen, S., Marschke, K. B., Zhang, Z. *J. Med. Chem.* 2002, *45*, 4379-4382.
- **18.** Zhang, P., Terefenko, E. A., Fensome, A., Wrobel, J., Winneker, R., Zhang, Z. *Bioorg. Med. Chem. Lett.* **2003**, *13*, 1313-1316.
- Patel, M., McHugh, R. J. Jr., Cordova, B. C., Klabe, R. M., ericson-Viitanen, S., Trainor, G. L., Ko, S. S. Bioorg. Med. Chem. Lett. 1999, 9, 3221-3224.
- 20. Tye, H., Eldred, C., Wills, M. J. Cem. Soc., Perkin Trans 1, 1998, 457-465.
- a. Patel, M., Ko, S. S., McHugh, R. J., Jr., Markwalder, J. A., Srivastava, A. S., Cordova, B. C., Klabe, R. M., Erickson-Viitanen, S., Trainor, G. L., Seitz, S. P. *Bioorg. Med. Chem.Lett.* 1999, *9*, 2805–2810. b. Patel, M., McHugh, R. J., Jr., Cordova, B. C., Klabe, R. M., Erickson-Viitanen, S., Trainor, G. L., Koo, S. S. *Bioorg. Med. Chem. Lett.* 1999, *9*, 3221–3226. c. Waxman, L., Darke, P. L. Antiviral Chem. Chemother. 2000, *11*, 1–6. d. Klasek, A., Koristek, K., Polis, J., Kosmrlj, J. *Tetrahedron* 2000, *56*, 1551–1560. e. Girgis, A. S. Pharmazie 2000, 426–430. f. Mindl, J., Hrabik, O., Sterba, V., Kavalek, J. *Collect. Czech.Chem. Commun.* 2000, *65*, 1262–1272.
- a. Waisser, K., Gregor, J., Kubicova, L., Klimesova, V., Kunes, J., Machacek, M., Kaustova, J. *Eur. J. Med. Chem.* 2000, *35*, 33. b. Waisser, K., Gregor, J., Dostal, H., Kunes, J., Kubicova, L., Klimesova, V., Kaustova, J. *II Farmaco* 2001, *56*, 803.
- 23. Ren, H., Grady, S., Gamenara, D., Heinzen, H., Moyna, P., Croft, S., Kendrick, H., Yardley, V., Moyna, G. *Bioorg. Med. Chem. Lett.* 2001, *11*, 1851–1854.
- a. Gentles, R. G., Middlemiss, D., Proctor, G. R., Sneddon, A. H. *J. Chem. Soc., Perkin Trans.* 1 1991, *6*, 1423–1431. b. Petterson, I., Liljefors, T., Bodeso, K. J. Med. Chem. 1990, *33*, 2197– 2204. c. Peglion, J. L., Vian, J., Gourment, B., Despaux, N., Audinot, V., Millan, M. *Bioorg. Med. Chem. Lett.* 1997, *7*, 881–886.
- 25. Pigeon, P., Sikoraiova, J., Decroix, B. Heterocycles 2002, 56, 129-138.
- 26. Aeberli, P., Gogerty, J. H., Houlihan, W. J., Lorio, L. C. J. Med. Chem. 1976, 19, 436.
- 27. a. Lamchen, M. J. Chem. Soc., C., 1966, 573. b. Aeberli, P., Houlihan, W.J. J. Org. Chem., 1968, 33, 2402. c. Abramowitz, E., Lamchen, M. J. Chem. Soc., C., 1965, 2165.
- 28. Balalasubramaniyan, V., Argate, N. P., Tetrahedron 1989, 45, 835.
- 29. Desarbre, E., Merour, J. Y., Heterocycles, 1995, 41, 1987.
- 30. Goerlitzer, K., Arch. Pharm., 1976, 309, 1976.
- 31. Aeberli, P., Houlihan, W. J. J. Org. Chem. 1968, 33, 2402-2407.
- a. Kettmann, V., Lokaj, J., Kratky, C., Marchalin, S., Sikoraiova, J. *Acta Cryst.* 2001, *E57*, o612o614. b. Lokaj, J., Kettmann, V., Marchalin, S., Sikoraiova, J. , P., *Acta Cryst.* 2001, *E57*, o735o736.
- 33. McKennon, M.J., Meyers, A.I. J. Org. Chem. 1993, 58, 3568-3571.

- 34. Yoo, S-e. Lee, S-h. Synlett Letters, 1990, 419-420.
- 35. Odabaşoğlu, M., Büyükgüngör, O. Acta Cryst. E. 2007, 63, o2159-o2161.
- **36.** Cremer, D. Pople, J.A. *J.Amer.Chem.Soc.*, 97, **1975**, 1354-1358.
- 37. a. R.M. Silverstein, G.C. Bassler, T.C. Morril, Spectrometric identification of organic compounds, New York, 1981.b. Erdik, E. Organik Kimyada Spektroskopik Yöntemler, Gazi Büro Kitabevi-ANKARA 1993
- 38. Fun, H.-K., Yue, J.-J., Xu, J.-H., Chantrapromma, S. Acta Cryst. E. 2007, 63, o2151-o2153.
- 39.a. Etter, M. C., MacDonald, J. C. & Bernstein, J. Acta Cryst. B, 1990, 46, 256–262. b. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. Angew. Chem. Int. Ed. Engl. 1995, 34, 1555–1573.
- 40. Evans, G.G., Boeyens, J.A. Acta Cryst. 1989, B45, 581-590
- 41. Balcı, M. Nükleer Manyetik Rezonans Spektroskopisi, METU Press, Ankara, 2000.
- 42. Demirbağ, Z., Belduz, A.O., Sezen, K., Nakacıoğlu, R. Kükem Dergisi, 20(1), 49-58, 1997.

7. EKLER

EK 1.

3-(2-(hidroksimetil)fenilamino)-6,7-dimetoksiisobenzofuran-1(3H)-on Bileşiğine ait x-ışınları difraksiyon analizi verileri

Crystal data

C ₁₇ H ₁₇ NO ₅	<i>F</i> (000) = 664
<i>M</i> _r = 315.32	$D_{\rm x}$ = 1.344 Mg m ⁻³
Monoclinic, P2 ₁ /c	Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
<i>a</i> = 7.9274 (5) Å	Cell parameters from 10051 reflections
<i>b</i> = 9.1473 (6) Å	θ = 1.9–27.3°
<i>c</i> = 22.0664 (12) Å	$\mu = 0.10 \text{ mm}^{-1}$
β = 103.102 (4)°	<i>T</i> = 293 K
V = 1558.48 (17) Å ³	Prism, Light brown
Z = 4	0.54 × 0.37 × 0.23 mm

Data collection

STOE IPDS II diffractometer	3220 independent reflections
Radiation source: fine-focus sealed tube	2014 reflections with $l > 2\sigma(l)$
graphite	R _{int} = 0.045
ωscans	$\theta_{max} = 26.5^{\circ}, \ \theta_{min} = 1.9^{\circ}$
Absorption correction: Integration (<i>X-RED32</i> ; Stoe & Cie, 2002)	<i>h</i> = −9→9
$T_{\rm min}$ = 0.966, $T_{\rm max}$ = 0.982	<i>k</i> = −11→11
11416 measured reflections	/=−27→24

Refinement

Refinement on <i>F</i> ²	Primary atom site location: Structure- invariant direct methods
Least-squares matrix: Full	Secondary atom site location: Difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.048$	Hydrogen site location: Inferred from neighbouring sites
$wR(F^2) = 0.140$	H atoms treated by a mixture of independent and constrained refinement
S = 1.00	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0774P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
3220 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
209 parameters	$\Delta \rho_{\text{max}} = 0.19 \text{ e} \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.17 \text{ e } \text{\AA}^{-3}$

	X	У	Z	U _{iso} */U _{eq}
C1	0.3697 (3)	0.2145 (2)	0.50414 (10)	0.0555 (5)
C2	0.4808 (3)	0.2806 (3)	0.55271 (11)	0.0701 (6)
H2	0.5245	0.3734	0.5484	0.084*
C3	0.5267 (3)	0.2060 (3)	0.60839 (12)	0.0770 (7)
H3	0.6014	0.2500	0.6420	0.092*
C4	0.4641 (3)	0.0667 (3)	0.61546 (11)	0.0641 (6)
C5	0.3500 (3)	-0.0004 (2)	0.56596 (9)	0.0543 (5)
C6	0.3050 (3)	0.0763 (2)	0.51058 (9)	0.0523 (5)
C7	0.6407 (5)	0.0420 (4)	0.71793 (15)	0.1242 (13)
H7A	0.6605	-0.0256	0.7521	0.186*
H7B	0.6036	0.1341	0.7312	0.186*
H7C	0.7461	0.0555	0.7041	0.186*
C8	0.2257 (4)	-0.1891 (3)	0.61785 (12)	0.0817 (7)
H8A	0.1919	-0.2898	0.6118	0.123*
H8B	0.1267	-0.1310	0.6203	0.123*
H8C	0.3125	-0.1794	0.6558	0.123*
C9	0.1916 (3)	0.0339 (2)	0.45061 (10)	0.0600 (5)
C10	0.3051 (3)	0.2642 (2)	0.43836 (10)	0.0573 (5)
H10	0.4037	0.2747	0.4187	0.069*
C11	0.1634 (3)	0.4706 (2)	0.37566 (9)	0.0515 (5)
C12	0.2362 (3)	0.4381 (2)	0.32524 (10)	0.0686 (6)
H12	0.3150	0.3616	0.3283	0.082*
C13	0.1926 (4)	0.5182 (3)	0.27100 (10)	0.0772 (7)
H13	0.2429	0.4956	0.2380	0.093*
C14	0.0767 (4)	0.6303 (3)	0.26526 (11)	0.0764 (7)
H14	0.0479	0.6844	0.2287	0.092*
C15	0.0027 (3)	0.6621 (2)	0.31467 (10)	0.0653 (6)
H15	-0.0754	0.7393	0.3109	0.078*
C16	0.0406 (3)	0.5834 (2)	0.36950 (9)	0.0522 (5)
C17	-0.0556 (3)	0.6162 (2)	0.41963 (10)	0.0621 (6)
H17A	-0.1321	0.6985	0.4062	0.075*
H17B	-0.1275	0.5326	0.4237	0.075*
N1	0.2118 (2)	0.39564 (17)	0.43197 (8)	0.0558 (4)
H1	0.1831	0.4316	0.4642	0.067*
01	0.5120 (2)	-0.0134 (2)	0.66884 (8)	0.0839 (5)
02	0.2938 (2)	-0.14079 (15)	0.56724 (7)	0.0695 (4)
O3	0.1036 (3)	-0.07318 (17)	0.43616 (8)	0.0834 (5)
04	0.1963 (2)	0.14142 (14)	0.40904 (6)	0.0650 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^2)

O5	0.0486 (2)	0.64845 (15)	0.47848 (7)	0.0704 (5)
H5	0.0945	0.7285	0.4774	0.106*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0489 (11)	0.0541 (11)	0.0652 (12)	0.0034 (9)	0.0165 (10)	0.0078 (10)
C2	0.0603 (14)	0.0644 (13)	0.0812 (15)	-0.0116 (11)	0.0067 (12)	0.0134 (12)
C3	0.0629 (15)	0.0832 (16)	0.0759 (16)	-0.0157 (13)	-0.0028 (12)	0.0094 (13)
C4	0.0538 (12)	0.0714 (14)	0.0656 (13)	0.0026 (11)	0.0104 (10)	0.0145 (11)
C5	0.0549 (12)	0.0504 (11)	0.0609 (12)	0.0032 (9)	0.0197 (10)	0.0039 (9)
C6	0.0523 (12)	0.0488 (10)	0.0590 (11)	0.0070 (9)	0.0193 (9)	0.0046 (9)
C7	0.112 (3)	0.144 (3)	0.090 (2)	-0.031 (2)	-0.0312 (19)	0.038 (2)
C8	0.0935 (18)	0.0868 (16)	0.0691 (15)	-0.0205 (15)	0.0273 (13)	0.0102 (13)
C9	0.0799 (15)	0.0439 (11)	0.0584 (12)	0.0052 (11)	0.0207 (11)	0.0008 (9)
C10	0.0587 (12)	0.0530 (11)	0.0645 (12)	0.0021 (10)	0.0230 (10)	0.0078 (10)
C11	0.0601 (12)	0.0449 (9)	0.0489 (10)	-0.0097 (9)	0.0109 (9)	0.0001 (8)
C12	0.0829 (16)	0.0639 (13)	0.0638 (13)	0.0061 (12)	0.0266 (12)	0.0015 (11)
C13	0.102 (2)	0.0822 (16)	0.0527 (13)	-0.0004 (15)	0.0281 (13)	0.0039 (11)
C14	0.0942 (18)	0.0814 (16)	0.0521 (13)	0.0022 (15)	0.0137 (12)	0.0156 (11)
C15	0.0709 (14)	0.0643 (13)	0.0578 (12)	0.0043 (11)	0.0085 (11)	0.0083 (10)
C16	0.0567 (12)	0.0463 (10)	0.0518 (11)	-0.0070 (9)	0.0084 (9)	-0.0001 (8)
C17	0.0692 (14)	0.0555 (11)	0.0632 (13)	0.0048 (10)	0.0185 (11)	0.0061 (10)
N1	0.0712 (12)	0.0454 (8)	0.0538 (9)	0.0045 (8)	0.0204 (8)	0.0044 (7)
01	0.0757 (11)	0.0987 (12)	0.0677 (10)	-0.0126 (10)	-0.0036 (8)	0.0261 (9)
02	0.0940 (12)	0.0542 (8)	0.0662 (9)	-0.0024 (8)	0.0305 (9)	0.0069 (7)
03	0.1227 (15)	0.0506 (9)	0.0698 (10)	-0.0141 (10)	0.0070 (10)	-0.0020 (7)
04	0.0906 (11)	0.0491 (8)	0.0558 (8)	0.0013 (8)	0.0177 (8)	0.0021 (6)
05	0.1045 (13)	0.0517 (8)	0.0577 (9)	-0.0044 (8)	0.0244 (8)	0.0007 (7)

Geometric parameters (Å, °)

C1—C2	1.365 (3)	C9—O4	1.351 (2)
C1—C6	1.384 (3)	C10—N1	1.402 (3)
C1—C10	1.496 (3)	C10—O4	1.473 (3)
C2—C3	1.380 (3)	C10—H10	0.9800
C2—H2	0.9300	C11—N1	1.395 (2)
C3—C4	1.389 (3)	C11—C12	1.397 (3)
C3—H3	0.9300	C11—C16	1.403 (3)
C4—01	1.366 (3)	C12—C13	1.379 (3)
C4—C5	1.393 (3)	C12—H12	0.9300
C5—O2	1.362 (2)	C13—C14	1.363 (4)
C5—C6	1.384 (3)	C13—H13	0.9300
C6—C9	1.474 (3)	C14—C15	1.381 (3)

	1		
C7—01	1.404 (3)	C14—H14	0.9300
C7—H7A	0.9600	C15—C16	1.381 (3)
С7—Н7В	0.9600	C15—H15	0.9300
C7—H7C	0.9600	C16—C17	1.509 (3)
C8—O2	1.417 (3)	C17—O5	1.403 (3)
C8—H8A	0.9600	C17—H17A	0.9700
C8—H8B	0.9600	C17—H17B	0.9700
C8—H8C	0.9600	N1—H1	0.8600
C9—O3	1.203 (3)	O5—H5	0.8200
C2-C1-C6	120.8 (2)	O4-C10-C1	103.42 (15)
C2-C1-C10	130.21 (19)	N1-C10-H10	109.1
C6—C1—C10	108.90 (18)	O4—C10—H10	109.1
C1—C2—C3	118.2 (2)	C1-C10-H10	109.1
C1—C2—H2	120.9	N1-C11-C12	121.66 (19)
C3—C2—H2	120.9	N1-C11-C16	119.51 (17)
C2—C3—C4	121.7 (2)	C12—C11—C16	118.82 (18)
C2_C3_H3	119.2	C13—C12—C11	120.7 (2)
C4—C3—H3	119.2	C13-C12-H12	119.6
01	123 5 (2)	C11—C12—H12	119.6
01 - C4 - C5	116 36 (19)	C14-C13-C12	120 7 (2)
$C_3 - C_4 - C_5$	120 1 (2)	C14—C13—H13	119.6
02 - 05 - 06	118 45 (19)	C12-C13-H13	119.6
02-00-00	123 83 (19)	C12 C10 C10	118.9 (2)
<u> </u>	117 42 (18)	C13-C14-H14	120.6
<u> </u>	121.8 (2)	C15-C14-H14	120.0
	108 26 (17)	C13 - C14 - C16	120.0
	120.05 (17)	C14 - C15 - C10	122.3 (2)
	109.5	C14-C15-H15	118.8
	109.5	C10-C10-C10	110.0
	109.5	C15-C16-C17	110.40 (19)
	109.5		119.51 (19)
	109.5		121.98 (17)
H/A-C/-H/C	109.5		115.52 (19)
	109.5	05-017-H17A	108.4
02—C8—H8A	109.5	C16—C17—H17A	108.4
02—C8—H8B	109.5	O5—C17—H17B	108.4
H8A—C8—H8B	109.5	C16—C17—H17B	108.4
02—C8—H8C	109.5	H17A—C17—H17B	107.5
H8A—C8—H8C	109.5	C11—N1—C10	122.93 (16)
H8B—C8—H8C	109.5	C11—N1—H1	118.5
O3—C9—O4	121.1 (2)	C10—N1—H1	118.5
O3—C9—C6	130.67 (19)	C4—O1—C7	118.9 (2)

O4—C9—C6	108.22 (18)	C5—O2—C8	119.72 (17)
N1-C10-O4	111.49 (17)	C9—O4—C10	111.13 (16)
N1-C10-C1	114.49 (17)	C17—O5—H5	109.5
C6—C1—C2—C3	-0.1 (3)	N1-C11-C12-C13	-176.9 (2)
C10—C1—C2—C3	-176.4 (2)	C16—C11—C12—C13	2.0 (3)
C1—C2—C3—C4	0.6 (4)	C11—C12—C13—C14	-0.4 (4)
C2-C3-C4-01	177.1 (2)	C12—C13—C14—C15	-0.3 (4)
C2—C3—C4—C5	-0.9 (4)	C13—C14—C15—C16	-0.7 (4)
01—C4—C5—O2	-3.8 (3)	C14—C15—C16—C11	2.3 (3)
C3—C4—C5—O2	174.4 (2)	C14—C15—C16—C17	-175.1 (2)
O1—C4—C5—C6	-177.46 (19)	N1-C11-C16-C15	176.02 (19)
C3—C4—C5—C6	0.7 (3)	C12—C11—C16—C15	-2.9 (3)
C2—C1—C6—C5	-0.1 (3)	N1-C11-C16-C17	-6.6 (3)
C10—C1—C6—C5	176.87 (18)	C12—C11—C16—C17	174.4 (2)
C2—C1—C6—C9	-179.27 (19)	C15—C16—C17—O5	-125.3 (2)
C10—C1—C6—C9	-2.3 (2)	C11—C16—C17—O5	57.3 (3)
O2—C5—C6—C1	-174.20 (17)	C12-C11-N1-C10	-14.4 (3)
C4—C5—C6—C1	-0.2 (3)	C16—C11—N1—C10	166.71 (18)
O2—C5—C6—C9	4.7 (3)	O4-C10-N1-C11	-72.8 (2)
C4—C5—C6—C9	178.8 (2)	C1-C10-N1-C11	170.23 (18)
C1—C6—C9—O3	-176.3 (2)	C3—C4—O1—C7	-4.9 (4)
C5—C6—C9—O3	4.6 (4)	C5—C4—O1—C7	173.2 (3)
C1—C6—C9—O4	3.0 (2)	C6—C5—O2—C8	-136.1 (2)
C5—C6—C9—O4	-176.06 (19)	C4—C5—O2—C8	50.3 (3)
C2-C1-C10-N1	-61.1 (3)	O3—C9—O4—C10	176.9 (2)
C6-C1-C10-N1	122.31 (19)	C6—C9—O4—C10	-2.5 (2)
C2-C1-C10-O4	177.4 (2)	N1-C10-O4-C9	-122.39 (18)
C6—C1—C10—O4	0.8 (2)	C1—C10—O4—C9	1.1 (2)

Hydrogen-bond geometry (Å, °)

D—H…A	D—H	H…A	D···A	D—H…A
N1—H1…O5	0.86	2.31	2.946 (2)	131
N1—H1···O5 ⁱ	0.86	2.56	3.190 (2)	131
O5—H5…O3 ⁱⁱ	0.82	2.04	2.780 (2)	150
O5—H5…O2 [™]	0.82	2.54	3.099 (2)	127

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y+1, z.

EK 2.

02.04.2011

UNIVERSITY OF JYVÄSKYLÄ

Academy Professor Kari Rissanen Department of Chemistry Nanoscience Center University of Jyväskylä Finland tel. +358-14-2602672 Fax. +358-14-2602651 e-mail: kari.t.rissanen@jyu.fi

To whom it may concern

Invitation letter to a visiting professorship

I cordially invite you, Professor Mustafa Odabasoglu, Pamukkale University, Turkey for a three months visiting professorship in my research group at the Department of Chemistry, University of Jyväskylä in Autumn 2011.

It is expected that you will cover your own traveling and accommodation costs, yet during your three months visiting professorship your local research costs are cover by me. These will include an office place with personal computer with all programs needed for high level X-ray crystallographic work, database use (CSD) and normal office work. Your research work will done in collaboration with me and my research group at the Department of Chemistry at the University of Jyväskylä and I will also provide you resources needed for the possible laboratory or experimental work [lab. space, access to NMR spectrometers (liquid and solid state), mass spectrometry and X-ray diffraction equipments].

I cordially welcome you for the three months visiting professorship and research work in our laboratory.

Jyväskylä, 2nd of April, 2011

Koniki

Kari Rissanen

Academy Professor

Office:

Telefax:

Postal address: P.O. Box 35 FI-40014 University of Jyväskylä Finland Street address: Survontie 9 FI-40500 Jyväskylä

Telephone: www.jyu.fi +358 14 260 1211 BIC 0245894-7 +358 14 260 2500 +358 14 260 2501

145

EK 3.

Ek 4

BAZI İZOİNDOLO-OKSAZİNON VE PİRROLO-OKSAZİNON TÜREVLERİNİN SENTEZİ VE ÖZELLİKLERİNİN İNCELENMESİ

Mustafa Odabaşoğlu

Ondokuz Mayis Üniversitesi, Fen Edebiyat Fakültesi, Kimya Bölümü, 55139, Kurupelit, SAMSUN. Mehmet Akif Ersoys Üniversitesi, Fen Edebiyat Fakültesi, Kimya Bölümü, BURDUR. muodabas@omu.edu.tr

İzoindolin-1-on (2,3-dihidro-1*H*-izoindolin-1-on) ve 1,3-benzoksazin çekirdekleri ya basit yapısal bir birim olarak yada çok kompleks sistemlerin bir parçası olarak sentetik ve doğal ürünlerin yapısında yaygın bir şekilde bulunmaktadır. Geniş bir yelpazedeki biyolojik aktivitelerinden dolayı, izoindolin-1-on ve 1,3-benzoksazin sentezleri çok dikkat çekmiştir. İzoindolin-1-on pek çok doğal ürün ve farmösetik molekülde anahtar rol oynayan bir bileşiktir. Örneğin, CI-1043 [*(S)-pagaclone*], genel korku, endişe ve panik tipi rahatsızlıklar için[1], *chlorthalidone*, ise diüretik ve yüksek tansiyona karşı kullanılan sentetik ilaçlardır[2]. *Lennoxamine*, *nuevamine* ve *chilenine* ise doğal kaynaklardan izole edilen ve yapılarında izoindolin-1-on çekirdeği taşıyan ve anti-diarrheal, anti-microbial ve antiinflammatory özelliklere sahip olan doğal alkaloidlerdir[3]. Benzoksazin türevleri ise önemli antiviralaktiviteye sahip olmakla beraber, anti-bakteriyal, anti-sıtma aktivite de gösteren ayrıca seratonin ve dopamin reseptörüolarak da kullanılan bileşiklerdir[4-5]. AIDS tedavisinde kullanılan *efavirenz* (SUSTIVATM) ve türevlerinin biyolojik aktiviteleri de benzoksazin birimlerinden kaynaklanmaktadır[6].

Bu çalışmada, önemli biyolojik aktivitelere sahip olmaları beklenen, izoindolin-1-on ve 1,3benzoksazin birimlerini bir arada bulunduran izoindolo-oksazinon türevi 5H,6aH-Benzo[4,5][1,3]oksazino[2,3-a]izoindol-11-on ve pirrol-2-on (I) ve 1,3-benzoksazin birimlerini içeren pirrolo-oksazinon türevi 2,3-dibromo-3aH,5H-4-oksa-9b-aza-siklopenta[a]naftalin-1-on (II) bileşikleri tek kademeli bir reaksiyonla sentezlenerek yapıları spektroskopik ve X-ışınları difraksiyon yöntemlerinden yararlanılarak aydınlatılmıştır.

[3,1]benzoksazin-11-on

2,3-dibrom-3aH,5H-4-oksa-9baza-siklopenta[a]naftalin-1-on

[1] Stuk, T. L., Assink, B. K., Bates, R. C. Jr., Erdman, D.T., Fedij, V., Jennings, S. M., Lassig, J. A., Smith, T. L. Org. Proc. Res. Dev. 2003, 7, 851-855.

[2] Batista, Mc, Costa, Ch., Dalbosco, Is. Hypertension 1997, 29, 184-184.

[3] Fuchs, J. R., Funk, R. L. Org. Lett. 2001, 3, 3923-3925.

[4] Waisser, K., Gregor, J., Dostal, H., Kunes, J., Kubicova, L., Klimesova, V., Kaustova, J. *II Farmaco* 2001, *56*, 803.

[5] Petterson, I., Liljefors, T., Bodeso, K. J. Med. Chem. 1990, 33, 2197–2204.

[6] Patel, M., McHugh, R. J. Jr., Cordova, B. C., Klabe, R. M., ericson-Viitanen, S., Trainor, G. L., Ko, S. S. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 3221-3224.

Structures of some isoindolo-benzoxazinone derivatives

Mustafa Odabasoğlu^a and Orhan Büyükgüngör^b

a<u>Pamukkale</u> University, Chemical Technology Program, <u>Denizli</u>-Turkey. ◎<u>Ondokuz</u> Mayis University, Department of Physics, Samsun-Turkey, e-mail: moda asoqlu@pau.edu.tr

Isoindolin-1-one and 2,4-dihydro-1H-benzo[d][1,3]oxazine units are commonly present in synthetic and natural products as simple structures or as a part of complex systems. A search of the literature revealed that some isoindolin-1-one derivatives (I) have important biological properties, such as anti-microbial, anti-bacterial, anti-diarrheal, anti-inflammatory [1], anti-angiogenic [2], anti-bigertansity, anti-fungel, anti-tumor [3], and anti-HIV [4] activities. Some 1,3-benzoxazine derivatives (II) have anti-HIV [5], anti-ivrial [6], anti-bacterial [7], anti-malarial [8] activities and some of them uses as donamin and seratomin receptor [9]. It was assumed that compounds having both isoindolin-1-one and 1,3-benzoxazine residues in the same molecule may possess some interesting biological activities. With this in mind, the synthesis and structure determination of the title compounds (III) and (IV), were undertaken (Scheme 1, Figures 1 and 2).

Scheme 1. The chemical diagram of 1, II, III and IV.

In III, the dihedral angle between the A/C, A/D, C/D planes are 25.19(9)^s, 26.83(8)^s and 1.77(9)^s, respectively. For IV, these angles are 24.17(6)^s, 24.04(6)^s and 0.30(6)^s, respectively (Fig. 1). Crystal parameters and hydrogen bonds geometry, for (III) and (IV) compounds, are given in Table 1 and Table 2. The six-membered oxazin rings have a half chair conformations, as evidenced by the puckering parameters (Cremer & Poole, 1975) for (III); $\phi_1 = 207.5(7)$, $\theta = 129.2$ (5)^s and $Q_T = 0.483$ (2) Å, in (IV) for B; $\phi_2 = 207.4(4)$, $\theta_2 = 129.01(29)^s$ and $Q_T = 0.483(3)$.

In compound (III), the crystal packing is stabilized

In compound (III), the crystal packing is stabilized by intramolecular C—H…. O hydrogen bonds and C-H…. If (Figure 2 and Figure 3, Table 2). Table 3, Figure 4, 5 and 6 show intermolecular interctions in compound IV. The crystal structure of the IV exhibit C-H….O and C-H…. In interactions. The C—H O hydrogen bonds generate a C(3) and C(5) chains along the c and b axis, respectively $P_{4/2A}$ modify R.4(24) motif.

Figure 2. A partial view of the packing of (III), showing the formation of C-H...π dimers

(i) 1-x, 1-y, 1-z; (ii) -x, y+1/2, %-z

 Statusci, J.
 If Forky, J. R. & Fish, R. L. (2000). Org. 120, 178, 178, 1985.

 Di Sha, T. L., et al. (2000). Org. 1200, field. Other. Org. 17, 201-805.
 Di Sha, T. L., et al. (2000). Jong. 1200, field. Other. Org. 17, 201-805.

 Di Sha, T. L., et al. (2000). Jong. 1200, field. Other. Org. 17, 201-805.
 Di Sha, T., et al. (2000). Jong. 1200, Jong. 1200, Jong. 2010, Jong. 1200, Jong. 2010, Jong. 1200, Jon

Figure 1. The molecular view of compound III and IV

Compound (III)	Compound (IV)
C ₁₇ H ₁₅ NO ₄	C16H14N2O4
Monoclinic, P 21/c	Monoclinic, P 21/c
a = 10.6388 (4) Å	a = 8.0332 (8) Å
b = 10.7739 (3)Å	b = 20.6134 (22) Å
c = 16.0762 (7) Å	c = 8.5891 (8) Å
α=γ= 90°	α=γ= 90°
β= 131,17(3) ²	β= 102,991(8) *
Z = 4, V = 1387.11 (9) Å	Å ³ Z =4, V =1385.87(24) Å ³
T = 296 K, Mo K _e	T = 296 K, Mo K,
R. = 0.045	R. = 0.1040
$R[F^2 > 2\sigma(F^2)] = 0.040$	$R[F^2 > 2\sigma(F^2)] = 0.049$
S = 1.07	5 = 0.924

Table 2 Hydrogen bond geometry (Å, °) for compound (III)

D-HA	D-H	НА	DA	D-HA
C3-H303	0.93	2.49	3.169 (4)	130
C8-H8B03	0.96	2.46	3.273 (4)	142
C7-H7CCg1 ⁱ (i) Cg1= C1-C6 ring	0.93	2.97	3.558 (3)	121

<u>Table 3</u> Hydrogen bond geometry (Å, °) for compound (N)

D-HA	D-H	HA	DA	D-HA
C8-H8C01	0.96	2.45	3.014 (4)	117
C6-H6O3	0.97	2.43	2.999 (2)	117
C8-H8BCg1	0.96	2.97	3.685 (2)	132
C15-H15Cg2 ^{II} (i) Cg1= C12-C17 ring;	0.96 (ii) Cg2=C	2.58 1-C6 ring	3.455 (2)	150

Figure 5. A partial view of the packing of (IV), showing the formation of C(7) chain [100] direction. [() x-1, y, z].

Figure 5. A partial view of the packing of (IV), showing the formation of C-H... O and C-H... π interactions. [() x+1, y, z; (i) x+1, 32-y, z-32; (ii) x, y, z-34].

Data collection : X-AREA [10]; cell refinement: X-AREA; data reduction: X-RED32 [10]; program(s) used to solve structure: SHELXS97 [11]; program(s) used to refine structure: SHELX197 [11]; molecular graphics: ORTEP-3 for Windows [12]; software used to prepare material for publication: WindSX [13].

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Maxis University, Turkey, for the use of the Stoe IPDSII diffractometer (purchased under grant F.279 of the University Research Fund).