UTERİN LEİOMYOSARKOMLARDA NETRİN-1, NETRİN-4
DÜZEYLERİNİN VE RESEPTÖRLERİNİN EKSPRESYONUNUN
ARAŞTIRILMASI

TIPTA UZMANLIK TEZİ
DR. MÜBETCEL OCAK TURGUT

DANIŞMAN: DOÇ DR. ÜMİT ÇABUŞ

DENİZLİ 2023
UTERİN LEİOMYOSARKOMLARDA NETRİN-1, NETRİN-4 DÜZEYLERİNİN VE RESEPTÖRLERİNİN EKSPRESYONUNUN
ARAŞTIRILMASI

TIPTA UZMANLIK TEZİ
DR. MÜBETCEL OCAK TURGUT

DANIŞMAN: DOÇ. DR. ÜMİT ÇABUŞ

Bu çalışma Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon
Birimi’nin 03.02.2022 tarih ve 2022TIPF001 numaralı kararı ile desteklenmiştir.

DENİZLİ 2023
TEŞEKKÜLER

Uzmanlık eğitimim süresince, çok değerli bilgi ve deneyimlerini bizimle paylaşan, biz asistanlarına öğretmek için uğraşan saygıdeğer hocalarımı,

Tezimizin hazırlanmasındaki destek ve katkılarından dolayı tez danışman hocam Doç. Dr. Ümit Çabuş’a, yardımcılarını hiçbir zaman esirgemeyen Doç. Dr. Nazlı Çiğ’e ve Prof. Dr. Şevki Arslan’a,

Birlikte çalışmaktan keyif aldığım, kendilerini tanıdığım için mutluluk duyduğum asistan arkadaşlarına,

Ayrıca zorlu asistanlık süresince sabır ve fedakarlıkla her konuda her zaman en büyük destekçilerim olan hayat arkadaşım, eşim Musa Turgut’a ve kızım Zeynep İnç’i’me, tüm tip eğitimim boyunca maddi ve manevi desteklerini ve sevgilerini her zaman yanımda hissettigim annem Ümmühan’a, babam Abdil Erkan’a, kardeşlerim Ayşe, Fatma ve Zehra’ya ve de her yönüyle örnek aldığım, hayatına yön veren canım teyzem Saniye Tatar’a,

En içten teşekkürlerimi sunarım.

Dr. Mübetcel OCAK TURGUT
İçindekiler

Teşekkürler

İçindekiler

Simgeler ve Kısaltmalar

Şekiller Listesi

Tablolar Listesi

Özet

Summary

Genel Bilgiler

Leiomyosarkom

Patoloji

Semptomlar ve Yayılım

Prognostik Faktörler

Klinikopatolojik Türleri

- Benign Metastaz Yapan Leiomyom
- Leiomyomatozis Peritonealis Disseminata
- Intravenöz Leiomyomatozis
- Leiomyoblastom
- Miksoid Leiomyosarkom

Tedavi

- Cerrahi
- Lenfadenektomi Endikasyonları
- Görüntülemenin Rolü
- Evreleme
- Adjuvan Tedavi
- Tedavi Sonrası Gözetim
- Prognoz
- Özel Gruplar
- Metastaz

Netrin Ailesi

Netrin Receptörleri ve Sinyal İletimi

Netrin-1 ve Receptörleri
Netrin-4 ... 31

GEREÇ VE YÖNTEM ... 33

BİLİMSEL ARAŞTIRMA PROJELERİ (BAP) BİRİMİ ONAYI ... 33

DOKULARDA GEN EKSPRESYONUN GÖSTERİLMESİ ... 33

Hücre Kültür Çalışmaları ... 33

Hücre Canlılığı ve Sayılması .. 33

Myometrium Doku Örneğinin Eldesi .. 34

Toplam RNA İzolasyonu ... 34

Toplam RNA’nın Spektrofotometrik Analizi .. 35

Toplam RNA’nın Agaroz Jel Elektroforezi ile Görüntülenmesi ... 35

cDNA Sentezi .. 35

Gerçek Zamanlı Polimeraz Zincir Reaksyonu ... 36

İMMÜNOSİTOKİMYASAL BOYAMA ... 37

İmmunohistokimyasal Boyama Yöntemi ... 37

İmmünohistokimyasal Skorlama ... 39

İSTATİSTİKSEL ANALİZ ... 39

BULGULAR .. 40

DOKULARDAKİ GEN EKSPRESYONUN SONUÇLARI ... 40

Toplam RNA’nın Görüntülenmesi ... 40

PZR ile mRNA Ekspresyonlarının Tayini ... 40

İMMÜNOHİSTOKİMYASAL BULGULAR .. 44

Netrin-1 .. 44

Netrin-4 .. 45

UNC5B ... 46

TARTIŞMA .. 47

SONUÇ ... 52

KAYNAKLAR .. 53
<table>
<thead>
<tr>
<th>SİMGELER VE KISALTMALAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD........................ Bağımlılık Alanındaki Bağımlılık Alanı</td>
</tr>
<tr>
<td>AJCC........................ Amerikan Ortak Kanser Komitesi</td>
</tr>
<tr>
<td>A2bR........................ Adenozin Reseptörü</td>
</tr>
<tr>
<td>BSO.......................... Bilateral salpingo-ooforektomi</td>
</tr>
<tr>
<td>CBLN4...................... Serebellin 4</td>
</tr>
<tr>
<td>CT.......................... C-terminal</td>
</tr>
<tr>
<td>DAPK........................ Ölümle İlişkili Protein Kinaz</td>
</tr>
<tr>
<td>DCC.......................... Deleted Colorectal Cancer</td>
</tr>
<tr>
<td>DD.......................... Ölüm Alanı (death domain)</td>
</tr>
<tr>
<td>DR.......................... Bağımlılık Reseptörleri</td>
</tr>
<tr>
<td>DSCAM...................... Down Sendromu Hücre Adhezyon Molekülü</td>
</tr>
<tr>
<td>ERK1/2...................... Hücre Dışı Sinyalle Düzenlenen Kinazlar</td>
</tr>
<tr>
<td>FAK......................... Fokal Adhezyon Kinaz</td>
</tr>
<tr>
<td>FBS.......................... Fetal Sığır Serumu</td>
</tr>
<tr>
<td>FNIII...................... Fibronektin tip III</td>
</tr>
<tr>
<td>GPI.......................... Glikozilfosfatidilinositol</td>
</tr>
<tr>
<td>GTPaz...................... Guanozin Trifosfataz</td>
</tr>
<tr>
<td>HTB-114.................... İnsan Uterus Leiomyosarkom Hücre Hattı</td>
</tr>
<tr>
<td>IGF.......................... İnsülin Benzeri Büyüme Faktörü</td>
</tr>
<tr>
<td>IUGR....................... İntrauterin Gelişme Geriliği</td>
</tr>
<tr>
<td>LMS......................... Leiomyosarkomlar</td>
</tr>
<tr>
<td>LncRNA..................... Uzun Kodlamayan RNA</td>
</tr>
<tr>
<td>LRR......................... Lösin Açısından Zengin Tekrar</td>
</tr>
<tr>
<td>MAPK........................ Mitojen Aktive Edilmiş Kinaz</td>
</tr>
<tr>
<td>NGL.......................... Netrin-G ligandları</td>
</tr>
<tr>
<td>NT.......................... N-terminal</td>
</tr>
<tr>
<td>PBS.......................... Fostat Tamponlu Tuz Çözeltisi</td>
</tr>
<tr>
<td>PI3K....................... Fosfor İnositol 3-Fosfat Aktive Kinaz</td>
</tr>
<tr>
<td>PKA......................... Protein Kinaz A</td>
</tr>
<tr>
<td>PZR........................ Polimeraz Zincir Reaksiyonu</td>
</tr>
<tr>
<td>TNFRSF..................... Tümör Nekroz Faktörü Reseptörü Süper Ailesi</td>
</tr>
<tr>
<td>TSP-1........................ Trombospondin tip 1</td>
</tr>
<tr>
<td>TNF.......................... Tümör Nekroz Faktörü</td>
</tr>
<tr>
<td>UICC....................... Uluslararası Kanser Kontrol Birliği</td>
</tr>
<tr>
<td>UNC-5....................... UnCoordinated-5</td>
</tr>
<tr>
<td>UNC5H...................... UnCoordinated-5 Homolog</td>
</tr>
<tr>
<td>UNC5B-AS1.................. UNCS5B Antisens RNA 1</td>
</tr>
<tr>
<td>VEGF....................... Vasküler Endotelyal Growth Faktör</td>
</tr>
<tr>
<td>ZU-5....................... Zona Occludens 5</td>
</tr>
</tbody>
</table>
ŞEKİLLER LİSTESİ

Şekil 1: Netrin Protein Ailesi (70) ... 22
Şekil 2: Netrin reseptör ailesi (100) .. 24
Şekil 3: Netrin-1 reseptör sinyali ve bilinen fonksiyonları (100) ... 25
Şekil 4: Netrin-1 ve Netrin-1 Bağımılı Reseptörlerin Yapısı (17) ... 28
Şekil 5: Netrin-1 ve reseptörü DCC’nin Apoptozla İlişkisi (17) ... 29
Şekil 6: DCC ve UNC5H aracılı apoptoz mekanizması (81,118,121) .. 30
Şekil 7: Netrin-1, Netrin-4, UNC5 DCC Ailesi ve Biyolojik Etkileri (131) .. 32
Şekil 8: Thoma lamının mikroskop altındaki görüntüsü .. 34
Şekil 9: HTB-114 leiomyosarkom hücre hattı ve normal uterin myometrium dokusundan elde edilen RNA’nın %1’lik agaroz jel elektroforezi ... 40
Şekil 10: PZR Ürünlerinden Elde Edilen Jel Görüntüleri .. 41
Şekil 11: İnsan Normal Myometrium ve HTB-114 hücre hattındaki Netrin-l’ in PZR Erime Eğrisi Analizi .. 41
Şekil 12: İnsan Normal Myometrium ve HTB-114 hücre hattındaki Netrin-4’un PZR Erime Eğrisi Analizi .. 41
Şekil 13: İnsan Normal Myometrium ve HTB-114 hücre hattındaki UNC5B’nin PZR Erime Eğrisi Analizi .. 42
Şekil 14: Gerçek Zamanlı PZR sonuçlarına göre Netrin-1 geninin HTB-114 ve doku örneğindeki bağıl mRNA ekspresyonu analizi .. 42
Şekil 15: Gerçek Zamanlı PZR sonuçlarına göre Netrin-4 geninin HTB-114 ve doku örneğindeki bağıl mRNA ekspresyonu analizi .. 43
Şekil 16: Gerçek Zamanlı PZR sonuçlarına göre UNC5B geninin HTB-114 ve doku örneğindeki bağıl mRNA ekspresyonu analizi .. 43
Şekil 17: İnsan myometrium dokusu ve HTB-114 hücre hattının immünohistokimyasal boyama incelemesi sonucunda Netrin-1 ekspresyon görüntüleri ... 44
Şekil 18: İnsan myometrium dokusu ve HTB-114 hücre hattının immünohistokimyasal boyama incelemesi sonucunda Netrin-4 ekspresyon görüntüleri ... 45
Şekil 19: İnsan myometrium dokusu ve HTB-114 hücre hattının immünohistokimyasal boyama incelemesi sonucunda UNC5B ekspresyon görüntüleri ... 46
TABLOLAR LİSTESİ

Tablo 1: Uterin Düz Kas Tümönerinin Makroskobik Özelliklerinin Sınıflandırılması 6

Tablo 2: Leiomyosarkom TNM Evrelemesi (AJCC UICC 8. Baskı) 11

Tablo 3: Kuyucuklara Yüklenen RNA Örnekleri Ve Marker Konsantrasyonları 35

Tablo 4: cDNA Sentez Karşımı ve Protokolü ... 36

Tablo 5: Çalışmada Kullanılan Genlerin Primer Dizileri ... 36
ÖZET

Uterin leiomyosarkomlarda Netrin-1, Netrin-4 düzeylerinin ve reseptörlerinin ekspresyonunun araştırılması

Dr. Mübetcel Ocak TURGUT

Netrinler, laminin benzeri protein ailesinin üyesidir. Netrinlerin akson rehberliği, doku morfogenezi, sinaptogenez, anjiyogenez, apoptoz, inflamasyon ve tümör gelişimi üzerinde rolü olduğu gösterilmiştir. Bu özelliklerinden dolayı netrin protein ailesinin bazı kanserlerin gelişiminde görev aldığı araştırılmış tespit edilmiştir. Leiomyosarkom (LMS), uterus'un en sık rastlanan sarkom türüdür. Çoğu vakada, uterin LMS tanısı, benign olduğu varsayılan uterin leiomyomlara uygulanan myomektomiye takiben konulur. LMS, yüksek nüks ve ölüm riski ile ilişkili agresif bir tümördür. Tüm kanser türlerinde olduğu gibi mortalite riski yüksek leiomyosarkomda da hastalığın başlamadan önce veya erken evrelerde tespit edilmesine yönelik biyobelirtec bulma çalışmalarını asıl amaçtır. Biz de çalışmamızda, şu ana kadar araştırılmamış olan, leiomyosarkom gelişiminde Netrin-1, Netrin-4 ve UNC5B’nin rolü olup olmadığını göstermek istedik. Üreme çağındaki kadın hastanın uterin normal myometrium dokusu elde edildi. Leiomyosarkom dokusu için insan uterin leiomyosarkom hücre hattı (HTB-114) kullanıldı. İnsan normal myometrium dokusunda ve HTB-114’te; Netrin-1, Netrin-4 ve UNC5B immünohistokimyasal yöntemle boyanarak ve PZR yöntemiyle genlerinin ekspresyon düzeyleri saptanarak karşılaştırıldı. Gerçek zamanlı PZR çalışması sonucunda Netrin-1, Netrin-4 ve UNC5B genleri, HTB-114 hücre hattında insan uterin normal myometrium doku örneğine göre 4.92, 65.34 ve 160.33 kat daha fazla ekspresе edilirken; immünohistokimyasal incelemede ise, HTB-114 hücre hattının, insan uterin normal myometrium doku örneğine göre anlamlı derecede daha güçlü Netrin-1, Netrin-4 ve UNC5B boyanmasına sahip olduğu gösterildi. Sonuç olarak; Netrin-1, Netrin-4 ve UNC5B’nin leiomyosarkom gelişiminde etkili olduğunu söyleyebiliriz.

Anahtar Kelimeler: Leiomyosarkom, Netrin-1, Netrin-4, UNC5B
SUMMARY

Investigation of the expression of Netrin-1, Netrin-4 levels and their receptors in uterine leiomyosarcomas

Dr. Mübetcel Oca TURGUT

Netrins are members of the laminin-like protein family. Netrins have been shown to have a role in axon guidance, tissue morphogenesis, synaptogenesis, angiogenesis, apoptosis, inflammation and tumor development. Due to these properties, it has been investigated and determined that the netrin protein family plays a role in the development of some cancers. Leiomyosarcoma (LMS) is the most common type of sarcoma of the uterus. In most cases, the diagnosis of uterine LMS is made following myomectomy for presumed benign uterine leiomyomas. LMS is an aggressive tumor associated with a high risk of recurrence and death. As in all cancer types, the main aim is to find biomarkers to detect the disease before the onset or in the early stages in leiomyosarcoma with a high mortality risk. In our study, we aimed to show whether Netrin-1, Netrin-4 and UNC5B have a role in the development of leiomyosarcoma, which has not been investigated until now. Uterine normal myometrium tissue was obtained from a female patient of reproductive age. The human uterine leiomyosarcoma cell line (HTB-114) was used for leiomyosarcoma tissue. In human normal myometrium tissue and HTB-114; Netrin-1, Netrin-4 and UNC5B were compared by staining with immunohistochemical method and by detecting the expression levels of their genes by PCR method. As a result of real-time PCR study, while Netrin-1, Netrin-4 and UNC5B genes were expressed 4.92, 65.34 and 160.33 times more in HTB-114 cell line than in human uterine normal myometrium tissue sample; In immunohistochemical examination, HTB-114 cell line was shown to have significantly stronger Netrin-1, Netrin-4 and UNC5B staining than human uterine normal myometrium tissue sample. In conclusion, we can say that Netrin-1, Netrin-4 and UNC5B are effective in the development of leiomyosarcoma.

Keywords: Leiomyosarcoma, Netrin-1, Netrin-4, UNC5B
Leiomyosarkomlar (LMS) tipik olarak büyük (>10 cm), kanama ve nekroz alanları olan yumuşak, et gibi kesik yüzeylere sahip sari veya ten rengi soliter kitlelerdir (1). Kitle uterus boşluğuna doğru şişebilir, ancak merkez üssü myometriyumdadır.

Leiomyosarkomlar genellikle belirgin hücresel atipiye, bol mitozlara ve koagülatif nekroz alanlarına sahiptir. LMS, tanı aşamasından bağımsız yüksek nüks ve mortaliteyle ilişkili agresif bir tümördür (2). Prognostik faktörler incelemeyi içerir; tümörün myom içerisinde lokalize kalması, nekroz yokluğu, düşük mitoz sayısı ve komşu dokuda hyalinizasyon benign prognostik faktörler olarak bildirilmiştir. Leiomyosarkomların ilk semptomları vajinal kanama veya ağrı olabilir. Fizik muayene bulgusunda kitle olarak tespit edilebilir (3).

Çoğu vakada, uterin LMS tanısı, benign olduğu varsayılan uterin leiomyomlara uygulanan histerektomi veya myomektomi takiben konulur (4,5). Total histerektomi sırasında, özellikle menopoza veya perimenopoza hastalarda sıklıkla bilateral salpingo-ooforektomi (BSO) yapılır. Uterusla sınırlı, bozulmamış bir numunenin rezeksiyonunu takiben standart bakım gözlemdir. Kemoterapi veya pelvik radyasyon bazen uterin LMS ameliyatından sonra düşünülürken, hiçbir adjuvan tedavi şekli gözlemle karşılaştırıldığında sağkalım sonuçlarında iyileşme göstermemiştir.

Netrinler, başlangıçta embriyonik aksonal kılavuz rolü için tanımlanan laminin benzeri proteinler ailesinin üyesidir. Her ne kadar ilk çalışmalar netrinlerin sinir sisteminde aksonal iletim sırasında eksprese edildiğini gösterse de sonrasında yapılan çalışmalar netrinlerin sinir sistemi dışı eksprese edildiği ve doku morfogenezi, anjiyogenez, lenfanjiyogenez, tümör gelişimi, hücre göçü, invazyon ve adhezyon, apoptoz ve inflamasyonun düzenlenmesinde görev aldığı gösterilmiştir. Bu özellikleri nedeniyle netrinler çeşitli maligniteler üzerinde araştırmalar konu olmuş ve netrin protein ailesinin bazı kanserlerin gelişiminde hayati rol oynadığı bulunmuştur.
Netrin-1 endotelyal ve vasküler düz kas hücrelerinin morfogenezisinde, tümör büyümesinde ve inflamasyonda regülatör olarak görev yapar (6).

Netrin-1’in reseptörlerinden DCC ve UNC5B, bağımlı reseptörler olarak isimlendirilir. Bu reseptörler ligand yokluğununda bile sinyal gönderirler. Ligand var olduğunda bu reseptörler, hücresel proliferasyon, farklılaşma, göç veya hayatta kalmaya yol açan pozitif bir sinyal yolunu uyarr. Ligandlarının yokluğunda, bu reseptörler "klasik" reseptörler gibi inaktif değildirler, ancak daha çok kaspaz bağımlı apopitotik hücre ölümünü tetikleyen "negatif sinyal" yolunu uyarrlar.

Netrin-4 hücre dışı protein ailesi olan netrinlerin bir üyesidir. Embriyonik vasküler gelişimde proanjiyogenik bir faktör olarak hareket eden Netrin-4, endotel hücrelerinin farklılaşmasını ve göçünü engelleyerek ve düz kas hücrelerinin farklılaşmasını ve göçünü uyararak antianjiyogenik etki göstermektedir (7). Hipoksi ve patolojik vasküler gelişim ve durumlarda netrin-4 anjiyogenezde antianjiyogenik olarak rol alır.

Netrin-1, Netrin-4 ve reseptörlerinin leiomyosarkom ilişkisini irdeleyen herhangi bir çalışmaya şu ana kadar rastlanmamıştır. Bu sebeple çalışmadımızda leiomyosarkomlardada önce araştırılmayan Netrin-1 ve Netrin-4 düzeylerinin ve reseptörlerinin ekspresyonlarını değerlendirmeyi amaçladık.
LEİOMYOSARKOM

Leiomyosarkomlar (LMS) uterin malignensilerin %1-3’ü üretim oluşturur. Uterusun yaklaşık her 800 düz kas tümörlerinden birisi leiomyosarkomdan meydana gelir (8). Leiomyosarkomların bir çoğu intramural yerleşimli olup %50-70’i tek kitledir (9). Leiomyosarkomların ortalaça çapı 6-9 cm, sınırları belirgin ve yumuşaktır (10). Kesit yüzeye nekroz ve hemoraji alanlarından oluşan gri-sarıdır. Leiomosarkom, leiomyomdan daha yumuşak ve büyük olma eğilimlidir, ayrıca daha düzensiz kenarlı, hemorajik ve nekrotiktir.

PATOLOJİ

Çoğu leiomyosarkom etrafını kuşatan myometriuma invazyon yapmasına karşın, düzgün sınırlı bir leiomyosarkom, her an bir metastazla karşımıza gelebilmektedir. Vasküler invazyon, leiomyosarkomların %10-22’sinde görülebilir. Tümör hücresi nekrozlu tipik şekilde belirgin olup kesinlikle mevcut olması gerekmektedir. Son zamanlardaki literatürde, vakaların %80’inde mitotik indeks büyük büyümte alanında 15’in üstünde olduğu ifade edilmektedir (13). Uterus leiomyosarkomlarını tanıma için kullanılan ana kriterler nükleer atipinin mevcudiyeti, yüksek bir mitotik indeks ve koagülatif tümör hücre nekrozudur.

Miksoid leiomyosarkomlar, makroskopik incelemede sıklıkla büyük jelatinöz neoplazmlardır (14-16). Mikroskopik olarak, düz kas hücreleri mikroid material

Epiteloid leiomyosarkolarda sitolojik atipi, tümör hücresi nekrozu ve yüksek mitotik indeks görülebileceği gibi, tipik leiomyosarkolarda izlenen malignensinin alışları niteliklerine ek, epiteloid diferansiyasyon gösteren alanlara da sahiptir (14-21). Leiomyomlar ve leiomyosarkomlar arasındaki farklılar tablo 1’de belirtilmiştir.

Tablo 1: Uterin Düz Kas Tümönerinin Makroskobik Özelliklerinin Sınıflandırılması

<table>
<thead>
<tr>
<th></th>
<th>Leiomyom</th>
<th>Leiomyosarkom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genellikle çok sayıdadır.</td>
<td>Genellikle tektir (%50-75).</td>
<td></td>
</tr>
<tr>
<td>Farklı çaplarda, genellikle 3-5 cm</td>
<td>Geniş çaplı olup, çap 10 cm’nin üzerinde.</td>
<td></td>
</tr>
<tr>
<td>Kesit alanı sıklı, girdapsı yapılar içerir.</td>
<td>Kesit alanı yumuşak etli kivamlıdır.</td>
<td></td>
</tr>
<tr>
<td>Renk: Beyaz</td>
<td>Renk: Sarı veya sarımsı kahverengi</td>
<td></td>
</tr>
<tr>
<td>Hemorajı ve nekroz sık değildir.</td>
<td>Hemorajı ve nekroz sıktr.</td>
<td></td>
</tr>
</tbody>
</table>

Esasen benign myomlarla sarkomların birbirlerinden bağımsız oluştuğu düşünülmekle birlikte uterin leiomyomların %0.13-0.83’ünde sarkomatöz dönüşüm olduğu belirtilmektedir (22,23).
SEMPTOMLAR VE YAYILIM

 Leiomyosarkomların ilk semptomları vajinal kanama veya ağrı olabilir. Fizik muayene bulgusunda kitle olarak tespit edilebilibir. Postmenapozal hızlı büyüyen kitlelerde leiomyosarkomdan şüphelenilmelidir. Endometrial biyopsi ile olguların ancak üçte birine ve submüköz yerleşimli olanlara tanı konulabilmektedir. Hastaların %50-75’inde tek bir lezyon vardır ve %70’inde intramural, %20’sinde submukozal ve %10’unda subserozal yerleşim görülmektedir. Servikal tutulum leiomyomlara göre daha sıktır (3).

 Lokalize yayılım myometriuma ve pelvik organlara OMITMaktadır. Uzak metastazsa hematojen yolla olmaktadır ve de en sık akciğer tutumu görülmektedir. Bir çalışmada LMS sebebiyle eX olan hastaların otopsi raporları incelenmiş ve %100’ünde karın içi yayılım, %40’ında paraaortik lenf nodu tutulumu, %33’ünde böbrek tutulumu, %20’sinde karaciğer tutulumu ve %80’inde akciğer ve pleura metastazı tespit edilmiş (24).

 PROGNOSTİK FAKTÖRLER

 Prognostik faktörler incelendiğinde; tümörün myom içerisinde lokalize kalması, düşük mitoz sayısı, nekroz yoğunluğu ve komşu dokuda hyalinizasyon iyi prognostik faktörler olarak bildirilmektedir (25).

 KLİNİKOPATOLOJİK TİPLERİ

 Leiomyosarkomun 5 farklı klinikopatolojik çeşidi daha bulunmaktadır. Bunlar metastaz gösteren leiomyom, leiomyomatozis peritonealis disseminata, intravenöz leiomyomatozis, leiomyoblastom ve mikst leiomyosarkomdur.

 Benign Metastaz Yapan Leiomyom

 Histolojik açıdan benign uterus düz kas tümörünün malign sayılabilecek şekilde davranarak genellikle akciğerlere ya da lenf bezlerine metastaz yapmasıyla karakterize olan çok nadir bir durumdur (26). Metastaz yapan leiomyomların uzak bölgelerde oluşum gösterebilmelerine karşın intravenöz tümörler sadece damarlar içinde direkt
yayılım göstermektedir. Klinik deneyimler, her iki tümör tipinin de östrojenle uyarıldıklarında oluşturdukları göstermektedir. Bu sebeple; dışardan verilen östrojenin kesilmesi ya da progestin, tamoksifen veya gonadotropin tedavisi gibi yöntemlerle östrojen kaynağıının kaldırılması tümör üzerinde iyileştirici etki oluşturur (27).

Leiomyomatozis Peritonealis Disseminata

İntravenöz Leiomyomatozis

Leiomyoblastom

Leiomyoblastomların üç alt tipi bulunmaktadır: Epiteloid leiomyomlar, berrak hücreli leiomyomlar ve pleksiform tümörler (18). Bu grub atipik düz kas tümörleri mekik şeklini yerine daire şeklinde hücrelerden meydana gelir. Bu lezyonlar...
özelleşmiş düşük evreli leiomyosarkom olarak kabul edilebilirler. 10’luk büyütmede 5’ten daha az mitoz izlenen bu tümörlerde prognoz gayet iyi seyreder.

Miksoid Leiomyosarkom

TEDAVİ

LMS, tanı aşamasından bağımsız olarak yüksek nüks ve mortaliteyle ilişkili agresif bir tümördür (2). Tümör derecesi ve diğer histolojik özellikleri, tümörlerin klinik davranışını etkileyebilir ve tedavi önerilerinin önemli belirleyicileri olabilir. Uterin sarkomlu hastalar, mümkün olduğunda, tanı ve tedavilerinde uzmanlığa sahip özel merkezlere sevk edilmelidir.

Cerrahi

Çoğu vakada, uterin LMS tanısı, benign olduğu varsayılan uterin leiomyomlara uygulanan histerektomi veya miyomektomiyi takiben konulur (4,5). Teşhise yol açan olayların sırası tedavi yaklaşımını etkileyebilir. Preoperatif veya İntraoperatif Tanı

LMS tipik olarak postoperatif olarak teşhis edilir, ancak nadir durumlarda endometrial örneklemeye ile preoperatif olarak veya frozen kesit ile intraoperatif olarak teşhis edilir. İyi huylu uterus hastalığı kötu huylu hastalıktan güvenilir bir şekilde ayırt edebilen tek bir preoperatif test yoktur.

Uterus ile sınırlı hastalık: Ameliyat sırasında uterus ile sınırlı olan LMS'li hastalar için total histerektomi önerilir (32-34). Preoperatif olarak uterus sarkomunu benign leiomyomlardan ayırt etmek için güvenilir bir yöntem yoktur. İyi huylu leiomyomata olduğu varsayılan bir veya daha fazla uterus kitlesi için ameliyata alınan...
hastalar arasında, bildirilen uterus sarkomu prevalansı 350'de 1 ile 500'de 1 arasında değişmektedir. Hastalara tedavi planlanırken bu dikkate alınmalıdır.

Güçlü morselasyonla yayılabilme, hastalığı kötüleştirebilme ve klinik olarak uterus sarkomu şüphesi olan olgularda uterusun morselasyonundan kaçınmak makul bir yaklaşımdır (35).

Uterus dışına uzanan hastalık: Uterus dışı hastalığı olan hastalarda cerrahinin rolü tartışmalıdır. Yaklaşım, hastanın cerrahi aday olup olmadığını ve hastalığın tam rezeksiyonunun mümkün olup olmadığını bağlıdır.

Bununla birlikte, aşağıdaki senaryolarda cerrahi için makul bir sebep olabilir: Total histerektomi, belirgin pelvik semptomlar (ör. ağrı veya vajinal kanama) yaşayan hastalarda palyasyon işlevi görebilir. Total histerektomi ve metastatik hastalığın rezeksiyonu, peritoneal kavitenin ötesinde nispeten düşük hastalık yükü olan seçilmiş hastalarda (örn., akciğer veya karaciğerde izole metastatik hastalık) düşünülebilir.

Tablo 2: Leiomyosarkom TNM Evrelemesi (AJCC UICC 8. Baskı)

<table>
<thead>
<tr>
<th>Tümör (T)</th>
<th>FIGO evrelemesi</th>
<th>T kriteri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx</td>
<td></td>
<td>Primer tümör değerlendirilemez</td>
</tr>
<tr>
<td>T0</td>
<td></td>
<td>Primer tümör kanıtı yok</td>
</tr>
<tr>
<td>T1</td>
<td>I</td>
<td>Rahim ile smrli tümör</td>
</tr>
<tr>
<td>T1a</td>
<td>IA</td>
<td>En büyük boyutu 5 cm veya daha küçük olan tümör</td>
</tr>
<tr>
<td>T1b</td>
<td>IB</td>
<td>5 cm'den büyük tümör</td>
</tr>
<tr>
<td>T2</td>
<td>II</td>
<td>Tümör pelvisin içinde uterusun ötesine uzanır</td>
</tr>
<tr>
<td>T2a</td>
<td>IIA</td>
<td>Tümör adnexi içerir</td>
</tr>
<tr>
<td>T2b</td>
<td>IIB</td>
<td>Tümör diğer pelvik dokuları içerir</td>
</tr>
<tr>
<td>T3</td>
<td>III</td>
<td>Tümör batın içi dokulara sızar</td>
</tr>
<tr>
<td>T3a</td>
<td>IIIA</td>
<td>Bir alana</td>
</tr>
<tr>
<td>T3b</td>
<td>IIIB</td>
<td>Birden fazla alana</td>
</tr>
<tr>
<td>T4</td>
<td>IVA</td>
<td>Tümör mesaneyi veya rektumu invaze eder</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lenf Nodları (N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGO evrelemesi</td>
</tr>
<tr>
<td>Nx</td>
</tr>
<tr>
<td>N0</td>
</tr>
<tr>
<td>N0 (i+)</td>
</tr>
<tr>
<td>N1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Metastaz (M)</th>
<th>FIGO evrelemesi</th>
<th>M kriteri</th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td></td>
<td>Uzak metastaz yok</td>
</tr>
<tr>
<td>M1</td>
<td>IVB</td>
<td>Uzak metastaz (adnексa, pelvik ve abdominal dokular hariç)</td>
</tr>
</tbody>
</table>
Postoperatif tanı

Total histerektomiden sonra (son patolojik incelemede) LMS teşhisi konan hastalar için, yalnızca evreleme amacıyla ikinci bir cerrahi prosedür uygulanması önerilmemektedir. Bunun yerine, postoperatif tedaviyi yönlendirmesi amacıyla toraks, batin ve pelvisin postoperatif bilgisayarlı tomografisi çekilmelidir.

Tek başına histerektomi (veya miyomektomi) uygulanan ve cerrahi adayı olan hastalar için, ancak aşağıdaki durumlarda ikinci bir cerrahi prosedür mantıklıdır (37):

- Önceki ameliyatta overler korunmuşsa, yalnızca salpingo-ooferektomi yapmak için rutin olarak yeniden ameliyat edilmemelidir; bunun faydası belirsizdir ve hastayı cerrahi risklere maruz bırakır.

- Supraservikal histerektomi (veya miyomektomi) uygulanan hastalar için, mümkünse görünür rezidüel hastalığın rezeksiyonu ile serviksin çıkarılması veya histerektomi önerilmektedir. Perimenopozal ve menoopozal hastalarda eş zamanlı BSO da yapılabilir. Premenopozal hastalarda BSO'nun yararlı olup olmadığını açık değildir.

- Tümörün morselasyonlu olduğu hastalarda, kalan peritoneal hastalığın rezeke edildiğinden emin olmak için cerrahi eksplorasyon ve evreleme yapılmalıdır.

Lenfadenektomi Endikasyonları

Görüntülemenin Rolü

Yeni teşhis edilmiş uterin LMS'li hastaların yüzde 33'e kadarı, en yaygın olarak karaciğer, akciğer veya üst batını tutan uzak metastatik hastalık (evre IVB) ile başvurur (4,34,38,41,42). Bu nedenle, tanıın patolojik olarak doğrulanmasının ardından tüm hastalara metastatik hastalığı ekarte etmek için görüntüleme yapılmalıdır.

LMS'li hastalar için ideal görüntüleme değerlendirmesi hakkında veri yoktur. Toraks radyografisi, bilgisayarlı tomografi (BT), manyetik rezonans görüntüleme (MRI) ve pozitron emisyon tomografi (PET) taramalarının tümü, yumuşak doku sarkomları için metastatik hastalığı değerlendirme amacıyla kullanılır. LMS tanısı alan tüm hastalara perioperatif olarak BT uygulanmalıdır. LMS'nin perioperatif evrelemesinde PET'in faydasına dair veri yoktur ve nüksün saptanmasında PET ile ilgili veriler retrospektif vaka serileri ile sınırlıdır (43,44). BT veya MRG'den daha yarırlı bilgi sağladığına dair bir kanıt yoktur.

Evreleme

Adjuvan Tedavi

Uterusla sınırlı, bozulmamış bir numunenin rezeksiyonu takiben standart bakım gözlemidir. Kemoterapi veya pelvik radyasyon bazen LMS ameliyatından sonra düşünülürken, hiçbir adjuvan tedavi şekli gözlemle karşılaştırıldığında sağkalım sonuçlarında iyileşme göstermemiştir.
Erken evre hastaluk

Sağkalım üzerinde iyileşme sağlamadığına dair kanıtlar nedeniyle cerrahi evre I veya II uterin LMS'li hastalar için, adjuvan tedavi yerine standart tedavi olarak gözlem önerilmektedir (46-49).

Kemoterapi: Doksorubisin, kombinasyon kemoterapisi ve radyasyon terapisi (RT), erken evre hastalığı olan hastalarda adjuvan tedavi olarak değerlendirilmiştir. Bununla birlikte, morbidite ile ilişkili bir tedavinin fayda sağlamadığı dikkate alınmalıdır.

Doksorubisin: Postoperatif doksorubisin ile rastgele tedavi atanan veya başka tedavi verilmeyen evre I veya II uterin sarkomlu 156 hastada bir faz III çalışması yürütülmüştür (46). Doksorubisin ile tedavi edilen hastalarda, kemoterapi ile tedavi edilmeyenlere kıyasla daha düşük nüks oranı olmasına rağmen (yüzde 41'e karşı yüzde 53), bu istatistiksel olarak anlamlı değildi. Ek olarak, adjuvan doksorubisinin sağkalım üzerinde hiçbir etkisi olmadığını belirtmiştir.

Evre I uterin LMS'li 111 hastanın retrospektif bir çalışmada, gemsitabin ve dosetaksel tedavisi sağkalım avantajı ile ilişkili bulunmamıştır (50). Bu veriler kemoterapiden ziyade evre I, uterusla sınırlı LMS'li hastalar için surveyans/gözlem yapılmasını desteklemektedir (51).

Dosetaksel ve gemsitabin ve ardından doksorubisin: Uterusla sınırlı, yüksek dereceli LMS'si olan 47 hastayı kaydeden prospektif, çok merkezli bir faz II
çalışmasında (52) tüm hastalara dört kür sabit doz oranlı gemsitabin artı dosetaksel ve ardından dört kür dokсорubisin verildi ve yaklaşık üç ayda bir görüntüleme yoluyla hastalık nüks açısı içerisinde değerlendirildi. Kayıtlı olanların yüzde 89'u, planlanan sekiz döngünün tamamını aldı. Nüks kadar geçen medyan süre 27 aydı ve üç yıllık progresyonsuz sağkalım oranı yüzde 57 idi. Bu rejimi gözleme karşılaştıran randomize çalışma, nüks oranlarında veya hayatta kalma sonuçlarında iyileşme göstermedi.

İlerlemiş hastalık

İntraabdominal hastalık tutulumu (evre III) veya uzak metastazları (evre IV) olan ve tam rezeke edilmiş hastalarda, tek başına cerrahi takiben hastalıkta ilerleme riski yüksektir. Bu nedenle, tedavinin sağkalımı iyileştirip iyileşmediği belirlenmemiş olsa da, gözlem yerine rezeksiyon sonrası kemoterapi önerilebilir. Bu nedenle, sörveyans aynı zamanda kemoterapiye makul bir alternatiftir.

Dosetaksel ve gemsitabin: Uterin LMS için tam bir sitoredüksiyonu takiben kemoterapiyi değerlendiren yalnızca bir prospektif çalışma vardır. Evre I ila IV LMS'li 25 hasta, bir çalışmada dosetaksel ve gemsitabin almıştır (47).

Kombine modalite tedavisi: İlerlemiş LMS'li hastalar için kombine modalite tedavisinin (örn. pelvik radyasyon artı kemoterapi) uygulanması araştırma aşamasındadır. Bir çalışma, uterin sarkomlu 81 hastayı (53'ü LMS'li) rastgele olarak, ifosfamid, sisplatin ve dokсорubisin kullanan kombinasyon kemoterapisi olan veya olmayan pelvik RT tedavisine atadı (53). Pelvik RT ile karşılaştırıldığında, ifosfamid, sisplatin ve dokсорubisin eklenmesi (daha düşük nüks insidansı, üç yılda daha yüksek progresyonsuz sağkalım ve genel sağkalımda iyileşme) istatistiksel olmayan anlamlı eğilimlerle ilişkilendirildi.
İfosfamid, sisplatin ve doksorubisin ile tedavi; nötropeni (%84), ateşli nötropeni (%22) ve mide bulantısı ve kusma (%24) dahil olmak üzere ciddi (derece 3/4) toksisite ile ilişkilendirilmiştir.

Tedavi Sonrası Gözetim

LMS, tanı anında uterusla sınırlı olsa bile, yüksek relaps riski olan agresif bir tümördür (2). Bu nedenle, her üç ila dört ayda bir fizik muayene ve iki ila üç yıl boyunca üç ila dört ayda bir toraks, batın ve pelvik görüntüleme, sonraki iki yıl boyunca her 6 ila 12 ayda bir takip yapılmalıdır. Takip görüntülemesinin optimal sıklığını veya süresini tanımlayan hiçbir veri yoktur. Sürveyansın uterin LMS'li hastalar için sağkalım sonuçlarını iyileştirdiğine dair hiçbir veri olmamasına rağmen, bu tavsiyeler Ulusal Kapsamlı Kanser Ağı'nın sürveyans kılavuzlarıyla uyumludur (54).

Prognoz

LMS'li hastaların evresi ne olursa olsun prognozu kötüdür (41,55). LMS'li 1396 hastanın (yüzde 71'i evre I/II hastalığı olan) dahil edildiği geniş bir çalışmada, beş yıllık hastalığa özgü sağkalım yüzde 66 idi (41). Evreye göre sınıflandırıldığında, evre I, II, III ve IV hastalık için beş yıllık hastalığa özgü genel sağkalım sırasıyla yüzde 76, 60, 45 ve 29'du.

Derecenin prognostik önemine rağmen, LMS için evrensel olarak kabul edilen tek bir derecelendirme sistemi yoktur.

LMS için tanı kriterlerini karşılamayan düşük dereceli LMS ve düz kas neoplasmları (örneğin, kötü huylu potansiyeli belirsiz düz kas tümörleri) muhtemelen daha olumlu bir hastalık seyrine sahiptir.

Uterin düz kas tümörlerinin sınıflandırılması ve derecelendirilmesi zor olabilir, bu nedenle uzmanlaşmış patoloji incelemesi önerilir.
Ne Uluslararası Jinekoloji ve Obstetrik Federasyonu (FIGO) ne de Amerikan Kanser Ortak Komitesi (AJCC) evrelemesi, uterin LMS'de genel sağkalım için prognostik bilgi sağlama açısından iyi performans göstermez (45).

Özel Gruplar

Premenopozal hastalar

BSO'nun LMS'de hayatta kalma üzerindeki etkisini ele alan randomize deneme verilerinin yokluğunda, BSO ile ilgili öneriler bireyselleştirilmelidir.
Bazıları, Uluslararası Jinekoloji ve Obstetrik Federasyonu evre I LMS'si östrojen ve/veya progesteron reseptörü pozitif olan hastalar için makul bir şekilde BSO önerebilir. Ancak, böyle bir yaklaşımın sonuçları iyileştireceğine dair herhangi bir rapor bulunmamaktadır. Östrojen reseptörü ve/veya progesteron reseptörü ekspresyonu ile BSO gerçekleştirmeye korelasyonu şu anda spekülatiftir.

Tibbi olarak ameliyat edilemeyen hastalar

Komorbidite veya düşük performans durumu nedeniyle cerrahi rezeksiyon için aday olamayan hastalara yaklaşıma bireyselleştirilmelidir.

Evresi ne olursa olsun LMS'li hastalar için kötü prognoz göz önüne alındığında, cerrahi olmayan tedavi, iyileştirici değil palyatifdir. Bu nedenle, tibbi tedavinin toksisitelerine karşı yararlarının (örneğin, ağrı veya kanamanın kontrolü) dikkatli bir şekilde değerlendirilmesi gerekmektedir.

Tibbi olarak ameliyat edilemeyen hastalara tedavi yaklaşımı, metastatik hastalığı olan hastaların kısılmasını yansıtır.

Metastaz

Lokal Nüks veya Oligometastatik Hastalık

Cerrahi adayı olmayan hastalarda, lokal olarak tekrarlayan hastalık için radyasyon tedavisi alternatif bir tedavi seçeneğidir. Uterus sarkomlarında uygulanması, endometrial adenokarsinomlardaki yaklaşıma benzer.
Lokalize metastatik hastalığa başka bir yaklaşım radyofrekans ablasyonudur (RFA). Hiçbir randomize çalışma yapılamamasına rağmen, RFA küçük (genellikle 4 cm'nin altında) ve erişilebilir (genellikle büyük kan damarlarının yakınında olmayan) bireysel lezyonları başarılı bir şekilde tedavi edebilir (63). RFA için uygun adaylar, ablasyon için erişilebilir olan ve uzun bir hastalık süreci dönemden sonra nüks eden tek bölgeli hastalıga sahiptir.

Tam cerrahi sitoredüksiyon sırasında hipertermik intraperitoneal kemoterapi (HİPEK), intraperitoneal metastazlı çoklu malignitelerin tedavisinde dikkat çekmiştir. Tekrarlayan uterin sarkomlu 26 hastadan oluşan küçük, retrospektif bir seri (22'si LMS'li), cerrahi ve HİPEK uygulanan hastalar ile HİPEK yapılmayan ancak cerrahi uygulanan hastalar arasında progresyonsuz sağkalım veya genel sağkalımda istatistiksel olarak anlamlı farklar bulunduğu (64). Yazarlar, HİPEK'in bir yararı olabileceği öne sürselerde şu an için bu bir spekülasyondur. LMS'li olan hastalarda HİPEK'in klinik araştırma dışında kullanılması şu anda önerilemez.

Metastatik Hastalık

LMS en yaygın olarak akciğerlere, karaciğere, batına ve pelvise metastaz yapar (65). Kemik ve beyin metastazları daha az yaygın tutulum bölgeleridir.

Üzerinde geniş ölçüde anlaşmaya varılmış bir ajan veya rejim olmamasına rağmen, rezek edilemeyen, tekrarlayan hastalığı olan hastalarda kullanımını desteklemek için yeterli kemoterapi aktivitesi vardır (66).

Birinci veya ikinci basamak tedavi olarak prospektif klinik yumuşak doku sarkomu için randomize bir çalışmada gösterilen yüksek objektif yanıt oranları ve gemsitabin-dosetaksel kombinasyonunun tek başına gemsitabine göre üstünlüğü
nedeniyle, mevcut seçenekler arasında sabit doz oranlı gemsitabin artı dosetaksel'i tercih edilmelidir (67).

Doksorubisin de makul bir ilk seçenektir. Birinci basamak tedaviden sonra ilerleme gösteren hastalar için ileri tedavi hastanın tercihine, organ işlevine ve performans durumuna bağlıdır.

Genel olarak, nükseden uterus sarkomunun tedavisi diğer bölgelerde ortaya çıkan metastatik yumuşak doku sarkomlarının tedavisine benzer, ancak bazı veriler uterus LMS'nin bazı kemoterapi rejimlerine diğer LMS olmayan histoloji yumuşak doku sarkomlarından daha duyarlı olabileceğini düşündürmektedir (34,54).

Doksorubisin artı trabektedin ve ardından trabektedin rejimi, LMS'lı hastalar için uygun birinci basamak tedavi olabilir. Zinde, mükemmel organ işlevine sahip, klinik olarak önemli toksisiteler için yüksek riski muhtemelen sürdürübilen ve klinik olarak hızlı objektif yanıtın gerekli olduğu ve/veya objektif yanıtın müteakip tam bir brüt rezeksiyonu mümkün olduğu yüksek olduğu kişilerde uygulanabilir (68).

Endokrin tedavisi olarak aromataz inhibitörleri (anastrozol veya letrozol), östrojen veya progesteron reseptörü pozitif LMS'si olan ve hastalık yükünün düşük ve hızının yavaş olduğu bazı hastalar için hormon blokajı amacıyla makul olabilir (69).
NETRİN AİLESİ

Netrin-G’lerin orthologları sadece omurgalı türlerde bulunmuştur. Şu zamana kadar omurgasızlarda keşfedilen tüm Netrin proteinleri (C. elegans UNC-6 da dahil olmak üzere) membranlardan salgılanmıştır. Sekrete edilen netrinler kimi hücreler için çekici, kimi hücreler için itici olarak iki fonksiyon göstermektedir (70). Netrin proteini, ekstrasellüler matriks proteini laminin süper ailesinin bir üyesidir. Netrin-1 ve Netrin-3’un amino terminal dizisinin üçte ikisi, laminin-1 γ zincirinde bulunan amino terminal dizisiyle büyük benzerlik gösterirken, Netrin-G1, Netrin-G2 ve Netrin-4’un amino terminal dizisi laminin-1 β zincirinin amino terminal dizisi ile yüksek benzerlik göstermektedir (Şekil 1-b) (70,72,73).

Bu protein ailesinin çeşitli farklı işlevleri ve etki mekanizmaları, NTN1 genince kodlanan Netrin-1 çalışması ile daha iyi ortaya konulmuştur. Netrinler; yaklaşık 60-80 kDa ağırlığında. Netrinler yapısındaki üç esas bölge (V, VI ve C) bulunan protein ile amino terminal sinyal peptidi kodlarlar (Şekil 1-c) (70-72).

Şekil 1: Netrin Protein Ailesi (70)
(a) Netrinler laminin süper ailesindedir. İnsan protein dizinlerine dayanan bir filogenetik ağaç, netrin ve laminin ailesi üyeleri arasındaki ilişkiyi gösterir. (b) Laminin-1 proteini, α (mavi), β (yeşil) ve γ (turkuaz) zincirlerinden oluşan bir heterotrimerdir. 1'den 3'e kadar olan netrinlerin amino terminal VI ve VN domainleri (kIRMUZ), laminin-1'in γ zinciriyle homologdur. Netrin 4, G1 ve G2'deki bu domainler, laminin-1'in β zincirine daha fazla benzerlik göstermektedirler. (c) Netrin aile üyelerinin domain organizasyonu. Netrin 1-4, salgılanan proteinlerdir ve bir kARBOKSİ terminalse (C-domainı) içerirler, buna karşılık netrin G1 ve G2 plazma membranına bir glikozilfosphatidilinositol (GPI) bağlayıcısı (pembe) ile bağlanırlar.
NETRİN RESEPTÖRLERİ VE SİNYAL İLETİMİ

Netrin-1 sinyal iletişimini, UNC5A-D veya UNC5H1-4, integrin α3β1 ve α6β3, serebellin 4 (CBLN4), down sendromu hücre adezyon molekülünü (DSCAM) içeren dört reseptör ve reseptör olup olmadığı net olarak bilinmeyen adenozin reseptörü (A2bR) aracılığıyla gerçekleştirmektedir (Şekil 2) (79-87).

Tanımlanan ilk netrin almaçları, vertebralılarda DCC ve DCC ile yaklaşık %50 aminoasit dizi benzerliği olan neogeninini de içeren DCC protein alt familyasına aittir. DCC, neogenin ve bunların ortologları, dört immunoglobulin alanından ve altı fibronektin tip III (FNIII) tekrarlardan oluşan bir hücre dışı alana sahip transmembran proteinlerdir. DCC’deki dördüncü ve beşinci FNIII tekrarları, Netrin-1’i bağlamak için gereklidir (80).

Tek geçişli membranlar arası alanın ardından, sitoplazmik sinyal iletişim moleküllerinin altında önemli rollere sahip olduğu düşünülen P1, P2 ve P3 olarak adlandırılan üç yüksek düzeyde korunmuş hücre içi alanı vardır. Bu alanların her birinin spesifik fonksiyonel katkısı bilinmemektedir (81,88,89). Vertebralılardaki, C. elegans’daki UNC-5 reseptörüne homolog Unc5A, Unc5B, Unc5C ve Unc5D olmak üzere dört netrin reseptörü içermektedir. UNC-5 reseptörleri, hücre dışı alanda iki immunoglobulin tekrarı ile iki trombospondin tip I modülü bulunan transmembran proteinlerdir. UNC-5 proteinlerinin intrasellüler alanı, fonksiyonu henüz belirlenemeyen ve Zona Occludens-1’in bir bölümü olan homolojisinden ismini alan bir ZU-5 alamı ve apopitotik sinyal ile ilişkili bir ölüm alanı (death domain) içerir. Netrin bağlanması için UNC-5 proteinlerinin immunoglobulin tekrarları gereklidir (90-93).
Şekil 2: Netrin reseptör ailesi (100)

Netrin reseptörleri, tek geçişli transmembran proteinleri ve Ig süper ailesinin üyeleridır. Bunlar arasında silinilmiş kolorektal kanser (DCC), omurgalarda bulunan DCC’ye paraloy neogenin, UNC-5 homolog ailesinin üyeleri, down sendromu hücre adhezyon molekülü (DSCAM), ve Netrin-G ligandları (NGL) bulunur. CT, C-terminal sisteinden zengin başlık yapısı; DB, DCC bağlama domainı; DD, ölüm domainı; FNIII, fibronektin tip III domainı; Ig, immünglobulin domainı; LRR, lösin açısından zengin tekrar; NT, N-terminal sisteinden zengin başlık yapısı; P1, P2 ve P3, DCC’nin sitoplazmik alanındaki korunmuş bölgeler; TSP, trombospondinin tip 1 (TSP-1) domainı; ZU5, zona occludens 1 ile homoloji gösteren zona occludens 5 (ZU-5) domainı.

Down Sendromu hücre adezyon molekülü, hücre dışı alanlarında on immünglobulin bölüne ve altı FNIII tekrar içeren bir tip I transmembran reseptördür. Tanımlanmış herhangi bir ligandı bulunmadığı için uzun süredir yetim reseptörü olarak bilinen DSCAM’ın, yakın zamanda netrine bağımlı akson rehberliğe katkıda bulunan Netrin-1 için reseptör olarak işlev gördüğü gösterilmiştir. Netrin-1, DSCAM’ın immünglobulin alanlarına bağlanır. DSCAM’ın Netrin-1 tarafından aktive edilen sinyal yolağı şu ana kadar tanımlanmamıştır (94,95).

Netrin aile üyelerinin akson rehberliği (Netrin-1 ve Netrin-3), doku morfogenezi ve hücre-hücre yapışması (Netrin-1), sinaptöz jenez (Netrin-G’ler, UNC-6) ve anjiyojenez (Netrin-4) gibi farklı hücresel görevlerde rol aldığı bilinmektedir. Netrinlerin farklı işlevsel rolleri Netrin-1’in çalışmalarında en iyi şekilde karakterize edilmiştir (96-98). Netrin-1 sinyali karmaşık bir süreçtir ve her durumda tercih edilen bir yolak değildir. Netrin-1’in DCC’ye bağlanması aksonal çekilmeye neden olurken, UNC-5 reseptör ailesine bağlanması aksonal itilmeye neden olur. Netrin-1’in DCC’ye ve
UNC5B’ye bağlanması, MAPK, PKC, SRC, PI3 kinaz, Rac ve Rho kinaz, fokal adezyon kinazı (FAK) ve diğerlerini içeren birçok sinyal yolunun aktivasyonunu indüklер (Şekil 3) (99).

Şekil 3: Netrin-1 reseptör sinyali ve bilinen fonksiyonları (100)
Netrin-1’in, uncoordinated-5 H (UNC5H1-4) silinmiş kolorektal kanser (DCC), down sendromlu hücre adhezyon molekülü (DSCAM), integrinler (α3β1 ve α6β3) ve serebellin-4’ü içeren birçok reseptörü bağladığı bilinmektedir. Netrin-1’in bu reseptörlere bağlanmasını, fokal adhezyon kinaz (FAK), protein kinaz A (PKA), src kinaz, Rac/Rho kinaz, fosfor inositol 3-fosfat aktive kinaz (PI3K) ve mitojen aktive edilmiş kinaz (MAPK) dahil olmak üzere birçok sinyal yolunu aktive ettiği bilinmektedir. Ölümle ilgili protein kinaz (DAPK) aktivasyonu ise ligand bağlanmasının olmaması durumunda oluşur. Bu yolların aktivasyonu, şekilde listelenen hücresel fonksiyon değişiklikleri ile ilişkilendirilmiştir.

Netrin-1’in reseptörlerinden olan DCC ve UNC5B, bağımlı reseptörler olarak adlandırılır. Bu reseptörler ligand yoklukta bile sinyal gönderirler. Ligand mevcut olduğunda bu reseptörler, hücresel proliferasyon, farklılaşma, göç veya hayatta kalmaya yol açan pozitif bir sinyal yolunu indüklerler. Ligandlarının yokluğunda, bu reseptörler "klasik" reseptörler gibi inaktif değildirler, ancak daha çok kaspaz bağımlı apopitotik hücre ölümünü tetikleyen "negatif sinyal" yolunu uyarrır (101-103).

DCC’nin, yapısında klasik bir ölüm alanı bulunurken, UNC5B reseptöründe bulunmaz. Bununla birlikte, her iki reseptör de ligandları olan Netrin-1 yokluğunda apoptozis indükleme yeteneğine sahiptir. Sekrete edilen netrin proteinlerinin aksine Netrin-G’ler, Netrin-G ligandları (NGL) olarak adlandırılan transmembran
proteinlerini bağlıırken, DCC, neogenin veya UNC-5 proteinleri ile etkileşime girdiği görülmemiştir (101-103).

Yapılan çalışmalarla netrin proteinlerinin sinir sisteminde hücre ve akson gücünü direkt yönlendirdiği ve sinirsel gelişim sırasında akson arborizasyonu ve sinaps oluşumunu etkilediği bildirilmiştir. Elde edilen son bulgular, netrinlerin merkezi sinir sisteminde oligodendrogial paranodal kavşakların organizasyonunun sürdürüldüğü de dahil olmak üzere hücre-hücre etkileşimlerini düzenlediğinin kanıtlarını ortaya koymaktadır. Ayrıca son çalışmalar, netrinle ilişkili değişikliklerin insanın sinir ağlarını ve nörodejeneratif hastalıkların ilerlemesini etkilemeye başlamasını göstermektedir (104).

Netrin-1 ve Reseptörleri

Şekil 4: Netrin-1 ve Netrin-1 Bağımlılık Reseptörlerinin Yapısı (17)

DCC ve UNC5H, DCC, dört immünoglobulin benzeri alan, altında fibronektin tip III bölgesi, ardından tek bir transmembran kapsayan bölge ve üç korunmuş alandan, yanı P1, P2 ve P3'ten oluşan bir sitoplazmik bölgeden oluşan hücre dışı bir alan sahip bir tip I transmembran proteindir. Bağımlılık bağımlılık alanı (ADD) adı verilen hücre içi alanda özel bir bölge vardır. UNC5H reseptörleri, iki hücre dışı immünoglobulin benzeri alan ve iki trombospondin tip I alan, bir transmembran bölge ve bir ZU-5 alanı ve bir ölüm alanı içeren hücre içi alanları içerir. Netrin-1 bir ligand göre vi görür ve laminin ile ilgili üç epidermal büyüme faktörü alanına, bir laminin N-terminal alanına ve pozitif yüklü bir karboksi (C)-terminal alanına sahiptir.

Apoptoz ve Netrin-1 Reseptörleri

DCC ve UNC5H ailesi reseptörleri, DR'lerdir. DR'ler ligandlardan ayrıldıklarında apoptozu indükleyerek sağkalımı artırırken, ligandlarına bağlandıklarında apoptozu inhibe ederler (106,116) (Şekil 5).

![Diagram](image)

Şekil 5: Netrin-1 ve reseptörü DCC’nin Apoptozla İlişkisi (17)

ADD adı verilen DCC reseptörünün hücre içi bölgesinde özel bir alan vardır. Bu bölgenin silinmesi, DCC'nin proapoptotik özelliğini ortadan kaldırmak için yeterlidir. Netrin-1’in yokluğunda bu bölgenin Kaspaz-3 tarafından parçalanması diğer kaspazları uyarır ve apoptozu kolaylaştırır. UNC5H ayrıca Kaspaz-3 benzeri DCC tarafından bölünür ve UNC5H’nin ayrılan bölgesi apoptozu indükler (Şekil 6) (81,118,121).
Şekil 6: DCC ve UNC5H aracılı apoptoz mekanizması (81,118,121)
 Netrin-1 olmadığında, hem DCC hem de UNC5H hücre içi alanlarındaki aktif kaspaz tarafından bölünür. DCC’nin hücre içi alanında, bağımlılık alanındaki bağımlılık alanı (ADD) adı verilen özel bir alan vardır. Bölünme, ADD’nin salınmasına neden olur. DCC–ADD, Kaspaz-9’un aktifleşmesine yol açar ve kaspaz-3’ün bölünmesine izin vererek Kaspaz-3’e bağlı hücre ölümüne yol açar. UNC5H ise kaspaz bölünmesi, ölüm sinyaline yol açan ZU-5’i ve ölüm alanını içeren tüm hücre içi alanın salınmasına neden olur.

Netrin-1'e bağlı anti-apoptotik sinyalleme tam olarak anlaşılamamamıştır. Tahminen iki adımı içerebilir: Birincisi reseptörlerin hücre içi bölgesindeki kaspazla ilişkili bölünmenin bloke edilmesi ve ikincisi hücre dışı sinyale düzenlenmiş kinazlar (ERK1/2) ve AKT gibi antiapoptotik sinyal yollarının indüksiyonu (121-123).

Tümör Baskılayıcılar olarak DCC ve UNC5H

Netrin-1'in yokluğunda DCC ve UNC5H reseptörlerinin proapoptotik özellikleri, bunların tümör baskılayıcı genler olduğu fikrini doğrurmuştur. Hedrick ve ark. (124) DCC'nin bir tümör süpresör gen olabileceğini, çünkü diğer birçok kanserde olduğu gibi kolorektal kanserlerin çoğuarda silinmiş olduğunu bildirmiştir.
Daha yeni bulgular, DR'ler için bir tümör baskılayıcı rolü desteklemektedir (118). Buna karşılık, bu reseptörler, Netrin-1 varlığında onkojenik yolları uyarabilir veya apoptozu inhibe edebilir (118,125). İki çalışma, Netrin-1 varlığında DCC'nin küçük guanozin trifosfatazları (GTPazlar), CDC42-RAC1 veya MAPK1/3 yolunu aktive ederek hem transfekte hücrelerde hem de komissural nöronlarda ve nöroblastoma hücrelerinde hücre transformasyonuyla sonuçlandığını bulmuştur (126,127).

Diğer çalışmalar, Netrin-1'in yokluğunda DCC'nin apoptozu indüklediğini, Netrin-1'in ise bu etkiyi bloke ettiği doğrulamaktadır (128). Diğer birkaç çalışma, UNC5H'nin DR olarak rol oynadığını göstermişti (116,129).

Ancak tam tersine, çoğu kanserde DCC ve UNC5H inaktiftir. Bu nedenle, bu reseptörlerin apoptotik özellikleri bu kanserlerde kaybolur ve bu reseptörlerin aşağı regülasyonu, tümör gelişimi için seçici bir avantajı temsil eder (118,130).

Netrin-4

Şekil 7: Netrin-1, Netrin-4, UNC5 DCC Ailesi ve Biyolojik Etkileri (131)

Netrin-4, Netrin-1’in aksine sadece neogenine bağlanır. UNC5 ailesi reseptörlerine bağlanmaz. Yapılan bir çalışmada bloke edici antikorlar kullanılarak neogenine bağlanan Netrin-4’ün veya UNC5B’nin inhibe edilmesiyle, Netrin-4’ün endotel hücre göçü üzerindeki inhibitör etkinin ortadan kalktığı tespit edildi (132). Yapılan diğer çalışmalarda bu sonucu desteklemektedir. Bu gözlemler Netrin-4’ün neogenine bağlanma ve UNC5B’nin inhibe edilmesi yoluyla antianjiyogenik faktör rolü üstlendiğini düşündürmektedir (97,132).

Hipoksi ve patolojik vasküler gelişimi uyaran durumlarda netrin-4 anjiyogenezde antianjiyogenik olarak rol alır. Yapılan birkaç çalışma sonucunda netrin-4’ün VEGF ile uyarılan anjiyogenezı önemli ölçüde inhibe ettiği raporlanmıştır (11) (133). Başka bir çalışmada Netrin-4’ün endotel tabakada yoğun bir şekilde exprese edildiği, endotelyal fonksiyonlarını, hemostazın korunmasında ve vasküler yapının düzenlenmesinde, endotelyal inflamasyonun önlenmesinde önemli roller aldığı gösterilmiştir (134).
GEREÇ VE YÖNTEM

BİLİMSEL ARAŞTIRMA PROJELERİ (BAP) BİRİMİ ONAYI

Bu proje ‘Pamukkale Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birliği’ tarafından 03.02.2022 tarihli toplantıya istinaden 2022TIPF001 numaralı kararı ile tıpta uzmanlık tezi bilimsel araştırma projesi olarak desteklenmiştir.

DOKULARDA GEN EKSPRESYONUN GÖSTERİLMESİ

Hücre Kültürü Çalışmaları

Çalışmamızda insan uterin leiomyosarkom hücre hattı ((HTB-114), (SK-UT-1), (American Tissue Culture Collection (ATCC®, Manassas, VA, USA) kullanılmıştır. İnsan uterus myometrium dokusu için hücre hattı üzerinde çalışılması planlanmakta iken bütçe yetersizliği nedeniyle, Pamukkale Üniversitesi Hastanesi Klinik Araştırmalar Etik Kurulundan 13.09.2022 tarihli ve E-60116787-020-259010 sayılı karar nolu etik kurulu onayı alınarak, üreme çagındaki kadın hastadan normal uterin myometrium dokusu alınmış ve çalışmada kullanılmıştır.

Hücrelerin büyümesi ve çoğalması için %10 Fetal Sığır Serumu (FBS) ve %1 penisilin/streptomisin karışımı içeren EMEM (Eagle's Minimum Essential Medium) besiyeri kullanılmıştır. Hücreler 75 cm²'lik kültür plakalarında 37°C’de, %5 CO₂ içeren ortamda inkübe edilmiştir. Hücreler yaklaşık olarak %90 yoğunluğa ulaşana kadar her 2-3 günde bir besiyeri değiştirilmiştir. Pasajlama işlemi sırasında; ortamdaki besiyeri uzaklaştırılmış ve ortam fostat tamponlu tuz çözeltisi (PBS) ile yıkanmıştır. Ardından, %0,25’lik Tripsin-EDTA yardımıyla hücreler kaldırılmış ve santrifüj edilerek süpernatant uzaklaştırılmıştır.

Hücre Canlılığı ve Sayılması

Hücre canlılığının belirlenmesi ve sayılması amacıyla Tripan mavi boya kullanılmıştır. Tripan mavi, negatif yük sahip bir boyadır ve bütünü bozulmamış canlı hücrelerin sayılmasına olanak sağlamaktadır. Boya, cansız hücrelerin membran
bütünliği olmadığını için içine nüfuz etmekte ve ışık mikroskobu altında sayım için görüntülenememektedir. Tripan mavi boyası ile 1 ml taze besiyerinde çözülen hücre süspansiyonu eşit hacimde (1:1) karıştırılarak sayım işlemi için Thoma lamına yüklenmiştir (Şekil 8).

Şekil 8: Thoma lamının mikroskop altında görüntüsü

Hücre canlılığı, aşağıdaki formüle göre belirlenmiştir.

\[
\text{Toplam hücre sayısı} = \frac{\text{Sayılan hücre sayısı} \times 10^4 (\text{sabit değer}) \times \text{seyreltme faktörü}}{\text{Sayılan alan (aritmetik ortalama)}}
\]

Myometrium Doku Örneğinin Eldesi

Örnek uterin normal myometrium dokusu, myometriyal patoloji içermeyen, myometriyal aktiviteyi etkilemesi muhtemel ilaç kullanımı olmayan ve üreme çağındaki kronik pelvik ağrı endikasyonu ile histerektomi yapılan kadın hastadan alınmıştır. Biyopside uterus korpus ön duvarından, endometrium içermeyecek şekilde tam kat, boy ve en ölçümleri 2x2 cm boyutunda olacak şekilde 2 farklı doku örneği alınmıştır.

Toplam RNA İzolasyonu

Toplam RNA izolasyonu Analytik Jena innuPREP RNA Kiti kullanılarak gerçekleştirilmiştir. Kısaca, hücreler 100mm’lik kültür plakalarına ekilmiş ve %90 yoğunluğa ulaşığında ortamdaki besiyeri uzaklaştırılmış ve PBS ile yıkıramıştır. Doku örnekleri ise sıvı azot kullanılarak steril seramik havanı yardımıyla homojenize edilmiştir. Ardından HTB-114 hücreleri ve myometriyum doku örneği lizis tamponu
yardımıyla parçalanmış ve izolasyon üretici firmanın talimatları doğrultusunda gerçekleştirilmiş. Elde edilen toplam RNA örnekleri -80 °C’de saklanmıştır.

Toplam RNA’nın Spektrofotometrik Analizi

Toplam RNA’nın Agaroz Jel Elektroforezi ile Görüntülenmesi

İzole edilen RNA’ların görüntülenmesi için yatay jel elektroforezi kullanılmıştır. %1’lik agaroz jel ile Tris-Asetik asit-EDTA (TAE) tamponu hazırlanmıştır. Hazırlanan jel mikrodalga fırında kontrollü olarak ısıtılmış ve agarozun çözünmesi sağlanmıştır. Çözünmüş olan agaroz çözeltisi soğutularak 0,75 µL EtBr eklenmiştir ve elektroforez tablasına dökülen jelin polimerleşmesi beklenmiştir. Jel katılma ve elektroforez tankına yerleştirilmiştir. Kuyucuklara yüklenen DNA marker ve RNA’lar elektroforesezin (−) kutbuna doğru yerleştirilerek, güç kaynağına bağlanmıştır. Elektroforez tankı 1x TAE tamponu ile jelin üstü kapanana kadar doldurulmuştur. Kuyucuklara yüklenen miktarlar Tablo 3’de belirtilmiştir

Tablo 3: Kuyucuklara Yüklenen RNA Örnekleri Ve Marker Konsantrasyonları

<table>
<thead>
<tr>
<th>RNA için;</th>
<th>Marker için;</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 µl RNA örneği</td>
<td>Yüklenen hacim: 8 µL</td>
</tr>
<tr>
<td>2 µl boya (6x loading dye)</td>
<td>2 µl boya (6xloading dye)</td>
</tr>
<tr>
<td>1µl enjeksiyonlu su</td>
<td>2 µl enjeksiyonlu su</td>
</tr>
</tbody>
</table>

cDNA Sentezi

C DNA sentezi için A.B.T. cDNA sentez kit olarak üretici firmanın önerdiği protokol doğrultusunda gerçekleştirilmiştir. cDNA sentez karışım protokolü ve yapılışı Tablo 4’de verilmiştir. Gerçek Zamanlı Polimeraz Zincir Reaksiyonu (PZR) yapmak üzere sentezlenen cDNA’lar -20°C’de saklanmıştır.
Tablo 4: cDNA Sentez Karışımı ve Protokolü

<table>
<thead>
<tr>
<th>Bileşenler</th>
<th>Hacim</th>
<th>Son konsantrasyon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total RNA</td>
<td>10µl</td>
<td>2.5µg/ml</td>
</tr>
<tr>
<td>Oligo (dT) Primer</td>
<td>1µl</td>
<td>0.5 µM</td>
</tr>
<tr>
<td>dNTP Karışımı (her biri 2.5mM)</td>
<td>1µl</td>
<td>500µM</td>
</tr>
<tr>
<td>RNAaz içermeyen su</td>
<td>3.5µl</td>
<td>14.5µl</td>
</tr>
<tr>
<td>10X RT Tamponu</td>
<td>2µl</td>
<td>1X</td>
</tr>
<tr>
<td>Ribonükleaz Inhibitörü</td>
<td>0.5µl</td>
<td>20U/rxn</td>
</tr>
<tr>
<td>Reverse Transkriptaz Enzimi (200U/µl)</td>
<td>1µl</td>
<td>200U/rxn</td>
</tr>
</tbody>
</table>

Karışım cDNA sentezi için 25 °C'de 10 dakika ve 37 °C'de 120 dakika inkübe edildiken sonra reaksiyonu sonlandırılmak amacıyla 85°C'de 5 dakika bekletilmiştir.

Gerçek Zamanlı Polimeraz Zincir Reaksiyonu

Gerçek zamanlı PZR çalışmaları A.B.T. 2X qPCR SYBR-Green MasterMix (High Capacity) kitleri kullanılarak üretici firmadan önerdiği protokol doğrultusunda StepOnePlus™ Real-Time PZR cihazında (Thermo Fisher) gerçekleştirilmiştir. Primer ve cDNA miktarları laboratuvarımızda optimize edilmiştir. PZR sonucunda elde edilen sonuçlar StepOne Software v2.3 programı kullanılarak hesaplanmıştır ve “housekeeping” GAPDH genine göre normalize edilmiştir. Her gen için ayrı ayrı amplifikasyon analizi ile standart kalibasyon eğrisi oluşturulmuş ve her primer için erime eğrisi analizleri yapılmıştır. Amplifikasyon sonucunda elde edilen Ct (threshold) değerleri kullanılarak dört genin uygulamalar sonucunda mRNA düzeyinde ekspresyon değişimleri belirlenmiştir. Genlerin primer dizileri Tablo 5’te verilmiştir.

Tablo 5: Çalışmada Kullanılan Genlerin Primer Dizileri

<table>
<thead>
<tr>
<th>Gen</th>
<th>Primer dizileri</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAPDH</td>
<td>F: GTCTCCTCTGACTTCAACAGCG
 R: ACCACCCTGTGCTGTAGCCA</td>
</tr>
<tr>
<td>NETRİN-1</td>
<td>F: ACTGCGATTCCTACTGCAAGGC
 R: TTGTCCGCCTTCAGGATGTGGA</td>
</tr>
<tr>
<td>NETRİN-4</td>
<td>F: CAGAAGGACAGTATTTGCCAGAGG
 R: GCAGAAGGTCACTGAGTTGGCA</td>
</tr>
<tr>
<td>UNC5B</td>
<td>F: GCTCGACTCTAAGAACTGCACAG
 R: TGAGGATTGCCACGACCAGAA</td>
</tr>
</tbody>
</table>

F: Forward, R: Reverse
İMMÜNOSİTOKİMYASAL BOYAMA

Human uterine leiomyosarkoma hücre hattı, (SK-UT-1), (American Tissue Culture Collection (ATCC®, Manassas, VA, USA) kriyotüplere %10 Fetal Bovin Serum (FBS), % 1 penisilin -streptomisin içeren 1 ml Eagle’s Minimum Essential Medium (EMEM) eklenerek çözüldü. Çözülen hücreler santrifüj edildikten sonra 25’lik flasklara ekilip her gün takip edildi. Flaskların doluluk oranı %80-90 oranına gelince pasajlandı. Hücreler tripsinizasyon ile kaldırlılıp santrifüj edildikten sonra tripan mavisi ile sayıldı. Her bir chamber slide’də 40.000 hücre olmak üzere 8 kuyucuolu chamber slide a hücreler ekildi. Ekilen hücrelerin yapışması için bir gün beklenildi. Hücreler yaklaşıkta sonra besiyerleri çeviklerle -20°C’de metanolle 5 dakika fikse edildi. Sonra oda ısısında kurumaya bırakıldı. Kuruyan hücrelere ışıkta korunan H2O2 ekledi. 30 dakika bekleldikten sonra 3 kere Fosfat Buffer Saline (PBS) ile yıkandı. 10 dakika boyunca sekonder kit A solüsyonu uygulandı. Prosedürüne göre 1:20 oranında sulandırılan Netrin-1 ve Netrin-4 ve UNC5B primer antikorları uygulanıp 1 gece 4°C’de inkübe edildi. Üç kere PBS ile yıkandıktan sonra sekonder kit B solüsyonu 1 saat boyunca uygulandı. Tekrardan PBS ile yıkanan chamber slide 30 dakika boyunca sekonder kit C solüsyonuna maruz bırakıldı. 3,3 diaminobenzidine (DAB) ve karşıt boyama olarak hematoksilen ile boyanan chamber slide entellan ile kapatıldı.

İmmunohistokimyasal Boyama Yöntemi

Uygulanan protokol sırasıyla aşağıdaki gibidir:

1) Lam taşıma sepeti 1 gece etüvde bekletildi.
2) Ksilende 1 saat deparafinizasyon işlemi için bekletildi.
3) Kesitler sırasıyla %100, %90, %80, %70, %50 azalan etil alkol serilerinde 2′şer dakika bekletilerek rehidrasyon işlemi sağlandı.
4) Distile su ile 3 kez 5 dakika süreyle yıkandı.
5) Antijen retrieval işlemi ısıyla sağlandı. Hazırlanan sodyum sitrat buffer (1 L distile su, 2.94 gr tri-sodium citrate, 0,5 ml Tween 20, pH 6,0) içerisinde alınarak mikrodalgaya konuldu. Kaynamaya başladıktan sonra 5 dakika bekledi ve çıkartılıp soğutuldu.
6) PAP pen ile dokuların etrafi yuvarlak şekline çizildi.
8) Dokulardaki endojenperoksidaz aktivitesi, % 3′lük H2O2 (450 ml absolut metanol-IsoLab, 50 ml hidrojen peroksit solüsyonu-IsoLab) ile 10 dakikalık uygulama ile ortadan kaldırdı.
9) PBS ile 3 kez 5 dakika süreyle yıkandı.
10) Sekonder kitin immün blok solüsyonu (Seytek Laboratories) pappen ile sınırlandırılmış doku üzerine damlatılıp bekletildi.
11) Primer antikorlar datasheette yazıldığı şekilde distile su ile dilüe edildi. Kesitlerin bulunduğu lamlar üzerinde seçili primer antikorlar damlatılarak 1 gece karanlık ortam oluşturularak inkübasyona bırakıldı. Bu çalışmada kullanılan primer antikorlar; Netrin-1, Netrin-4 ve UNC5B′dir. Dilüsyon oranları 1/100 olarak belirlenmiştir.
12) Kesitler PBS ile 3 kez 5 dakika yıkandı.
13) Primer antikorlarla reaksiyon veren, biotinlenmiş afiniteye sahip sekonder antikor (Scy Tek Lab. Anti-Polyvalent Biotinylated Antibody) damlatılıp 40 dakika bekletildi.
14) PBS ile 3 kez 5′er dakika yıkandı.
15) Biotinlenmiş sekonder antikorla kolayca bağlanabilen horse radish peroksidaz konjuguğu streptavidin dokuların üzerine damlatılarak 40 dakika bekletildi.
16) Kesitler PBS ile 3 kez 5’er dakika yıkandı.
17) Kromojen boyası için DAB (1 ml substrat, 2 damla kromojen) hazırlanı.
 Lamıların üzerinde bulunan kesitlere DAB (Thermo Scientific) damlatılıp 15
 dakika karanlık ortamda bekletildi.
18) Distile su ile 3 kez 5’er dakika yıkandı.
19) Antijen lokalizasyonunun daha iyi göze alınması için hematoksilen (BesLab) ile
 10 saniye muamele edilerek zıt boyama yapıldı.
20) Akan suda yıkandı.
21) Kesitler sırasıyla %50, %70, %80, %90, %96 ve %100’lük artan etil alkol
 serilerinde 2’şer dakika bekletildi.
22) KsilenI’de 2 dakika bekletildi.
23) KsilenII’de 2 dakika bekletildi.

 Lamlara entellan damlatıldı ve hava kabarcığı bırakılmayacak şekilde lamellerle
 kapatıldı.

İmmünohistokimyasal Skorlama

İmmünhistokimyasal reaksiyonlar, ışık mikroskobu ile incelemendi. Netrin-1, Netrin-4 ve UNC5B karşı immünoreaktivite, kahverengi rengin yoğunluğuna göre ayrı ayrı değerlendirildi. Seri olarak kesilmiş normal myometrium bölümlerinden alınan her histolojik örnekten 40X büyütmede tari. Netrin-1, Netrin-4 ve UNC5B ekspresyonu damar yapılarında, bağ dokuda ve myometrium hücre çekirdeği ve sitoplazmasında değerlendirildi. Örnekler boyama yoğunluğuna (boyama yok = 0, zayıf boyama = 1, orta boyama = 2, güçlü boyama = 3) ve boyalı hücrelerin kapsamına (%0 = skor 0, %1-10 = skor 1, %11–50 = skor 2; > %51 = skor 3) göre değerlendirildi (135,136).

İSTATİSTİKSEL ANALİZ

Tez çalışmasında elde edilen sonuçlar Ortalama ± Standart Sapma (her bir veri için) olarak verilmiştir. Sonuçlar birbirinden bağımsız iki tekrarın ortalaması olarak sunulmuştur. Gruplar arasında fark olup olmadığı GraphPad Prism v.9 uygulaması yardımcıla Student’s t test uygulanarak analiz edilmiştir.
BULGULAR

DOKULARDAKİ GEN EKSPRESYONUN SONUÇLARI

Toplam RNA’nın Görüntülenmesi

‘Gereç ve Yöntem’ kısmında verildiği gibi hazırlanmış bileşenlerin yüklendiği jel, güç kaynağına bağlı ve 90 Volt, 500 mA’da 45 dakika boyunca yürütülmüşdür. Yürütme işlemi sonunda jel, gelLite Jel Görüntüleme Cihazı (Cleaver Scientific) kullanılarak görüntülenmiştir. Sonuçlar her iki örnekte RNA’nın bozulmadan izole edildiğini göstermektedir (Şekil 9).

![Şekil 9: HTB-114 leiomyosarkom hücre hattı ve normal uterin myometrium dokusundan elde edilen RNA’nın %1’lik agaroz jel elektroforezi. Soldan sağa (1) 1kb opti-DNA marker, (2) HTB-114 ve (3) doku örneğinden izole edilen RNA.]

PZR ile mRNA Ekspresyonlarının Tayını

Gerçek zamanlı PZR çalışması ile Netrin-1, Netrin-4 ve UNC5B genlerinin HTB-114 hücre hattı ile normal myometriyal doku örneğindeki ekspresyonları araştırılmıştır (Şekil 10-13). Şekil 10’da verildiği gibi erime eğrisi analizi doğrultusunda Netrin-1, Netrin-4 ve UNC5B geninin tüm örneklerde eksprese olduğu gözlemленmiştir.
Şekil 10: PZR Ürünlerinden Elde Edilen Jel Görüntüleri.
Şekil A: (1) 1kb opti-DNA marker, (2) Doku/Netrin-1, (3) HTB-114/Netrin-1, (4) Doku/Netrin-4, (5) HTB-114/Netrin-4. Şekil B: (1) 1kb opti-DNA marker, (2) HTB-114/UNC5B, (3) Doku/UNC5B.

Şekil 11: İnsan Normal Myometrium ve HTB-114 hücre hattındaki Netrin-1’in PZR Erime Eğrisi Analizi.

Şekil 12: İnsan Normal Myometrium ve HTB-114 hücre hattındaki Netrin-4’un PZR Erime Eğrisi Analizi.
Şekil 13: İnsan Normal Myometrium ve HTB-114 hücre hattındaki UNC5B’nin PZR Erime Eğrisi Analizi.

Gerçek Zamanlı PZR çalışması sonucunda Netrin-1, Netrin-4 ve UNC5B genlerinin HTB-114 hücre hattında, doku örneğine göre sırasıyla 4.92, 65.34 ve 160.33 kat daha fazla ekspresyonu edildiği tespit edilmiştir.

Şekil 14: Gerçek Zamanlı PZR sonuçlarına göre Netrin-1 geninin HTB-114 ve doku örneğindeki bağıl mRNA ekspresyonu analizi.

*HTB-114’ten önemli derecede farklı (P <0.05, Student’s t-test). Doku için p değeri: 0.0459
Şekil 15: Gerçek Zamanlı PZR sonuçlarına göre Netrin-4 geninin HTB-114 ve doku örneğindeki bağıl mRNA ekspresyonu analizi.

HTB-114’ten önemli derecede farklı (P <0.05, Student’s t-test). Doku için p değeri: 0.0153

Şekil 16: Gerçek Zamanlı PZR sonuçlarına göre UNC5B geninin HTB-114 ve doku örneğindeki bağıl mRNA ekspresyonu analizi.

HTB-114’ten önemli derecede farklı (P <0.05, Student’s t-test). Doku için p değeri: 0.0307

Sonuçlar doğrultusunda Netrin-1, Netrin-4 ve UNC5B genlerinin çalışmada yer alan tüm örneklerde eksprese edildiği ve özellikle HTB-114 hücre hattında kontrol myometrium dokusuna göre bu genlerin daha fazla eksprese olduğu ortaya konulmuştur.
İMMÜNOHİSTOKİMYASAL BULGULAR

Netrin-1

Cerrahi olarak alınan normal insan myometrium dokusunun immünohistokimyasal incelemesinde Netrin-1 ekspresyonunun kas hücreleri arasındaki bağ dokusunda hafif düzeyde (Skor: 1) ve damar bağ dokusunda orta düzeyde (Skor: 2) boynama olduğu saptandı. Myometrium hücre çekirdeği ve sitoplazmasında boynama saptanmadı (Skor: 0) (Şekil 17 A1-A2).

HTB-114 hücre hattının immünohistokimyasal incelemesinde Netrin-1 ekspresyonu yoğun olarak çekirdekte olmakla birlikte (Skor: 3), sitoplazma boynaması orta düzeyde (Skor: 2) olduğu saptandı. Bazı alanlarda hücrelerin sitoplazma boyanmasının olmadığı, fakat çekirdek boyanmasının her alanda olduğu görüldü (Şekil 17 B1-B2-B3).

Netrin-4

HTB-114 hücre hattındaki Netrin-4, hücre çekirdeğinde immünohistokimyasal olarak orta-güçlü düzeyde (Skor: 2-3) boyanma gösterdi. Sitoplazma boyanması, çekirdek boyanmasına göre daha zayıf olmakla birlikte, boyanma zayıf-orta düzey olarak saptandı (Skor: 1-2) (Şekil 18 B1-B2-B3).

Şekil 18: İnsan myometrium dokusu ve HTB-114 hücre hattının immünohistokimyasal boyama incelemesi sonucunda Netrin-4 ekspresyon görüntüleri.
B1, B2 ve B3’te çekirdek boyanma skoru 3 olarak hesaplandı.
Ok: İmmünohistokimyasal olarak ekspresyonunun pozitif olduğu bölgeleri işaret eder. Yıldız: Sitoplazmada zayıf boyanmayı gösterir.
UNC5B

Myometrium dokusundaki UNC5B, immünohistokimyasal olarak ekspresyonu damarda orta derece olarak saptandı (Skor: 2). Damar bağ dokusundaki ekspresyon zayıf olarak değerlendirildi (Skor: 1). Myometrium bağ dokusu ve myometriyum hücre sitoplazması ve çekirdeğinde ekspresyon zayıf negatif olarak değerlendirildi (Skor: 0-1) (Şekil 19 A1-A2).

HTB-114 hücre hattındaki UNC5B ekspresyonu, çekirdekte belirgin kuvvetli olarak gözlemlendi (Skor: 3) (Şekil 19 B1-B2-B3). Sitoplazma boyanması yer yer saptanmamakla birlikte, bazı alanlarda zayıf boyanma dikkati çekti (Skor: 1).

Şekil 19: İnsan myometrium dokusu ve HTB-114 hücre hattının immünohistokimyasal boyama incelemesi sonucunda UNC5B ekspresyon görüntülerleri. B1, B2 ve B3 resimlerinde çekirdek boyanma skoru 3 olarak hesaplandı. Ok: İmmünohistokimyasal olarak ekspresyonunun pozitif olduğu bölgeleri işaret eder.
Leiomyosarkomlar (LMS) uterin malignensilerin %1-3’ ünü oluşturur. Leiomyosarkomun ortalama tespit edilme yaşı 43-53’tür. Premenapozal kadınlarda prognoz daha iyi olmaktadır. Uterusun yaklaşık her 800 düz kas tümörlerinden birisi leiomyosarkomdan meydana gelir (8).

Leiomyosarkom, leiomyomdan daha yumuşak ve büyük olma eğilimlidir, ayrıca daha düzensiz kenarlı, hemorajik ve nekrotik olmaktadır.

Leiomyosarkomların ilk semptomları vajinal kanama veya ağrı olabilir. Endometrial biyopsi ile olguların ancak üçte birine ve submukoz yerleşimli olanlara tanı konulabilmekteidir. Hastaların %50-75’inde tek bir lezyon vardır ve %70’inde intramural, %20’sinde submukozaal ve %10’unda subserozal yerleşim görülmektedir. Servikal tutulum leiomyomlara göre daha sıktır (3).

Prognostik faktörler incelendiğinde; tümörün myom içerisinde lokalize kalması, düşük mitoz sayışı, nekroz yoğunluğu ve komşu dokuda hyalinizasyon iyi prognostik faktörler olarak bildirilmektedir.

Tümör derecesi ve diğer histolojik özellikler, tümörlerin klinik davranışını etkileyebilir ve tedavi önerilerinin önemli belirleyicileri olabilir. Lokalize yayılım myometriuma ve pelvik organlara olmaktadır. LMS en yaygın olarak akciğerlere, karaciğere, batına ve pelvise metastaz yapar (65). Kemik ve beyin metastazları daha az yaygın tutulum bölgeleridir. LMS, tanı aşamasından bağımsız olarak yüksek nüks ve ölüm riski ile ilişkili agresif bir tümördür (2).

Çoğu vakada, uterin LMS tanısı, benign olduğu varsayılan uterin leiomyomlara uygulanan histerektomi veya miyomektomiyi takiben konulur (4,5). Total histerektomi sırasında, özellikle menopozal veya perimenopozal hastalarda sıklıkla bilateral salingo-ooferektomi (BSO) yapılır.

Uterusla sınırlı, bozulmamış bir numunenin rezeksiyonunu takiben standart bakım göze alınır. Kemoterapi veya pelvik radyasyon bazen LMS ameliyatından sonra düşünülen bir tedavi şekli olarak görülebilir ancak hiçbir adjuvan tedavi şekliyle karşılaştırıldığında sağ kalım sonuçlarında iyileşme göstermemiştir.

Bütün kanser türlerinde olduğu gibi leiomyosarkomda patofizyolojisinde etken rol oynayan basamakları araştırmak ve hastalığın önceden tespit edilmesi günümüzde temel amaç haline gelmiştir.

iken akciğer, pankreas ve kolon adenokarsinomunun plazmasındaki netrin-1 seviyesi sağlıklı kontrol grubuna göre yüksek değildi (137).

Netrin-1 ile jinekolojik kanserler arasındaki bağlantının araştırıldığı çalışma sayısı kısıtlı olduğu görülmüştür. Mevcut çalışmalar içinde Papanastasiou ve arkadaşlarının Netrin-1 ve reseptörü DCC'nin over kanserine dahil olup olmadığını araştırdıkları çalışmada, Netrin-1 ve DCC mRNA'ları, sağlıklı ve kanserli over dokularında gerçek zamanlı PZR ile ölçülmüştür. Over kanseri örneklerinin %76'sında Netrin-1'in aşırı ifade edildiği bulunmuştur. Artan Netrin-1 mRNA seviyeleri, ilerlemiş tümör evresi ve derece ile ilişkilendirilmiştir. Tersine, test edilen over tümörlerinin %59'unda (10/17) DCC'nin aşağı regüle olduğu bulunmuş, ancak sağlıklı örneklerle karşılaştırıldığında korelasyon anlamlı bulunmamıştır. Burada, Netrin-1'in over kanserinde rolü, ilerlemiş tümörlerde sağlanacağı gösterilmiştir. Artmış Netrin-1 mRNA ifadesi over malign tümörlerinde sağlıklı dokulara göre güçlü bir şekilde yukarı regüle edilmiştir. Artmış Netrin-1'in spesifik olarak kanserli dokularda gözlemlenmesi, Netrin-1'in over kanser için yeni bir biyobelirteç adayı olabileceğini gösterir (138).

Yine benzer şekilde Li ve arkadaşları Netrin-1’in over karsinomu dokusunda artış gösterdiginde tümör proliferasyonu, invazyonu ve tümör hücrelerinin anjiogenezinin arttığını göstermiştir (139).

Kato ve arkadaşlarının endometriumda ve endometriyal kanserde DCC ve ligandi netrin-1’in ekspresyonunun inceleyen çalışmasında ise DCC/netrin-1 sinyalinin hücreleri proliferasyondan salgalama fazına geçişe yönlendirebileceğini düşünülmektedir. Ek olarak, DCC ekspresyonunun susturulması, endometriyal kanser hücrelerinin DCC tarafından düzenlenen bir apoptotik programdan kaçışına ve maligniteye dönüşüme katkıda bulunduğu tespit edilmiştir (140).

Serviks kanserleri ile netrin ve reseptörleri arasındaki iliškiyi inceleyen diğer bir çalışmada da uzun kodlamayan RNA'lar (lncRNA'lar), servikal kanserler dahil olmak üzere çok sayıda kötü huyu tümörün başlaması ve gelişmesi için önemli düzenleyici faktörler olduğu izlenmiştir. LncRNA, UNC-5 netrin reseptörü B antisens RNA 1'in
ifadesinde normal dokulara kıyasla servikal skuamöz hücreli karsinom ve endoservikal adenokarsinom dokularında artış olduğu bulunmuştur (141).

Bizim çalışmamızda ise RT-PCR sonuçlarına göre Netrin-1 geninin normal myometrium dokusuna kıyasla, HTB-114 leiomyosarkom hücre hattında 4,92 kat fazla eksprese olduğunu tespit ettik ve bu ekspresyon farkının istatiksel olarak anlamlı olduğunu gördük. Ayrıca yapılan immunohistokimyasal boyamalarda, normal myometrium dokusuna kıyasla HTB-114 leiomyosarkom hücre hattında hücre çekirdeği ve sitoplazmasında yüksek oranda Netrin-1 ekspresyonunun olduğunu izledik ve bunun özellikle hücre bölünmesi dolayısıyla kontrolsüz çoğalma üzerinde etkili olabileceğini düşünmektediz. Bu sonuçlara dayanarak Netrin-1’in leiomyosarkom gelişiminde rol oynadığını ve yeni bir biyobelirteç adayı olabileceğini söyleyebiliriz.

Netrin-4 ve kanser ilişkisini gösteren çalışmaların Netrin-1’e kıyasla daha kısıtlı olduğu izlenmiştir. Mevcut çalışmalarında da Netrin-4’ün kanser türü ve orijin aldığı dokuya göre farklı rol üstlenebileceği görülmüştür. Örneğin Lv ve arkadaşlarının mide kanserli hastalarda yaptığı çalışmada, tümör dokusunda ve serum örneğinde Netrin-4 seviyesinin önemli ölçüde arttığını; Netrin-4 ve reseptörü neogenin aracılığıyla multi-onkojenik yolların daha fazla aktiveşyonuyla mide kanseri hücrelerinin çoğalmasını ve hareketliliğini destekleği, yüksek Netrin-4 seviyelerinin kısa bir sağkalım ile korele olduğu tespit etmişlerdir (114).

Bunun aksine Eveno ve arkadaşları yaptıkları çalışmalarda Netrin-4’ün aşırı ekspresyonunun kolorektal akciğer metastazını ve bununa ilişkili lenf nodu tutulumunu azalttığını ayrıca Netrin-4 aşırı ekspresyonunun, muhtemelen bir anti-anjyogenik etki yoluya, cerrahi rezeksiyondan sonra tümör nüksünü ve metastazını azalttığını göstermişlerdir (142).

Benzer şekilde Reuten ve arkadaşları in vitro kanser hücre hatları ve in vivo fare modellerinde bazal membranda kanserle ilişkili fibroblastlar ve endotelyal hücreler tarafından salgılanan Netrin-4’ün varlığının tümör hücresi istilası ve metastazını engellediğini göstermiştir (143).
Jinekolojik kanserler ve Netrin-4 arasındaki ilişkiyi gösterir yalnızca bir çalışma izlenmiştir. Zhang ve ark. Netrin-4’ün serviks kanseri dokusunda miR-192a için bir 46 hedef olduğunu ve servikal kanser dokusunda, normal servikal dokuya kıyasla down regüle olduğunu belirtmişlerdir.

Çalışmamızdaki RT-PCR sonuçlarına göre Netrin-4 geninin normal myometrium dokusuna kıyasla, HTB-114 leiomyosarkom hücre hattında 65,34 kat fazla eksprese olduğunu ve bu ekspresyon farkının istatiksel olarak anlamlı olduğunu tespit ettik. Ayrıca yapılan immunohistokimyasal boyamalarda, normal myometrium dokusuna kıyasla HTB-114 leiomyosarkom hücre hattında hücre çekirdeğinde yüksek derecede ve hücre sitoplasmasında ise orta derecede Netrin-4 ekspresyonunun olduğunu izledik. Aynı Netrin-1 de olduğu gibi Netrin-4’ün de hücre bölünmesi ve kontrolsüz çoğalma üzerinde etkili olabileceği düşünmektediz. Bu veriler ışığında Netrin-4’ün leiomyosarkom gelişiminde rol oynadığını ve yeni bir biyobelirtec adayı olabileceği söylenebiliriz.

UNC5B, netrin ailesinin üzerinden etki gösterdiği reseptörlerden biridir ve birçok kanser yolağında veya patofizyolojisinde etkin rol oynamaktadır. Tan ve ark., UNC5B-AS1’nin akciğer kanser dokusunda yüksek oranda eksprese olduğunu ve UNC5B-AS1 ekspresyonu down regüle edildiğinde adezyon, invazyon ve migrasyonun inhibe olduğunu göstermiştir (144). Benzer şekilde Fu ve arkadaşları servikal kanser dokusunda ve hücrelerinde UNC5B-AS1’in up regüle olduğunu ve UNC5B-AS1 inhibisyonu ile serviks kanseri gelişimini hem in vivo hem de in vitro olarak azalttığını göstermişlerdir (145). Zeng ve arkadaşlarının over kanseri üzerine yaptıkları çalışmada da UNC5B’nin over kanseri dokusunda onkojenik bir gen olarak davranıldığı gösterilmiştir (146).

Bizim çalışmadımızda da RT-PCR sonuçlarına göre UNC5B geninin, HTB-114 leiomyosarkom hücre hattında normal myometrium dokusuna kıyasla 160,33 kat daha fazla eksprese edildiği gözlandı. İmmunohistokimyasal incelemede de normal myometrium dokusuna kıyasla HTB-114 leiomyosarkom hücre hattındaki hücre çekirdeklерinde yüksek derecede eksprese edildiği izlendi. Buradan UNC5B’nin leiomyosarkom oluşumunda onkogenik bir gen olarak davrantığı söylenebilir.
SONUÇ

Sonuç olarak çalışmamızdan elde ettüğimiz veriler ışığında Netrin-1, Netrin-4 ve UNC5B’nin leiomyosarkom gelişiminde etkili olduğunu, leiomyosarkomda yeni bir biyobelirteç adayları olabilecekleri söyleyebilir ve bir proonkogen olarak görev aldıklarını düşünebiliriz. Bildiğimiz kadardıyla Netrin-1, Netrin-4, UNC5B ve leiomyosarkom ilişkisini değerlendiren çalışmamız, bu alanda literatürdeki ilk çalışmadır. Çalışmamızın sonuçları moleküler düzeyde leiomyosarkom araştırmasına ilişkin umut verici görüşler sunmaktadır.
KAYNAKLAR

127. Li X, Saint-Cyr-Proulx E, Aktories K, Lamarge-Vane N. Rac1 and Cdc42 but not RhoA or Rho kinase activities are required for neurite outgrowth induced by the Netrin-1 receptor DCC (deleted in colorectal cancer) in N1E-115 neuroblastoma cells. J Biol Chem 2002;277(17):15207-15214.

