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Abstract Just after Weyl’s paper (Weyl in Gravitation und
Elektrizität, Sitzungsber. Preuss. Akad., Berlin, 1918) Ein-
stein claimed that a gravity model written in a spacetime
geometry with non-metricity suffers from a phenomenon,
the so-called second clock effect. We give a new prescrip-
tion of parallel transport of a vector tangent to a curve which
is invariant under both of local general coordinate and Weyl
transformations in order to remove that effect. Thus since the
length of tangent vector does not change during parallel trans-
port along a closed curve in spacetimes with non-metricity,
a second clock effect does not appear in general, not only for
the integrable Weyl spacetime. We have specially motivated
the problem from the point of view of symmetric teleparal-
lel (or Minkowski–Weyl) geometry. We also conclude that
if nature respects Lorentz symmetry and Weyl symmetry,
then the simplest geometry in which one can develop consis-
tently alternative gravity models is the symmetric teleparallel
geometry; Qμν �= 0, Tμ = 0, Rμ

ν = 0. Accordingly we
discuss the proper time, the orbit equation of a spinless test
body and the Lagrangian for symmetric teleparallel gravity.

1 Introduction

In general relativity (GR) idealised massive spinless test par-
ticles moving only under a gravitational field have space-
time histories (orbits) that coincide with timelike geodesic
(autoparallel) curves associated with the spacetime metric.
On the other hand, in modified theories of gravity formu-
lated in non-Riemannian spacetimes with torsion and/or non-
metricity, geodesic and autoparallel curves are not the same
and it is not so clear to decide the orbit equation of test
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body. In Einstein’s pseudo-Riemannian description of grav-
itation the affine parameter, τ , physically is taken as proper
time which is measured by a standard clock that is mod-
eled by any timelike curve xμ(τ). Thus in spite of the fact
that proper time passed between two events connected by
xμ(τ) is path dependent, a standard Einsteinian clock accepts
a proper time parametrization independent of its trajectory.
Nevertheless, in GR after a parallel transportation of two
identical clocks, which are synchronized at the beginning,
along different paths, the synchronization disappears. This
is known as the first clock effect. On the other hand, in
a non-Riemannian geometry containing non-metricity the
identification of a clock as a device for measuring proper
time requires more care since Hermann Weyl published his
influential papers on unification of gravity and electromag-
netism [1,2]. Weyl required that the covariant derivative sat-
isfies the semimetricity condition, ∇σ gμν = −2Bσ gμν in his
theory where Bσ is the Weyl potential vector. Just after his
announcement Einstein criticized his theory by saying that
rate of a clock must be dependent of its trajectory (history)
which is called second clock effect (SCE). Since a SCE has
never been observed in laboratory, Weyl’s theory fell out of
favor over time. In [3] observational constraints are set on
SCE by investigating recent data on the dilated lifetime of
muons accelerated by a magnetic field in CERN.

However, there is a plenty of work containing non-
metricity which is performed in the context of modified theo-
ries of gravity in literature, e.g. see [4–23] and the references
therein. Thus since it is to be worthy to strive for clarifying if
there is definitely a SCE or a way for avoiding that in space-
times with non-metricity, there have been researches [24–34].
In [24] the authors give some axioms and their proofs about
a standard clock for measuring proper time in terms of just
light rays and freely falling massive particles. Parallel to this
work in [25] the author presents a mathematical character-
ization of standard clocks in a Weyl manifold which yields
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an experimental method to test if a given clock is a standard
clock or not. In [26,27] the definitions of standard clocks
in theories of gravitation formulated in the non-Riemannian
spacetime geometries are discussed and it seems possible to
define a new standard clock that will be able to measure the
affine parameter by considering the invariance of action and
the full connection under gauge symmetries. The authors of
[28] find that a Weyl integrable spacetime is the most general
Weyl geometry in which a generalized clock defined by Per-
lick [25] does not measure a SCE. Additionally, in lemma 2
of reference [29] it is stated and proved that the inner prod-
uct is path-independent iff R(ab) = 0, and so the authors
conclude that a SCE does not arise in symmetric teleparallel
spacetimes. Accordingly, for a non-Riemannian geometry
not satisfying the condition R(ab) = 0 a SCE may still be
open problem there. In the very recent papers [30,31] it is
argued that a SCE does not occur in Weyl gauge theories of
gravity, which are invariant both under local Poincare trans-
formations and local changes of scale. On the other hand, in a
different work the authors of [32] argue that Perlick’s general-
ized clocks measure a SCE in any non-Riemannian theory of
gravity having non-metricity except the form Qμν = gμνdϕ

where ϕ is a smooth function. Correspondingly, they state
explicitly that generalized clocks in the so-called symmetric
teleparallel theories will in general measure a SCE. Simi-
larly, in the recent paper [33] it is argued that the symmetric
teleparallel theories of gravity do not represent phenomeno-
logically viable descriptions of nature due to SCE. Then in a
subsequent article [34] the same researcher argues that when
only Weyl integrable spacetimes, Qμν = gμνdϕ, are consid-
ered, the Weyl gauge theories and the symmetric teleparallel
gravity theories are free of a SCE. In this work we discuss
SCE especially for theories of symmetric teleparallel grav-
ity and conclude that a non-Riemannian spacetime geometry
with non-metricity does not need to suffer from second clock
effect in general, not only for Weyl integrable spacetimes,
by defining a new parallel transport rule of a tangent vector
which is invariant under a local general coordinate transfor-
mation and a Weyl (conformal or scale) transformation. Our
result is not valid only for a symmetric teleparallel space-
time geometry but also for any non-Riemannian geometry
containing both non-metricity and torsion. In addition, we
arrive at a second conclusion that as long as nature respects
Weyl symmetry apart from the Lorentz symmetry, the sim-
plest spacetime geometry in which alternative gravity mod-
els can be written is the symmetric teleparallel spacetime
defined by Qμν �= 0, Tμ = 0, Rμ

ν = 0. In our third con-
clusion we saw that meta-geodesic curve may be used rather
than autoparallel curve in order to represent the orbit of a
spinless test body moving under influence of only a gravitat-
ing source. At the end we write down a Lagrangian 4-form
invariant under the Lorentz, the Weyl and U (1) transforma-
tions which can be a unification theory of gravitational and

electromagnetic interactions. Our formalism is developed in
terms the language of exterior algebra [35,36].

2 The mathematical preliminaries

In spite of the fact that we discuss the subject in four dimen-
sions in this work, all the content in this section is valid in
any dimensions. The spacetime, in general, is denoted by the
triple {M, g, ω} where M is the 4-dimensional orientable and
differentiable manifold, g is the (0,2)-type symmetric and
non-degenerate metric tensor, ω is the connection 1-form
representing the parallel transport of the tensors (and also
spinors). We set up a coordinate system {xμ}, μ = 0̂, 1̂, 2̂, 3̂,
to represent points (events) in M . With the abbreviation
∂μ := { ∂

∂xμ }, the set {∂μ} denotes a frame. The union of
frames constructed on all points of M constitutes the coordi-
nate (holonomic) frame bundle, CF(M), over M . We notate
the dual of CF(M) by CF∗(M), the so-called coordinate
(holonomic) co-frame bundle over M . Duality relation is
given by dxμ(∂ν) = δ

μ
ν where the set {dxμ} forms a co-

frame and δ
μ
ν is the Kronecker symbol. In the language of

exterior algebra, the elements of {dxμ} are called the coordi-
nate (holonomic) 1-forms. We can write the metric tensor in
terms of the coordinate co-frame g = gμνdxμ⊗dxν where ⊗
denotes symmetric tensor product, dxμ⊗dxν = dxν ⊗dxμ.
Thus gμν is the symmetric coordinate components of metric
which is determined by the scalar product of the coordinate
co-frame, g(∂μ, ∂ν) = gμν . Finally we define connection (or
covariant derivative) on any (p, q)-type tensor-valued exte-
rior form T

μ1μ2···μp
ν1ν2···νq below

DT
μ1μ2···μp

ν1ν2···νq = dT
μ1μ2···μp

ν1ν2···νq + ωμ1
σ ∧ T

σμ2···μp
ν1ν2···νq + · · ·

+ωμp
σ ∧ Tμ1μ2···σ

ν1ν2···νq − ωσ
ν1 ∧ T

μ1μ2···μp
σν2···νq − · · ·

−ωσ
νq ∧ T

μ1μ2···μp
ν1ν2···σ (1)

where ∧ is the exterior product, d is the exterior derivative
satisfying the Poincare lemma d2 = 0, ωμ

ν is the full con-
nection 1-form of CF∗(M) and D is the covariant exterior
derivative with respect to ωμ

ν . Thus we can write down the
Cartan structure equations; non-metricity 1-form, torsion 2-
form and full curvature 2-form, respectively,

Qμν := −1

2
Dgμν = 1

2
(−dgμν + ωσ

μgσν + ωσ
νgμσ ),

(2a)

Tμ := Ddxμ = ωμ
ν ∧ dxν, (2b)

Rμ
ν := Dωμ

ν := dωμ
ν + ωμ

σ ∧ ωσ
ν, (2c)
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where we use the Poincare lemma on the right had side of
torsion. They satisfy the Bianchi identities

DQμν = 1

2
(Rμν + Rνμ), (3a)

DTμ = Rμ
ν ∧ dxν, (3b)

DRμ
ν = 0. (3c)

The spacetime geometry is classified with respect to vanish-
ing of Qμν , Tμ and Rμ

ν as shown in Table 1.
In a coordinate frame the full connection 1-form can be

decomposed uniquely as the Riemannian piece plus non-
Riemannian piece [4–6]

ωμ
ν = ω̃μ

ν + Lμ
ν (4)

where the Levi-Civita (Christoffel) connection 1-form ω̃μ
ν

is expressed in terms of metric

ω̃μ
ν = 1

2
gμσ (∂γ gσν + ∂νgσγ − ∂σ gνγ )dxγ (5)

and the disformation tensor valued 1-form Lμ
ν contains ten-

sors of non-metricity 1-form and torsion 2-form

Lμν = Qμν + (ινQσμ − ιμQσν)dx
σ

+1

2

[

ιμTν − ινTμ − (ιμινTσ )dxσ
]

(6)

where ιμ is the interior product of the exterior algebra,
ινdxμ = δ

μ
ν . In the literature sometimes Tμ is given by

the contortion 1-form Kμν = −Kνμ via the expression
Kμ

ν ∧ dxν = Tμ. Under the decomposition (4) we can
split the full curvature 2-form in the Eq. (2c) as the Rieman-
nian curvature 2-form, ˜Rμ

ν = dω̃μ
ν + ω̃μ

σ ∧ ω̃σ
ν , plus the

non-Riemannian pieces

Rμ
ν = ˜Rμ

ν + ˜DLμ
ν + Lμ

σ ∧ Lσ
ν (7)

where ˜D denotes the covariant exterior derivative with
respect to the Levi-Civita connection 1-form ω̃μ

ν .
By using vielbein (tetrad) hμ

a we can pass from a coor-
dinate frame {∂μ} to an orthonormal frame {Xa} by rela-
tion Xa = hμ

a∂μ where a = 0, 1, 2, 3. Of course, we
have the inverse, ∂μ = haμXa such that hbμhμ

a = δba
and hμ

ahaν = δ
μ
ν . Through this work Latin indices are the

orthonormal (Lorentz or sometimes anholonomic) indices
taking values 0, 1, 2, 3 and Greek ones are the coordinate
(holonomic) values taking values 0̂, 1̂, 2̂, 3̂. Here orthonor-
mality becomes explicit when we write the metric tensor in
the orthonormal (Lorentz) co-frame {ea} as g = ηabea ⊗ eb

where ηab is the Minkowski metric with the signature ηab =
diag(−1,+1,+1,+1). Then metric components are related
through vielbein, ηab = hμ

ahν
bgμν or gμν = haμhbνηab.

Union of orthonormal frames constructed over all points of

M constitutes the orthonormal frame bundle, OF(M), and
its dual is the orthonormal co-frame bundle, OF∗(M), over
M . Duality relation is ea(Xb) = δab . Again we can use viel-
bein for transitions between {dxμ} and {ea} by relations
ea = haμdxμ or dxμ = hμ

aea . Correspondingly, while
a co-frame transforms from {dxμ} to {ea} in the form of
ea = haμdxμ, in order D to transform covariantly, i.e.
Dea = haμDdxμ, the full connection 1-form must trans-
form as follows

ωa
b = haμωμ

νh
ν
b + haμdh

μ
b, (8a)

ωμ
ν = hμ

aω
a
bh

b
ν + hμ

adh
a
ν . (8b)

Thus in the orthonormal frame we can rewrite non-metricity
1-form, torsion 2-form and the full curvature 2-form, respec-
tively,

Qab := −1

2
Dηab = 1

2
(ωab + ωba) = hμ

ah
ν
bQμν, (9a)

T a := Dea = dea + ωa
b ∧ eb = haμT

μ, (9b)

Ra
b := Dωa

b := dωa
b + ωa

c ∧ ωc
b = haμh

ν
bR

μ
ν. (9c)

The Bianchi identities given by (3) may be rewritten read-
ily in the orthonormal frame if wanted. Now we can again
decompose the full connection 1-form, ωab, as the Rieman-
nian part plus others.

ωab = ω̃ab + Lab (10)

where the Levi-Civita connection 1-form, ω̃ab, is obtained
from orthonormal co-frame,

ω̃ab = 1

2

[−ιadeb + ιbdea + (ιaιbdec)e
c] , (11)

and the disformation 1-form from non-metricity and torsion

Lab = Qab + (ıbQac − ıa Qbc)e
c

+1

2

[

ιaTb − ιbTa − (ιaιbTc)e
c] . (12)

3 Local general coordinate transformation, Weyl
transformation and second clock effect

In this section firstly we consider the general coordinate
transformation (GCT) on M by forgetting the origin

xμ → xμ′ = �μ′
μx

μ + ξμ′
(13)

where �μ′
μ represents the rotational part and ξμ′

transla-
tional part. Because of the translational piece, the origins
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Table 1 Classification of spacetime. In literature, sometimes firstly Qμν is decomposed as Qμν = Qμν + 1
4 gμνQ where gμνQμν = Q and

gμνQμν = 0, then the case of Qμν = 0 and Q �= 0 is called Weyl geometry. But, here by “Weyl geometry” we mean Qμν �= 0 in general

Qμν Tμ Rμ
ν Geometry

1 0 0 0 Minkowski

2 0 0 �= 0 Riemann

3 0 �= 0 0 Weitzenböck teleparallel

4 0 �= 0 �= 0 Riemann–Cartan

5 �= 0 0 0 Symmetric teleparallel

6 �= 0 0 �= 0 Riemann–Weyl

7 �= 0 �= 0 0 General teleparallel

8 �= 0 �= 0 �= 0 Most general

of two coordinate systems, {xμ} and {xμ′ }, do not have to
coincide. GCT can be written in matrix notation.

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x 0̂′

x 1̂′

x 2̂′

x 3̂′

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

�0̂′
0̂ �0̂′

1̂ �0̂′
2̂ �0̂′

3̂ ξ 0̂′

�1̂′
0̂ �1̂′

1̂ �1̂′
2̂ �1̂′

3̂ ξ 1̂′

�2̂′
0̂ �2̂′

1̂ �2̂′
2̂ �2̂′

3̂ ξ 2̂′

�3̂′
0̂ �3̂′

1̂ �3̂′
2̂ �3̂′

3̂ ξ 3̂′

0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x 0̂

x 1̂

x 2̂

x 3̂

1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(14)

Here 5 × 5 transformation matrices form the affine group.
In general, GCT may be dependent of coordinates. In other
words, we consider a local GCT, �μ′

μ = �μ′
μ(x) and ξμ′ =

ξμ′
(x). Thus, by taking the exterior derivative of a local GCT

we obtain the transformation rule in CF∗(M) over M

dxμ′ = �μ′
μ(x)dxμ (15)

where �μ′
μ(x) := [∂μ�μ′

ν(x)]xν + �μ′
μ(x) + ∂μξμ′

(x).
These transformation elements can be represented by 4 × 4

matrices,
[

�μ′
μ(x)

]

, and also form the general linear group,
[

�μ′
μ(x)

]

∈ Gl(4,R). If the full connection of CF∗(M)

transform in the following way

ωμ′
ν′ = �μ′

μωμ
ν�

ν
ν′ + �μ′

μd�μ
ν′ . (16)

then, the covariant exterior derivative transform covariantly.
Thus the non-metricity 1-form, the torsion 2-form and the
full curvature 2-form of CF∗(M) transform covariantly

Qμ′ν′ = �μ
μ′�ν

ν′Qμν, (17a)

Tμ′ = �μ′
μT

μ, (17b)

Rμ′
ν′ = �μ′

μR
μ

νL
ν
ν′ . (17c)

By usage of vielbein we can obtain the transformation rule
in OF∗(M) over M generated by a local GCT on M

dxμ′ = hμ′
a′ea

′
and dxμ = hμ

ae
a (18)

where hμ′
a′ = hμ′

a′(x ′(x)) and hμ
a = hμ

a(x). After sub-
stituting these into the Eq. (15) and then by using the relation
hb

′
μ′hμ′

a′ = δb
′

a′ we obtain

ea
′ = La′

ae
a (19)

where La′
a(x) := ha

′
μ′hμ

a�
μ′

μ. In order to decide which
group is formed by La′

a(x) we look at the transformation of
metric components

g = ηabe
a ⊗ eb = ηa′b′ea

′ ⊗ eb
′

(20)

whereηab = ηa′b′ = diag(−1,+1,+1,+1) is the Minkowski
metric. Together with ea

′ = La′
aea that yields ηab =

La
a′ηabLb

b′ . In the matrix notation it is read as [ηab] =
[

La
a′

]T
[ηab]

[

Lb
b′
]

where T denotes the transpose matrix.

This shows that the transformation elements, La′
a , obtained

from a local GCT generate the Lorentz group SO(1, 3) in
OF∗(M) [16,35,36]. That is the reason for {ea} to be called
the Lorentzian co-frame. Accordingly, for covariant exte-
rior derivative to transform covariantly the full connection
of OF∗(M) must transforms as follows

ωa′
b′ = La′

aω
a
bL

b
b′ + La′

adL
a
b′ . (21)

As a result, under a local GCT the non-metricity 1-form, the
torsion 2-form and the full curvature 2-form on OF∗(M)

transform covariantly

Qa′b′ = La
a′Lb

b′Qab, (22a)

T a′ = La′
aT

a, (22b)

Ra′
b′ = La′

a R
a
bL

b
b′ . (22c)

123



Eur. Phys. J. C (2023) 83 :17 Page 5 of 11 17

As a complementary remark we give the transformation of
veilbein under a local GCT

ha
′
μ′ = La′

ah
a
μ�μ

μ′ . (23)

Secondly we summarize the Weyl (scale or conformal)
transformation independent of local GCT

g → ḡ = e2ψ(x)g (24)

where ψ(x) is a smooth function. That corresponds to
transformations in the coordinate co-frame bundle and the
orthonormal co-frame bundle, respectively,

dx μ̄ = dxμ and gμ̄ν̄ = e2ψ(x)gμν, (25a)

eā = eψ(x)ea and ηāb̄ = ηab. (25b)

Accordingly, the Weyl transformation of vielbein is obtained
as

hμ̄
ā = e−ψ(x)hμ

a and hā μ̄ = eψ(x)haμ. (26)

Thus the conformal (Weyl) weights are w(dxμ) = 0,
w(gμν) = 2, w(ea) = 1, w(ηab) = 0, w(hμ

a) = −1,
w(haμ) = 1. As this transformation rescales the lengths of
vectors, it leaves the angles between two vectors the same.
The transformation element eψ(x) forms the Weyl group, W .
We adhere a notation that a prime and a bar denote a local
GCT and a Weyl transformation, respectively. Besides, inde-
pendently from metric we give W-transformation rule of the
full connection of CF∗(M) and OF∗(M), respectively,

ωμ̄
ν̄ = ωμ

ν and ωā
b̄ = ωa

b − δabdψ. (27)

Thus the non-metricity, the torsion and the full curvature
transform in the coordinate co-frame bundle

Qμ̄ν̄ = e2ψ(x)(Qμν − gμνdψ(x)), (28a)

T μ̄ = Tμ, (28b)

Rμ̄
ν̄ = Rμ

ν, (28c)

and in the orthonormal co-frame bundle

Qāb̄ = Qab − ηabdψ(x), (29a)

T ā = eψ(x)T a, (29b)

Rā
b̄ = Ra

b. (29c)

Correspondingly after a Weyl transformation the spacetime
changes as follows.

W :

Minkowski −→ Symmetric teleparallel
Riemann −→ Riemann–Weyl
Weitzenböck teleparallel −→ Teleparallel
Riemann–Cartan −→ Most general
Symmetric teleparallel −→ Symmetric teleparallel
Riemann–Weyl −→ Riemann–Weyl
General teleparallel −→ Teleparallel
Most general −→ Most general

Then we realize that under a W-transformation the geom-
etry is not invariant in the first half, it is invariant in the
second half. Thus if nature respects Lorentz symmetry and
Weyl symmetry, the simplest geometry in which one can
develop consistently alternative gravity models is the sym-
metric teleparallel spacetime.

In his original work [1,2] Hermann Weyl introduced a new
field which we name the Weyl potential 1-form, B. Thus one
can define a new covariant exterior derivative of a geometrical
object, Oμ, in the coordinate co-frame

̂DOμ = dOμ + ω̂μ
ν ∧ Oν (30)

where the Weyl full connection 1-form ω̂μ
ν is written as

ω̂μ
ν = ωμ

ν + wδμ
ν B. (31)

Here w is the conformal weight of Oμ, i.e. Oμ̄ = ewψ(x)Oμ

and also Oμ′ = �μ′
νOν . In order ̂DOμ to transform in the

same way as Oμ, that is ̂DOμ′ = �μ′
ν
̂DOν and ̂DOμ̄ =

ewψ(x)
̂DOμ under both transformations of a local GCT and

a Weyl transformation, we prescribe transformation rules for
the Weyl 1-form as

B ′ = B and B̄ = B − dψ(x). (32)

In his theory Weyl required that the covariant derivative sat-
isfies the semimetricity condition, ∇σ gμν = −2Bσ gμν . In
our formalism and notation the Weyl equation corresponds
to

Qμν = Bgμν. (33)

This is invariant under both a GCT and a Weyl transforma-
tion. Weyl thought of B as the Maxwell’s electromagnetic
potential 1-form and attempted to argue a unified theory of
gravity and electromagnetism. Just after the publication it
was seen that the Weyl potential 1-form does not couple the
electric current, but to the dilaton current of matter. Indeed,
there is no distinction between interactions of B with particles
and anti-particles and this is the oppose to observational data
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on electromagnetism. Meanwhile the first counter-argument
to Weyl’s theory was developed by Einstein. Einstein argued
that Weyl’s theory predicts a second clock effect (SCE) mean-
ing that the tick-tack rate of a clock is dependent of its world-
line (or history) which has been never observed. This theo-
retical effect is in addition to the well known first clock effect
that is predicted both in special and general relativity and has
been repeatedly observed in experiments. Basically a SCE
originates from the geometric result that norm of a vector
changes during parallel transport along its worldline (trajec-
tory). Therefore, we search parallel transport of the tangent
vector, uμ = dxμ/dλ, of a curve C defined by xμ(λ) where
λ is an affine parameter below. With notation u := |uμ|, the
square of norm (or length) of uμ(λ) is written via metric,
u2 = gμνuμuν . Then we differentiate this with respect to the
full connection, ωμ

ν ,

Du2 = D(gμνu
μuν) ⇒ udu = −Qμνu

μuν + gμνu
μDuν .

(34)

Now the critical question is “what is the rule of parallel trans-
port of a tangent vector to a curve along the curve?”. In the
standard textbooks it is written as

Duμ = 0 ⇒ Duμ

dλ
= 0 ⇒

(

Duμ

∂xν

)(

dxν

dλ

)

= 0 ⇒ uνDνu
μ = 0 (35)

which turns out to be in components

d2xμ

dλ2 + ωμ
ν,σ

dxν

dλ

dxσ

dλ
= 0 (36)

where ωμ
ν,σ := ισ ωμ

ν or ωμ
ν = ωμ

ν,σdxσ . It is worthy
to remind that the full connection ωμ

ν,σ contains the Levi-
Civita, non-metricity and torsion pieces through the Eq. (4).
The rule of parallel transport given by (35) or (36) is also
called as the equation of autoparallel curve. Only in Rie-
mannian spacetimes the equation of autoparallel curve is the
same as the geodesic equation obtained from the extreme

of the integral
∫ λ f
λi

√−gμν(x)(dxμ/dλ)(dxν/dλ)dλ which
defines the length of a timelike curve between the fixed end
points xμ(λi ) and xμ(λ f ). Consequently, after this definition
of parallel transport (35), the Eq. (34) becomes

udu = −Qμν,σu
μuνdxσ .

Here we define the unit vector of uμ as tμ = uμ/u, then
rewrite the equation and integrate it

du

u
= −Qμν,σ t

μtνdxσ ⇒ u = ui e
− ∫ λ f

λi
Qμν,σ tμtνdxσ

(37)

where ui is an integration constant corresponding to the
initial length of the parallel transported vector and u is its
final length. This is the source of debate about SCE which
we discuss below. In conclusion, because of existence of
the non-metricity, in general, the length of a tangent vector
changes during the parallel transport along a closed autopar-
allel curve. In the original Weyl theory, Qμν = Bgμν , this
result yields

u = ui e
∮

C Bμdxμ = ui e
∫

∂S B = ui e
∫

S dB (38)

where we use firstly gμν tμtν = −1 since the unit vector
is timelike, and then the Stokes theorem. Here the closed
curve ∂S is the boundary of S which is the region bounded
by two different trajectories of a clock. In the literature dB
is called as the line curvature (or field strength) and denoted
by F = dB. If F does not vanish in the region S, even if
the initial and final points of the clock are the same, then
the tick-tack rates of the clock are to be different when it
follows the different paths. This is known as SCE. If Weyl
potential 1-form is an exact form, that is B = dϕ for any
scalar function ϕ(x), then automatically F vanishes because
of the Poincare lemma, F = dB = d2ϕ = 0, and SCE
disappears completely. The case of B = dϕ is named as the
Weyl integrable spacetime.

4 Autoparallel curve in the coincident gauge
of symmetric teleparallel geometry

The geometry defined by the configuration Qμν �= 0, Tμ =
0, Rμ

ν = 0 is the symmetric teleparallel geometry. The mod-
ified theories of gravity written in this geometry is called as
the symmetric teleparallel gravity (STPG). This configura-
tion gives three constraints

−dgμν + ωμν + ωνμ �= 0, (39a)

ωμ
ν ∧ dxν = 0, (39b)

dωμ
ν + ωμ

σ ∧ ωσ
ν = 0. (39c)

One can not solve ωμ
ν analytically through these equations

since the last one is not linear algebraic for it. But it could have
been done in the Riemannian geometry, Qμν = 0, Tμ = 0,
Rμ

ν �= 0. Nevertheless, one special solution to the Eq. (39)
for ωμ

ν is to consider the case below

ωμ
ν = 0 ⇒ Qμν = −1

2
dgμν �= 0,

Tμ = 0, Rμ
ν = 0. (40)
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This is called the coincident gauge.1 Of course, one can pass
to a different gauge (or coordinate system) via a local GCT
(16) such that ωμ′

ν′ �= 0, but still Qμ′ν′ �= 0, Tμ′ = 0 and
Rμ′

ν′ = 0. In the case of coincident gauge the standard rule
of parallel transport of a tangent vector (34) yields

duμ = 0 ⇒ d2xμ

dλ2 = 0. (41)

This is too far from representing the orbit of a spinless test
particle in STPG. One attempt to overcome this problem is
performed by two of us in the reference [23] in which a novel
prescription for parallel transport of a vector was defined.
However its Weyl invariance and SCE were not discussed.
We realize that our original prescription (the Eq. (16) in [23])
and the standard prescription (the Eq. (35) here) for parallel
transport of a tangent vector are invariant under a local GCT,
but not under a Weyl transformation. Consequently we give
a new rule for parallel transport of a tangent vector, uμ, to a
curve xμ(λ)

Duμ = Qμ
νu

ν (42)

which is invariant under both a local GCT and a Weyl trans-
formation. Also, this is free from SCE in general, not only
for an integrable Weyl spacetime since the length of a vector
needs not to change during parallel transport in spacetimes
with non-metricity, D |uμ| = 0. This new parallel transport
equation corresponds to the set of a = 1, b = c = 0 in the
equation (16) of [23]. In the Ref. [30] the authors keep the
length of a vector unchanged on completing a loop, and so
remove the original basis suggesting the existence of an SCE
by postulating a new metric compatibility condition and a
rule for parallel transport of a vector

̂Dgμν = 0 and ̂Duμ = 0. (43)

They stay invariant under both a local GCT and a Weyl trans-
formation. Their equations may be expanded as

̂Dgμν = Dgμν + 2gμνB = 0 ⇒ Qμν = gμνB, (44a)
̂Duμ = Duμ − Buμ = 0 ⇒ Duμ = Buμ. (44b)

Thus their solution in order to terminate a SCE is valid only
for a restricted components of the non-metricity: from the
semicompatibility B = Q/4 = gμνQμν/4, then the parallel
transport Duμ = Quμ/4. On the other hand, our suggestion
(42) is valid for all components of it. For example, a special
choice of Qμν = gμνQ/4 in (42) coincides with the result

1 When we firstly realized this trick, we called it as a gauge fixing in
our paper [12], later we read the nomenclature coincident gauge in the
literature.

of [30]. Similarly the author of [34] bases his discussion on
the assumption B = Q yielding

Qμν = gμνQ = gμν[aQ + (1 − 4a)ισ Q
σ

αdx
α] (45)

where a is left as a free parameter. Since the choice of a =
1/4 corresponds to (44a), it seems more general than the
work [30], but still more restricted than our result (42). We
started our discussion with the coincident gauge of symmetric
teleparallel spacetimes, but our result is general enough to
cover any non-Riemannian geometry which consists of non-
metricity and torsion.

One more remark is on the proper time, τ . In GR it is
defined as ds2 = gμνdxμdxν = −dτ 2 in natural units,
c = G = h̄ = 1 and the signature (−,+,+,+). This def-
inition is invariant under a local GCT, but not under a Weyl
transformation due to (25a). In the literature it is sometimes
assumed that conformal weight of velocity four-vector to
be zero, then uμ̄ = uμ, so dx μ̄/d τ̄ = dxμ/d τ̄ yielding
a Weyl invariant proper time d τ̄ = dτ . But in this work
w(uμ) = −1, i.e. uμ̄ = e−ψ(x)uμ, and so d τ̄ = eψ(x)dτ . In
order to have a Weyl invariant proper time we follow the work
[30,31] in which the arbitrary parameter λ is not interpreted
as the proper time of a particle moving along the worldline
because one obtains a relation d/dλ̄ = e−ψ(x)d/dλ from
the definition uμ = dxμ/dλ. In order to clarify the subject
they first note that since Einstein’s objection to Weyl’s the-
ory is based on the observation of sharp spectral lines, the
presence of matter fields to represent atoms, observers and
clocks is required. Then they consider Weyl gauge theories
to include ordinary matter which is generally modeled by a
Dirac field, see the Eq. (54). Finally they introduce a scalar
compensator field2 φ(x) with Weyl weight w(φ) = −1, and
conclude that an interval of proper time measured by the
clock along its path is given by dτ = φdλ. By definition this
dτ is Weyl invariant. Accordingly, in scale-invariant gravity
theories, they suggest that a compensator scalar field φ both
enables dynamic generation of particle masses and is also
key in generating a particle’s proper time. For more detailed
discussion one can consult for [30,31].

We now wonder if our autoparallel transport recipe (42)
would represent a correct orbit equation of a test particle, e.g.
the planet of Mercury. Therefore we write down the explicit
form of it in the coincident gauge of symmetric teleparallel
geometry as

d2xμ

dλ2 + 1

4
gμβ

(

∂σ gβν + ∂νgβσ

) dxν

dλ

dxσ

dλ
= 0. (46)

2 There is no relation between the compensator field φ and ϕ in the
Weyl potential 1-form B = dϕ.
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In terms of proper time this turns out to be

d2xμ

dτ2 + 1

4
gμβ

(

∂σ gβν + ∂νgβσ

) dxν

dτ

dxσ

dτ
+ ∂νφ

φ

dxν

dτ

dxμ

dτ
= 0.

(47)

Here we have calculated explicitly the components of this
autoparallel curve equation for a spherically symmetric static
metric, and experienced that our novel equation of an autopar-
allel curve can not represent orbit equation of a spinless test
body, (e.g. even planet of Mercury). So, we have to look at the
geodesic equation whether it can be used for orbit equation of
a spinless test body. In fact we ought to say meta-geodesic3

equation, because Lorentz and Weyl invariant action contains
the compensator field: I = ∫

φds = ∫ f
i φ

√−gμνdxμdxν .
Then, δ I = 0 causes the meta-geodesic equation

d2xμ

dτ 2 + 1

2
gμβ

(

∂σ gβν + ∂νgβσ − ∂βgνσ

) dxν

dτ

dxσ

dτ

+ gμν∂ν ln φ = 0. (48)

Here since we make the length of tangent vector to be constant
during parallel transport along the curve xμ(τ), we consid-

ered normalized 4-velocities,
√

−gμν
dxμ

dτ
dxν

dτ
= 1. Now if

we assume that the scalar field varies very slowly, then we
can think of φ nearly constant in the scale of solar system,
and so omit the last term: ∂νφ ≈ 0. Consequently we obtain
correct orbit equation of Mercury. But in galactic scale ∂νφ

may contribute a significant effect such that it may be respon-
sible for the flatness of velocity curves at outer arms of spiral
galaxies. So, this meta-geodesic equation may be the correct
candidate for the worldline of a freely falling spinless test
body.

5 SO(1, 3) ⊗ W ⊗ U(1)-invariant Lagrangian 4-form

Finally we want to deal with the Weyl transformation of the
quadratic parity preserving Lagrangian 4-form of symmetric
teleparallel gravity given in the paper [12]

L[Q] = c1Qab ∧ ∗Qab + c2

(

Qab ∧ eb
)

∧ ∗ (

Qac ∧ ec
)

+ c3ι
bQab ∧ ∗ιcQ

ac + c4Q ∧ ∗Q
+ c5ι

bQab ∧ ∗ιaQ + λ0 ∗ 1 + λa ∧ T a

+ Ra
b ∧ ρb

a (49)

where c1, . . . , c5 are coupling constants, λ0 is a constant
which might be seen as cosmological constant, λa is a

3 Since nowadays metaverse is so popular, we prefer to use prefix
“meta” instead of “para” or “semi”!

Lagrange multiplier 2-form constraining torsion to zero, ρb
a

is another Lagrange multiplier 2-form terminating the full
curvature. Since T ā = eψT a and Rā

b̄ = Ra
b, we deter-

mine rule of Weyl transformations for the Lagrange multi-
pliers as λā = e−ψλa and ρ b̄

ā = ρb
a . We prefer to work

in the orthonormal co-frame because of user friendly and
coordinate independent behavior of the Hodge dual star,
∗1 = e0∧e1∧e2∧e3. Besides, one can consult for [15,16] to
see how the gauge spirit leads to that Lagrangian. It is invari-
ant under the Lorentz transformation meaning that gauge
group is SO(1, 3). Now we obtain the Weyl-transformed
Lagrangian 4-form as

L̄[Q] = e2ψ
[

c1Qab ∧ ∗Qab

+c2

(

Qab ∧ eb
)

∧ ∗ (

Qac ∧ ec
)

+c3ι
bQab ∧ ∗ιcQ

ac + c4Q ∧ ∗Q
+c5ι

bQab ∧ ∗ιaQ
]

+ e4ψ� ∗ 1 + λa ∧ T a + Ra
b ∧ ρb

a

− (2c1 + 2c2 + 8c4 + c5)Q ∧ ∗dψ

+ (2c2 − 2c3 − 4c5)(ι
aQab)e

b ∧ ∗dψ

+ (4c1 + 3c2 + c3 + 16c4 + 4c5)dψ ∧ ∗dψ. (50)

As long as the relations among ci s are valid

2c1 + 2c2 + 8c4 + c5 = 0, (51a)

2c2 − 2c3 − 4c5 = 0, (51b)

4c1 + 3c2 + c3 + 16c4 + 4c5 = 0, (51c)

we can get rid of the residual terms. We notice here that two
of these three algebraic relations are linearly independent
and they are the same as the equation (44) of [12] and also
GR-equivalent STPG given by the equation (31) of [12] does
not satisfy them. With help of compensator field φ̄ = e−ψφ

and the conditions (51) the following symmetric teleparallel
gravity Lagrangian 4-form is invariant under both Lorentz
and Weyl transformations

L[Q, φ] = φ2
[

c1Qab ∧ ∗Qab + c2

(

Qab ∧ eb
)

∧ ∗ (

Qac ∧ ec
)

+c3ιbQab ∧ ∗ιcQ
ac + c4Q ∧ ∗Q

+c5ιbQab ∧ ∗ιaQ
]

+ Dφ ∧ ∗Dφ + λ0φ4 ∗ 1

+ λa ∧ T a + Ra
b ∧ ρba (52)

where λ0φ
4 may be interpreted as mass term of the scalar

field. Here again the gauge spirit makes us to introduce the
kinetic term for φ in terms of the Weyl covariant exterior
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derivative of it

Dφ = dφ − Qφ where Q = aQ + (1 − 4a)(ιaQ
ab)eb.

(53)

Here Q is the general trace 1-form of non-metricity and a is
a free parameter. Now the gauge group is SO(1, 3) ⊗ W .

As a last task we separately discuss the transformations
of the Dirac–Maxwell Lagrangian 4-form

L[�, A, φ] = Her
(

i� ∗ γ ∧ D�
)

+im0φ �� ∗ 1 + d A ∧ ∗d A (54)

where i = √−1 is the imaginary unit, m0 is a constant such
thatm0φ represents the mass of Dirac field, A is the Maxwell
potential 1-form, γ := γaea is C�1,3-valued 1-form and �

is the Dirac adjoint of � spinor defined by � := �†γ0.
Dirac matrices which are also known as the generators of
the Clifford algebra C�1,3 must satisfy the relation γaγb +
γbγa = 2ηab I where I is 4×4 unit matrix that is not usually
written explicitly. 4-component spinor fields � can be seen
as sections from the base manifold to the spinor bundle. Its
SO(1, 3)⊗W ⊗U (1)-covariant exterior derivative is in the
form

D� = d� + �� (55)

where � is the full connection 1-form of the spinor bundle

� = 1

2
ωa

b�
b
a − 1

2
(3 + �a

a)Q − i A. (56)

Here �b
a contains some combinations of the Dirac matrices

[29]. Since we already know transformation rules for ωa
b

and Q under both SO(1, 3) and W , now we cast those of A
underU (1) as A → A+d f where f (x) is a new scalar func-
tion and under W as A → A meaning Aā = e−ψ Aa , and so
Aμ̄ = Aμ. Then, as � → e−3ψ/2ei f S�, the Eq. (55) trans-
forms covariantly D� → e−3ψ/2ei f SD�, when � trans-
forms according with the rule

� → S�S−1 + SdS−1 + 3

2
dψ − id f. (57)

where S is an element of Spin(1, 3) group that is the double
cover of SO(1, 3). As a result L[Q, φ, A] = L[Q, φ]+d A∧
∗d A can be the true symmetric teleparallel theory combining
gravitational and the electromagnetic interactions respecting
the SO(1, 3) ⊗W ⊗U (1)-gauge symmetry. To obtain vari-
ational field equations and to search for their solutions will
be discussed in another study in future.

6 Conclusions

In this work we aimed to concern the issues of second clock
effect and proper time for toy models of gravity formu-
lated in symmetric teleparallel (Minkowski–Weyl) geom-
etry. Since we use extensively the exterior algebra, firstly
we reviewed some basic concepts such as a coordinate sys-
tem set on a manifold, coordinate and orthonormal frame
bundles constructed over manifold, their connections (or
covariant derivatives) and the passages among coordinate
and orthonormal quantities via vielbein. Secondly we sum-
marized a local general coordinate transformation causing
the affine group on manifold, Gl(4,R) group on coordi-
nate frame bundle and SO(1, 3) group on orthonormal frame
bundle, and then a Weyl transformation in terms of coordi-
nate and orthonormal frames. Our first conclusion was that
if nature obeys Weyl symmetry as well as Lorentz symme-
try, then the unchanged simplest spacetime geometry before
and after a Weyl transformation is the symmetric teleparallel
geometry; Qab �= 0, T a = 0, Ra

b = 0. After discussing the
change of length of a tangent vector, uμ := dxμ/dλ, during
parallel transport along a curve, xμ(λ) where λ is any param-
eter, we formulated a second clock effect depending on the
existence of non-metricity. We saw that it can be avoided for
a Weyl integrable spacetime as stated repeatedly in the liter-
ature. After that, we gave very briefly the coincident gauge
of a symmetric teleparallel geometry by ωμ

ν = 0 and wrote
the standard equation of an autoparallel curve which could
represent the orbit equation of a spinless test body. Thus, as
our second conclusion we prescribed a novel parallel trans-
port rule by (42) which is invariant under a local GCT as well
as a Weyl transformation. Accordingly, a second clock effect
needs not to appear generally not only in a symmetric telepar-
allel geometry but also in a non-Riemannian spacetime with
non-metricity and torsion. Meanwhile, we handled the notion
of proper time and defined it in a Gl(4,R) and Weyl invariant
way with the help of a new compensator scalar field φ(x) by
following [30,31]. In the third conclusion we argued that the
remedied equation of autoparallel curve can not still repre-
sent the worldline of a test body, but the modified equation
of geodesic can be. In our final conclusion, we wrote down
the Lagrangian 4-form of a symmetric teleparallel theory of
gravity in terms of parity preserving quadratic non-metricity
and the scalar field φ, and also of Dirac–Maxwell all which
are invariant under a SO(1, 3) ⊗W ⊗U (1)-transformation.
That may be the true unified theory of gravitational and elec-
tromagnetic interactions. We left an open problem of obtain-
ing variational field equations and of searching solutions to
them for our future projects.
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