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Abstract We retreat the well-known Einstein–Cartan the-
ory by slightly modifying the covariant derivative of spinor
field by investigating double cover of the Lorentz group. We
first write the Lagrangian consisting of the Einstein–Hilbert
term, Dirac term and a scalar field term in a non-Riemannian
spacetime with curvature and torsion. Then by solving the
affine connection analytically we reformulate the theory in
the Riemannian spacetime in a self-consistent way. Finally
we discuss our results and give future perspectives on the
subject.

1 Introduction

The Einstein equation could be formulated in the language
of exterior algebra in the n-dimensional spacetime (n ≥ 3),

˜Ga := 1

2
˜Rb

c ∧ ∗(ea ∧ eb ∧ ec) = κτ̃a[matter ], (1)

where ea is the orthonormal coframe (or orthonormal basis
1-form), ˜Ra

b is the Riemann curvature 2-form, ∗ represents
Hodge dual map, ∧ is the exterior product, κ is a coupling
constant, τ̃a[matter ] denotes energy–momentum (n − 1)-
form of matter and ˜Ga is the Einstein tensor (n − 1)-form.
In four dimensions Einstein tensor 3-form has 16 compo-
nents. On the other hand, the Riemannian curvature 2-form
has 20 independent components (36 from ˜Ra

b minus 16
from the Bianchi identity, ˜Ra

b ∧ eb = 0). Thus in vacuum,
τ̃a[matter ] = 0, though all components of the Einstein ten-
sor vanish, some components of ˜Ra

b may still live and then
gravitational waves are allowed in an empty spacetime.

Similarly if one does the same analysis in the three-
dimensional spacetime, it is seen that there are 9 components
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at ˜Ga and 6 independent components at ˜Ra
b. Consequently,

as the Einstein tensor vanishes, all components of ˜Ra
b must

also be zero. It means that there can not be gravitational
waves in vacuum. Correspondingly in three-dimensions the
bare Einstein’s general relativity is not a dynamical theory.
Therefore there is a wide literature on modified general rel-
ativity in three dimensions [1–9].

One of modifications is to go beyond the Riemannian
geometry. Firstly we can enlarge it by allowing torsion. Since
it is thought that torsion tensor is sourced by fermionic mat-
ter, it is natural to extend it to couple a Dirac spinor to three-
dimensional Einstein theory. For that we need to know the
Lorentz-covariant exterior derivative of a spinor, ψ , and its
adjoint, ψ . They are done by the formulas,

Dψ = dψ + 1

2
ωabσabψ and

Dψ = dψ − 1

2
ψσabω

ab, (2)

where d is the exterior derivative, σab = −σba is the gener-
ator of the restricted special Lorentz group, SO+(1, 2), and
ωab = −ωba is the connection 1-form for the orthonormal
frame bundle. On the other hand, it is known that SO+(1, 2)

is doubly covered by Spin+(1, 2) group which is also the
four-dimensional even subalgebra, Cl+(1, 2), of the eight-
dimensional Clifford algebra, Cl(1, 2). Meanwhile, a basis
set of Cl+(1, 2) is given by {1, σab}. As its σab element
generates the Lorentz transformation via the exponentiation

S = e
1
2 σabϑ

ab(x), the unit element generates a scale trans-
formation via W = e1 f (x) = e f (x) ∈ R

+ where ϑab(x)
and f (x) are the concerned transformation parameters. A
Lorentz transformation of any two orthonormal coframes
could be written γ ′ = Sγ S−1 in terms of Cl(1, 2)-valued
1-form γ = γaea where 2σab = 1

2 (γaγb − γbγa) and
ηab = 1

2 (γaγb+γbγa). Since Cl+(1, 2) is four-dimensional,
γa can be represented by real 2 × 2 matrices in which case
a spinor ψ is represented by a two-component complex col-
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umn matrix and transforms with respect to ψ = Sψ under
a Lorentz transformation represented by 2 × 2 matrix, S.
In this work we aim to extend the covariant derivative of a
spinor given by the Eq. (2) as to include rescaling generated
by I of Spin+(1, 2) group. As a scale transformation gives
rise to ea → Wea on the orthonormal coframe, there are
two possibilities for the affine connection: ωa

b → ωa
b or

ωa
b → ωa

b − δabW
−1dW . Both of them leave the curvature

2-form invariant. Here we adhere the first option, because we
want to work a modification of the Einstein–Cartan theory
which is formulated in the Riemann-Cartan spacetime with
a metric compatible connection before and after a rescaling.
Thus we leave the affine connection scale-invariant like in
Ref. [10–12]. Now by combining two transformations we
define the Weyl group W (2, 2) := SO+(1, 2) ⊗ R

+ with
four parameters, {a01, a02, a12, f }. Consequently, we postu-
late the transformation rules for some basic quantities under
a W (2, 2)-transformation,

ea
′ = WLa′

ae
a with ηa′b′ = La

a′Lb
b′ηab so

ιa′ = W−1La
a′ ιa, (3a)

ωa′
b′ = La′

aω
a
bL

b
b′ + La′

adL
a
b′, (3b)

ψ ′ = W−1Sψ and ψ ′ = W−1ψS−1, (3c)

where ιa := ιXa denotes interior product with respect the
orthonormal base vector Xa (ιbea = δab ), the transforma-

tion elements La′
a and La

a′ (La
a′La′

b = δab ) form the
Lorentz group SO+(1, 2) which is generated by σab and
the other transformation element W ∈ R

+ which is gen-
erated by I . Both generators together are bases of Cl+(1, 2)

algebra. Accordingly the transformations of non-metricity,
torsion and curvature are calculated readily,

Qa′b′ = La
a′Lb

b′Qab, (4a)

T a′ = WLa′
a

(

T a + W−1dW ∧ ea
)

, (4b)

Ra′
b′ = La′

a R
a
bL

b
b′ . (4c)

It is worthy to notice that non-metricity and curvature are
scale-invariant, but torsion is not. Nonetheless, additive con-
tribution in torsion transformation will be useful at exten-
sion of covariant derivative of spinor. More specifically
we will need W (2, 2)-transformed trace 1-form of torsion,
T = ιaT a ,

T ′ = T − 2W−1dW. (5)

Then, we write W (2, 2)-covariant exterior derivative of a
spinor, Dψ , and its adjoint, Dψ := (Dψ)†γ0,

Dψ = dψ + �ψ − 1

2
I Tψ and

Dψ = dψ − ψ� − 1

2
I Tψ. (6)

The term I Tψ/2 is novelty of this paper. In our prescrip-
tion the torsion trace stands for the Weyl gauge. A similar
conclusion was remarked in Obukhov’s paper [12]. Here the
quantity � := 1

2ωabσab must transform according to

�′ = S�S−1 + SdS−1 (7)

for Dψ and Dψ to transform in covariant way, i.e., Dψ ′ =
W−1S(Dψ) and Dψ ′ = W−1(Dψ)S−1. It is worthwhile to
remind that the transformation elements are generated by all
bases, {I, σab}, of Cl+(1, 2) Clifford algebra as

S = e
1
2 σabϑ

ab(x) ∈ Spin+(1, 2) and

W = eI f (x) ∈ R
+. (8)

On the other hand, there is an inconsistency in the for-
mulation of the standard Einstein–Cartan theory that is often
overlooked. To see this problem explicitly we remind two
formulations of the Dirac theory as being equation approach
and Lagrangian approach. Firstly a spinor, ψ , and its exterior
derivative, dψ , are defined for both formulations. Then the
covariant exterior derivative of spinor, Dψ , is postulated via
the minimal coupling principle meaning simply to replace d
with D. Finally by following the equation approach the Dirac
equation is written by

∗γ ∧ Dψ + mψ ∗ 1 = 0. (9)

However, the Dirac equation obtained from the Dirac
Lagrangian by an independent variation is

∗γ ∧
(

D − 1

2
T

)

ψ + mψ ∗ 1 = 0. (10)

The term, T/2, causes an inconsistency at the two formu-
lations. Our novel definition (6) in this paper will remedy
this matter as well. Besides, when we compare the con-
structions of SO+(1, 2)-covariant exterior derivative, Dψ ,
and W (2, 2)-covariant exterior derivative, Dψ , of spinor, we
realize that the latter does not follow the minimal coupling
recipe.

In the next section we summarize our notations, con-
ventions and definitions. Then we formulate the extended
Einstein–Cartan theory by giving a Lagrangian 3-form which
is invariant under a W (2, 2)-transformation. After obtain-
ing variational equations from that we solve analytically
the affine connection in terms of spinor field and scalar
field which has to be introduced for the scale invariance
of Einstein–Hilbert Lagrangian. By substituting our findings
into other field equations we rewrite them Riemannian terms
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plus new terms coming from torsion of geometry. We espe-
cially trace ones which are caused by our novel contribution
in the covariant derivative of spinor. At last step, we insert the
calculated affine connection back to the total Lagrangian 3-
form by adding a constraint term, λa ∧ T a , for zero-torsion,
then we compute field equations by varying this total Rie-
mannian Lagrangian. At the end we observe that both for-
mulations are equivalent, but notice that the non-Riemannian
one is tidier.

2 Notations, conventions, definitions

The triple {M, g, ω} defines a metric affine geometry where
M is three-dimensional orientable and differentiable mani-
fold, g is symmetric and non-degenerate metric, ω represents
the metric compatible full (or affine) connection [13–15]. We
denote the orthonormal coframe by ea , then write metric as
g = ηabea ⊗ eb where ηab is the Minkowski metric with the
signature (−,+,+). In the language of exterior algebra, ea

is called orthonormal 1-form and the Cartan structure equa-
tions are given by non-metricity 1-form, torsion 2-form and
curvature 2-form tensors, respectively,

Qab := −1

2
Dηab = 1

2
(ωab + ωba) = 0, (11a)

T a := Dea = dea + ωa
b ∧ eb 	= 0, (11b)

Ra
b := Dωa

b := dωa
b + ωa

c ∧ ωc
b 	= 0. (11c)

The metric compatibility condition (11a) yields that the full
connection 1-form is anti-symmetric, ωab = −ωba . Accord-
ingly, it can be decomposed uniquely to Riemannian piece,
ω̃ab and non-Riemannian piece, Kab,

ωab = ω̃ab + Kab, (12)

where ω̃ab = −ω̃ba is the Levi-Civita connection 1-form and
Kab = −Kba is the contortion tensor 1-form

ω̃ab = 1

2

[−ιadeb + ιbdea + (ιaιbdec)e
c] or

ω̃a
b ∧ eb = −dea, (13a)

Kab = 1

2

[

ιaTb − ιbTa − (ιaιbTc)e
c] or

Ka
b ∧ eb = T a . (13b)

By substituting (12) into (11c) we decompose the full curva-
ture as well

Ra
b = ˜Ra

b + ˜DKa
b + Ka

c ∧ Kc
b (14)

where ˜Ra
b is the Riemannian curvature 2-form and ˜D

denotes the covariant exterior derivative with respect to ω̃a
b,

˜Ra
b := dω̃a

b + ω̃a
c ∧ ω̃c

b, (15a)
˜DKa

b := dKa
b + ω̃a

c ∧ Kc
b − ω̃c

b ∧ Ka
c. (15b)

All the Riemannian quantities will be labelled by a tilde over
them in this paper. Some useful notations and identities are
listed as

eab··· := ea ∧ eb ∧ · · · , ιab··· := ιaιb · · · , ιbe
a = δab ,

(16a)

ea ∧ ∗eb = ηab ∗ 1, ea ∧ ∗ebc = −ηab ∗ ec + ηac ∗ eb,
(16b)

eaιa� = p�, ∗(� ∧ ea) = ιa ∗ �,

� ∧ ∗� = � ∧ ∗� (16c)

∗1 = 1

3!εabce
abc, ∗ea = 1

2!εabce
bc,

∗eab = εabce
c, ∗eabc = εabc, (16d)

εablεabc = −2!δlc, εaklεabc = −
(

δkbδ
l
c − δkc δ

l
b

)

,

εabcεklm = −

∣

∣

∣

∣

∣

∣

∣

δak δal δam

δbk δbl δbm

δck δcl δcm

∣

∣

∣

∣

∣

∣

∣

, (16e)

D ∗ ea = ∗eab ∧ T b, D ∗ eab = ∗eabc ∧ T c,

D ∗ eabc = Dεabc = 0, (16f)

where � and � are some p-forms, εabc is the totally anti-
symmetric epsilon symbol with ε012 = +1 and δab is the
Kronecker delta.1

Four-dimensional even subalgebra, Cl+(1, 2) of eight-
dimensional Clifford algebra, Cl(1, 2), is generated by the
unit matrix, I and the gamma matrices γa satisfying the con-
dition

γaγb + γbγa = 2ηab I. (17)

One can consult the Appendix for details about the Clifford
algebra. We choose the real representations of the gamma
matrices given in the Eq. (50), in which case the basis set
of Cl+(1, 2) is given by {I, σab} or {γ5, γa} because of the
results,

γ5 := γ0γ1γ2 = I,

σab := 1

4
[γa, γb] = 1

2
εabcγ

c. (18)

1 When Qab 	= 0, it is D ∗ eabc = Dεabc = −Qεabc where Q =
ηabQab.
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Consequently we will encounter two independent covariant
bilinears

ρ := ψψ and ja := ψγaψ, (19)

where ψ is the Dirac adjoint of ψ . As special to three dimen-
sion one can write qab := ψσabψ = 1

2εabc jc. Here qab is a
quantity related with particle’s electromagnetic moment on
which could be made observations in particle physics lab-
oratories. In fact, qabσab is the probability density of elec-
tromagnetic moment of particle [15]. They satisfy ρ† = −ρ

and j†
a = ja and q†

ab = qab. The identities below will be
helpful in the calculations,

γaγb = ηab I + εabcγ
c, (20a)

σabγc − γcσab = ηbcγa − ηacγb, (20b)

σabγc + γcσab = εabc I, (20c)

[σab, σcd ] = −ηacσbd + ηadσbc + ηbcσad − ηbdσac,

(20d)

γ0 I
†γ0 = −I, γ0γ

†
a γ0 = γa, γ0σ

†
abγ0 = σab,

(20e)

γ
†
0 = −γ0, γ

†
1 = γ1, γ

†
2 = γ2, (20f)

where the symbol † denotes the Hermitian conjugation. In
this representation, spinor field ψ can be considered by a
two-component complex column matrix and its Dirac adjoint
is defined by ψ := ψ†C where C is the charge conjuga-
tion matrix satisfying the relation, CγaC−1 = −γ T

a . Here
T means transpose matrix. As a complementary remark
we remind that the charge conjugated spinor is defined by

ψC := Cψ
T

. In our representation we will use C = γ0 mean-
ing explicitly ψ := ψ†γ0. Correspondingly, after discussions
done in Introduction we wrote the W (2, 2)-covariant exte-
rior derivative of ψ and ψ by (6). In the standard Einstein–
Cartan theory the term T does not appear in Dψ . But in this
work we especially pay attention in order to include all bases
{I, σab} of Cl+(1, 2) that are the generators of Spin+(1, 2)

group doubly covering the restricted special Lorentz group,
SO+(1, 2). In fact, since in the Clifford algebra Cl+(1, 2)

there is more structure than in the matrix algebra Mat(2,R),
it is easier to catch the term T in it rather than the matrix
notation. Nevertheless, since the connection carries effect of
gravitational field, all possible interactions between gravity
and spinor field are taken into account in the formula (6).
This extra contribution in the definition of covariant exterior
derivative of a spinor is a novel modification. For more dis-
cussions on extended covariant derivative of a spinor, one can
consult [16]. As a final remark we calculate the curvature of
spinor bundle

D
2ψ = 1

2

(

Rabσab − dT
)

ψ. (21)

3 Scale invariant Einstein–Cartan theory

In this section we firstly introduce a scalar field φ(x) trans-
forming as φ′ = W−1φ under a W (2, 2)-transformation.
Then its W (2, 2)-covariant exterior derivative becomes,

Dφ = dφ − 1

2
Tφ, (22)

such that Dφ′ = W−1(Dφ). Now we formulate the scale
invariant Einstein–Cartan theory by the Lagrangian 3-form
by combining minimally the Einstein–Hilbert Lagrangian,
the Dirac Lagrangian and the scalar field Lagrangian,

L = LEH + LD + Lφ (23)

where

LEH = − 1

2κ
φRa

b ∧ ∗eab, (24a)

LD = i

2

[

ψ ∗ γ ∧ (Dψ) − (

Dψ
) ∧ ∗γψ

] + imφψψ ∗ 1,

(24b)

Lφ = φ−1
Dφ ∧ ∗Dφ + μφ3 ∗ 1. (24c)

Here κ is gravitational coupling constant,m is mass of spinor
field, μ is a constant that can be interpreted as mass of the
scalar field and γ := γaea is Cl(1, 2)-valued 1-form. We
introduce imaginary unit in LD in order to make it Hermitian,
L†
D = LD . We perform independent variations of L with

respect to ea , ωab, ψ and φ. Then by using δL = 0 and by
discarding exact forms we obtain field equations,

− 1

2κ
εabcφRbc + τa[ψ] + τa[φ] = 0, COFRAME

(25a)

− 1

2κ

(

εabcφT
c+dφ∧∗eab

)+�ab[ψ]
+ �ab[φ]= 0, CONNECTION (25b)

i ∗ γ ∧ Dψ + imφψ ∗ 1 = 0, DIRAC (25c)

− 1

2κ
Rab ∧ ∗eab + imψψ ∗ 1 + ∇[φ] = 0, SCALAR

(25d)

where energy–momentum 2-forms, τa[ψ] := ∂LD/∂ea ,
τa[φ] := ∂Lφ/∂ea , and angular momentum 2-forms,
�ab[ψ] := ∂LD/∂ωab, �ab[φ] := ∂Lφ/∂ωab, for spinor
and scalar fields, and the 3-form of scalar field, �[φ] :=
∂Lφ/∂φ, are obtained, respectively,

τa[ψ] := i

2

[

ψγ b (Dψ) − (

Dψ
)

γ bψ
]

∧ ∗eab + imφρ ∗ ea (26a)
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τa[φ] := −φ−1 [(ιaDφ) ∧ ∗Dφ + Dφ ∧ (ιa ∗ Dφ)]

+ μφ3 ∗ ea + D ∗ (Dφ ∧ ea) − (ιaT ) ∧ ∗Dφ

− (ιaT
b) ∧ ιb ∗ Dφ (26b)

�ab[ψ] := − i

4
ρeab, (26c)

�ab[φ] := 1

2
[eb ∧ ∗(Dφ ∧ ea) − ea ∧ ∗(Dφ ∧ eb)] ,

(26d)

�[φ] := −φ−2
Dφ ∧ ∗Dφ − 2d(φ−1 ∗ Dφ)

− Tφ−1 ∗ Dφ + 3μφ2 ∗ 1. (26e)

Here it is worthy to remark that the term T/2 does not appear
in the variational Dirac equation (25c). This is a resolution of
the inconsistency problem of Einstein–Cartan theory stated
in Introduction. Furthermore, it is worthwhile to remark that
the presence of torsion trace 1-form in (22) manifests the
non-minimal coupling. Otherwise, angular momentum (or
spin current) 2-form of scalar field would have been zero.

Now, torsion is solved analytically by some algebra in
terms of spinor and scalar fields from CONNECTION equa-
tion (25b),

T a = iκ

2
φ−1ρ ∗ ea − φ−1dφ ∧ ea . (27)

In general torsion 2-form can be split to three pieces

T a =
(1)

T a +
(2)

T a +
(3)

T a . (28)

In three dimensions they are written as

(2)

T a = − 1

2
T ∧ ea,

(3)

T a = 1

3
ιaT ,

(1)

T a =T a −
(2)

T a −
(3)

T a, (29)

where T := ιaT a trace 1-form and T := ea ∧ T a trace
3-form. Since T has three components and T has only one

component,
(2)

T a is vector piece and
(3)

T a is scalar piece (the so-
called axial vector component in four-dimensions), respec-

tively.
(1)

T a with five components is tensor piece. Correspond-
ingly, our torsion (27) has the second and the third pieces and
no the first piece because of

T = 2φ−1dφ and T = 3i

2
κφ−1ρ ∗ 1. (30)

When one compares these results with (27) of Ref. [4],
it observed that the non-vanishing trace 1-form along with
trace 3-form of torsion is a new outcome. Substitution of the
result (27) to (22) yields Dφ = 0 under which other field
equations turn out to be simpler forms,

− 1

2κ
εabcφRbc + τa[ψ] + μφ3 ∗ ea = 0, COFRAME

(31a)

i ∗ γ ∧ Dψ + imφψ ∗ 1 = 0, DIRAC
(31b)

− 1

2κ
Rab ∧ ∗eab + imρ ∗ 1 + 3μφ2 ∗ 1 = 0. SCALAR

(31c)

From the W (2, 2)-gauge symmetry point of view, in an truly
scale-invariant model it is expected that one can always gauge
away the scalar field φ and bring it to a constant value,
φ = φ0, with the help of an appropriate scale parameter W .
This means that the number of independent field equations
is actually less than the number of original variables. Cor-
respondingly, we have checked that the SCALAR equation
(31c) is just a trace part of COFRAME equation (31a).

4 Riemannian formulation of the theory

Firstly we calculate contortion 1-form by substituting (27) to
(13b)

Kab = φ−1
[

− i

4
κρ ∗ eab − (∂aφ)eb + (∂bφ)ea

]

(32)

where ∂aφ := ιadφ. Then by noticing ˜Dea = 0, ˜D ∗ ea = 0,
˜D ∗ eab = 0 and dφ ∧ ∗eab = (∂bφ) ∗ ea − (∂aφ) ∗ eb the
related quantities are computed

Rab = ˜Rab + iκ

4
(2ρφ−2dφ − φ−1dρ) ∧ ∗eab

+ φ−1 [

˜D (∂bφ) ∧ ea − ˜D (∂aφ) ∧ eb
]

− κ2

16
ρ2φ−2eab + 2φ−2dφ ∧ [(∂aφ)eb − (∂bφ)ea]

− φ−2(∂φ)2eab. (33a)

Dψ = ˜Dψ + i

8
κρφ−1γaψea

+ 1

2
φ−1(∂aφ)γ bψ ∗ eab − φ−1dφψ, (33b)

Dψ = ˜Dψ − i

8
κρφ−1ψγae

a

− 1

2
φ−1(∂aφ)ψγ b ∗ eab − ψφ−1dφ, (33c)

τa[ψ] = τ̃a[ψ] − 1

4
κρ2φ−1 ∗ ea − i

2
ρφ−1dφ ∧ ea, (33d)
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where ˜D (∂aφ) := d (∂aφ) − ω̃c
a (∂cφ) and (∂φ)2 :=

(∂cφ)(∂cφ) and

˜Dψ := dψ + 1

2
ω̃abσabψ and

˜Dψ := dψ − 1

2
ψσabω̃

ab, (34a)

τ̃a[ψ] := i

2

[

ψγ b (

˜Dψ
) − (

˜Dψ
)

γ bψ
]

∧ ∗eab
+ imρφ ∗ ea . (34b)

We insert these results into (31a), and by rearranging terms
we find the decomposed COFRAME equation,

˜Rab = −κφ−1εabcτ̃
c[ψ]

− 3

16
κ2ρ2φ−2eab + iκ

4
φ−1dρ ∧ ∗eab

+ φ−1 [

˜D (∂aφ) ∧ eb − ˜D (∂bφ) ∧ ea
]

+ φ−2{(∂φ)2eab − 2dφ ∧ [(∂aφ)eb − (∂bφ)ea]}
+ μκφ2eab. (35)

Now we decompose DIRAC equation (31b) by using (33b),

i ∗ γ ∧ ˜Dψ + imφψ ∗ 1 − 3

8
κρφ−1ψ ∗ 1 = 0. (36)

Finally we decompose SCALAR equation (31c),

− 1

2κ
˜Rab ∧ ∗eab + 3

16
κρ2φ−2 ∗ 1 + imρ ∗ 1

− 1

κ
φ−2dφ ∧ ∗dφ + 2

κ
φ−1d ∗ dφ

+ 3μφ2 ∗ 1 = 0 (37)

At this stage the decomposition of the Lagrangian (23) is
calculated up to a closed form,

˜L = ˜LEH + ˜LD − 3

16
κρ2φ−1 ∗ 1

− 1

κ
φ−1dφ ∧ ∗dφ + μφ3 ∗ 1 + λa ∧ T a, (38)

where λa is a Lagrange multiplier 1-form constraining zero-
torsion, and the Riemannian Einstein–Hilbert Lagrangian
and the Dirac Lagrangian are, respectively,

˜LEH = − 1

2κ
φ˜Rab ∧ ∗eab, (39)

˜LD = i

2

[

ψ ∗ γ ∧ (

˜Dψ
) − (

˜Dψ
) ∧ ∗γψ

]

+ imφψψ ∗ 1. (40)

The third and fourth terms in (38) represent the the exis-
tence of torsion. One can follow the torsional effects by trac-
ing these terms in the Riemannian spacetime geometry. λa-
variation of ˜L warrants that the connection is Levi-Civita,
ω̃a

b. Then, ψ-variation and φ-variation yield DIRAC equa-
tion (36) and SCALAR equation (37), respectively. Thus ea

and ωab variations causes to following equations, respec-
tively,

− φ

2κ
εabc˜Rbc + τ̃a[ψ] − 3

16
κρ2φ−1 ∗ ea

+ φ−1

κ
τ̃a[φ] + μφ3 ∗ ea + ˜Dλa = 0, (41a)

− 1

κ
dφ ∧ ∗eab − i

2
ρeab + eb ∧ λa − ea ∧ λb = 0,

(41b)

where

τ̃a[φ] := ιadφ ∧ ∗dφ + dφ ∧ ιa ∗ dφ

= 2(∂aφ)(∂bφ) ∗ eb − (∂φ)2 ∗ ea . (42)

The Lagrange multiplier could be computed from the second
equation (41b) by hitting ιab,

λa = − i

4
ρea + 1

κ
(∂bφ) ∗ eab. (43)

Then it turns out to be

˜Dλa = − i

4
dρ ∧ ea + 1

κ
˜D(∂bφ) ∧ ∗eab. (44)

Finally the usage of this result in the Eq. (41a) and rear-
rangement of the terms yield the Eq. (35) as expected. Con-
sequently, we studied the same theory in two different geome-
tries and see that they are equivalent in both the Lagrangian
level and the equation level. Meanwhile it is observed that
the non-Riemannian formalism (23) looks tidier than the Rie-
mannian one (38).

5 Discussion

Since the general relativity does not predict gravitational
wave in empty space in three dimensions, the three-
dimensional extended gravity models attract pretty much
attention. Therefore we treated the Einstein–Cartan theory
in three dimensions by starting with a discussion about sym-
metry group. Then we concluded that the complete gauge
group should include the scale group along with the Lorentz
group. It is the Weyl group, W (2, 2) = SO+(1, 2) ⊗ R

+
with four parameters. At this point we postulated scale trans-
formation of the affine connection 1-form so as to leave the
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metricity condition invariant. We also extended the covari-
ant exterior derivative of spinor by adding the term, −Tψ/2,
where T = ιaT a is the torsion trace 1-form. Thus, we saw
that our new definition ofDψ given by the Eq. (6) resolves the
inconsistency problem in the Einstein–Cartan theory which
can be stated that Dirac equations obtained from the equation
level and the Lagrangian level are not same. Afterwards, we
wrote a W (2, 2)-invariant Lagrangian by introducing a com-
pensating scalar field, φ. We computed the field equations by
independent variations and could solve torsion algebraically.
Substitution of this result into other equations simplified them
significantly. In the subsequent section, we decomposed all
concerned non-Riemannian quantities as Riemannian quan-
tity plus torsional contribution. Accordingly, we rewrote
COFRAME, DIRAC and SCALAR equations, and also the
Lagrangian 3-form in the Riemannian geometry with novel
contributions. Finally we verified that the decomposed field
equations are the variational field equations of the decom-
posed Lagrangian. Consequently, we showed the equivalence
of two formulations of the same theory. Of course, the non-
Riemannian formulation seems much tidier, but one can gain
physical insights about torsion tensor by tracing novel terms
in the Riemannian formulation.

In our consideration trace 1-form, T , of torsion behaves
like a gauge potential of scale transformation. Meanwhile,
it is known from application procedure of gauge theory that
one should add kinetic counterpart, dT , of gauge potential to
Lagrangian. That is, a scale invariant term, ν

2 φ−1dT ∧ ∗dT ,
is expected to be in the Lagrangian (23) where ν is a coupling
constant. But when we add that term, the connection varia-
tion yields following extra term to CONNECTION equation
(25b)

ν

2

[

ea ∧ ιbd(φ−1 ∗ dT ) − eb ∧ ιad(φ−1 ∗ dT )
]

. (45)

Thus since now torsion gains propagating degrees of freedom
because of the contributions dT and d∗dT , one can not solve
it algebraically anymore. Generalisation of our model with
inclusion of this term and some explicit solutions are left as
our future project.
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Appendix

A Clifford algebra, Lorentz group, spin group

Let {1, γ0, γ1, γ2} be generators of the eight dimensional
Clifford algebra, Cl(1, 2), such that

γaγb + γbγa = 2ηab I, a, b = 0, 1, 2, (46)

where ηab is the components of Minkowski metric, η00 =
−1, η11 = +1, η22 = +1, others = 0. At the beginning
the gamma objects need not to be some matrices, they are
abstract objects in general. A basis for Cl(1, 2) is given by
the set

{1, γ0, γ1, γ2, γ01, γ02, γ12, γ012} (47)

where 1 is the basis for scalars, γa are the bases for 1-vectors,
γab := γaγb (a 	= b) are the bases for bivectors and γ012 :=
γ0γ1γ2 is the basis for 3-vectors [15]. Its multiplication table
is below.

1 γ0 γ1 γ2 γ01 γ02 γ12 γ012

1 1 γ0 γ1 γ2 γ01 γ02 γ12 γ012

γ0 γ0 −1 γ01 γ02 −γ1 −γ2 γ012 −γ12

γ1 γ1 −γ01 1 γ12 −γ0 −γ012 γ2 −γ02

γ2 γ2 −γ02 −γ12 1 γ012 −γ0 −γ1 γ01

γ01 γ01 γ1 γ0 γ012 1 γ12 γ02 γ2

γ02 γ02 γ2 −γ012 γ0 −γ12 1 −γ01 −γ1

γ12 γ12 γ012 −γ2 γ1 −γ02 γ01 −1 −γ0

γ012 γ012 −γ12 −γ02 γ01 γ2 −γ1 −γ0 1

Thus Cl(1, 2) is also a group, the so-called pin(1, 2)

group, as well as a eight-dimensional real linear vector
space. In particle physics community it is a custom to denote
γab := 2σab and γ012 := γ5. Now we consider the even sub-
set, i.e., 0-vectors and 2-vectors, {1, γ01, γ02, γ12} and look
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at its multiplication table.

1 γ01 γ02 γ12

1 1 γ01 γ02 γ12

γ01 γ01 1 γ12 γ02

γ02 γ02 −γ12 1 −γ01

γ12 γ12 −γ02 γ01 −1

Similarly, this subset also forms an four-dimensional sub-
algebra, Cl+(1, 2), and a subgroup, pin+(1, 2). A general
element of Cl+(1, 2) can be written as

u = u0 + u01γ01 + u02γ02 + u12γ12 (48)

where the scalars, {u0, u01, u02, u12}, are components of u.
That is a direct sum of a scalar u0 and a bivector, u01γ01 +
u02γ02 + u12γ12. One of useful operations on u is its reverse
defined by

û = u0 − u01γ01 − u02γ02 − u12γ12. (49)

Besides, Cl+(1, 2) is isomorphic to 2 × 2-real matrices,
Cl+(1, 2) � Mat(2,R). One set of representation is as fol-
lows

1 �
[

1 0
0 1

]

, γ0 �
[

0 1
−1 0

]

,

γ1 �
[

0 1
1 0

]

, γ2 �
[

1 0
0 −1

]

. (50)

Then abstract u ∈ Cl+(1, 2) may be written by a matrix

u �
[

u0 + u01 −u02 − u12

−u02 + u12 u0 − u01

]

=
[

a b
c d

]

. (51)

In order to see the meaning of reverse operation of Cl+(1, 2)

in matrix formalism we redefined the components,

a = u0 + u01, b = −u02 − u12,

c = −u02 + u12, d = u0 − u01. (52)

Thus, the reverse of u takes the form

û �
[

u0 − u01 u02 + u12

u02 − u12 u0 + u01

]

=
[

d −b
−c a

]

= (ad − bc)

[

a b
c d

]−1

for ad − bc 	= 0. (53)

In this case the condition ûu = uû = 1 corresponds to
det[u] = +1 in matrix notation.

A restricted or special orthochronous Lorentz group,
SO+(1, 2), which preserves both time and space orientations
is defined by

SO+(1, 2) =
{

L ∈ Mat(3,R)
∣

∣ LT ηL = η, detL = +1
}

.

The spacetime vector x ∈ R
1,2 transforms according to x′ =

Lx. Any L ∈ SO+(1, 2) can be written as an exponential
L = eA of a Minkowski-antisymmetric matrix2

A =
⎡

⎣

0 a1 a2

a1 0 −b
a2 b 0

⎤

⎦ satisfying ηAT η−1 = −A. (54)

The matrix A could be specified by a vector �a = a1γ1 +
a2γ2 ∈ R

2 and a scalar b ∈ R. If b = 0, then L is a boost
at velocity |�v| = c tanh |�a|. If �a = 0, then L ∈ SO(2) is
a rotation of the Euclidean space R

2 by the angle b. For
example, x-boost, x′ = Lax x could be calculated explicitly
by

⎡

⎣

ct ′
x ′
y′

⎤

⎦ =
⎡

⎣

� −βx� 0
−βx� � 0

0 0 1

⎤

⎦

⎡

⎣

ct
x
y

⎤

⎦ (55)

where � := 1/
√

1 − β2
x , βx := vx/c and tanh ax = βx

giving cosh ax := � and sinh ax := �βx . Similarly, rotation
of x from x to y by angle b formulated as x′ = Lbx is
computed by

⎡

⎣

ct ′
x ′
y′

⎤

⎦ =
⎡

⎣

1 0 0
0 cos b − sin b
0 sin b cos b

⎤

⎦

⎡

⎣

ct
x
y

⎤

⎦ . (56)

The Lorentz group, SO+(1, 2), has a double cover

Spin+(1, 2) = {

S ∈ Cl+(1, 2)
∣

∣ ŜS = 1
}

.

Under a SO+(1, 2) Lorentz transformation induced by S ∈
Spin+(1, 2) the spacetime vector x transforms in accordance
with x′ = SxS−1. As a boost at velocity, �v ∈ R

2, can be

computed by S = e
1
2 �aγ0 , where �a = arctanh

( �v
c

)

, a rotation

of amount b by S = e
1
2 bγ12 . For example, x-boost, x′ =

Sax xS−1
ax , can be expressed explicitly,

ct ′γ0 + x ′γ1 + y′γ2 = e
1
2 axγ10 (ctγ0 + xγ1 + yγ2)

e− 1
2 axγ10 , (57a)

2 For the notation S = e
1
2 σabϑ

ab
used in the section of Introduction

there are correspondences ϑ01 = a1, ϑ02 = a2, ϑ12 = b.
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[

y′ ct ′ + x ′
−ct ′ + x ′ −y′

]

= Sax

[

y ct + x
−ct + x −y

]

S−1
ax ,

(57b)

where

Sax = e
1
2 axγ10

=
[

cosh ax
2 − sinh ax

2 0
0 cosh ax

2 + sinh ax
2

]

, (58a)

S−1
ax = e− 1

2 axγ10

=
[

cosh ax
2 + sinh ax

2 0
0 cosh ax

2 − sinh ax
2

]

. (58b)

Together with tanh ax := βx = vx/c meaning cosh ax :=
� = 1/

√

1 − v2
x/c

2 and sinh ax := �βx , matrix multiplica-
tions yield the x-boost equations in the very well known form.
One may check det[S] = +1 in the matrix algebra corre-
sponding to ̂SS = 1 in the Clifford algebra. Similarly, a rota-
tion of x in xy-plane by angle b from γ1 to γ2, x′ = SbxS−1

b ,
is computed by

Sb = e
1
2 bγ21 =

[

cos b
2 sin b

2

− sin b
2 cos b

2

]

,

S−1
b = e− 1

2 bγ21 =
[

cos b
2 − sin b

2

sin b
2 cos b

2

]

. (59)
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