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Abstract The aim of this paper is to apply the necessary and sufficient conditions of well-known Lagrangian equations
with time dependent case for Minkowski 4-space. Many fundamental geometrical properties for time dependent Minkowski
4-space have been obtained in this paper. The energy equations have been applied to the numerical example in order to test
its performance. In the numerical examples, we have studied with two time parameters (earth and space time) for accordance
to Minkowski 4-space coordinates. This idea is an interesting approach to energy function with Earth-time and Space-time in
physical comment. Moreover, velocity and two time dimensions for energy movement equations have been presented a new
concept. This study show some physical application of those equations and interpretations are made in Minkowski space too.
Results showed that Lagrangian functions for any surface are same type and depend on time coordinates.

Keywords Minkowski 4-space, Jet Bundle, Lagrangian Mechanical System, Euler-Lagrange Equation

1 Introduction

Many of the problems in classical mechanics may be solved based on Lagrangian energy equations using Euclidian space,
but none of them are calculated on the Minkowski 4-space. Metric structure of Minkowski-4 space different from Euclidian
space. For that reason, to solve mechanical problems on jet bundles is difficult. Therefore, this study obtains coordinates
Minkowski 4-space by forming jet bundles at first. Second energy equations are solved using a mentioned equations.

In mathematical physics, Minkowski spacetime is a combination of the three-dimensional Euclidean space and time into
a four dimensional manifold. Higher dimensional spaces have since became one of the foundations for formally expressing
modern mathematics and physics. Time is divided into world time and spacetime. As the union of these times with Euclidean
space, it is convenient to use Minkowski 4-space in mathematical physics. The generalization of classical spacetime is
permanently a subject of the contemporary mathematical investigations as we can see for example in the references [1, 7, 8] .
To follow these research in physics as a first step, we prefer to solve Lagrangian energy equations on the Minkowski 4-space
which is based on a jet bundle structure.Works on generalized Minkowski spaces in the references [2, 3, 12], the time-space
manifolds and studies for time-dependent Lagrangians can be seen in the references [4, 17].

Inclusion of time dimension for solving Lagrangian energy equations on Minkowski 4-space is an important parameter
that improves the Lagrangian system for which we propose to take time derivative coordinates on Jet bundle.

The constraint, real, complex and Para-complex structures on the time-dependent Lagrangian systems can be researched
in [7], [13] and [16].

Aycan [7] proved that the jet bundle structures are not changed for Lagrangian energy equations. But, since jet bundle
structure included time dimension, it may be easy to solve energy equations with this parameter.Furthermore Aycan and
Dagli [8] improved Lagrangian energy equations on complex jet bundles. Also, the presented method in [8] has easily
indicate Lagrangian mechanism formulation on a space which has a complex dimension.
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Lagrangian equations are solved with real bundles by [14] and [16]. Minkowski 3-space and its geometrical properties
were researched in [5]. Mechanical systems with time parameter were investigated in [9] and [10]. But none of them as
far as our knowledge not solved with Minkowski jet bundles using time dimension and time derivatives on coordinates in
Minkowski 4-space.

The brief introduction of Lagrangian systems are given in the following way.
If Q is an m-dimensional configuration manifold and L : TQ→ R is a regular Lagrangian function, then there is a unique

vector field X on TQ and w is a 2-form on T ∗Q, such that

iXL
wL = dEL (1.1)

where EL is energy associated to L ([14] and [16]). The so-called Euler-Lagrange vector field X is a semi-spray or second
order differential equation on Q since its integral curves are the solutions of the Euler-Lagrange equations ([14] and [16]).
The triple(TQ,wL, L) is called Lagrangian system on the tangent bundle TQ [15].

Let, L : R × TQ = J(R,Q) → R and TQ = {t} × TQ be Lagrangian function. The coordinate system on TQ is
{qi, vi} .

The Poincare cartan 1-form on the T ∗Q associated with L is;

αL = dJL+ Ldvi

=
∂L

∂vi
dqi + Ldvi

The Poincare cartan 2-form associated with L is

ΩL = ddJL+ dL ∧ dvi

If the paths of semisprays verify the following expressions;

d

dt
(
∂L

∂vi
)− ∂L

∂qi
= 0 (1.2)

1.2 is called as Euler-Lagrange equation.

2 Bundles on Minkowski 4-Space
Let (E, π,M) is a bundle where E and M are manifolds and π : E →M is a surjective submersion. E is called the total

space, π is the the projection and M is the base space. This bundle denoted by π or E. The first jet manifold of π is the set{
J1
pφ : p ∈M,φ ∈ Γp (π)

}
and denoted by J1E. Here, φ : M → E φ is a map and called as section of π. If it is satisfies

the condition π ◦ φ = idM , then the set of all sections of π will be denoted Γ (π).
Let (U, u) be an adapted coordinate system on E, where u = (xi, uα). The induced coordinate system (U1, u1) on J1E

is defined by

U1 =
{
J1
pφ : φ(p) ∈ U

}
u1 = (xi, uα, u

i
α)

where xi(J1
pφ) = xi(p), uα(J1

pφ) = uα(φ(p)) and new functions uiα : U1 → R are specified by uiα(J1
pφ) =

∂φα
∂xi

(p) and

are known as derivative coordinates [7]. Using those coordinate system, the following coordinate system are proposed to
Minkowski 4-space.

Let the bundle structure
(
E4

1 , π,R
)

and the coordinates of the manifold E4
1are (x1, x2, x3, x4), the coordinate of the

manifold R is (t). In addition the coordinates of the manifold J1E4
1 are

(
t, x1, x2, x3, x4

.
x1,

.
x2,

.
x3,

.
x4
)
.

Then derivative coordinates are writen as
.
xi =

dxi
dt

.

3 Lagrangian Mechanical Systems For Minkowski Space with Jet Bundle
The Minkowski 4-space E4

1 is the Euclidean 4-space E4 provided that the standard metric given by

g = −dx21 + dx22 + dx23 + dx24
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where (x1, x2, x3, x4) is a rectangular coordinate system of E4. Here, g denoted the metric construction and d is the dif-
ferential form. Since g is an indefinite metric, vector v ∈ E4

1 is one of three Lorentzian characters; it can be space -like if
g (v, v) > 0 or g (v) = 0, time-like if g (v, v) < 0 and null if g (v) = 0 and v 6= 0. Similarly, an arbitrary curve α = α (s) in
E4

1 can locally be space-like, time-like, or null(light-like), if all of its velocity vectors α
′

are respectively space-like, time-like
or null, for every s.

τ is the set of all time-like vectors in E4
1 . For ∀u ∈ τ ; the set

C (−→u ) = {−→x ∈ τ : 〈−→u ,−→x 〉 < 0} =
{−→x ∈ E4

1 : g (x− u, x− u) < 0
}

defined as timecone [1] and [11].

Theorem 1. The time-like vectors −→x and −→y in Minkowski 4-space E4
1 are in the same timecone (Figure-1),

Figure 1. Figure-1,timecone

〈−→x ,−→y 〉 = −‖−→x ‖ ‖−→y ‖ cosh θ and here θ is the Lorentz time-like angle between −→x and −→y vectors.

Definition 1. Let J is a tensor field of type first-order covariant and first-order contra-variant such that J : T
(
J1E4

1

)
−→

T
(
J1E4

1

)
by

J

(
∂

∂x1

)
= − ∂

∂
.
x1
, J

(
∂

∂x2

)
=

∂

∂
.
x2
, J

(
∂

∂x3

)
=

∂

∂
.
x3
, J

(
∂

∂x4

)
=

∂

∂
.
x4

J

(
∂

∂
.
x1

)
= J

(
∂

∂
.
x2

)
= J

(
∂

∂
.
x3

)
= J

(
∂

∂
.
x4

)
= 0

J

(
∂

∂t

)
=

.
−x1

∂

∂
.
x1

.
+x2

∂

∂
.
x2

.
+x3

∂

∂
.
x3

.
+x4

∂

∂
.
x4

(3.1)

J can be calculated as a tensor field from 3.1, as

J =
(
−dx1 −

.
x1dt

)
× ∂

∂
.
x1

+
(
dx2 +

.
x2dt

)
× ∂

∂
.
x2

+
(
dx3 +

.
x3dt

)
× ∂

∂
.
x3

+
(
dx4 +

.
x4dt

)
× ∂

∂
.
x4

(3.2)

This tensor field is the almost tangent structure and especially J2 = 0.
A semi-spray is a vector field over E4

1 and defined as below;

ε =
∂

∂t
− .
x1

∂

∂x1

.
+x2

∂

∂x2

.
+x3

∂

∂x3

.
+x4

∂

∂x4

−ε1
∂

∂
.
x1

+ ε2
∂

∂
.
x2

+ ε3
∂

∂
.
x3

+ ε4
∂

∂
.
x4

(3.3)

By calculate J(ε), then equation 3.4 are found

V = Jε = −2
.
x1

∂

∂
.
x1

+ 2
.
x2

∂

∂
.
x2

+ 2
.
x3

∂

∂
.
x3

+ 2
.
x4

∂

∂
.
x4

(3.4)
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which is called ”Liouville vector field”.
Moreover, ”Poincare-Cartan 1-form” is written as:

αL = dJL+ Ldt

αL = − .
x1

∂L

∂
.
x1
dt+

.
x2

∂L

∂
.
x2
dt+

.
x3

∂L

∂
.
x3
dt+

.
x4

∂L

∂
.
x4
dt

− ∂L

∂
.
x1
dx1 +

∂L

∂
.
x2
dx2 +

∂L

∂
.
x3
dx3 +

∂L

∂
.
x4
dx4 + Ldt (3.5)

Then we can write differential operator d,

d =
∂

∂t
dt− ∂

∂x1
dx1 +

∂

∂x2
dx2 +

∂

∂x3
dx3 +

∂

∂x4
dx4

− ∂

∂
.
x1
d
.
x1 +

∂

∂
.
x2
d
.
x2 +

∂

∂
.
x3
d
.
x3 +

∂

∂
.
x4
d
.
x4 (3.6)

By differentiating αL to d, ”Poincare-Cartan 2-form” is obtained by

ΩL = ddJL+ dL ∧ dt

But, for this writting, we can assume notations for negative terms. We denote this notations as follows;

δi = δj =

{
−1, i = 1
1, i = 2, 3, 4

δij =

 −1, i = j = 1
1, i ≥ 2 ve i = j
−1, i ≥ 2 ve i 6= j

µij =

{
0, i = j
−1, i 6= j

so

ΩL =
4∑
i=1

δi

{[
(dxi ∧ dt)

(
∂2L

∂t∂
.
xi

+
4∑
j=1

δj
.
xj

∂2L

∂xi∂
.
xj

)]

+

[(
d
.
xi ∧ dt

)( 4∑
j=1

δj
.
xj

∂2L

∂
.
xi∂

.
xj

)]
+

(
∂L

∂xi
+ 2

∂L

∂
.
xi

)}

+
4∑

i,j=1

[(
d
.
xi ∧ d

.
xj
)
δij

∂2L

∂
.
xi∂xj

+ (dxi ∧ dxj)µij
∂2L

∂xi∂
.
xj

]
+ 2

∂L

∂
.
x1

(3.7)

Definition 2. Solutions of the Euler-Lagrange equation can be found by assuming iεΩL = ΩL (ε) = 0.

iεΩL = ΩL (ε)

= −
4∑
i=1

.
xi

∂2L

∂t∂
.
xi

+
4∑
i=1

δi
.
xi

(
4∑
j=1

.
xj

∂2L

∂
.
xi∂xj

+
4∑
j=1

εj
∂2L

∂
.
xi∂

.
xj

)

+
4∑
i=1

(
.
xi
∂L

∂
.
xi

+ 2δiεi
∂L

∂
.
xi

)
+ 2ε1

∂L

∂
.
x1
dt
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+

{
4∑
i=1

δi

(
∂2L

∂t∂
.
xi
− ∂L

∂
.
xi

)
+

4∑
i,j=1

(
δiεj

∂2L

∂
.
xi∂

.
xj

+ µij
.
xi

∂2L

∂xi∂
.
xj

)

+
4∑

i,j=1

δijδi
.
xj

∂2L

∂
.
xj∂xi

dxi −

{
4∑

i,j=1

δij

(
.
xj

∂2L

∂
.
xi∂

.
xj

+
.
xj

∂2L

∂
.
xi∂

.
xj

)}
d
.
xi

(3.8)

By equalizing equation 3.8 to zero, then 3.9 are obtained.

I: − ∂2L

∂t∂
.
x1

+
∂L

∂x1

(
4∑
i=1

δi
.
xi
∂L

∂
.
xi

+ L

)
− ∂

∂
.
x1

(
4∑
i=1

εi
∂L

∂
.
xi

)

+
4∑

i=1,j=1

µij
.
xj

(
∂2L

∂xi∂
.
xj
− ∂2L

∂xj∂
.
xi

)
= 0

II:
∂2L

∂t∂
.
x2
− ∂L

∂x2

(
4∑
i=1

δi
.
xi
∂L

∂
.
xi

+ L

)
+

∂

∂
.
x2

(
4∑
i=1

εi
∂L

∂
.
xi

)

−
4∑

i=2,j=1

µij
.
xj

(
∂2L

∂xi∂
.
xj
− ∂2L

∂xj∂
.
xi

)
= 0

III:
∂2L

∂t∂
.
x3
− ∂L

∂x3

(
4∑
i=1

δi
.
xi
∂L

∂
.
xi

+ L

)
+

∂

∂
.
x3

(
4∑
i=1

εi
∂L

∂
.
xi

)

−
4∑

i=3,j=1

µij
.
xj

(
∂2L

∂xi∂
.
xj
− ∂2L

∂xj∂
.
xi

)
= 0

IV:
∂2L

∂t∂
.
x4
− ∂L

∂x4

(
4∑
i=1

δi
.
xi
∂L

∂
.
xi

+ L

)
+

∂

∂
.
x4

(
4∑
i=1

εi
∂L

∂
.
xi

)

−
4∑

i=4,j=1

µij
.
xj

(
∂2L

∂xi∂
.
xj
− ∂2L

∂xj∂
.
xi

)
= 0

V:
∂

∂
.
x1

(
4∑
i=1

δi
.
xi
∂L

∂
.
xi

+ L

)
+

∂

∂
.
x1

(
4∑
i=1

.
xi
∂L

∂
.
xi
− L

)
= 0

VI: − ∂

∂
.
x2

(
4∑
i=1

δi
.
xi
∂L

∂
.
xi

+ L

)
− ∂

∂
.
x2

(
4∑
i=1

.
xi
∂L

∂
.
xi

+ L

)
= 0

VII: − ∂

∂
.
x3

(
4∑
i=1

δi
.
xi
∂L

∂
.
xi

+ L

)
+

∂

∂
.
x3

(
4∑
i=1

.
xi
∂L

∂
.
xi

+ L

)
= 0

VIII: − ∂

∂
.
x4

(
4∑
i=1

δi
.
xi
∂L

∂
.
xi

+ L

)
+

∂

∂
.
x4

(
4∑
i=1

.
xi
∂L

∂
.
xi

+ L

)
= 0

IX:

{
−

4∑
i=1

.
xi

∂2L

∂t∂
.
xi

+
4∑
i=1

δi
.
xi

(
4∑
j=1

.
xj

∂2L

∂
.
xi∂xj

+
4∑
j=1

εj
∂2L

∂
.
xi∂

.
xj

)
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+
4∑
i=1

(
.
xi
∂L

∂
.
xi

+ 2δiεi
∂L

∂
.
xi

)
+ 2ε1

∂L

∂
.
x1

}
= 0

(3.9)

3.9 represents a non-linear equations system. For solution of this non-linear equations system, we can assume a special
initial condition as follows;

ε1 = − .
x1, ε2

.
= x2, ε3

.
= x3, ε4

.
= x4 (3.10)

In equation 3.10, first term must be negative, because, Minkowski metric is defined as (−,+,+,+) in this study. Then
following equalities can be hold;

.
x1(I)− .

x2(II)− .
x3(III)− .

x4(IV ) +
.
x1 (V )− .

x2(V I)− .
x3(V II)− .

x4(V III) + (IX) = 0

(3.11)

Solving 3.11 the following equation can be obtained. We can write 3.11 in a general form as follows,

− ∂

∂t

(
4∑
i=1

.
xi
∂L

∂
.
xi

)
− .
x1

∂L

∂
.
x1

(
4

δi
∑

i=1

.
xi
∂L

∂
.
xi

4

+
∑
i=1

.
xi
∂L

∂
.
xi

)

+

(
δi

4∑
i=1

.
xi
∂L

∂
.
xi

)(
4∑
j=1

.
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(3.12)

This is Euler-Lagrange equation and its solution is the semi-spray on the bundle J1E4
1 .

Following examples show an application of equation 3.12.

Example 1. We are analyzing the energy emerging by the movement of a particle ’m’. First, we assume that this particle
in the space. It moves on a space-like curve towards to earth. If it falls on the earth surface, it will be on a null vector in
Minkowski timecone. Then its movement continues on a time-like vector. Also, we can accept the movement in timecone
occurs on a helix curve, which is lay in timecone. For examine the occurence energy for this movement, we can constitute
jet bundle structure for this helix for time parameter. On this cone, when it can be said for the time past or future, then it
can be studied only time-like vectors.Also, first jets must be time-like vectors. Because, space-like and null vectors define in
this space, but it can’t define continuity the movement of the particle. The event must be materializing in timecone, also the
vectors, which we use, can be time-like vectors. Now, we take into account the helix curve in the cone.

Figure-2 denoted the helix curve on the sphere in Minkowski 4-space,

Figure 2. Figure-2,helix on timecone.

Figure-3 denoted the movement our particle.
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Figure 3. Figure-3, Movement of article on Minkowski helix

Minkowski helix is defined as (r sinhuθ, r coshuθ sin θ, r coshuθ cos θ) [1]. Here r is radius function and related to time
parameter, r = r(t). θ is the angle, which is between tangent vector and curve in all points and it is a fixed angle. If this

helix curve be time-like, then it must be provided the inequality
〈
α

′
, α

′
〉
< 0 and the angle θ in two time-like vectors can be

defined with equality 〈−→x ,−→y 〉 = −‖−→x ‖ ‖−→y ‖ cosh θ. The velocity vector for this curve is
α

′
(θ) = (r sinhuθ, r coshuθ sin θ, r coshuθ cos θ)

′

= ur coshuθ, ur sinhuθ sin θ + r coshuθ cos θ, ur sinhuθ cos θ − r coshuθ sin θ)
If this curve is time-like, then it will satisfy following equality〈

α
′
, α

′
〉

= r2
(
cosh2 uθ − u2

)
(3.13)

So, parameter u can be provided the inequality
−u < coshuθ < u (3.14)

The jet bundle coordinates for this helix are
(s, t, r sinhuθ, r coshuθ sin θ, r coshuθ cos θ,
.
t,
.
r sinhuθ,

.
r coshuθ sin θ,

.
r coshuθ cos θ

)
(3.15)

Here s is a space-time parameter, t is earth-time parameter. In this example, for the harmony with the number jet bundle
coordinates in Minkowski 4-space E4

1 and for the physical comment, we must accept two-time parameter. On the other hand,
this is a reality, because time for space and earth different each other. With using this coordinates and with simplication in
terms in the equation 3.12, we can obtain Euler-Lagrange equation for this helix as follows;
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(3.16)

Now, we calculate the solution of this Euler-Lagrange equation. Here, the Lagrange function is L = L(r, t) and radius
function is r = r(t); so Lagrange function is connected with time and radius parameters, radius is connected with time
parameter.

For calculating this equation, we consider

dt

ds
= k, (k is a constant)
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It can be a fixed relation in space-time and earth-time parameters. Furthermore, this assumption is not enough alone. Hence,
we consider

dL

d
.
r

= λ⇒ L = λ
.
r and

dL

d
.
t

= µ⇒ L = µ
.
t.

We know that L energy function include time and radius parameter, and then it included derivative time and radius
parameters coming from jet bundle structure too.

With calculation the equation 3.16, we get solution of Lagrange energy function;

L = −3

2
λr (3.17)

Furthermore, radius function
dr

ds
= −3

2
r ⇒ r = e−

3
2 s

⇒ r = e−
3
2

t
k

Then the energy Lagrange energy function can writen as

L = −3

2
λe−

3
2

t
k (3.18)

From 3.18, with our acceptance, time parameter is one of the main parameter. Time has an important role on the
occurence energy for the movement. On the other hand, when the ratio of the time in Minkowski and earth space is k, the
ratio of the speeds in Minkowski and earth space is k too. So we can write,

∥∥∥∥dαdt
∥∥∥∥∥∥∥∥dαds
∥∥∥∥ =

√
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(
dr
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)2

cosh 2uθ√(
dr
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)2

cosh 2uθ − k2
= k

and √
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9

4k2
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3t
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9

4
e−3s cosh 2uθ − k2

= k

also we obtain

t = −k
3

ln

[
4k2

(
1 + k4

)
9 (k4 − 1) cosh 2uθ

]
(3.19)

with this conclusion we can calculate the Lagrangian energy in following way. When we write this values in equation 3.19,
we calculate k parameters for λ = −1. Then,

t = 1⇒ k = −4, 302932897⇒ L = 2, 125622176

t = 2⇒ k = −5, 336423366⇒ L = 2, 631724656

t = 3⇒ k = −6, 251374542⇒ L = 2, 149823941

t = 4⇒ k = −7, 093059294⇒ L = 3, 495101613

This is showed that, when time is larger, the Lagrangian energy values are almost same. Lagrangian energy values are
accelerate slowly, because the movement on the helix curve are occured regularly.
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Figure 4. Figure 4. Circle on timecone

Example 2. In this example, we define a circle in timecone (Figure-4).And, we are analyzing the movement of the particle
’m’ in this circle. For this reason we want to define the jet bundle structure for the circle. The jet bundle coordinates are,(

t, r cos θ, r sin θ, u,
.
r cos θ,

.
r sin θ, 0

)
(3.20)

Here s is a space-time parameter, t is earth-time parameter. On the other hand it can be seen from the figure-4, this
circle exist in any plane on the z axis. From this the paramater u, has a constant value. With using this coordinates and with
simplication in terms in the equation 3.12, we can obtain Euler-Lagrange equation for this circle as follows;
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(3.21)

Here we assume that
dt

ds
= k, (k is a constant)

and
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d
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= λ⇒ L = λ
.
r

dL
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= µ⇒ L = µ
.
t

too. Also, the following equation is obtained in similarly way

L = −4
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λr (3.22)

Futhermore
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Then,
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3

t
k (3.23)

If it is noticed that, Lagrange function in 3.18 and 3.23 is similar. The difference between this equations is the constant term
in exponential phase. Also, we can calculate the Lagrange energy in the similar way with example one. Here we obtain
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Then, with this conclusion we can the Lagrangian energy for circle in following way. When we write time values in equation
3.24, we can calculate k parameters for λ = −1. Also,

t = 1⇒ k = −2, 297972884⇒ L = 2, 38191218

t = 2⇒ k = −3, 109688970⇒ L = 3, 14312310

t = 3⇒ k = −1, 00009442,⇒ L = 72, 77004149

t = 4⇒ k = −1, 000006557⇒ L = 276, 1600076

It is showed that, when time is larger, then Lagrangian energy values increase very fast. Because, the mobile object on
the circle falls free, also this object speed up very quickly. Finally, it arrives the speed of light.

4 Conclusion and Discussion
This study investigates the possible enhancement of Lagrangian equations on Minkowski space. Furthermore, in a dif-

ferent space model, jet bundle structure on Minkowski 4-manifold has been constitued in this paper. This bundle has been
generated a form from real bundle structure. The application of energy equations with respect to two time parameter have
been taken into account on jet bundles on the helix curve and on the circle on timecone provide for testing the solution
methods. The following results can be droven from this study.

1)Lagrangian energy equation for Minkowski 4-space can be improved by taking into account time dimension using jet
bundles.

2)Explanation about negative defined metric form for Lagrange equations on Minkowski 4-space using jet bundles are
corresponded to equation 3.12, that leades to a general form of Lagrange equation in 1.2. The main difference in this
equations is the negative term coming from Minkowski metric and derivative coordinates coming from Jet bundle structure.
If this metric takes positive in all terms, then we can calculate the Euler-Lagrange function in Euclid space in the same form.

3)Given examples showed that proposed non-linear partial differential equations can be solved with respect to special
acceptance, which are compatible to physical and mathematical reality.

4)Physical interpretation of this improved Lagrangian equations in this paper may be leaded to further invastigates. This
is a interesting study, because this space model is preferred for physicants. One of the interesting conclusion of this study is,
when the time is very big, the Lagrangian energy of a movement particle can be seen in a static case. Two time parameter is
a reality for a space model. Thus, studying with Minkowski 4-space is a natural phenomena. And this study is a generally
research for Lagrangian energy depended on time.

5)As a result of equation 3.18 and 3.23, if a partial is too fast then the Lagrangian energy is a stably state case. Similarly,
if time is too long, then the Lagrangian energy is a stably state case.
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6)All examples showed that, Lagrangian energy values increasing in a certain role and approach a fixed value. Obviously,
this energy converge the speed of light. In the example one, the movement on the helix curve is a regaularly movement. This
movement occurs the form of slip on helix. Also, energy values accelerate slowly. But, in the example two the movement
on the circle is a free movement. This movement occurs in the form of falling, so the energy accelerate very speedly. This
conclusion is the most striking results of this study.
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