T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

SİSMİK ETKİLER ALTINDA KÖPRÜ AYAKLARINDA ZEMİN KAZIK YAPI ETKİLEŞİMİ ÖRNEĞİ

YÜKSEK LİSANS TEZİ

SEBGHATULLAH HAKİMYAR

DENİZLİ, NİSAN - 2023

T.C. PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

SİSMİK ETKİLER ALTINDA KÖPRÜ AYAKLARINDA ZEMİN KAZIK YAPI ETKİLEŞİMİ ÖRNEĞİ

YÜKSEK LİSANS TEZİ

SEBGHATULLAH HAKİMYAR

DENİZLİ, NİSAN - 2023

Bu tez çalışması Pamukkale Üniversitesi Bilimsel Araştırma Koordinatörlüğü tarafından 2022FEBE051 nolu proje ile desteklenmiştir. Bu tezin tasarımı, hazırlanması, yürütülmesi, araştırmalarının yapılması ve bulgularının analizlerinde bilimsel etiğe ve akademik kurallara özenle riayet edildiğini; bu çalışmanın doğrudan birincil ürünü olmayan bulguların, verilerin ve materyallerin bilimsel etiğe uygun olarak kaynak gösterildiğini ve alıntı yapılan çalışmalara atfedildiğine beyan ederim.

Sebghatullah HAKİMYAR

ÖZET

SİSMİK ETKİLER ALTINDA KÖPRÜ AYAKLARINDA ZEMİN KAZIK YAPI ETKİLEŞİMİ ÖRNEĞİ

YÜKSEK LİSANS TEZİ SEBGHATULLAH HAKİMYAR PAMUKKALE ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ İNŞAAT MÜHENDİSLİĞİ ANABİLİM DALI

(TEZ DANIŞMANI:DR. ÖĞR. ÜYESİ ENGİN NACAROĞLU)

DENİZLİ, NİSAN - 2023

Bu tezde iki açıklıklı derin temel sistemine sahip bir köprü, Zaman – Tanım alanı yöntemi ile üç farklı zemin modeli dikkate alınarak incelenmiştir. Geoteknik deprem mühendisliği açısından köprünün değerlendirilmesi için TBDY2018 yönetmeliğine göre zemin sınıfı belirledikten sonra yerel zemin koşullarına ve fay tipine göre seçilen ivmeler ölçeklendirildikten sonra yerel zemin koşuluna uygun Pekleşen Zeminler (HS), Cam – Clay (CC) ve Drucker– Prager (Dr-Pr) zemin modelleri ile DIANA 3D yazılımı kullanılarak doğrusal olmayan analizler gerçekleştirilmiştir. Bu analizlerde zeminlerin ve kazıkların dinamik durumundaki yapıya etkileşim seviyesine göre değerlendirilmesi yapılmıştır.

Normal konsolidasyonlu zemin için, zeminin büyük gerilme durumunda CC ve Dr-Pr zemin modellerinde köprü ayak temelinin birleşiminde oluşması gereken gerilmenin yönünü değiştirerek kesme gerilmesi oluşturulmuştur. Ayrıca Dr-Pr zemin modeli zeminin küçük şekil değiştirmeli durumunda maksimum şekil değiştirme yerini hatalı olarak -4m de bulmasına rağmen şekil değiştirmesi arttığı zaman bu sorun düzelmiştir. Kazıkların küçük gerilme-şekil değiştirmeleri, kesme kuvvetleri, momentli durumlarda CC zemin modeli kazık davranışını hatalı bir şekilde sergilerken, E-CC kazıkların kesme kuvvet davranışını doğru bulmasına rağmen kazıkların küçük gerilmeli-şekil değiştirmeli ve büyük momentli durumlarda kazık davranışını hatalı bir biçimde tahmin etmiştir. Dr-Pr zemin modeli, CC zemin modelinin aksine kazık davranışının daha doğru tahmin etmiştir.

Aşırı konsolidasyonlu zemin için, CC zemin modeli küçük gerilmeli durumda zemin davranışını doğru sergilemesine rağmen, büyük gerilmeli durumlarda gerilmenin yoğunlaştığı köprü ayak – radye temel birleşiminde ters yönde kesme gerilmesi oluşmuştur. Dr-Pr zemin modeli ise küçük ve büyük gerilmeli durumlarda kesme gerilmesi oluştuğundan hatalı zemin davranışı sergilemektedir. Zeminde oluşan şekil değiştirmelere bakıldığında CC zemin modeli küçük şekil değiştirmeleri hatalı temsil ettiği halde, Dr-Pr zemin modeli, HS zemin modeline göre küçük şekil değiştirmelere maruz kalmasına rağmen, zemin davranış biçimini doğru tahmin etmiştir. Kazıkların gerilme – şekil değiştirme davranışlarına bakıldığında; Dr-Pr ve CC zemin modelleri küçük gerilmelere ve küçük şekil değiştirmelere kazık davranışı açısından en

gerçekçi zemin modeli olan HS zemin modeline çok daha yakın sonuç vermiştir. CC zemin modeli X,Y ve Z yönlerinde oluşan kazıkların küçük kesme kuvvetlerinin davranışını hatalı temsil ettiği halde, büyük kesme kuvvetlerini doğru tahmin etmiştir. Dr-Pr zemin modeli ise kazıkların küçük ve büyük kesme kuvvetlerinin davranış biçimini doğru tahmin etmiştir. Kazıkların moment sonuçları incelendiğinde, küçük momentli durumlar için CC zemin modeli kazık davranışını doğru temsil edememiştir. Dr-Pr zemin modeli ise kazık davranışını doğru temsil edememiştir.

Normal konsolidasyonlu durumda Dr-Pr zemin modeli Yapı-Zemin deplasmanını büyük değerler verirken Aşırı konsolidasyonlu durumu için küçük değerler vermiştir. Normal konsolidasyonlu durumda CC zemin modeli Yapı-Zemin deplasmanını küçük değerler verirken Aşırı konsolidasyonlu durumu için büyük değerler vermiştir.

HS zemin modeli ise yukarıda bahsettiğimiz her iki durum için ortalama deplasman değerleri vermiştir. Ayrıca HS zemin modeli, gerek Yapı-Zemin davranışı açısından, gerekse Yap-Kazık-Zemin etkileşimi açısından bu uç modeller arasında ve her iki zemin durumu için en gerçekçi davranış biçimini sergilemektedir.

ANAHTAR KELİMELER: Yapı Zemin Etkileşimi, Kazıklı Köprü Ayakları, Sonlu Elemanlar Analizi.

ABSTRACT

EXAMPLE OF SOIL PILE STRUCTURE INTERACTION AT BRIDGE PIERS UNDER SEISMIC EFFECTS MSC THESIS SEBGHATULLAH HAKIMYAR PAMUKKALE UNIVERSITY INSTITUTE OF SCIENCE CIVIL ENGINEERING

(SUPERVISOR:DR. ENGIN NACAROGLU)

DENİZLİ, APRIL 2023

In this thesis, a bridge with a two – span deep foundation system has been investigated by considering three different soil models using the Time – History method. For the investigation of the bridge in terms of Geotechnical earthquake engineering, after determining the soil class according to TBDY2018 regulation, scaling the selected acceleration according to the local soil conditions and fault type, Hardenig Soils (HS), Cam – Clay (CC) and Drucker – Prager (Dr – Pr) Nonlinear analyzes were performed using soil models and DIANA 3D software. In these analyzes, the investigation of soils and piles according to the level of interaction with the structure in the dynamic state was made.

For a normally consolidated soil, in case of major stress of the ground CC and Dr-Pr soil models changed shear stress direction while this stress should occur at the junction of bridge pier with raft foundation. In addition, although Dr-Pr soil model incorrectly Found the location of maximum deformation at -4m in case of small deformation occur in the soil, but corrected this problem When deformation increased. In the cases of small stress-strain of piles, small shear forces and small moment, CC soil model exhibits pile behavior erroneously, while E-CC find the shear force behavior of pile to be correct, but the pile behavior in small stress-strain and high moment conditions has done incorrectly predicted. Contrary the CC soil model, the Dr-Pr soil model predicted the pile behavior more accurately.

For the over- consolidated case, although the CC soil model exhibits the correct soil behavior in the low-stress condition, however the reverse shear stress has occurred in the bridge pier-raft foundation junction where the stress intensifies in the high-stressed condition. On the other hand, Dr-Pr soil model, exhibits incorrect soil movement in the case of small and large shear stresses occurred. While considering the deformation in the ground, although the CC soil model misrepresented small strains, the Dr-Pr soil model predicted the soil behavior correctly, even though it was subjected to small deformation compared to the HS soil model. For Considering the stress-strain behavior of the piles, both Dr-Pr and CC soil models predicted the pile behavior correctly. In addition, the CC soil model gave much closer results to the HS soil model, which is the most realistic soil model, in terms of pile behavior at small stresses and small deformation. Although the CC soil model misrepresented the behavior of small shear forces of piles in X, Y and Z directions, it predicted large shear forces correctly. On the other hand, the Dr-Pr soil model correctly predicted the behavior of the small and large shear forces of the piles. When the moment results of the piles were examined, the CC soil model could not represent the pile behavior correctly for small moment cases. The Dr-Pr soil model, on the other hand, accurately represented the pile behavior.

In the Normally consolidated condition, the Dr-Pr soil model gave large values for the Structure-Soil displacement, while it gave small values for the Overconsolidated condition. In Normally consolidated state, the CC soil model gave the Structure-Soil displacement small values, while the Over-consolidated state gave large values. On the other hand, the HS soil model gave average displacement values for both cases mentioned above. In addition, the HS soil model exhibits the most realistic behavior between these models for soil condition in terms of both Structure-Soil behavior and Structure-Pile Soil interaction.

KEYWORDS: Soil Structure Interaction, Piled Bridge Piers, Finite Element Method (FEM), DIANA 3D, Nonlinear Analysis, Geotechnical Earthquake Engineering.

İÇİNDEKİLER

ÖZET	i
ABSTRACT	iii
İÇİNDEKİLER	v
ŞEKİL LİSTESİ	. vii
TABLO LÍSTESÍ	xv
SEMBOL LİSTESİ	xix
ÖNSÖZ	xxi
1. GİRİŞ	1
1.1 Tezin Amacı ve Kapsamı	3
1.2 Konu ile İlgili Çalışmalar	4
1.3 Tezin Çalışma Akışı	10
2. ZEMİN TABAKALARININ İNCELENMESİ	11
2.1 Sondaj Araştırmaları	12
2.1.1 YKS21 No.lu Sondaj	11
2.1.2 YKS22 No.lu Sondaj	11
2.2 YAPILAN DENEYLER	12
2.2.1 Arazi Deneyleri	12
2.2.2 Laboratuvar Deneyleri	12
2.3 Zeminlerin Fiziksel Özelliklerinin Belirlenmesi	12
2.3.1 Zeminlerin Mekanik Özelliklerinin Belirlenmesi	13
2.4 Zeminlerin Sınıflandırılması	14
3. ZEMİN MALZEMESİNİN PEKLEŞME DAVRANIŞI	19
3.1 İzotropik Pekleşme	19
3.2 Kinematik Pekleşme	21
3.3 Karma Pekleşmesi	22
4. ZEMİN MODELLERİ	24
4.1 Drucker – Prager Zemin Modeli	24
4.2 Cam Clay (Kambrij Kili) Zemin Modeli	27
4.3 Pekleşen Zemin Modeli (Hardening Soil Model)	30
4.4 Dipnotlar	33
5. KÖRPÜ TEMELLERİN PROJELENDİRİLMESİ	36
5.1 Yüzeysel Temel Durumu İçin Zemin Emniyet Gerilmesi Hesaplar	rı 37
5 1 1 Terzaghi(1943) Vöntemine Göre Tasıma Güçü Hesahı	
5.1.1 Teizagin(1945) Tomenine Gore Taşına Gücü Hesabı	
5.1.2 Hansen ve VesicVöntemlerine Göre Tasıma Gücü Hesabı	
6 KAZIKLI TEMEL DURUMU İCİN KAZIK TASIMA GÜCÜ	+1
HESAPI ARI	52
6.1 Kazık Uc Davanımı	52
6.2 Kazık Sürtünme Davanımı	58
6.3 Kazıkların Grun Etkişi	
631 Grun Kazıkların Mesafe Etkisi	
6.4 Kazık Tasıma Gücü Hesabı İcin Verilerin Elde Edilmesi	
6.5 A1-P1 Aksı Kazık Tasıma Gücü Hesanları	
6.5.1 Negatif Cevre Sürtünmesi	

6.6	A2 Aksı Kazık Taşıma Gücü Hesapları	76
6.6	5.1 Negatif Çevre Sürtünmesi	79
6.7	Köprü Temelleri Geoteknik Sonuçları	76
7. ÖR	RNEK KÖPRÜNÜN ÖZELLİKLERİ	82
7.1	Yapısal Modelin Açıklanması	83
7.2	Modellemedeki Zemin Model Özellikleri	85
7.3	Analiz Öncesi İvmenin Seçim Aşaması	90
8. YA	.PI – ZEMİN ETKİLEŞİM ANALİZİ	
8.1	Üç Farklı Zemin Modelinin Dinamik Durumundaki Ya	apı - Temel -
Zemi	n Etkileşim Analiz Sonuçları	105
8.1	.1 İmperial Valley (1979) Deprem İvmesinin Analiz S	Sonuçları
(Ne	ormal Konsolidasyon Durum)	105
8.1	.2 Kocaeli 1999 Deprem İvmesinin Analiz Sonuçları	
(As	şırı Konsolidasyon Durum)	109
9. SON	NUÇ VE ÖNERİLER	115
10. KA	YNAKLAR	126
11. EK	LER:İmperial Valley 1979 Analiz Sonuçları	132
12. EK	LER:Kocaeli 1999 Analiz Sonuçları	
13. ÖZ	GEÇMİŞ	251

ŞEKİL LİSTESİ

<u>Sayfa</u>

Şekil 1.1: Geçmiş Depremler Sırasında Köprülerde Oluşan Hasarlar1
Şekil 1.2: Geçmiş Depremler Sırasında Köprülerde Oluşan Hasar Tipleri2
Şekil 1.3: Geçmiş Depremler Sırasında Köprülerde Oluşan Hasarın Çeşitleri.
2
Şekil 2.1: Bütün Zeminler İçin Kayma Dalga Hızı Sonuçları17
Şekil 2.2: Killi Zeminler İçin Kayma Dalga Hızı Sonuçları17
Şekil 2.3: Her İki Sonuçların Ortalama Kayma Dalga Hızlarının
Karşılaştırılması17
Şekil 3.1: İzotropik Malzeme Davranışının Akma Yüzeyi Şematik Gösterimi
ve Gerilme - Şekil Değiştirme Grafiği20
Şekil 3.2: Kinematik Malzeme Davranışının Akma Yüzeyi Şematik
Gösterimi ve Gerilme - Şekil Değiştirme Grafiği20
Şekil 3.3: Kinematik Pekleşme Durumunda Malzeme Geri Gerilme ile Yer
Değişimi22
Şekil 3.4: Karma Pekleşme Malzeme Davranışının Akma Yüzeyi Şematik
Gösterimi23
Şekil 4.1: Mohr – Coulomb ve Drucker – Prager Akma Yüzeyleri Deviatorik
Gerilme Uzayında Karşılaştırılması(Zhang,Y.,vd)25
Şekil 4.2: Farklı İçsel Sürtünme Açıların Durumunda 3D Geliştirilmiş
Drucker – Prager 'in (ED-P) akma yüzeyleri (Zhang,Y.,vd)26
Şekil 4.3: Farklı İzotropik Seviyelerde Asfalt Beton İçin Genelleştirilmiş
Drucker – Prager 'in (ED-P) akma yüzeyleri (Zhang,Y.,vd)26
Şekil 4.4: Hacimsel Birim Şekil Değiştirme-Ortalama Efektif Gerilme
Logaritmik İlişkisi (Plaxis - 2D Manual, 2020)
Şekil 4.5: p'-q Akma Yüzey Durumu İçin Modified Cam Clay Akma Yüzeyi
(Plaxis – 2D Manual, 2020)
Şekil 4.6: Cam – Clay(kili) ve Modifiye Cam – Clay Akma Yüzeyleri (p – q)
Uzayı M Parametresi CSL'nin Eğimidir (Nihal BENLI, 2008)29
Şekil 4.7: p-q-e Uzayında Sınır Yüzeyin Görünüşü(Nihal BENLI, 2008)29
Şekil 4.8:üç Eksenli Test İçin Birincil Yüklemede Gerilme – Şekil
Değiştirme İlişkisi Modeli Konder & Zelasko(sondaki) ve Duncan&
Chang Tarafından Geliştirilmiş Hali (Sağ Taraftaki)
Şekil 4.9: Tipik Drenajlı Üç Eksenli Deney Sonuçları Işığında E ^{ref} ve
E ^{ref} Gösterimi
Şekil 4.10: Ramberg – Osgood Denklemine Göre Çizilmiş Tipik Gerilme –
Şekil Değiştirme İlişkisi
Şekil 4.11: Ardışık Akma Durumunda Pekleşme Parametresine Bağlı Çeşitli
Sabit Değerleri, γ^{P}
Şekil 4.12: Kayma Karakteristiği q - ɛ1 (Obrzud & Truty)33
Sekil 4.13: Normallestirilmis Sekant Kavma Rijitlik Özellikleri Gs/Go – £1
(Obrzud & Truty)
Sekil 4.14: Zeminin Rijitlik Azaltımına Bağlı Kavma Sekil Değistirme Artısı
İcin Peklesen Zemin Modeli Sematik Olarak Gösterilmektedir.
······································

Şekil 4.15: Zeminin Rijitlik Değişimine Göre Kayma Şekil Değiştirme	
Genliklerin Temsili(Atkinson & Sallfor, 1991)35	5
Şekil 4.16: Zeminin Rijitlik Azalım Eğrisi (Nepelski, 2022)35	5
Şekil 5.1: Köprü Sondaj Yerleri	5
Şekil 5.2: Köprü Zeminin Jeolojik Kesit	7
Şekil 5.3: Terzaghi'nin Kabulüyle Zeminde Oluşan Gerilme Sonucunda	
Genel Kayma Göçme Mekanizması	3
Şekil 5.4: Meyerhof (1963) Temel Taşıma Kapasite Denklemi İçin Şekil,	
Derinlik ve Eğim Çarpanları40)
Şekil 5.5: Hansen (1970) ve Vesic (1973) Temel Taşıma Kapasite	
Denklemi İçin Şekil, Derinlik Etki Katsayıları41	l
Şekil 5.6: Terzaghi (1943) İle Meyerhof 'un (1963) Temelin Taşıma	
Katsayılarının Karşılaştırılması42	2
Şekil 5.7: Terzaghi(1943) İle Vesic 'in(1973) Temelin Taşıma Katsayılarının	
Karşılaştırılması)
Şekil 5.8: Hansen (1970) Taşıma Gücü Faktörlerin Grafiği	3
Şekil 5.9: Terzaghi (1943) İle Hansen'in (1970) Temelin Taşıma	
Katsayılarının Karşılaştırılması43	3
Şekil 6.1: Mohr – Coulomb (1900, 1776), Göçme Mekanizması	2
Şekil 6.2: Kazık Ucunda Oluşan Kırılma Mekanizması; $\psi = 45 + \frac{\phi}{2}$ (Vesic,	
1977)	1
Şekil 6.3: Kazık Ucunda Oluşan Kırılma Mekanizması; $\psi = 45 + \frac{\phi}{2}$ (Vesic,	
1977)	1
Sekil 6.4: Gevsek Killi (a) ve Sert(yoğun) Kumlu (b) Ve Zeminde Kazık	
Ucunda oluşan Kırılma Mekanizması(Vesic, 1977)54	1
Sekil 6.5: Tasıma Kapasite Faktörün (N σ), ϕ ve Ir İle Değişimi	5
Sekil 6.6: Tasıma Kapasite Faktörün (Nc). ϕ ve Ir İle Değisimi	7
Sekil 6.7: Tek Tabakalı Homojen Zeminin Düsev Yükler Altında Analitik	
Cözümü İcin Tek Kazıklı Durumunda Kazık Ucu Göcme	
Mekanizması	3
Sekil 6.8: NAVAC(1982) Tarafından Önerilen Adezyon Eğrileri)
Sekil 6.9: API (1984), Peck vd (1974) Ve Bowels (1996) Tarafından	
Drenajsız Kayma Mukayemetine (Cu) Karsılıklı Önerilen	
Adezvon (α) Katsavısı)
Sekil 6.10: Normal Konsolide Killer İcin Kazık Yüzev Sürtünme Tasıma	
Kapasite Faktörü Ns Denevsel Olarak İncelenmistir	2
Sekil 6.11: Fore Kazıklar İcin London Kil Zeminde. Ns Değerinin	-
İncelenmesi (Vesic, 1977)	3
Sekil 6.12: Cakma Kazıklar İçin Rijit Asırı Konsolide Killerde Ns Değerleri	
(Vesic, 1977)	1
Sekil 6.13: Tek Tabakalı Homojen Zeminin Düsey Yükler Altında Analitik	
Cözümü İcin Tek Kazıklı Durumunda Kazık Sürtünme Direnci	
Göcme Mekanizması	1
Sekil 6.14: Tek Tabakalı Zemin İcin Kazıkların Yük Transfer Mekanizması	
(Das, 2011)	5
Sekil 6.15: Converse – Labarre Formülüne Göre Grup Etkisi (Garg. 1979).67	7
Sekil 6.16: Farklı Formüllere Göre Grup Etkisi (Garg. 1979).	3
Sekil 6.17: Sürtünme Kazıkların Grup Kapasite Tahmini İcin Feld (1943)	
Metodu (Das, 2011))
Sekil 6.18: Kazık Grupların Taşıma Kapasitesi (Terzaghi ve Peck, 1967)70)

Şekil 6.19: Kazık Grupların Etkisi (a) Yakın Mesafeli Kazık Grubu (b) Orta
sertlik Kum (Terzaghi ve Peck, 1967)71
Şekil 6.20: A1- P1 Köprü Ayak Kazıkların Gösterimi
Şekil 6.21: A2 Köprü Ayak Kazıkların Gösterimi
Şekil 7.1: Sönümleyici Sınır Koşullarının Elemanların Özellikleri
Şekil 7.2: Zeminin Sınır koşularının, Sınırlı ve Sınırsız Ortamları
Şekil 7.3: Zeminin Sınır koşularının, Sınırlı Ortamı ve Serbest Sahasının
Gösterimi
Sekil 7.4: C30 Betonun Basınç Dayanımı Durumunda Pekleşme Grafiği87
Şekil 7.5: C30 Betonun Çekme Dayanımı Durumunda Pekleşme Grafiği87
Sekil 7.6: Köprünü X Yönündeki Görüntüsü
Sekil 7.7: Köprünü Y Yönündeki Görüntüsü
Sekil 7.8: Köprünü Üc Boyutlu Model Görüntüsü
Sekil 7.9: Köprünü Üc Boyutlu Modeli ve Kazık Görüntüsü
Sekil 7.10: Köprü Analizi İcin Secilen İvmelerin Ölceklendirme Öncesi90
Sekil 7.11: Köprü Analizi İçin Seçilen İvmelerin Ölçeklendirme sonrası91
Sekil 7.12: Secilen İmperial Valley İvmesinin Ölçeklendirme Önçesi ve
Sourasi 91
Sekil 7.13: Secilen (H1) Kocaeli İvmesinin Ölceklendirme. Öncesi ve Sonrası
92
Sekil 7.14: Secilen (H1) İvmelerin Ölceklendirme Önce Spektrum Tepkisi
92
Sekil 7.15: Secilen İvmelerin Ölceklendirme Sonra Spektrum Tenkişi 93
Sekil 7.16: Secilen (H2) İvmelerin Ölceklendirme Önce 93
Sekil 7.17: Secilen (H2) İvmelerin Ölçeklendirme Sonra 94
Sekil 7.18: Secilen (H2) İmperial Valley (1979) İvmesinin Ölceklendirme
Öncesi ve Sonrası
Sekil 7.19: Secilen (H2) Kocaeli(1999) İvmesinin Ölceklendirme Öncesi
ve Sonrası
Sekil 7.20: Secilen İvmelerin Ölceklendirme Önce Spektrum Tepkişi95
Sekil 7.21: Secilen İvmelerin Ölceklendirme Sonra Spektrum Tepkisi96
Sekil 7.22: Köprü Analizi İcin Secilen(V) İvmelerin Ölceklendirme Önce96
Sekil 7.23: Köprü Analizi İçin Seçilen(V) İvmelerin Ölçeklendirme Sonra.97
Sekil 7.24: Secilen İmperial Valley (1979), (V) İvmesinin Ölçeklendirme
Öncesi ve Sonrası
Sekil 7.25: Secilen Kocaeli (1999) İvmesinin Ölceklendirme Öncesi ve
Sonrası
Şekil 7.26: Köprü Analizi İçin Seçilen (V) İvmelerin Ölçeklendirme Önce
Spektrum Tepkisi
Şekil 7.27: Köprü Analizi İçin Seçilen (V) İvmelerin Ölçeklendirme Sonra
Spektrum Tepkisi
Sekil 8.1: Köprü Analizi Sonucunda E-CC Zemin Modelinde X Yönünde
Olusan Deplasmanlar
Sekil 8.2: Köprü Analizi Sonucunda E-CC Zemin Modelinde Y Yönünde
Olusan Deplasmanlar
Sekil 8.3: Köprü Analizi Sonucunda E-CC Zemin Modelinde Z Yönünde
Olusan Deplasmanlar
Sekil 8.4: Köprü Analizi Sonucunda E-CC Zemin Modelinde Z Yönünde
Oluşan Kesme Kuvveti
Sekil 8.5: Köprü Analizi Sonucunda E-CC Zemin Modelinde Z Yönünde
, 1

Oluşan Momentler103
Şekil 8.6: Köprü Analizi Sonucunda HS Zemin Modelinde Y Yönünde
Oluşan Deplasmanlar103
Şekil 8.7: Köprü Analizi Sonucunda HS Zemin Modelinde Z Yönünde
Oluşan Momentler104
Şekil 8.8: Köprü Analizi Sonucunda Dr-Pr Zemin Modelinde Y Yönünde
Oluşan Deplasmanlar104
Şekil A.1: X Yönünde Zeminde ve Yapıda Oluşan Deplasmanlar132
Şekil A.2: Y Yönünde Zeminde ve Yapıda Oluşan Deplasmanlar133
Şekil A.3: Z Yönünde Zeminde ve Yapıda Oluşan Deplasmanlar134
Şekil A.4: X Yönünde Zeminde ve Yapıda Oluşan Gerilmeler135
Şekil A.5: X Yönünde Zeminde ve Yapıda Oluşan Maksimum Gerilmeler
Şekil A.6: Y Yönünde Zeminde ve Yapıda Oluşan Gerilmeler136
Şekil A.7: Y Yönünde Zeminde ve Yapıda Oluşan Maksimum Gerilmeler
Şekil A.8: Z Yönünde Zeminde ve Yapıda Oluşan Gerilmeler137
Şekil A.9: Z Yönünde Zeminde ve Yapıda Oluşan Maksimum Gerilmeler
Şekil A.10: X Yönünde Zeminde ve Yapıda Oluşan Şekil Değiştirmeler
Şekil A.11: Y Yönünde Zeminde ve Yapıda Oluşan Şekil Değiştirmeler
Şekil A.12: Z Yönünde Zeminde ve Yapıda Oluşan Şekil Değiştirmeler 139
Şekil A.13: Z Yönünde, 1, 2. Kazıkta Oluşan gerilmelerin Karşılaştırılması
Şekil A.14: Z Yönünde, 3, 4. Kazıkta Oluşan Gerilmelerin Karşılaştırılması
142
Şekil A.15: Z Yönünde, 5, 6. Kazıkta Oluşan gerilmelerin Karşılaştırılması
Sekil A.16: Z Yonunde, 13, 14. Kazıkta Oluşan gerilmelerin Karşılaştırılması
Sekii A.17: Z Yonunde, 17, 18. Kazikta Oluşan gerlimelerin Karşılaştırılması
Sekii A.18: Z. Yonunde, 19, 20. Kazikta Oluşan gerilmelerin Karşılaştırılması
Salui A 10. 7 Värända 21. 22 Kazılıta Olyasın zarilmalarin Kanalastırılması
Şekii A.19: Z. Yonunde, 51, 52. Kazikta Oluşan gerinmelerin Karşılaştırılması
Sakil A 20, 7 Vänända 22, 24 Kazileta Olusan garilmalarin Karailastimimasi
Sekii A.20; Z. Foliulide, 55, 54. Kazikta Oluşalı gerinmelerin Karşılaştırılması
Sakil A 21: 7 Vänünda 1. 2 Kazıkta Oluşan Sakil Dağiştirmələrin
Varsulastirilmasi 140
Sakil A 22: 7 Vänünda 3 4 Kazıkta Oluşan Sakil Dağiştirmələrin
Sekii A.22. Z Tohunde, 5, 4. Kazikta Oluşan Şekii Değiştirmelerin Karşılaştırılmaşı
Sakil A 23: 7 Vänünda 5. 6 Kazıkta Oluşan Sakil Dağiştirmələrin
Karsılaştırılmaşı
Sakil A 24.7 Vönünde 13 1/ Kazıkta Olusan Sakil Dağistirmalarin
Kareilastirilması 157
Sekil A 25.7 Vönünde 17. 18 Kazıkta Olusan Sakil Dağistirmələrin
Karalastirilması 17, 10. Kazıkta Oluşalı ŞEKII Değiştirili elerili 152
Kaişiiaşui iiiilasi

Şekil A.26: Z Yönünde, 19, 20. Kazıkta Oluşan Şekil Deği	știrmelerin
karşılaştırılması	
Şekil A.27: Z Yönünde, 31, 32. Kazıkta Oluşan Şekil Değis	ştırmelerin
Sakil A 28, 7 Vönünde 33, 34 Kazıkta Oluşan Sekil Değiş	tirmelerin
karsılaştırılması	156
Sekil A.29:X Yönünde, 1. 2. Kazıkta Olusan Kuvvetlerin	Karsılastırılması
······································	
Şekil A.30: X Yönünde, 5, 6. Kazıkta Oluşan Kuvvetlerin	Karşılaştırılması
Şekil A.31: X Yönünde, 7, 8. Kazıkta Oluşan Kuvvetlerin l	Karşılaştırılması
Şekil A.32: X Yönünde, 11, 12. Kazıkta Oluşan Kuvvetleri	n 1.(1
Karşılaştırılması	101
Sekii A.55: A Tonunde, 55, 50. Kazikia Oluşan Kuvvellen Karşılaştırılmaşı	11 163
Sekil A.34: X Yönünde, 37, 38. Kazıkta Olusan Kuvvetleri	n
Karsılastırılması	
Şekil A.35: Y Yönünde, 3, 4. Kazıkta Oluşan Kuvvetlerin	Karşılaştırılması
Şekil A.36: Y Yönünde, 15, 16. Kazıkta Oluşan Kuvvetleri	n
Karşılaştırılması	
Şekil A.37: Y Yönünde, 35, 36. Kazıkta oluşan Kuvvetlerin	1 Karşılaştırılması
C_{-1} (1) (2) (2) (2) (2) (3) (
Sekii A.38: Y Yonunde, 57, 38. Kazikta Oluşan Kuvvetleri Karşılaştırılmaşı	n 168
Sekil A 39.7 Vönünde 1.2 Kazıkta Oluşan Kuvvetlerin k	Carsılastırılması
Sekil A.40: Z Yönünde, 5, 6. Kazıkta Oluşan Kuvvetlerin	Karşılaştırılması
Şekil A.41: Z Yönünde, 9, 10. Kazıkta Oluşan Kuvvetlerin	Karşılaştırılması
Şekil A.42: Z Yönünde, 15, 16. Kazıkta Oluşan Kuvvetleri	n Karşılaştırılması
Salvil A 12: 7 Vänünda 25. 26 Kazılıta Olyaan Kuyyatlari	
Şekii A.43: Z. Fonunde, 55, 50. Kazikta Oluşan Kuvvetleri	11 Karşınaştırınması 174
Sekil A.44: Z Yönünde, 37, 38 Kazıkta Olusan Kuvvetleri	n Karsılastırılması
Şekil A.45: Z Yönünde, 39, 40. Kazıkta Oluşan Kuvvetleri	n Karşılaştırılması
Şekil A.46: Y Yönünde, 1, 2. Kazıkta Oluşan Momentlerin	Karşılaştırılması
Şekil A.47: Y Yönünde, 5, 6. Kazıkta Oluşan Momentlerin	Karşılaştırılması
Salvil A 49. V Vänünda 15. 16 Kazılıta Olyaan Mamantla	1/9 win
Karsılastırılması	1 ዩስ
Sekil A.49: Y Yönünde, 25. 26. Kazıkta Olusan Momentler	180 rin
Karşılaştırılması	
Şekil A.50: Y Yönünde, 37, 38. Kazıkta Oluşan Momentler	rin
Karşılaştırılması	

Şekil	A.51: Y Yönünde, 41, 42. Kazıkta Oluşan Momentlerin
	Karşılaştırılması183
Şekil	A.52: Z Yönünde, 1, 2. Kazıkta Oluşan Momentlerin Karşılaştırılması
Şekil	A.53: Z Yönünde, 5, 6. Kazıkta Oluşan Momentlerin Karşılaştırılması
Şekil	A.54: Z Yönünde, 9, 10. Kazıkta Oluşan Momentlerin Karşılaştırılması
Şekil	A.55: Z Yönünde, 13, 14. Kazıkta Oluşan Momentlerin
~ • •	Karşılaştırılması
Şekil	B.1: X Yönünde Zeminde ve Yapıda Oluşan Deplasmanlar
Şekil	B.2: Y Yönünde Zeminde ve Yapıda Oluşan Deplasmanlar
Şekil	B.3: Z Yonunde Zeminde ve Yapıda Oluşan Deplasmanlar
Şekil	B.4: X Yonunde Zeminde ve Yapıda Oluşan Gerilmeler
Şekil	B.5: X Yonunde Zeminde ve Yapıda Oluşan Maksimum Gerilmeler
Q - 1-21	$\mathbf{P} \leftarrow \mathbf{V} \mathbf{V}^{*} \mathbf{u}^{*} \mathbf{u} + 7 \mathbf{u}^{*} \mathbf{u} + \mathbf{V} \mathbf{u}^{*} \mathbf{u} + 0 \mathbf{b} \mathbf{u}^{*} $
Şekii	B.6: Y Yonunde Zeminde ve Yapida Oluşan Gerlimeler
Şekii	B. <i>7</i> : Y Yonunde Zeminde ve Yapida Oluşan Maksimum Gerlimeler
Saleil	D 9. 7 Värända Zaminda va Varada Olyaan Carilmalar 102
Şekil	B.0: Z Yonunde Zeminde ve Yapıda Oluşan Gerilmeler
Şekii	D.3. Z Follunde Zeminde ve Fapida Oluşan Maksinium Geminelei 104
Sekil	B 10. X Vönünde Zeminde ve Vanıda Olusan Sekil Değistirmeler 195
Şekil	B 11: V Vönünde Zeminde ve Vanıda Oluşan Şekil Değiştirmeler 195
Şekil	B 12: 7 Vönünde Zeminde ve Vanıda Oluşan Şekil Değiştirmeler 190
Şekil	B.13: Z Yönünde, 1, 2, Kazıkta Oluşan Gerilmelerin Karşılaştırılmaşı
şenn	198
Sekil	B.14: Z Yönünde, 3. 4. Kazıkta Olusan Gerilmelerin Karsılastırılması
y • • • • •	199
Sekil	B.15: Z Yönünde, 5, 6. Kazıkta Olusan Gerilmelerin Karsılastırılması
,	
Şekil	B.16: Z Yönünde, 7, 8. Kazıkta Oluşan Gerilmelerin Karşılaştırılması
-	
Şekil	B.17: Z Yönünde, 9, 10. Kazıkta Oluşan Gerilmelerin Karşılaştırılması
Şekil	B.18: Z Yönünde, 13, 14. Kazıkta Oluşan Şekil Değiştirmelerin
	Karşılaştırılması
Şekil	B.19: Z Yönünde, 1, 2. Kazıkta oluşan Şekil Değiştirmelerin
	Karşılaştırılması205
Şekil	B.20: Z yönünde, 3, 4. Kazıkta oluşan Şekil Değiştirmelerin
	Karşılaştırılması206
0.1 "	
Şekil	B.21: Z yonunde, 5, 6. Kazıkta oluşan Şekil Değiştirmelerin
C .1-21	Rarșilaștirilmasi
Şekil	D.22: <i>L</i> yonunde, <i>I</i> , 8. Kazikta oluşan Şekil Degiştirmelerin
Sal.:1	Rarşılaştırılması
Şekil	D.23: Z yollunde, 9, 10. Kazikia oluşan Şekil Degiştirmelerin
	rarşınaşurnınası209

Şekil	B.24 :	Z yönünde, 13, 14. Kazıkta oluşan Şekil Değiştirmelerin
Sekil	в 25.	X Vönünde 11, 12 Kazıkta Olusan Kuyvetlerin
ŞUKII	D .23.	Karşılaştırılmaşı
Şekil	B.26 :	X Yönünde, 15, 16. Kazıkta Oluşan Kuvvetlerin
~ • •		Karşılaştırılması
Şekil	B.27 :	X Yönünde, 5, 6. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması
Sekil	B 28.	X Yönünde 3 4 Kazıkta Olusan Kuyvetlerin Karsılastırılması
ŞUMI	D ,20,	214
Şekil	B.29 :	X Yönünde, 9, 10. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması
a	D 20	
Şekil	B.30:	X Yönünde, 21, 22. Kazıkta Oluşan Kuvvetlerin
Sekil	B.31:	Y Yönünde, 1, 2, Kazıkta Olusan Kuyvetlerin Karsılastırılması
şenn	2.010	
Şekil	B.32 :	Y Yönünde, 31, 32. Kazıkta Oluşan Kuvvetlerin
a 1 9	п 22	Karşılaştırılması
Şekii	B.33:	Y Yonunde, 3, 4. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması 220
Şekil	B.34 :	Y Yönünde, 13, 14. Kazıkta Oluşan Kuvvetlerin
,		Karşılaştırılması
Şekil	B.35 :	Y Yönünde, 37, 38. Kazıkta Oluşan Kuvvetlerin
S al-3	D 26.	Karşılaştırılması
Şekii	Б.30:	Y Yonunde, 5, 6. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması 223
Şekil	B.37 :	Y Yönünde, 29, 30. Kazıkta Oluşan Kuvvetlerin
		Karşılaştırılması
Şekil	B.38 :	Z Yönünde, 1, 2. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması
Sobil	R 30.	
ŞCKII	D.37.	227 Tohuhuc, 27, 28. Kazikta Oluşan Kuvvetlerin Karşınaştırınması
Şekil	B.40 :	Z Yönünde, 7, 8. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması
Şekil	B.41 :	Z Yönünde, 11, 12. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması
Sekil	B.42:	Z. Yönünde, 15, 16, Kazıkta Olusan Kuyvetlerin, Karsılastırılması
şenn	20120	2 Tohunud, 10, 10 Thalinu orașun nu vetorim Thașinaști
Şekil	B.43 :	Z Yönünde, 5, 6. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması
a 1 9	D 44	
Şekil	B.44 :	Z Yönünde, 9, 10. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması
Sekil	B.45:	Z Yönünde, 37, 38. Kazıkta Olusan Kuvvetlerin Karsılastırılması
,		
Şekil	B.46 :	Z Yönünde, 39, 40. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması

Sekil B.48: Y Yönünde, 7, 8. Kazıkta Oluşan Momentlerin Karşılaştırılması
Sekil B.49: Y Yönünde, 15, 16, Kazıkta Olusan Momentlerin
Karsılastırılması 238
Sakil B 50. V Vänünde 27. 28. Kazıkta Olusan Momentlerin
Karalasturimas
$\mathbf{Karşınaştırınması} \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad$
Şekii B.51: Y Yonunde, 33, 34. Kazıkta Oluşan Momentlerin
Karşılaştırılması
Şekil B.52: Y Yönünde, 41, 42. Kazıkta Oluşan Momentlerin
Karşılaştırılması241
Şekil B.53: Z Yönünde, 1, 2. Kazıkta Oluşan Momentlerin Karşılaştırılması
Sekil B.54: Z Yönünde, 3, 4, Kazıkta Olusan Momentlerin Karsılastırılması
, , , , , , , , , , , , , , , , , , , ,
Sekil B 55. 7 Vönünde 39 40 Kazıkta Olusan Momentlerin
Karsılastırilması 245
Salul D 54 , 7 Värända 5, 6 Vazulta Olyaan Mamantlarin, Varailasturilmasu
Şekii D.50; Z. I oliuliue, J, O. Kazikta Oluşalı Molilenuenin Kalşılaştırılması
240
Şekil B.57: Z Yönünde, 29, 30. Kazıkta Oluşan Momentlerin
Karşılaştırılması247
Şekil B.58: Z Yönünde, 7, 8. Kazıkta Oluşan Momentlerin Karşılaştırılması
Sekil B.59: Z Yönünde, 13, 14. Kazıkta Oluşan Momentlerin
Karsılastırılması
Sekil B.60: Z Yönünde, 33-34 Kazıkta Olusan Momentlerin
Karcılactırılmacı 250
1xai şilaştil illilası

TABLO LÍSTESÍ

<u>Sayfa</u>

Tablo 2.1: SPT Deney Sonuçları ve Zemin Tabakalarının Sınıfları	.12
Tablo 2.2: Elek Analizi Deney Sonuçları.	.13
Tablo 2.3: Zeminde Üç Eksenli Basınç Deneyi Sonuçları	.13
Tablo 2.4: Kayada Tek Eksenli Basınç Seneyi Sonuçları	.13
Tablo 2.5: Zemin Etüdü Verileri.	.14
Tablo 2.6: TBDY 2018'e Uygun SPT Değerlerine Göre Zemin Sınıfı	
Tanımı	.14
Tablo 2.7: TBDY 2018'e Uygun SPT Değerlerine Göre Zemin Sınıfı	
Belirlenmesi	.15
Tablo 2.8: Zeminin Drenajsız Kayma Mukavemetine Göre	
Sınıflandırılması	.15
Tablo 2.9: Bütün Zeminler İçin Verilen Kayama Dalga Hızı	
Formülleri	.16
Tablo 2.10: Killi Zeminleri İçin Verilen Kayama Dalga Hızı	
Formülleri	.16
Tablo 2.11: Zemin İçin Bulunan Kayama Dalga Hızların İşığında Sınıfının	
Belirlenmesi	.18
Tablo 2.12: Zeminin tbdy 2018'de Verilen Her Üç Koşullara Göre Sınıfı	.18
Tablo 5.1: Terzaghi Taşıma Gücü Katsayıları.	.39
Tablo 5.2: Meyerhof Taşıma Gücü Katsayıları.	.41
Tablo 5.3: Terzaghi (1943)'e Göre Zemin ve Temel'in Verileri (A1)	.44
Tablo 5.4: Terzaghi (1943)'e Göre Zemin ve Temel'in Verileri (A2)	.45
Tablo 5.5: Terzaghi (1943)'e Göre Zemin ve Temel'in Verileri (P1)	.45
Tablo 5.6: Meyerhof (1963)'e Göre Zemin ve Temel'in Verileri (A1)	.46
Tablo 5.7: Meyerhof (1963)'e Göre Zemin ve Temel'in Verileri (A2)	.47
Tablo 5.8: Meyerhof (1963)'e Göre Zemin ve Temel'in Verileri (P1)	.47
Tablo 5.9: TBDY 2018'e Göre Zemin ve Temel'in Verileri (A1)	.48
Tablo 5.10: TBDY 2018'e Göre Zemin ve Temel'in Verileri (A2)	.49
Tablo 5.11: TBDY 2018'e Göre Zemin ve Temel'in Verileri (P1).	.49
Tablo 5.12: Temelin Kapasitesi İçin Sonuçların Kontrolu.	.50
Tablo 6.1: NAVAC(1984) Tarafından Önerilen Adezyon Eğrileri	.59
Tablo 6.2: Kumlu Zeminde Deneysel Olarak Nq* Değerleri (Vesic, 1977).	.60
Tablo 6.3: Feld (1943)'e Göre Gömülü Kazıkların Grup Etkisi	.69
Tablo 6.4: Kazığın Soket Dayanımının Bulunması (A1-P1)	.75
Tablo 6.5: Kazığın Soket Dayanımının Bulunması (P2).	.79
Tablo 7.1: Drucker – Prager Plastisitesi (Mohr- Coulumb)	.85
Tablo 7.2: Egg Cam Clay Zemin Modeli Parametreleri	.86
Tablo 7.3: Pekleşen Zeminlerin (Modified Mohr Coulumb) Parametreleri	.86
Tablo 7.4: Kazıkların Malzeme Özellikleri	.86
Tablo 7.5: İvmelerin Özellikleri.	.90

Tablo	A.1: X Yönünde, Zemin ve Yapıda Oluşan Deplasmanlar	.132
Tablo	A.2: Y Yönünde, Zemin ve Yapıda Oluşan Deplasmanlar	.133
Tablo	A.3: Z Yönünde, Zemin ve Yapıda Oluşan Deplasmanlar	.134
Tablo	A.4: X Yönünde, Zemin ve Yapıda Oluşan Gerilmeler	.135
Tablo	A.5: Y Yönünde, Zemin ve Yapıda Oluşan Gerilmeler	.136
Tablo	A.6: Z Yönünde, Zemin ve Yapıda Oluşan Gerilmeler	.137
Tablo	A.7: X Yönünde, Zemin ve Yapıda Oluşan Şekil Değiştirmeler	.138
Tablo	A.8: Y Yönünde, Zemin ve Yapıda Oluşan Şekil Değiştirmeler	.138
Tablo	A.9: Z Yönünde, Zemin ve Yapıda Oluşan Şekil Değiştirmeler	.139
Tablo	A.10: Z Yönünde, Kazıklarda Oluşan Gerilmeler Benzerliği	.140
Tablo	A.11: Z Yönünde, 1,2. Kazıkta Oluşan Gerilmeler	.140
Tablo	A.12: Z Yönünde, 3,4. Kazıkta Oluşan Gerilmeler	.141
Tablo	A.13: Z Yönünde, 5,6. Kazıkta Oluşan Gerilmeler	.142
Tablo	A.14: Z Yönünde, 13,14. Kazıkta Oluşan Gerilmeler	.143
Tablo	A.15: Z Yönünde, 17,18. Kazıkta Oluşan Gerilmeler	.144
Tablo	A.16: Z Yönünde, 19,20. Kazıkta Oluşan Gerilmeler	.145
Tablo	A.17: Z Yönünde, 31,32. Kazıkta Oluşan Gerilmeler	.146
Tablo	A.18: Z Yönünde, 33,34. Kazıkta Oluşan Gerilmeler	.147
Tablo	A.19: Z Yönünde, Kazıklarda Oluşan Şekil Değiştirmelerin Benze	rliği
		.148
Tablo	A.20: Z Yönünde, 1,2 Kazıkta Oluşan Şekil Değiştirmeler	.149
Tablo	A.21: Z Yönünde, 3,4 Kazıkta Oluşan Şekil Değiştirmeler	.150
Tablo	A.22: Z Yönünde, 5,6 Kazıkta Oluşan Şekil Değiştirmeler	.151
Tablo	A.23: Z Yönünde, 13,14 Kazıkta Oluşan Şekil Değiştirmeler	.152
Tablo	A.24: Z Yönünde, 17,18 Kazıkta Oluşan Şekil Değiştirmeler	.153
Tablo	A.25: Z Yönünde, 19,20Kazıkta Oluşan Şekil Değiştirmeler	.154
Tablo	A.26: Z Yönünde, 31,32 Kazıkta Oluşan Şekil Değiştirmeler	.155
Tablo	A.27: Z Yönünde, 33,34 Kazıkta Oluşan Şekil Değiştirmeler	.156
Tablo	A.28: X Yönünde, Kazıklarda Oluşan Kuvvetler	.157
Tablo	A.29: X Yönünde, 1,2. Kazıkta Oluşan Kuvvetler	.157
Tablo	A.30: X Yönünde, 5,6. Kazıkta Oluşan Kuvvetler	.158
Tablo	A.31: X Yönünde, 7,8. Kazıkta Oluşan Kuvvetler	.159
Tablo	A.32: X Yönünde, 11,12. Kazıkta Oluşan Kuvvetler	.160
Tablo	A.33: X Yönünde, 35,36. Kazıkta Oluşan Kuvvetler	.162
Tablo	A.34: X Yönünde, 37,38. Kazıkta Oluşan Kuvvetler	.163
Tablo	A.35: Y Yönünde, Kazıklarda Oluşan Kuvvetler	.164
Tablo	A.36: Y Yönünde, 3,4. Kazıkta Oluşan Kuvvetler	.165
Tablo	A.37: Y Yönünde, 15,16. Kazıkta Oluşan Kuvvetler	.166
Tablo	A.38: Y Yönünde, 35,36. Kazıkta Oluşan Kuvvetler	.167
Tablo	A.39: Y Yönünde, 37,38. Kazıkta Oluşan Kuvvetler	.168
Tablo	A.40: Z Yönünde, Kazıklarda Oluşan Kuvvetler	.169
Tablo	A.41: Z Yönünde, 1,2. Kazıkta Oluşan Kuvvetler	.169
Tablo	A.42: Z Yönünde, 5,6. Kazıkta Oluşan Kuvvetler	.170
Tablo	A.43: Z Yönünde, 9,10. Kazıkta Oluşan Kuvvetler	.171
Tablo	A.44: Z Yönünde, 15,16. Kazıkta Oluşan Kuvvetler	.172
Tablo	A.45: Z Yönünde, 35,36. Kazıkta Oluşan Kuvvetler	.174
Tablo	A.46: Z Yönünde, 37,38. Kazıkta Oluşan Kuvvetler	.175
Tablo	A.47: Z Yönünde, 39,40. Kazıkta Oluşan Kuvvetler	.176
Tablo	A.48: Y Yönünde, kazıklarda oluşan momentler	.177
Tablo	A.49: Y Yönünde, 1,2. Kazıkta Oluşan Momentler	.177

Tablo	A.50: Y Yönünde, 5,6. Kazıkta Oluşan Momentler	178
Tablo	A.51: Y Yönünde, 15,16. Kazıkta Oluşan Momentler	179
Tablo	A.52: Y Yönünde, 25,26. Kazıkta Oluşan Momentler	180
Tablo	A.53: Y Yönünde, 37,38. Kazıkta Oluşan Momentler	181
Tablo	A.54: Y Yönünde, 41,42. Kazıkta Oluşan Momentler	182
Tablo	A.55: Z Yönünde, kazıklarda oluşan momentler	183
Tablo	A.56: Z Yönünde, 1,2. Kazıkta Oluşan Momentler	184
Tablo	A.57: Z Yönünde, 5,6. Kazıkta Oluşan Momentler	185
Tablo	A.58: Z Yönünde, 9,10. Kazıkta Oluşan Momentler	186
Tablo	A.59: Z Yönünde, 13,14. Kazıkta Oluşan Momentler	187
Tablo	B.1: X Yönünde, Zemin ve Yapıda Oluşan Deplasmanlar	188
Tablo	B.2: Y Yönünde, Zemin ve Yapıda Oluşan Deplasmanlar	189
Tablo	B.3: Z Yönünde, Zemin ve Yapıda Oluşan Deplasmanlar(Oturmala)	r).
T 11		190
Tablo	B.4: X Yonunde, Zemin ve Yapıda Oluşan Gerilmeler	191
Table	B.5: I Yonunde, Zemin ve Yapıda Oluşan Gerlimeler	192
Table	B.0: Z Yonunde, Zemin ve Yapida Oluşan Gerlimeler	193
Table	D.7: A Tonunde, Zemini ve Tapida Oluşan Şekil Değiştirmeler P.9: V Vänünda, Zemin ve Vanida Oluşan Şekil Değiştirmeler.	194
	B.0. 7 Vönünde, Zemin ve Vanida Oluşan, Şekil Değiştirmeler	195
	B 10. 7 Vönünde, Kazıklı Temelde Kazılarda Oluşan Gerilme Tinle	190 er
1 4010	B.IO. Z. Fondide, Kazikii Temelde Kazilarda Oluşan Gerinice Tipk	197
Tablo	B 11· 7 Yönünde 1.2 Kazıkta Olusan Gerilmeler	198
Tablo	B.12: Z Yönünde, 3.4 Kazıkta Oluşan Gerilmeler	199
Tablo	B.13: Z Yönünde, 5.6 Kazıkta Oluşan Gerilmeler	200
Tablo	B.14: Z Yönünde, 7.8. Kazıkta Oluşan Gerilmeler	201
Tablo	B.15: Z Yönünde, 9.10. Kazıkta Olusan Gerilmeler	202
Tablo	B.16: Z Yönünde, 13.14. Kazıkta Olusan Gerilmeler	203
Tablo	B.17: Z Yönünde, Kazıklı Temelde Kazılarda Oluşan Şekil Değiştir	rme
	Tipleri	204
Tablo	B.18: Z Yönünde, 1,2. Kazıkta Oluşan Şekil Değiştirmeler	204
Tablo	B.19: Z Yönünde, 3,4. Kazıkta Oluşan Şekil Değiştirmeler	205
Tablo	B.20: Z Yönünde, 5,6. Kazıkta Oluşan Şekil Değiştirmeler	206
Tablo	B.21: Z Yönünde, 7,8. Kazıkta Oluşan Şekil Değiştirmeler	207
Tablo	B.22: Z Yönünde, 9,10. Kazıkta Oluşan Şekil Değiştirmeler	208
Tablo	B.23: Z Yönünde, 13,14. Kazıkta Oluşan Şekil Değiştirmeler	209
Tablo	B.24: X Yönünde, Kazıklarda Oluşan Kuvvetler	210
Tablo	B.25: X Yönünde, 11,12. Kazıkta Oluşan Kuvvetler	211
Tablo	B.26: X Yönünde, 15,16. Kazıkta Oluşan Kuvvetler	212
Tablo	B.27: X Yönünde, 5,6. Kazıkta Oluşan Kuvvetler	213
Tablo	B.28: X Yönünde, 3,4. Kazıkta Oluşan Kuvvetler	214
Tablo	B.29: X Yönünde, 9,10. Kazıkta Oluşan Kuvvetler	215
Tablo	B.30: X Yönünde, 21,22. Kazıkta Oluşan Kuvvetler	216
Tablo	B.51: Y Yonunde, Kazıklarda Uluşan Kuvvetler	217
Tablo	B.52: Y Yonunde, 1,2. Kazıkta Oluşan Kuvvetler	218
1 ablo	B.33: Y Yonunde, 31,32. Kazıkta Oluşan Kuvvetler	219
Table	D.34: I YONUNGE, 3,4. KAZIKIA Uluşan KUVVetler	220
Table	D.35: I I OHUHUG, 15,14. Kazikta Oluşan Kuvvetler	221
Table	B 37. V Vänünde 5.6 Kazıkta Oluşan Kuvvetler	222
1 a010	D. <i>31</i> . 1 1 Ollullue, 3,0. Kazikta Oluşalı Kuvvetler	223

Tablo B.38: Y Yönünde, 29,30. Kazıkta Oluşan Kuvvetler	224
Tablo B.39: Z Yönünde, Kazıklarda Oluşan Kuvvetler	
Tablo B.40: Z Yönünde, 1,2. Kazıkta Oluşan Kuvvetler	225
Tablo B.41: Z Yönünde, 27,28. Kazıkta Oluşan Kuvvetler	
Tablo B.42: Z Yönünde, 7,8. Kazıkta Oluşan Kuvvetler	
Tablo B.43: Z Yönünde, 11,12. Kazıkta Oluşan Kuvvetler	
Tablo B.44: Z Yönünde, 15,16. Kazıkta Oluşan Kuvvetler	
Tablo B.45: Z Yönünde, 5,6. Kazıkta Oluşan Kuvvetler	
Tablo B.46: Z Yönünde, 9,10. Kazıkta Oluşan Kuvvetler	
Tablo B.47: Z Yönünde, 37,38. Kazıkta Oluşan Kuvvetler	
Tablo B.48: Z Yönünde, 39,40. Kazıkta Oluşan Kuvvetler	234
Tablo B.49: Y Yönünde, Kazıklarda Oluşan Momentler	
Tablo B.50: Y Yönünde, 1,2. Kazıkta Oluşan Momentler	
Tablo B.51: Y Yönünde, 7,8. Kazıkta Oluşan Momentler	237
Tablo B.52: Y Yönünde, 15,16. Kazıkta Oluşan Momentler	
Tablo B.53: Y Yönünde, 27,28. Kazıkta Oluşan Momentler	
Tablo B.54: Y Yönünde, 33,34. Kazıkta Oluşan Momentler	
Tablo B.55: Y Yönünde, 41,42. Kazıkta Oluşan Momentler	
Tablo B.56: Z Yönünde, Kazıklarda Oluşan Momentler	
Tablo B.57: Z Yönünde, 1,2. Kazıkta Oluşan Momentler	
Tablo B.58: Z Yönünde, 3,4. Kazıkta Oluşan Momentler	
Tablo B.59: Z Yönünde, 39,40. Kazıkta Oluşan Momentler	
Tablo B.60: Z Yönünde, 5,6. Kazıkta Oluşan Momentler	
Tablo B.61: Z Yönünde, 29,30. Kazıkta Oluşan Momentler	
Tablo B.62: Z Yönünde, 7,8. Kazıkta Oluşan Momentler	
Tablo B.63: Z Yönünde, 13,14. Kazıkta Oluşan Momentler	
Tablo B.64: Z Yönünde, 33,34. Kazıkta Oluşan Momentler	

SEMBOL LİSTESİ

- U: Yer değiştirme
- c: Kohezyon
- K: Rijitlik
- F: Kuvvet büyüklüğü
- **E**: Malzeme Elastisite modülü
- **I** : Eylemsizlik momenti
- L: Boy
- ø : Kayma direnci açısı
- **σ**₁, **σ**₃ : Düşey ve yatay gerilme (asal gerilme)
- **EA**: Eksenel rijitlik
- EI : Eğilme rijitliği
- ν : Poisson oranı
- Eur: Tekrarlı yükleme deformasyon modülü
- E50 : Hücre kesme deneyi deformasyon modülü
- Eoed : Odyometre deneyi deformasyon modülü
- δ : Zemin deplasmanı
- Ψ : Dilatansı açısı
- UU: Konsolidasyonuz drenajsız deney
- τ : Kayma direnç
- C: Kohezyon
- **φ** : Kayma mukavemeti açısı
- γ1: Temel tabanı üstündeki zeminin birim hacim ağırlığı
- **D**_f: Temel derinliği
- **B** : Temel genişliği
- L : Temel Boyu
- γ₂: Temel tabanı altındaki zeminin birim hacim ağırlığı

 N_{C} , N_{q},N_{γ} : Zeminin kayma mukavemeti açısına bağlı taşıma gücü

Sc, Sq, S $_{q}$, S $_{\gamma}$: Temel şekil çarpanları

 d_{C} , d_{q} , d_{γ} : Derinlik çarpanları

i_C, **i**_q, **i**_γ :Yükleme eğim çarpanları

bc, \mathbf{b}_{q} , \mathbf{b}_{γ} :Temel Taban eğim çarpanları

g_C, $\mathbf{g}_{\mathbf{q}}$, $\mathbf{g}_{\boldsymbol{\gamma}}$: Zemin eğim çarpanları

- **η** : Grup etki katsayısı
- **m** : Kazıkların x,y yönünde sıra sayısı
- **n** : Kazıkların düşey yönde kolon sayısı
- α : $tan^{-1}(d/s)$
- d : Kazık çapı
- **S** : Merkezden merkeze kazık mesafesi
- Qf: Kazığın zemini içinde çevre taşıma gücü
- C : Kohezyon
- α : Adezyon katsayısı
- As : Kazık Çevre Alanı

ÖNSÖZ

Yüksek lisans eğitimim boyunca katkıların ve emeğini esirgemeyen, bu süreç boyunca bilgilerinden faydalandığım tez danışmanım Dr. Öğretim Üyesi Engin Nacaroğlu'na teşekkürü bir borç bilirim.

Tez kapsamında kullanılan köprü projesinin temini konusundan yardımcı olması ve mesleki bilgilerinden faydalandığım İnş. Yük. Müh. Seyid Mehdi Paknia'ya, çalıştığı PRİZMA MÜHENDİSLİK firmasına ve lisansüstü eğitimim boyunca yardımcı olan değerli meslektaşım Berk Yağcıoğlu'na teşekkürlerimi sunarım.

Eğitim hayatım süresince her türlü maddi ve manevi destek veren babam Uzm. Dr. Abdul Qodus Hakimyar'a ve annem Jella Şahna'ya sonsuz teşekkür ederim.

Gerek lisans gerekse yüksek lisans eğitimim boyunca bilgilerinden faydalandığım Prof. Dr. Selçuk TOPRAK ve Doç. Dr. Devrim ALKAYA hocalarıma sonsuz teşekkür ederim.

Sebghatullah HAKİMYAR

1. GİRİŞ

Yapı - Zemin etkileşimi geoteknik deprem mühendisliğinin en önemli konularındandır. Bu konuya kazıklı temeller dahil edilince daha da karmaşık hale gelmektedir. Uygulamada çoğunlukla basitleştirme yapılarak ihmal edilen yapı zemin ilişkisi özellikle dinamik durumlarda ciddi ekonomik hasarlara ve can kaybına sebep olmaktadır. Ayrıca zemin ve temellerin davranışı iyi bilinmeden çoğu zaman sadece üst yapıya odaklı tasarım yapıldığında kötü sonuçlarla karşılaşılmaktadır. Örnek olarak Kobe 1995, San Fernando 1971, Northridge 1994, Loma Prieta 1989 depremleri sonucu köprülerde çoğunlukla köprü ayakları, temel ve üst yapıya göre daha fazla hasar görmüştür (Şekil 1.2), (Şekil 1.3). Kobe 1995 depreminde Fukai köprüsünün ayağının kazıklı temel ile rijitliği artmıştır. Buna karşı köprü ayağının yetersiz sünekliliğe sahip olması sebebiyle göçmüştür (Şekil 1.1). Gazetas ve diğ. (2020) çalışmasında Fukai köprüsünün radye temel genişliğinin ve donatı miktarının daha fazla olması durumunda az hasar alarak depremde yıkılmayabileceğini sunmuşlardır. Modern tasarım yaklaşımında depremde köprülerin hasar alma potansiyelini en aza indirebilmek için deplasman yaparak yapı periyodunun arttırılması ile deprem ivmesini sönümleyerek küçük ivmeleri üst yapıya ileten sismik izolatörler kullanılmaktadır.

Şekil 1.1: Geçmiş Depremler Sırasında Köprülerde Oluşan Hasarlar.

Şekil 1.2: Geçmiş Depremler Sırasında Köprülerde Oluşan Hasarlar Tipleri.

Şekil 1.3: Geçmiş Depremler Sırasında Köprülerde Oluşan Hasarın Çeşidi ve Seviyeleri.

1.1 Tezin Amacı ve Kapsamı

Köprülerde Yapı–Zemin etkileşiminde çoğunlukla zemin, yaylar ile modellenmektedir. Yaylar derin temelin esnekliğini ve zeminin enerji dağıtımını sağlıklı bir şekilde sağlamadığı için gerçekteki zemin davranışı sergilenememektedir. Literatürdeki çalışmalarda zemin modeli olarak çoğunlukla Mohr-Coulomb zemin modeli seçildiğinden zeminin gerilme geçmişi ve dolayısıyla doğrusal olmayan davranışı doğru bir biçimde sağlanamamaktadır. Özellikle deprem sırasında Mohr-Coulomb, zeminin sönüm miktarını sağlıklı bir şekilde yansıtamadığından, zemin sınıfsal davranışı göz ardı edilerek elasto-plastik zemin modeli seçilmiş olmaktadır. Bu durumda analizlerde sağlıklı bir sonuç elde etmek zordur. Tezde zeminin sınıfsal rijitliğine ve yerel zemin koşullarına uygun zemin modelleri seçilmiştir. Ayrıca yerel zemin koşullarına ve deprem sınıfına uygun ivmeler seçilerek, SeismoMatch 2022 yazılımında ölçeklendirilmiş, DIANA-3D yazılımında doğrusal olmayan analizler gerçekleştirilmiştir.

Tez kapsamında 2017 yılında İstanbul'da inşa edilen Çatalca – Subaşı yolu üzerinde yer alan örnek derin temelli köprü projesi incelenmiş, zemin ve köprü verileri kullanılmıştır. Öncelikle yüzeysel temel durumu araştırılmış ve yüzeysel temelde zeminin taşıma kapasitesi yetersiz bulunduğundan derin temel sistemine geçilmiştir.

Çalışmada dinamik koşullarda kazıkların doğrusal olmayan davranışını doğru bir şekilde belirlemek için zemin ve köprü ayağı birlikte dikkate alınırken, yerel zeminin doğrusal olmayan davranışını doğru bir şekilde belirlemek için de Pekleşen Zeminler (HS), Cam Clay (C-C) ve Drucker–Prager (Dr-Pr) olmak üzere üç farklı zemin modeli dikkate alınarak zaman tanım analizi gerçekleştirilmiştir.

Literatürde Yapı–Zemin etkileşim analizi için Eylemsizlik (Direkt) Yöntemi ve Kinematik Yöntem olmak üzere iki farklı yöntem kullanılmıştır. Kinematik etkileşimde yapı yük olarak dikkate alınmaktadır. Temel seviyesinden yukarı bölüm rijit temel kabulü ile dinamik durumdaki deprem ivme akışını ve dolayısıyla etkileşimi keserek deprem etkisiyle oluşan kuvvetleri sönümlenmeden zemine ve dolayısıyla kazıklara ek yük olarak bindirmektedir. Bu yüzden bu yöntem gerçekteki Yapı–Zemin etkileşimi için sağlıklı sonuçlar vermemektedir. Direkt yönteminde yapı ve zemin kütleleri birlikte dikkate alınmaktadır. Zeminin ve yapının doğrusal olmayan

davranışını ve dolayısıyla sönüm etkisini içerdiğinden ötürü analiz yöntemleri arasında yapının dinamik durumundaki en gerçekçi modelini sergilemektedir. Tezde direkt yöntemi kullanılarak DIANA yazılımında doğrusal olmayan analizler gerçekleştirilmiştir.

1.2 Konu ile İlgili Çalışmalar

Literatürdeki çalışmalara bakıldığında geoteknik mühendisliği uzmanları, Yapı–Zemin etkileşiminde donatılı beton yerine çoğunlukla sadece beton olarak yapıları tasarımda dikkate almaktadırlar. Bunun sonucu olarak gerçekte donatılı durumda yeterli sünek davranan yapılar teorik analizlerde yetersiz kalmaktadır. Geoteknik deprem mühendisliği yazılımlarında modelleme aşaması, yapı mühendisliği yazılımlarına göre zor olmaktadır.

Çağlar ve diğ. (2016), aynı rijitlikteki beş farklı binayı, altı farklı zemin durumu için SAP2000-3D yazılımını ve 1999 Marmara deprem kayıtlarını kullanarak zaman tanım alanında analizler gerçekleştirmiştir. Yeraltı su seviyesinin olduğu durumda yapının yer değiştirme miktarının arttığını ve kayma hızının büyük olduğu zemin durumlarında ise yapı tepe noktasının daha az yer değiştirme yaptığını göstermiştir. Dolayısıyla zemin durumunun ve özelliklerinin dikkate alınması gerektiği sonucuna varmışlardır.

Kavitha ve diğ. (2016), tek kazık için zeminin elasto - plastik davranışı sergileyen Mohr-Coulomb Zemin modelini PLAXIS-3D yazılımı kullanarak, farklı kazık çapları, farklı kazık serbestlik ucu, farklı kütleler ve farklı zemin elastisite modülünü dikkate alarak Yapı–Zemin etkileşiminin nümerik analizini gerçekleştirmişlerdir. Bu analizlerin sonucu olarak; kazıkların çapı, zeminin elastisite modülü, kazıkların serbestlik ucu ve kazıklara etkiyen kütle miktarının kazık ucu deplasmanını etkilediğini göstermişlerdir.

Ahmed ve diğ. (2014), on beş katlı bir yapının bulunduğu zemini iki tabaka halinde derin temel sistemiyle PLAXIS-3D yazılımında Mohr-Coulomb, Mohr-Coulomb Rijitlik artışı ve Pekleşen Zemin modellerini kullanarak çözmüşlerdir. Zeminin saha tepkisinin, temelin hemen altında az rijitlikte zemin tabakası olması durumunda etkilendiğini, daha derinlerde ise temelli radyelerde az rijitlikteki zemin tabakasının kazık boyunca zemin davranışından etkilenmediğini göstermişlerdir.

Reyhani ve diğ. (2014)'de, elastik temel üzerine oturan tek serbestlik dereceli sistemin zemin davranışı için elasto-plastik modeli seçilmiş ve gevşek kil zemin koşullarında Loma Prieta ve North-Ridge deprem kayıtları seçilerek OpenSees-3D yazılımı ile sonlu elemanlar metodu (SEM) kullanılmıştır. Bu araştırmanın sonucunda visko-elastik zemin kabulü, zeminin plastisitesinin temelin radyasyon sönümünü etkilediğini göstermiştir. Ayrıca yapıların rezonans potansiyelini analizlerde dikkate alınmaması durumunda, özellikle düşük kesme dalgalı kalın zemin tabakalı koşullarda, sahanın doğal periyodu ile yapı periyodu benzediğinden yapılara hasar verebileceğini vurgulamışlardır.

El-Hoseiny ve diğ. (2021), beş, sekiz ve on katlı yapıları B,C ve D zemin sınıfları ankastre ve esnek mesnet koşullarında Mohr-Coulomb zemin modelleri için El Centro 1940 ve Kobe 1995 ivme kayıtlarını seçerek Abaqus-3D yazılımı yardımıyla analizleri gerçekleştirmişlerdir. Yapılan analizler sonucunda esnek mesnet koşullarda, taban kesme kuvvetinin zemin tabakasının kayma dalga hızı ve kayma modülünün azalımı sebebiyle azaldığını göstermişlerdir.

Abate ve diğ. (2019), bir okul binasının Yapı–Zemin etkileşim analizi için yedi deprem kaydını dikkate alarak zemin parametrelerini Sismik Dilatometre Marçeti deneyi ile 30m derinlik için ilk 0-14m kum, 14-24m bazaltik kaya, 24-30m'si ise kum zemin tabakaları (kayma dalga hızları sırasıyla 400m/s, 1200m/s, 800m/s) olarak belirlenmiştir. ADINA-2D yazılımını kullanarak Eurocode 8 ve İtalyan Code 2018'e göre analizler gerçekleştirilmiştir. Sonuç olarak yapının varlığı sebebiyle zemin tabakasının frekans içeriği değiştiğinden, serbest saha analizine göre ek olarak amplifikasyon oluşmuştur. Ayrıca İtalyan kodunun önerdiği tepki spektrumu numerik yönteme göre daha büyük ve dolayısıyla daha güvenli çıktığı görülmüştür.

El Naggar ve diğ. (2011), Kanada depremi ve 1995 Kobe depremleri sırasında kaydedilen Port Island yer hareketini kullanarak yumuşak ve orta rijitlikteki killi zeminler için Mohr-Coulomb Model'i seçmiş ve üst yapı için ise lineer - elastik malzemesi kabulü ile FLAC-3D'de modellemiştir. Analiz sonucunda ilk 30 m'de çoğunlukla, küçük girdi hareketlerde serbest saha analizinde önemli amplifikasyon

oluşmuştur. Belirtilen sebeplerden dolayı Modern sismik kodlarında yerel zemin etkisi için ilk 30m'yi dikkate alınmıştır. Rijit sınırları yapı genişliğinin 5 katından 10 kata kadar artırılması durumunda sadece %5 etki farkı gösterildiğinden dinamik durumunda numerik analizler için 5 kat yeterli olduğu kabul edilmiştir. Diğer sonuç ise, yapının gömülü olması tepki spektrumun genliğinin azalmasına sebep olduğunu göstermektedir.

Gandomzadeh ve diğ. (2010)'de, zeminlerin doğrusal olmayan davranışını Yapı-Zemin etkileşiminde incelemek için İwan (1967) tarafından önerilen zemin modeli kullanılmıştır. Bu model diğer zemin modellerin aksine sadece kayma modülünün azalım eğrisini dikkate alarak zeminlerin Non-lineer davranışını sergilemektedir. Bu incelemenin sonucunda yüzey zemin tabakalarında enerji sönümü önemli hale gelmektedir (ilk 5m için a=0.1-0.5g de; alt tabakalara nazaran az sönümlenir). Ayrıca zeminlerin Non-lineer davranışı dikkate alındığında girdi hareketinin bir kısmı (şekil değiştirme seviyesine bağlı) yüzeye varmadan sönümlenmektedir. Bu olay sayesinde yapı tepkisini oluşturan ivme, hız ve deplasman miktarı da azalmaktadır. Frekans tabanlı Yapı-Zemin etkileşiminde, kütle miktarının azalımı önemli bir faktördür.

El Naggar ve diğ. (2015), Kuru Navada kumundan numune alarak iki farklı rölatif sıklığı (% 50 ve 90) için batı Kanada deprem ivme kayıtlarının iki bileşenini serbest saha ivmesini kullanarak zeminin dinamik analizini santrifüj vasıtasıyla gerçekleştirmişlerdir. Bu deney sonucu ile filtrelenmemiş ivme sonucu düzgün ve gerçekçi, filtrelenmiş ivme ise basık gerilme döngüsü (halkası) ve dolayısıyla zeminin gerçek sönüm miktarının saçarak kaybolmasına sebep olan bir gerilme - şekil değiştirme durumu ortaya çıkararak hatalı sonuçlara yol açabilecektir. Bu sorunu çözmek için ise filtrelemeyi en aza indirerek optimum sonucu elde edebiliriz.

Leoni ve diğ. (2008), derin temelli köprülerin sismik analizi için köprü ayağını ve kazığı sonlu elemanlar yöntemiyle ve zemin tabakalarını ise Winker modeli ile modelleyip iki gevşek ve sert olmak üzere iki farklı zemin durumunu için farklı kazık mesafesini dikkate alarak analiz etmişlerdir. Derin temelli köprülerin sismik tepkisi Yapı–Zemin dinamik etkileşimi için ilk iki serbest saha hareketi frekans amplifikasyondan etkilenmektedir. Kısa köprü ayakları Yapı-Kazık-Zemin etkileşimi dikkate alındığında genelde taban kesme kuvvetinin artmasına sebep olmaktadır. Orta köprü boyları bir sorun etkene bağlı deprem etkisi değiştiğinden genelleme yapmak zordur. Silindir kesitli köprü ayağı, rijit (sert) zemin tabakalı ve sabit mafsallı olduğunda korumacı bir yaklaşım olabilmekte ve ayrıca kesme kuvvetinin azaltılmasına sebep olabilecektir. Kısa ayaklı köprülerde özellikle yumuşak tabakalı zemin ve kazıkların yerleşim mesafesinin yakın olduğu durumunda deprem yer hareketi önem kazanmaktadır. Son olarak rijit mesnetli durum korumacı olmadığına rağmen Yapı–Zemin etkileşimi için başlangıç analizde gerçek durumu tahmin etmek için dikkate alınmalıdır.

Rahmani ve diğ. (2014), Miloland köprüsünü OpenSees-3D paralel ve bulut hesaplama metotlarını dikkate alarak 9 ivme kaydını seçerek non lineer zaman tanım analizi gerçekleştirmiştir. Bu analizde iki Amazon EC2 birimini her ivme için dört işlemci atanarak %40 maliyet azalmıştır, üç EC2 birimi ile yüksek işlemci sonucunda maliyet azalımı görülmemiştir, beş EC2 birimi ve 16 işlemci kullanıldığında analizin hızlanıp geri dönüşlerin azalmasından dolayı toplam maliyet artmıştır.

Rahmani ve diğ. (2015), Miloland Köprüsünü OpenSees-3D yazılımı ile Imperial Valley ve 2010 El Mayer-Cucapah deprem ivmeleri kullanarak direkt yöntemiyle, alt sistem metotlarını karşılaştırmıştır. Analiz sonucunda alt sistem yönteminde köprü ayağın üst kesimindeki deplasmanı, köprü ayağın alt kısmındaki moment ve kesme kuvvetleri, enlemsel ve boylamsal yönde direkt yönteme göre 1.5-3 katı kadar büyük çıkmıştır. Bu araştırmada yapı-zemin etkileşiminde zemin tabakaları lineer yaylar ve amortisörler (daşpot) ile modellenmesi durumunda derin temelin esnekliğini ve enerji dağıtımını doğru bir şekilde sağlayamadığı için sağlıklı bir sonuç verilmemiştir.

El gamal ve diğ. (2008), Humboldt Bay köprüsü için Opensees-3D yazılımını kullanarak, non lineer analizi gerçekleştirmiştir. Analizi sonuçlarında, zeminin doğrusal olmayan tepkisi özellikle akma dayanımı, sismik izolatörlerden dolayı belli bir sınır içerisinde üst yapıya iletilmiştir. Köprü boyunca yüzey tabakasının özelliklerinin değişimi köprünün farklı ivmelere maruz kalmasını sağlar. Boylamsal doğrultuda zeminin yanal deformasyonundan ve köprü ayağının atalet kuvveti etkisinden dolayı köprü temeli kalıcı bir yüke maruz kalmıştır. Ayrıca özellikle grup kazıklarda dış cephe kazıklar çekme kuvvetine maruz kaldığından dikkatli incelenmesi gerekebilecektir.

Feng (2018), üç açıklıklı derin temelli rijit çerçeveli köprü için MİDAS-3D yazılımını kullanarak zemini yaylar ile modelleyip tepki spektrum ve zaman tanım alanında analiz yöntemlerinin sonuçlarını karşılaştırmıştır. Analizler sonucunda köprü ayakların üst ve alt kısmında oluşan kesme kuvveti ve momentler, spektrum metodunda diğer yönteme göre daha büyük ve dolayısıyla daha koruyucu (güvenli) sonuçlar vermiştir.

Spacone ve diğ. (2011), Della Valle Betonarme Viyadüğünün pseudo-statik ve dinamik analizini gerçekleştirmek üzere betonun non lineer davranışını sergileyen total şekil değiştirme tabanlı malzeme seçmiş, çelik donatısı için Von Mises akma kriterin pekleşmeli durumu, siltli ve kayadan oluşan zemin tabakaları için ise Lineer elastik malzeme modeli seçmiştir. Köprünün matematik modeli ve üç boyutlu modellenmesinde Midas FX+, analiz için ise DIANA-3D yazılımı kullanılmıştır. Analiz sonucunda köprü kütlesi, zemin kütle oranı 1/500 olduğu durumda deprem ivmesi zemin kütlesinde kabul edilebilir derecede sönümlenmektedir. Diğer çözüm ise Lysmer-Kuhlemeyer sönümlendirme sınır koşulların kullanılmasıdır. Y-X doğrultusunun 8 katı olduğu durumda zeminde oluşan dönme miktarı ihmal edilebilmektedir. Son olarak meş ölçüsü küçüldükçe ivme sönümlemesi artmaktadır.

Mylonakis ve diğ. (2004), 1969'da yapılmış ve 1995'te Ms=6.8 (Mw=7) büyüklüğündeki depreme maruz kalan Fukai Köprüsünü araştırmışlardır. Araştırma sonucunda köprü ayağı enine ve boylamsal ankraj donatılarının yetersizliği ve kesme kuvvetinin elastik teorisine göre belirlenmiş olması, köprü ayağının yetersiz süneklik sergilemesine sebep olmuştur. Zemin tabakasının gevşek davranması yapı ile zeminin birlikte hareket etmesine, ivmelerin büyütülmesine, periyodun uzaması, sönüm talebi ve dolayısıyla süneklik talebinin artmasına sebep olmuştur. Yapı elastik sınırda kaldığından ve sünek davranmaması sebebiyle devrilmiştir. Bu durum Yapı-Zemin etkileşiminin dezavantaj durumu için bir örnektir.

Gazetas ve diğ. (2020)'de, 1969'da yapılmış olan Fukai köprüsünün Abaqus-3D yazılımı ile göçme sebebi araştırılmış ve bu olaya optimum çözüm önermek için dört öneride bulunulmuşlar. En kritik sismik yükleme yönünden kazık miktarını ve dolayısıyla temel rijitliğini azaltarak köprü ayağının deprem performansının arttırılması, radye temel ile kazıkların ayrıklaştırılması, dolayısıyla köprü hasar miktarını ve oturmasının azaltılması (üst yapı kaymadan dolayı büyük deplasmanlara dayanabilir olmalıdır), kazıklar kaldırılarak temelin kısmi veya tamamen gömülü olması oturmaları azaltabilmektedir ama gereğinden fazla gömülü olması salınım sırasında, temelin kısmen ayrıştırma(izolasyon) etkisini yok edebilmektedir. En uygun çözüm olarak kazıkların tamamen kaldırılması durumda temel genişliğinin ve donatı miktarının arttırılması ile köprü en az hasar ile göçmeden depremi atlatabilmektedir.

DIANA ve diğ. (2022)' de Perugia-A1 viyadüğünü sabit mesnetli durum için köprü ayağını Timoşenko'un önerdiği lineer vizko-elastik kiriş eleman olarak Sap2000-3D'de modellemişlerdir. Yapı-Zemin etkileşimli durumu için PIAXIS-3D yazılımı kullanılarak, köprü ayağını ve kesonları Timoşenko lineer vizko-elastik kiriş elemanı olarak, ilk 9m'lik kil tabakası için pekleşen zeminlerin küçük şekil değiştirme durumu ve 9-50m arası Marl formasyonlu kaya tabakası için Mohr-Coulomb elasto-plastik modeli seçilerek analiz edilmiştir. Analiz sonucu olarak Yapı-Zemin etkileşimli durumunda yapı deplasmanı artarak köprü ayağının altındaki kesme ve momentleri sırasıyla %38 ve %45 miktarda rijit mesnetli duruma göre azalmıştır.

Maleki ve diğ. (2018), İntegral köprülerini deprem durumunda doğrusal olmayan analizi sonlu elemanlar yöntemiyle Yapı-Kazık-Zemin etkileşimi dikkate alarak SAP2000 yazılımı ile analiz gerçekleştirilmişlerdir. Analiz sonucunda köprü uzunluğunun artması ve köprü ayağının arkasındaki zeminin rijitliği az olan gevşek zemin, daha sert zemin durumuna göre doğal titreşim periyodu ve dolayısıyla deplasmanı, kesme kuvveti ve maksimum momenti artmaktadır. Kazıkların maksimum momenti ve kesme kuvveti de duvar tipi köprü ayağında saplama tipine göre daha az çıkmıştır. Kazıklı integral köprülerde kazıklar orta ve şiddetli dinamik hareketlere karşı büyük plastik deformasyonlara dayanabilmekte dolayısıyla kazıkların malzemesinde doğrusal olmayan davranış dikkate alınmalıdır. Uzun açıklıklı köprülerde saplama tipi köprü ayağı, duvar tipine göre daha fazla plastik deformasyonlara dayanabilmektedir.

Vinayak ve diğ. (2015)'de Sap2000-3D yazılımında derin temelli köprü ayağı için zemin yaylar ile modellenerek kuvvet tabanlı tasarım, direkt deplasman tabanlı tasarım, kapasite spektrum, non lineer zaman tanım analiz yöntemlerinde köprü ayağının kesme kuvvetlerinin karşılaştırmasını yapmışlardır. Zaman tanım analiz yönteminin diğer yöntemlere göre kesme kuvveti orta ve gevşek tabakalı zemin durumlarında daha yüksek çıkmış ve köprü ayağının yüksekliği dolayısıyla esnekliği artınca özellikle gevşek zemin durumunda bu farkın azaldığı görülmüştür. Kapasite spektrum yöntemi, kuvvet tabanlı tasarım yöntemine göre değerler %10 daha yüksek çıkmıştır. Halbuki her iki metotta ayni spektrum kullanılmıştır. Kuvvet tabanlı, kapasite spektrum ve direkt deplasman tabanlı yöntemlerindeki taban kesme kuvvetinin zaman tanım analiz yöntemine göre düşük çıkmasının sonucu ile ekonomik tasarıma sebep olmuştur.

1.3 Tezin Çalışma Akışı

Birinci bölümde; problemin tanımı, tezin amacı, kapsamı ve literatürdeki çalışmalar, ikinci bölümde; yapılan deney sonuçları ve zeminin sınıflandırılması, üçüncü bölümde; zemin malzemesinin pekleşme davranışları, dördüncü bölümde; seçilen üç zemin modeli, beşinci bölümde; beş farklı formül ile yüzeysel temel değerlendirilmesi, altıncı bölümde; kazıklı temel taşıma gücü hesabı, yedinci bölümde; örnek köprü projesinin özellikleri, üç farklı zemin modeline göre veriler ve 2 farklı ivmeler seçilerek ölçeklendirilme, sekizinci bölümde; yapı-zemin etkileşimin açıklanması ve analiz sonuçları, dokuzuncu bölümde; her iki deprem ivmesi için sonuçların yorumu ve önerisi, onuncu bölümde; kaynak, on birinci ve on ikinci bölümlerde; analizlerin sonuçları grafik olarak ekte yer almıştır. On üçüncü bölümde ise özgeçmiş yer almaktadır.

2. ZEMİN TABAKALARININ İNCELENMESİ

2.1. Sondaj Araştırmalar

İki komşu köprüler için birer adet olmak üzere 2 adet sondaj köprünün kenar ayaklarının yakınında açılmıştır.

Çatalca-Subaşı Yolu K-2 Kavşağı Çevreyolu-2 Kavşak Köprüsü (Anayol Km: 4+781.433 –Bağlantı Yolu Km: 0+382.044) için 2 adet sondaj yapılmıştır. Bu sondajlar YSK21 ve YSK22' dir. YSK21 no.lu sondaj 20,00 metre ve YSK22 no.lu sondaj 15,0 metre kuyu derinliğine sahiptir. Böylece toplamda 35,00 metre sondaj çalışması yapılmıştır.

2.1.1. YKS21 No.lu Sondaj

Bu sondaj köprünün Tem-Büyükçekmece tarafında, 20,00 metre derinliğe kadar yapılmıştır. Kuyuda; 0.00 - 7.50 m. aralığında sarı-kahve renkli yer yer kum içerikli katı-çok katı kıvamlı SİLTLİ KİL , 7,5-12,0 m aralığında gri renkli zayıf-çok zayıf dayanımlı orta-çok ayrışmış kaya kalitesinde yer yer kil bantlı KİLTAŞI, 12.0 – 20.0 arasında gri renkli zayıf dayanımlı orta ayrışmış kaya kalitesinde yer yer kil bantlı KİLTAŞI birimleri gözlenmiştir. Yeraltı suyu seviyesi 10,0 m de gözlenmiştir.

2.1.2. YKS22 No.lu Sondaj

Bu sondaj köprünün subaşı tarafında, 15,00 metre derinliğe kadar yapılmıştır. Kuyuda; 0.00 -7.50 m. aralığında sarı-kahve renkli yer yer kum içerikli katı-çok katı kıvamlı SİLTLİ KİL, 7,5-12,0 m aralığında gri renkli zayıf-çok zayıf dayanımlı ortaçok ayrışmış kaya kalitesinde yer yer kil bantlı KİLTAŞI, 12,0 – 15,0 arasında gri renkli orta zayıf dayanımlı orta ayrışmış kaya kalitesinde yer yer kil bantlı KİLTAŞI birimleri gözlenmiştir. Yeraltı suyu seviyesi 10,0 m de gözlenmiştir.
2.2. YAPILAN DENEYLER

2.2.1. Arazi Deneyleri

Bu proje kapsamında açılan sondaj kuyular "Yapısan Proje" tarafından açılmıştır. Sondaj verilerine göre SPT darbe sayılarına karşılık zemin tabakalarının sınıfları aşağıdaki gibi verilmiştir (Tablo 2.1).

H(m)	SPT N	Zemin Sınıfı	H(m)	SPT N	Zemin Sınıfı	H(m)	SPT N	Zemin Sınıfı
1.5	15		7.5	60	1f a- s de	13.5	60	de
3.0	20		9.0	60	Zay Ort miş sin	15.0	60	sinus
4.5	31	iK	10.5	60	ok ' nlı yrış ulite taşı	16.5	60	ayaı yrış llite taşı
6.0	60	Siltl			f-Ç k A Kâ Kâ	18.0		f D a A Kŝ
7.5	60	01	12.0	60	Zayı Daye Çol Kaya	19.5	60	Zayı Ort Kaya

Tablo 2.1: SPT Deney Sonuçları ve Zemin Tabakalarının Sınıfları.

2.2.2. Laboratuvar Deneyleri

Bu çalışma kapsamında yapılan laboratuvar deneyleri, "Arter Mühendislik" tarafından yapılmıştır. Çalışma alanı zemin etütleri kapsamında gerçekleştirilen sondajlardan alınan zemin numuneleri üzerinde doğal su muhtevası, elek analizi, kıvam limit deneyleri yapılmıştır. Alınan bazı numuneler üzerinde ayrıca zeminde üç eksenli sıkışma ve kayada tek eksenli sıkışma deneyleri yapılmıştır. İlgili sondaj kuyuları için yapılan laboratuvar deneyi sonuçlarının tamamı ilerleyen bölümlerde verilmiştir.

2.3. Zeminlerin Fiziksel Özelliklerinin Belirlenmesi

Açılan sondaj kuyularından alınan zemin numuneleri üzerinde zeminlerin fiziksel özelliklerinin belirlenmesi için alınan numunelerin YSK21 sondajından 1 tane ve YSK22 sondajından 2 tane numune için elek analizi deneyi yapılmıştır. Elek analizi sonuçları aşağıdaki Tablo 2.2'deki gibidir.

Sondai	Sovivo	Elek analizi			
No	(m)	Kum (%)	Siltli-Kil(%)		
YKS21	2.5-3.0	8.73	91.27		
YKS22	2.5-3.0	8.82	91.18		
	5.5-6.0	10.13	89.87		

Tablo 2.2: Elek Analizi Deney Sonuçları.

2.3.1. Zeminlerin Mekanik Özelliklerinin Belirlenmesi

Açılan iki sondaj kuyularından elde edilen 3 numune için zemin mekanik özelliklerini belirlemek amacıyla üç eksenli basınç deneyi ve 7 numune için tek eksenli basınç deneyi yapılmıştır. Yapılan deneylerin bulguları aşağıdaki tabloda gösterilmiştir (Tablo 2.3, Tablo 2.4).

Sondaj	Seviye	Üç Eksenli Basınç Deneyi			
INO	(m)	C(Kpa)	ф°		
YSK21	2.5-3.0	102.66	8.22		
VERAS	2.5-3.0	78.15	9.83		
Y SK22	5.5-6.0	106.96	9.08		

Tablo 2.3: Zeminde Üç Eksenli Basınç Deneyi Sonuçları.

Tablo 2.4: Kayada Tek Eksenli Basınç Deneyi Sonuçları.

Sondaj	Seviye	Tek Eksenli Basınç Deneyi		
No	(m)	qu(Mpa)		
	8-8.5	0.72		
VGV01	12-12.5	0.97		
15K21	15-15.5	2.12		
	17.5-18.0	3.04		
	9-9.5	1.32		
YSK22	12-12.5	1.90		
	14.5-15.0	3.17		

2.4. Zeminlerin Sınıflandırılması

Tez araştırmasında kullanılan projedeki verilerde kayma dalgası hızının (V_s) belirlenmesi için sismik yöntemler (Sismik Kırılma Tomografi "SRT", Yüzey Dalga Çok kanallı Analiz Yöntemi "MASW" veya Kırılma Miktortemörü "REMİ") kullanılmadığından literatürdeki SPT'ye bağlı bütün zeminler ve sadece killer için verilen toplam 45 formül ile zemin tabakalarının kayma dalga hızı belirlenmiştir. Zeminin drenajsız kayma mukavemetine (C_u) ve SPT darbe sayısına göre TBDY 2018'e uygun ilk 30m için zemin sınıfı ZC olarak belirlenmiştir (Şekil 2.1- Şekil 2.4, Tablo 2.6 -Tablo 2.12). PI(31) ve LL(60) değerlerine göre Casagrande (1948) grafiğinden organik olmayan yüksek plastisiteli kil (yüksek plastisite silt sınırına yakın) olarak belirlenmiştir (Tablo 2.5).

Tablo 2.5: Zemin Etüdü Verileri.

$\gamma_n \left(gr/cm^3\right)$	γ _k (gr/cm³)	%		
1.95	1.5	PI	LL	PL
$\gamma_d (gr/cm^3)$	2.25	31.3	59.6	27.9
C(kpa)	ذ	Silt (%)	Kil(%)	Kum(%)
102.66	8.22	91.27		8.73

Tablo 2.6: TBDY2018'e Göre Yerel Zemin Sınıfları.

Yerel		Üst 30 metrede ortalama					
Zemin Sınıfi	Zemin Cinsi	(V _s) ₃₀ [m/s]	(N ₆₀) ₃₀ [darbe /30 cm]	(c _u) ₃₀ [kPa]			
ZA	Sağlam, sert kayalar	> 1500	-	-			
ZB	Az ayrışmış, orta sağlam kayalar	760 - 1500	-	-			
ZC	Çok sıkı kum, çakıl ve sert kil tabakaları veya ayrışmış, çok çatlaklı zayıf kayalar	360 - 760	> 50	> 250			
ZD	Orta sıkı – sıkı kum, çakıl veya çok katı kil tabakaları	180 - 360	15 - 50	70 – 250			
ZE	Gevşek kum, çakıl veya yumuşak – katı kil tabakaları veya $PI > 20$ ve $w > %$ 40 koşullarını sağlayan toplamda 3 metreden daha kalın yumuşak kil tabakası ($c_{\rm u} < 25$ kPa) içeren profiller	< 180	< 15	< 70			
ZF	 Sahaya özel araştırma ve değerlendirme gerektiren zeminler: 1) Deprem etkisi altında çökme ve potansiyel göçme riskine sahip zeminler (sıvılaşabilir zeminler, yüksek derecede hassas killer, göçebilir zayıf çimentolu zeminler vb.), 2) Toplam kalınlığı 3 metreden fazla turba ve/veya organik içeriği yüksek killer, 3) Toplam kalınlığı 8 metreden fazla olan yüksek plastisiteli (<i>PI</i>>50) killer, 4) Çok kalın (> 35 m) yumuşak veya orta katı killer. 						

N60 (30m) SPT'ye göre zemin tabakalarının sınıflandırılması							
İnce	daneli düzeltme	esi yapmadan	TBDY 2018 İnce daneli düzeltmesinden sonra				
tabakalar	SPTN60 orta	h tabaka /SPTN	SPT orta	h tabaka/SPTN			
İlk 7.5m	36.855	0.204	49.226	0.152			
ikinci tabaka	70.2	0.178	89.24	0.140			
3. tabaka	70.2	0.1425	89.24	0.112057373	Dolayısıyla		
57.3	> 50	Zemin Sınıfı ; Zc	74	SPTN60(30)>50	, ZC		

Tablo 2.7: TBDY 2018'e Uygun SPT Değerlerine Göre Zemin Sınıfının Belirlenmesi.

Tablo 2.8: Zeminin Drenajsız Kayma Mukavemetine göre sınıflandırılması.

	Ortalama SPT N	Sanglerat (1		972) Terzaghi ve Peck (1		ii ve Peck (1967)
İlk 7.5m	31.5	Cu= (2-5)*c	Siltli kil	Killer	İnce	daneli zeminler
			12.5N	10N	(Cu=6.25N
tille trateman 12.5.20m	60	411	315	750		197
lik kaunan 12.3-20m	00	411	Cu(ort)	532.5		375
						Cu(ort)
İkinci katman	60	ilk 20 için değerler değismediği için biz ilk		Cu (7.5 - 20) son tabaka 286		286
12.5-20m	00	20m için zemini sınıflandırırız	750		Cu (7.5 - 20)	
					375	
Sowers (1979)	Nison (1982) Kulha		Kulhaw	y ve Mayne (1990)	Sivrikaya ve Toğrol (2002)
Yüksek Plast	isiteli Killer	Killer	ler Cu		29 N^0.72	Yüksek Plastisiteli Killer
Cu	12.5 N	Cu	12 N	Cu(ort)	450	SPT, N60(ort)
Cu(ort)	572	Cu(ort)	549			İ l k 7.5m
Cu (7.5 - 20)		Cu (7.5 -	20)	C	Cu (7.5 - 20)	49
750		720			553	İlk katman 12.5-20m
Sonuç	Cu	(30)	Zemin Sınıfi	ufi 8'e Son tabakasının Cu değerine göre zemin durumunda ZB , güvelik için ZC sınıf		89
Cu(ort)	477	Cu(30) > 250	TBDY 2018'e			e göre zemin tabakası en ivi
Cu(son tabaka)	626.1	Cu(30) > 251	göre			x için ZC sınıfi uygundur.

Bütün Zeminler İçin Verilen Kayma Dalga Hızı Formüllri						
Kanai (1996)	İmai & Yoshimura (1970)	Ohba & Toriumi (1970)	Fujiwara (1972)	Ohsaki & İwasaki(1973)		
Vs(m/s) =19*N^0.6	Vs(m/s) =76*N^0.33	Vs(m/s) =84*N^0.31	Vs(m/s) =92.1*N^0.337	Vs(m/s) =81.4*N^0.39		
İmai et al(1975)	İmai & Yoshimura (1976)	İmai (1977)	İmai & Tonouchi (1982)	Ohta & Goto (1978)		
Vs(m/s) =88.9*N^0.341	Vs(m/s) =92*N^0.329	Vs(m/s) =91*N^0.337	Vs(m/s) =97*N^0.314	Vs(m/s) =85.35*N^0.348		
Seed & İdress(1981)	Jinan (1987)	Yokata et al(1981)	Fumal & Tinsley (1985)	Katleziotiset al (1992)		
Vs(m/s) =61.4*N^0.5	Vs(m/s) =116.1*(N+0.3185) ^0.202	Vs(m/s) =121*N^0.27	Vs(m/s) =(5.3*N+134)	Vs(m/s) =76.2*N^0.24		
Athanasopoulos (1995)	Sisman(1995)	İyisan(1996)	Jafari Et al (1997)	Jafari Et al (1997)		
Vs(m/s) =107.6*N^0.36	Vs(m/s) =32.8*N^0.51	Vs(m/s) =51.5*N^0.516	Vs(m/s) =121*N^0.270	Vs(m/s) =22*N^0.85		
Kiku Et al (2001)	Hasancebi & Ulusay (2007)	Hanumantharao & Ramana (2008)		Lee & Tsai (2008)		
Vs(m/s) =68.3*N^0.292	Vs(m/s) =90*N^0.309	Vs(m/s) =82.6*N^0.43		Vs(m/s) =137.153*N^0.229		
Dikmen (2009)	Uma & Maheswariet et al (2010)	Tsaimbaos & Sabatakakis (2011)	Anbazhagan et al (2012)	Anbazhagan & Sitharam (2013)		
Vs(m/s) =58*N^0.39	Vs(m/s) =95.641*N^0.3013	Vs(m/s) =105.7*(N60)^0.327	Vs(m/s) =68.96*N^0.51	Vs(m/s) =78*(N60)^0.4		

Tablo 2.9: Bütün Zeminler için Verilen Kayma Dalga Hızı Formülleri.

Tablo 2.10: Killi Zeminleri için Verilen Kayma Dalga Hızı Formülleri.

Killi Zeminler İçin Verilen Kayma Dalga Hızı Formüllri						
İmai (1977)	İmai (1977) Katleziotiset al (1992)		Hasancebi & Ulusay (2007)	Dikmen (2009)		
Vs(m/s) =102*N^0.292	Vs(m/s) =76.6*N^0.45	Vs(m/s) =76.55*N^0.445	Vs(m/s) =97.89*N^0.269	Vs(m/s) =44*N^0.48		
Uma & Maheswariet et al (2010)	Anbazhagan et al (2012)	JRA (1980)	Lee (1990)	Raptakis et al. (1995)		
Vs(m/s) =89.31*N^0.358	Vs(m/s) =106.63*N^0.39	Vs=100N*^0.33	Vs=144.43*N^0.31	Vs=184.2*N^0.17		
Tsaimbaos & Sabatakakis (2011)	Lee & Tsai (2008)	Pitilakis et al. (1999)	Jafari et al. (2002)	Imai (1977)		
Vs=88.8*N^0.37	Vs=163.15*N^0.192	Vs=132*(N60)^0.271	Vs=27*N^0.73	Vs=102*N^0.292		
		Ohta & Goto (1978)				
		Vs=100*N^033				

Şekil 2.1: Bütün Zeminler İçin Kayma Dalga Hızı Sonuçları.

Şekil 2.2: killi Zeminler İçin Kayma Dalga Hızı Sonuçları.

Şekil 2.3: Her İki Sonuçların Ortalama Kayma Dalga Hızlarının Karşılaştırması.

TBDY 2018;Vs dalgasma göre zemin tabakalarının sınıflandırılması		Vs(m/s) orta	Vs- orta(m/s)	hi/Vs	hi/Vs	Vs20(m/s)	Vs20(m/s)		
Aralık	x(m)	h(m)	For clay	for all soil	For clay	for all soil	For clay	for all soil	
0	1.5	1.5	251	218	0.0060	0.0069	256	231	
1.5	3	1.5	277	243	0.0054	0.0062	Vs30 (m/s)	Vs30 (m/s)	
3	4.5	1.5	323	287	0.0046	0.0052	383	347	
4.5	6	1.5	410	374	0.0037	0.0040	Vs;360-760	180-360	
6	7.5	1.5	410	374	0.0037	0.0040	ZC	ZD	
7.5	9	1.5	410	374	0.0037	0.0040			
9	10.5	1.5	410	374	0.0037	0.0040			
10.5	12	1.5	410	374	0.0037	0.0040			
12	13.5	1.5	410	374	0.0037	0.0040			
13.5	15	1.5	410	374	0.0037	0.0040			
15	16.5	1.5	410	374	0.0037	0.0040	sonuç; kill	er için özel olarak	
16.5	18	1.5	410	374	0.0037	0.0040	verile	n formüllerin	
18	19.5	1.5	410	374	0.0037	0.0040	1		
19.5	21	1.5	410	374	0.0037	0.0040	sonuçların	in ortalamasi daha	
21	22.5	1.5	410	374	0.0037	0.0040	doğru o	duğu için zemin	
22.5	24	1.5	410	374	0.0037	0.0040	sını	fımız <mark>7C</mark> 'dir	
24	25.5	1.5	410	374	0.0037	0.0040			
25.5	27	1.5	410	374	0.0037	0.0040			
27	28.5	1.5	410	374	0.0037	0.0040	1		
28.5	30	1.5	410	374	0.0037	0.0040	1		
						0.0865]		

Tablo 2.11: Zemin İçin Bulunan Kayma Dalga Hızları Işığında Zemin Sınıfının Belirlenmesi.

Tablo 2.12: Zeminin TBDY 2018'de Verilen Her Üç Koşullara Göre Sınıfının Belirlenmesi.

SPT (N60)30m	Vs(30) m/s	Cu(30) Kpa
ZC	ZC	ZC

3. ZEMİN MALZEMESİNİN PEKLEŞME DAVRANIŞI

Pekleşen zemin modeli, hiperbolik modelin bir elasto – plastik türüdür. Genelde üç çeşit pekleşme türü ile zeminin davranışı tanımlanır: izotropik, kinematik ve karma pekleşme modeli. İzotropik pekleşme, akma yüzeyinin tüm yönlerde tekdüze genleşmesini temsil ederken, kinematik pekleşme plastik akma sırasında, akma yüzeyinin şekil, boyut ve yönünü koruyan rijit bir cisim olarak, plastik anizotropiyi sembolize etmektedir. Karma pekleşme ise izotropik ve kinematik pekleşmelerin birlikte dikkate alınan halidir. Sonlu elemanlar kodu karma pekleşmeyi desteklememektedir. Bu nedenle yalnızca izotropik sertleşme analizini gerçekleştirebilmektedir (Kempfert ve Gebreselassie, 2006).

3.1. İzotropik Pekleşme

Akma yüzeyi şeklini koruyarak, gerilme artışı ile bütün yönlerde orantılı olarak genişleyebilen malzeme davranışıdır (Şekil 3.1). Akma fonksiyonu aşağıdaki gibidir:

$$f(\sigma_{ij}, K_i) = f_o(\sigma_{ij}) - K = 0 \tag{1}$$

Akma fonksiyonun şekli, birincil akma fonksiyonuna ve pekleşme parametresi olan K'nın değişimi sırasındaki, boyut değişim miktarına bağlıdır.

Örnek olarak, Von Mises akma yüzeyinin, birincil akama durumunu dikkate alacağız;

$$f_{o}(\sigma_{ij}) = \frac{1}{\sqrt{2}}\sqrt{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}} - Y \qquad (2)$$
$$= \sqrt{3j_{2}} - Y$$

$$=\sqrt{\frac{3}{2}S_{ij}S_{ij}} - Y \tag{3}$$

Y, burada tek eksenli çekme durumunda akma gerilmesini temsil etmektedir, bu durumda ilk denklemi aşağıdaki gibi yazılabilmektedir;

$$f(\sigma_{ij,} K_i) = \sqrt{3 j_2} - Y - K = 0$$
 (4)

Silindirik birincil akma yüzeyi, gerilme uzayında yarıçapı r = $\sqrt{\frac{3}{2}}Y$ 'den

 $R = \sqrt{\frac{3}{2}}Y + K$ 'ye artmaktadır. Plastik deformasyon sırasındaki pekleşme parametresi olan K'nin değişimi ile detaylı bilgi, henüz belirlenmemiştir.

Diğer bir örnek olarak, Drucker Prager kriteri aşağıda verilmiştir.

 $f_o(\sigma_{ij}) = \alpha I_1 + \sqrt{J_2} - K = 0$ Tek eksenli çekme durumunda, $I_1 = Y$ $\sqrt{J_2} = Y/\sqrt{3}$, böylece; $K = (\alpha I_1 + 1/\sqrt{3})Y$, İzotropik pekleşmesi aşağıdaki gibi açıklanabilir.

$$f(\sigma_{ij}, K_i) = \frac{1}{\alpha + 1/\sqrt{3}} (\alpha I_1 + \sqrt{J_2}) - Y - K = 0$$
(5)

Şekil 3.1: İzotropik Malzeme Davranışının Akma Yüzeyi Şematik Gösterimi ve Gerilme -Şekil Değiştirme Grafiği.

3.2. Kinematik Pekleşme

İzotropik model, malzeme çekme ve basınca maruz kalınca akma dayanımı başlangıçta aynıdır, yani akma yüzeyi plastik şekil değiştirmeye başlayıncaya kadar gerilme ekseni etrafında simetrik kalmaktadır.

Bauschinger etkisini modellemek için, çekme pekleşmenin, basınçtan sonraki yumuşama oluncaya kadar benzer tepkiler için kinematik pekleşme kuralı kullanılabilmektedir. Bu akma yüzeyinin aynı şekil ve boyutta kalır, ancak gerilme uzayında ötelenmektedir (Şekil 3.2).

Bu model, kinematik pekleşmenin rijitlik faktörleri, uygulanan basınca orantılı akma yüzeyi gerçekleştirir. Zeminin döngüsel davranışı sergileyen geri dönülmez, boşaltma – gri yükleme döngüleri sırasında kayma yer değiştirme ve rijitlik değişimini göstermektedir. Açıkça görünür ki, hâkim pekleşme sürecinde Bauschinger etkisini çok iyi temsil edebilir ve ayrıca geliştirilen model geniş aralıktaki şekil değiştirme genliklerde zeminin non-lineer davranışını doğru şekilde sergileyebilmektedir.

Ancak zeminin çok sayıda döngüsel davranışı izotropik ve kinematik pekleşmesinin karmasından oluşmaktadır (Duune ve Petrinic, 2005).

Şekil 3.2: Kinematik Malzeme Davranışının Akma Yüzeyi Şematik Gösterimi ve Gerilme -Şekil Değiştirme Grafiği (Duune ve Petrinic, 2005).

Akma fonksiyonun genel şekli aşağıda verilmiştir.

$$f(\sigma_{ij}, K_i) = f_o \left(\sigma_{ij} - \alpha_{ij}\right) = 0 \tag{6}$$

Pekleşme parametresi olan α_{ij} , geri gerilme ya da Yer değiştirme gerilmesi olarak bilinmektedir, akma yüzeyi, gerilme uzayı ekseni , α_{ij} göre değişmektedir.

Örnek olarak, Von Mises malzemesini σ - α gerilmeleri sadece σ deviatorik bölümü yerine kullanılmıştır. Burada α^d , α 'nın deviatorik bölümüdür (Şekil 3.3).

Şekil 3.3: Kinematik Pekleşme Durumunda Malzeme Geri Gerilme ile Yer Değişimi (Katı Mekaniği, Kelly).

$$f(\sigma_{ij}, K_i) = \sqrt{\frac{3}{2} (S_{ij} - \alpha_{ij}^d) (S_{ij} - \alpha_{ij}^d)} - Y$$
(7)

3.3. Karma Pekleşmesi

Çevrimsel vb. daha karmaşık pekleşmeleri dikkate almak için Karma Pekleşmesi kullanılmaktadır. Bu pekleşme her iki, izotropik ve kinematik pekleşmesinin özelliklerini birlikte kullanmaktadır. Ayrıca yükleme fonksiyonu genel şekli aşağıdaki gibidir(Şekil 3.4). Pekleşme parametresi olan K (skaler) ve α_{ij} tensörüdür.

$$f(\sigma_{ij}, K_i) = f_o \left(\sigma_{ij} - \alpha_{ij}\right) - K = 0 \tag{8}$$

Şekil 3.4: Karma Pekleşme Malzeme Davranışının Akma Yüzeyi Şematik Gösterimi ve Gerilme - Şekil Değiştirme Grafiği (Duune ve Petrinic, 2005).

4. ZEMİN MODELLERİ

DIANA, Sonlu Elemanlar Metodu (SEM) ile analiz eden güçlü bir yazılım olmakla birlikte kullanılması için çalışılan konunun detayına hâkim olunması beklenilmektedir. Ayrıca bu yazılımda dokuz farklı zemin ve kaya modeli sunulmaktadır. Bu araştırmada örnek projeye uygun üç farklı zemin modeli seçilerek analiz gerçekleştirilmiştir. Zemin modelleri seçilmeden önce literatürdeki farklı zemin modellerinin davranışı ve sonuçları ışığında elasto-plastik davranışı sergileyen Drucker-Prager zemin modeli başlangıç analiz sonuçları için, Cam Clay ve Pekleşen Zemin (HS) modelleri ise gerçekçi analiz sonuçlarının en uygununu bulmak amacıyla karşılaştırılmalı olarak analiz sonuçları irdelenmiştir.

4.1. Drucker – Prager Zemin Modeli

Drucker-Prager (DP) zemin modeli Mohr-Coulomb (MC) modelinin geliştirilmiş bir modeli olarak ortaya konulmuştur. MC modeli basit lineer elastik – tam plastik teorisine dayanmaktadır. Bu modelin basitleştirmesinden ve az sayıda zemin parametreleri gerektirdiğinden (zeminin sürtünme açısı ve dilatasyonu) monoton yükleme durumlarda yaygın olarak kullanılmaktadır.

MC modeli, elastik davranış başlangıcına kadar Hook yasasına uymakta, zemin akma davranışı ise MC kriterine göre gerçekleşerek akmadan sonra tam plastik davranış sergilemektedir (gevşeme ve pekleşme oluşmayacaktır). Tam plastik davrandığı için büyük deformasyonların ve dolayısıyla şekil değiştirmelerin önemli olduğu çoğunlukla kohezyonsuz zemin durumlarında kabul edilebilir sonuçlar verebilmektedir.

Dr-Pr parametreleri (β , ψ ve d) iken, plan şekil değiştirme koşulunda ise MC parametreleri (ϕ , ψ ve c) dir. Gevşeme durumu temsil etmek için sürtünme ve dilatasyon açıların küçülterek dolayısıyla deviatorik plastik kayma şekil değiştirme miktarının büyütmesi ile mümkündür (Robert, 2010).

Deviatorik gerilme uzayında sahadaki verilerin basitleştirmesinden dolayı daha önce akma durumuna gelir, bu durumu çözebilmek için Dr-Pr yöntemi tercih edilebilmektedir (Potts ve Zdravkovic, 1999). MC modeli yükleme koşulundan bağımsız davranmaktadır (tek sürtünme açısı kabulü). Oysaki Dr-Pr modelinden yükleme açısına ve şekline bağlı (θ & k) olarak gerilme ölçüsü ve şekli değişmektedir (Kulhavy ve Mayne, 1990).

MC zemin modeli ve Dr-Pr zemin modelinin arasındaki davranış farklarını daha iyi görebilmek için aşağıdaki 4.1, 4.2 ve 4.3 şekillerine bakılmalıdır.

Şekil 4.1: Mohr – Coulomb ve Drucker – Prager Akma Yüzeyleri Deviatorik Gerilme Uzayında Karşılaştırılması (Zhang vd., 2015).

Şekil 4.2: Farklı İçsel Sürtünme Açıların Durumunda 3D Geliştirilmiş Drucker – Prager 'in (ED-P) Akma Yüzeyleri (Zhang vd., 2015).

Şekil 4.3: Farklı İsotropik Seviyelerde Asfalt Beton İçin Genelleştirilmiş Drucker-Prager (GD-P) Akma Yüzeyleri (Zhang vd., 2015).

4.2. Cam Clay (Kambrij Kili) Zemin Modeli

Kil, siltli kil ve bataklık gibi yumuşak zeminlerin davranışının modellenmesi geoteknik mühendisliğinin en karmaşık problemlerindendir. Yumuşak zemin üzerinde yer alan yapıların tasarımı proje ve uygulama mühendisleri için çoğu kez sorun teşkil etmektedir. Çünkü yumuşak killer düşük dayanıma sahiptir ve yüksek sıkışma potansiyeli vardır. Ayrıca yükleme durumunda zeminlerin mekanik davranışında yüksek derecede lineer olmayan davranış hakimdir ve meydana gelen deformasyonlar zamana bağlı olarak gerçekleşir.

Yumuşak zeminlerin zamana bağlı davranışı birçok araştırmacı tarafından incelenmiştir. Malzemelerin doğal ortamlardaki davranışlarının sonlu elemanlar yaklaşımı ile modellenmesi zemin modelleri ile yapılır. Bu modeller, gerilmeyi deformasyon geçmişinin bir fonksiyonu olarak tanımlar.

Geoteknik malzeme davranışı genellikle gerilmeye bağımlıdır ancak saha ve laboratuvar ortamlarında zemin davranışı, oldukça basitleştirilmekte ve gerilmeden bağımsız olmaktadır. Yumuşak zeminler için geliştirilen zemin modelleri genellikle kritik durum teorisini esas almakta olup bu modellerin ilki Cam Kili (CC) zemin modeli olarak kabul edilmektedir. Roscoe ve Schofield (1963), tarafından önerilen CC zemin modeli izotropik bir zemin modeli olup, killerdeki elasto-plastik davranışı esas almaktadır. Roscoe ve Burland (1968), tarafından bu model geliştirilmiş ve Modifiye Cam Kili (MCC) olarak adlandırılmıştır. CC ve MCC modelleri, izotropik (hidrostatik) gerilme koşullarında ($\sigma'_{1=} \sigma'_{2=} \sigma'_{3=} p'$), v - lnp' düzleminde elde edilen sıkışma eğrisini esas alarak hacimsel ve kayma deformasyonlarını hesaplar (Şekil 4.4 - Şekil 4.7).

Zemin modelinin parametreleri; rijitlik parametreleri (λ , κ , e_{init} , v_{ur}) ve dayanım parametreleri (M, K_o^{nc}) dir.

- λ : Basınç indeksi
- κ: Şişme indeksi

einit, :Yükleme-boşalma durum için başlangıç boşluk oranı

v_{ur}: Poisson oranı (Yükleme -boşalma durumu için)

M: Kritik durum çizgisinin eğimi

 K_o^{nc} : Normal konsolide killer için M'e bağlı yanal gerilme katsayısı

Şekil 4.4: Hacimsel Birim Şekil Değiştirme-Ortalama Efektif Gerilme Logaritmik

Şekil 4.5: p'-q Akma Yüzey Durumu İçin Modified Cam Clay Akma Yüzeyi (Plaxis – 2D Manual, 2020).

Şekil 4.6: Cam – Clay(Kambrij Kili) ve Modifiye Cam – Clay Akma Yüzeyleri (p – q) Uzayı. M Parametresi CSL'nin Eğimidir (Benli, 2008).

Şekil 4.7: p-q-e Uzayında Sınır Yüzeyin Görünüşü (Benli, 2008).

4.3. Pekleşen Zemin Modeli (Hardening Soil Model)

Hardening Soil Model'de Duncan-Chang modelinden farklı olarak elastisite teorisi yerine plastisite teorisi kullanılır. Zemin dilatansı ve göçme durumu tanımlanır. İki temel pekleşme tipine ayrılarak (kayma pekleşmesi ve basınç pekleşmesi) yapılır. Kayma pekleşmesi öncelikli olarak deviatorik yüklemeye bağlı olan geri tersinmez şekil değiştirmeleri modellemek için yapılmıştır. Basınç pekleşmesi ise ödometre yüklemesi ve izotropik yüklemedeki birincil sıkışmaya bağlı olan geri dönüşsüz şekil değiştirmeleri modelde kullanılır. Her iki pekleşme durumu bu modelde kullanılmaktadır.

Pekleşen Zemin Modeli gevşek ve sert(rijit) zemin tabakalarının doğrusal olmayan davranışını simüle etmek için geliştirilmiş bir zemin modelidir (Shanz,1998). Zemin tabakalarının birincil deviatorik yüklemeye maruz kaldığında, zeminin rijitliğinde bir azalım göstererek tersinmez bir plastik şekil değiştirme davranışı sergilemektedir. Üç eksenli özel drenajsız durumunda eksenel şekil değiştirme ve deviatorik gerilme ilişkisi hiperbole ile yaklaşık olarak incelenebilmektedir. Zeminin bu ilişkisi ilk kez Kondner (1963)'te ve ondan sonra literatürde bilinen Duncan-Chang (1970) hiperbolik modelinde kullanılmıştır (Şekil 4.8). Pekleşen zemin modeli, plastisite teorisini, elastisite teorisi yerine kullanarak, zeminin genleşmesini ve akma kapağını (Cap) dahil ederek hiperbolik modelin yerini almaktadır.

Pekleşen zeminin bazı temel özellikleri aşağıdaki gibidir,

- Kuvvet yasasına göre gerilmeye bağlı rijitlik göstermektedir (girdi parametresi olarak m'in rijitliğine bağlı).
- > Birincil deviatorik yüklemeye bağlı plastik şekil değiştirmesi (girdi parametresi, E_{50}^{ref}).
- Birincil sıkışma yüklemeye bağlı plastik şekil değiştirmesi (girdi parametresi, *E*^{ref}_{oed}).
- > Elastik yükleme/boşalma (girdi parametresi, E_{ur}^{ref} , v_{ur}).
- Mohr-Coulomb (MC) kriterine göre kırılma mekanizmasını sergilemesi (C,ϕ,ψ) . Rijit zemin (kum, aşırı konsolide kil) durumunda, boşaltma rijitliği, standart drenajlı üç eksenli testte sekant rijitliğinin 3 katına eşit olarak alınabilmektedir. Yumuşak zemin durumunda ise, sıkışma ve şişme ilişkisine

bağlı olarak, boşaltma rijitliğin sekant rijitliğinin 10 katı olarak alınabilmektedir (Midas-3D manuel), (Şekil 4.9 - Şekil 4.11).

Şekil 4.8: Standart Bir Drenajlı Durumda Üç Eksenli Test için Birincil Yüklemede Hiperbolik Gerilme – Şekil Değiştirme İlişkisi Modeli Konder & Zelasko (1963), (soldaki) ve Duncan & Chang (1970) Tarafından Geliştirilmiş Hali (sağ taraftaki).

Şekil 4.9: Tipik Drenajlı Üç Eksenli Deney Sonuçları Işığında E_{50}^{ref} ve E_{ur}^{ref} Gösterimi.

Şekil 4.10: Ramberg – Osgood Denklemine Göre Çizilmiş Tipik Gerilme – Şekil Değiştirme İlişkisi.

. Orta Efektif Gerilme (σ' Ort)

PEKİ NEDEN PEKLEŞEN ZEMİN MODELLERİ (HARDENING SOILS MODELS) EN İYİ SONUCU SUNMAKTA?

Çünkü Pekleşen Zemin Model, zeminin rijitlik değişimi ile deplasmanı ve şekil değiştirme değişimini gerçekçi simüle etmek için üç farklı rijitlik modelini ve buna bağlı gerilme miktarının değişimini dikkate aldığından gevşek ve sert (rijit) zemin tabakalarının doğrusal olmayan davranışını MC ve diğer modellere göre daha doğru simüle edebilmektedir (Şekil 4.12 - Şekil 4.13).

Şekil 4.12: Kayma Karakteristiği q - ɛ1 (Obrzud ve Truty, 2012).

Şekil 4.13: Normalleştirilmiş Sekant Kayma Rijitlik Özellikleri Gs/Go – ε_1 (Obrzud ve Truty, 2012).

- I. Grafiklerde görüldüğü gibi zemin davranışı açısından Gerilme Şekil değiştirme durumu grafiğinde MCC, HS – Standart, HS-Small, HS-Brick modelleri yaklaşık aynı değerleri verirken MC ve Cap modeli plastikleşme aşamasında (küçük şekil değiştirmeler durumunda) daha büyük gerilmelere maruz kalmıştır (Şekil 4.12).
- II. Rijitlik ve Şekil değiştirme grafiğinde ise büyük şekil değiştirmeler durumunda her altı model hemen hemen aynı rijitlik sergilerken, küçük şekil değiştirmelerde ise Hs – standart, MC, CAP, MCC daha küçük rijitlikte davranış sergilerken Hs - Small ve HS- Brick diğer zemin modellerine göre gerilme geçmişi teorisine dayalı rijitliği artmış ve yaklaşık 2,9 kat daha fazla rijit davranmaktadır (Şekil 4.13-Şekil 4.16).

Şekil 4.14: Zeminin Rijitlik Azalımına Bağlı Kayma Şekil Değiştirme Artışı İçin Pekleşen Zemin Modeli Şematik Olarak Gösterilmektedir (Obrzud ve Truty, 2012).

Şekil 4.15: Zeminin Rijitlik Değişimine Göre Kayma Şekil Değiştirme Genliklerin Temsili (Atkinson ve Sallfor, 1991).

Şekil 4.16: Zeminin Rijitlik Azalım Eğrisi (Nepelski, 2022).

5. KÖPRÜ TEMELİ GEOTEKNİK DEĞERLENDİRMESİ VE TEMELLERİN PROJELENDİRİLMESİ

Şekil 5.1'deki planda verildiği gibi sondaj kuyuları birer adet köprünün girişinde ve çıkışında açılmıştır. Bu iki sondajdan elde edilen verileri ışığında zemin emniyet gerilmesi hesaplanarak köprü için yüzeysel temel durumu değerlendirilmesi yapılmıştır. Yüzeysel temel yetersiz çıktığından derin temel durumu incelenmiş kazıkların taşıma gücü hesaplamaları yapılmıştır. Sondaj kuyuları ve laboratuvar verileri ışığında zeminin durumu için jeolojik kesit Şekil 5.2'de sunulmuştur.

Şekil 5.1: Köprü Sondaj Yerleri.

Şekil 5.2: Köprü Zeminin Jeolojik Kesiti.

5.1.Yüzeysel Temel Durumu için Zemin Emniyet Gerilmesi Hesapları

Köprü temelleri yüzeysel olduğu koşullarda her iki sondaj (YKS21 ve YKS22) alt kotu tahminen 3,0 m seviyesine oturmaktadır. Her iki sondaj için bu seviyede siltli kil tabakası yer almıştır. Bu seviye için laboratuvar zemin verilerinde üç eksenli basınç deneyi sonuçları verilmiştir. Yüzeysel temel için taşıma gücü hesaplamaları Terzaghi (1943), Meyerhof (1963), Vesic (1973) ve Hansen (1970) yöntemleriyle elde edilmiştir (Şekil 5.3).

Meyerhof'un taşıma kapasite analizi için verdiği denklemde, nihai taşıma kapasitesini (q_{ult}), kohezyon miktarı (C), temel seviyesinin üst tabakasından gelen

efektif basıncı, (q_o') temelin altında derinlik çarpımıyla zeminin birim efektif ağırlığı

 (D_f) , zeminin etkili ağırlığı (γ) ve temelin genişliği ise (B)'dir.

Meyerhof, Terzaghi formülünü geliştirip, şekil, derinlik ve yük eğimini ilave etmiştir.

Şekil 5.3: Terzaghi'nin Kabulüyle Zeminde Oluşan Gerilme Sonucunda Genel Kayma Göçme Mekanizması.

I- Terzaghi Yöntemine Göre Taşım Gücü Hesabı:

$$q_d = K_1 C N_c + \gamma_1 N_q D_F + K_2 N_\gamma B \gamma_2 \tag{9}$$

Bu denklemde:

K1 ve K2: Temel taban şekil katsayısı

 $K_{1=1+0.2 \text{ x} (B/L)}; K_{1=0.5-0.1 \text{ x} (B/L)}$

- C: Kohezyon

 γ_1 : Temel tabanı üstündeki zeminin birim hacim ağırlığı: 9 kN/m³ (Suya doygun kabulü)

- Df: Temel derinliği
- B: Temel genişliği
- L : Temel Boyu
- γ_2 : Temel tabanı altındaki zeminin birim hacim ağırlığı: 9 kN/m³ (Suya doygun

kabulü)

Nc , Nq , N_{γ} : Temel altındaki zeminin kayma mukavemeti açısına bağlı taşıma gücü Katsayıları (Tablo 5.1):

Terzaghi, 1943							
¢	Nc 1943	Nq 1943	Ng 1943				
0	5.7	1	0				
5	7.34	1.64	0.14				
10	9.60	2.69	0.56				
15	12.86	4.45	1.52				
20	17.69	7.44	3.64				
25	25.13	12.72	8.34				
30	37.162	22.456	19.13				
35	57.754	41.44	45.41				
40	95.663	81.271	115.31				

Tablo 5.1 :Terzaghi taşıma gücü katsayıları

II Meyerhof (1963) Formülüne Göre Taşım Gücü Hesabı :

Meyerhof (1963) yöntemine göre değerler aşağıdaki gibi verilmiştir(Şekil 5.4, Tablo 5.2). Meyerhof (1963) yönteminin, Terzaghi(1943), Hansen (1970) ve Vesic (1973) taşıma katsayılarının karşılaştırılması yapılmıştır(Şekil 5.5 - Şekil 5.9).

$$q_{c} = C N_{c} S_{c} d_{c} i_{c} g_{c} b_{c} + q N_{q} S_{q} d_{q} i_{q} g_{q} b_{q} + 0.5 \gamma B q' S_{\gamma} N_{\gamma} i_{\gamma} g_{\gamma} b_{\gamma}$$
(10)

$$q_{k} = C N_{c} S_{c} d_{c} i_{c} g_{c} b_{c} + q N_{q} S_{q} d_{q} i_{q} g_{q} b_{q} + 0.5 \gamma B' q N_{\gamma} S_{\gamma} d_{\gamma} i_{\gamma} g_{\gamma} b_{\gamma}$$
(10)

$$N_{q=}e^{\pi tan\phi'} tan^2 \left(45 + \phi'\frac{1}{2}\right) \tag{11}$$

$$N_{c} = \left(N_{q} - 1\right)\cot\phi' \tag{12}$$

$$N\gamma = 2(Nq - 1)tan\phi'$$
(13)

Birimsiz düzeltme katsayıları olarak:

Temel şekil çarpanları: S_c , S_q , S_γ

Derinlik çarpanları: d_c , d_q , d_γ

Yükleme eğim çarpanları: \boldsymbol{i}_c , \boldsymbol{i}_q , \boldsymbol{i}_γ

Temel Taban eğim çarpanları: b_c , b_q , b_γ

Zemin eğim çarpanları : g_{c} , g_{q} , g_{γ}

Faktor	Formülü	Açı
Saleil	$S_{c} = 1 + 0.2^{K_{p}} \text{ B/L}$	Herhangi 🗄 açısı için
yean.	$S_q = S_{\gamma} = 1 + 0.1 K_p B$	/L φ>0
	$S_q = S_{\gamma} = S_e = 1$	$\varphi = 0$
Derinlik:	$d_c = 1 + 0.2 \text{ D/B} \sqrt{K_p}$	Herhangi ¢ açısı için
	$d_{\bar{q}} = d_{\gamma} = 1 + 0.2 \text{ D/B} \sqrt{2}$	$\overline{K_p}$ $\phi > 0$
	$d_{\gamma} = 1 = d_q$	$\phi = 0$
Eğim: V	$i_{e} = i_{q} = (1 - \theta \% 90^{\circ})$	² Herhangi
$R \setminus \phi > \theta$	$i_{\gamma} = (1 - \theta^{\gamma} \phi^{\circ})^2$	φ > 0
7	$i_{\gamma} = 0$ for $\Theta > 0$	$\phi = 0$
$-\underbrace{\qquad}_{K_p = to}$	$an^2\left(45+\phi\frac{1}{2}\right)$; θ : R bil	eşke kuvvetin yaptığı açı $\theta = 0$ ise
Zemi	n Eğim Çarpanı	Temel Taban Eğim Çarpanı
g' _c =	$\beta \% 147^{\circ}$ ($\phi = 0$)	$b'_{c} = \eta^{0}/147^{c} (\phi = 0)$
$g_c = 1$	$1 - \beta \% 147^\circ \qquad (\phi > 0)$	$b_c = 1 - \eta^{\circ} 147^{\circ} (\phi > 0)$
$g_q = g_\gamma$	$= (1 - 0.5 \tan \beta^{\circ})^{5}$	$b_q = e^{-2\eta \tan \phi}$
		$b_{\gamma} = e^{-2.7\eta \tan \phi}$

Şekil 5.4: Meyerhof (1963)'e Göre Temel Taşıma Kapasite Denklemi İçin Şekil, Derinlik ve Eğim Çarpanları.

	Meyerhof, 1963							
¢	Nc 1963	Nq 1963	Νγ 1963					
0	5.14	1	0					
5	6.49	1.57	0.07					
10	8.35	2.47	0.367					
15	10.98	3.94	1.129					
20	14.58	6.4	2.871					
25	20.72	10.66	6.765					
30	30.14	18.4	15.668					
35	46.12	33.3	37.152					
40	75.31	64.2	93.69					

Tablo 5.2: Meyerhof Taşıma Gücü Katsayıları.

Hansen (1970) ve Vesic(1973) için bu faktörler aynı sadece Yük,zemi ve taban eğimli durum etki faktörleri değişmektedir !!!

$$\begin{array}{l} \varphi=0: \mathrm{S'c}=0.2(\frac{B'}{L'}) \\ \varphi=0: \mathrm{S'c}=0.2(\frac{B'}{L'}) \\ \varphi>0: \mathrm{Sc}=1+0.2(\frac{(B'+Nq)}{(L'+Nc)} \\ \varphi>0: \mathrm{Sc}=1+0.2(\frac{(B'+Nq)}{(L'+Nc)} \\ \varphi>0: \mathrm{Sc}=1+0.2(\frac{B'}{L'}) \\ \varphi>0: \mathrm{Sc}=1+0.2(\frac{B'}{L'}) \\ \varphi>0: \mathrm{Sc}=1+0.4(\frac{B'}{L'}) \\ \varphi>0 \\ \varphi=0: \mathrm{d'c}=0.4(\mathrm{D'}/\mathrm{B}) \\ \mathbf{Koşul(I): Df/B>1 } \varphi>0 \\ \varphi=0: \mathrm{d'c}=0.4(\mathrm{D'}/\mathrm{B}) \\ \mathbf{Koşul(I): Df/B>1 } \varphi>0 \\ \mathrm{d_c}=1+0.4(\frac{D}{B}) \\ \mathrm{d_c}=1+0.4(\frac{D}{B}) \\ \mathrm{d_c}=1+2\tan\varphi^{\circ}(1-\sin\varphi^{\circ})^2(\frac{D}{B}) \\ \mathrm{d_c}=1+2\tan\varphi^{\circ}(1-\sin\varphi^{\circ})^2(\frac{D}{B}) \\ \mathrm{d_c}=1 \\ \mathrm{d'}\gamma=1 \\ \tan^{-1}(\frac{D}{B}): \mathrm{de}\check{\mathrm{g}}\mathrm{eri\,radyan\,olarak\,dikkkate\,alinacaktir. } \end{array}$$

Şekil 5.5: Hansen (1970) ve Vesic (1973) Temel Taşıma Kapasite Denklemi İçin Şekil ve Derinlik Etki Katsayıları.

Şekil 5.6: Terzaghi (1943) ile Meyerhof 'un (1963) Temelin Taşıma Katsayıları Karşılaştırılması.

Şekil 5.7: Terzaghi (1943) ile Vesic 'in (1973) Temelin Taşıma Katsayıları Karşılaştırılması.

Şekil 5.9: Terzaghi (1943) ile Hansen'in (1970) Temelin Taşıma Katsayıları Karşılaştırılması.

TBDY 2018'de Hansen formülündeki N γ 'i modifiye ederek kullanılmaya önermiştir. Hansen (1970)'in birinci formülü yani $\phi > 0$ için formülünde $\phi=0$ ve $\phi=5^{\circ}$ sürtünme açıları için doğru sonuç verilmemektedir. $\phi=0$ için aşağıdaki formül kullanılmalıdır ve $\phi=5$ derece için Hansen'in grafiğinden değerler okunarak hesaplar yapılmalıdır, aksi taktirde TBDY2018'de verilen formül bu iki durum için hatalı sonuç vermektedir.

 $\phi=0$: C_a : temel tabanındaki adezyon gerilemedir genellikle $C_a = (0.5 - 1) * S_u$ alınır. $q_0=$ taşıma seviyesindeki toplam gerilme miktarı.

$$q_{bL} = (\pi + 2) \operatorname{Su} (1 + S_{Su} + d_{su} - i_{Su} - b_{Su} - g_{Su}) + q_0$$
(14)

 $S_{su} = 0.2 \frac{B}{L}$

Sert zemin tabakası için, $C_a = S_{su}$

 $\begin{array}{ll} d_{su} = 0.4 \frac{D}{B} & {\rm D} \le {\rm B} \\ \\ d_{su} = 0.4 tan^{-1} (\frac{D}{B}) & {\rm D} > {\rm B} \\ \\ i_{Su} = 0.5 - 0.5 \sqrt{1 - \frac{Q_{tr-B}}{C_a A_f}} \end{array}$

I. Terzaghi (1943) Yöntemine Göre Taşıma Gücü Hesabı:

Terzaghi (1943) denklemine göre elden edilen değerler aşağıdaki tablolarda verilmiştir (Tablo 5.3 - Tablo 5.5).

A1 aksı için

Tablo 5.3: Terzaghi (1943)'e Göre Zemin ve Temel Verileri.

B (m), L (m)	K1	K2	C(kPa)	¢°
8	1.08	0.46	102.66	8.22
γ1	Nc	Nq	Νγ	Df (m)
9	7.30	1.6	0.5	3

$$q_d = K_1 C N_C + \gamma_1 D_f N_q + K_2 N_\gamma B \gamma_2$$
(15)

 $q_d = 1.08 \text{ x } 102.66 \text{ x } 7.30 + 9 \text{ x } 3.0 \text{ x } 1.6 + 0.46 \text{ x } 0.5 \text{ x } 8 \text{ x } 9 = 869.13 \text{ kN/m2}$ G.S = 3 durumunda $q_d = 869.13 / 3 = 289 \text{ kN/m}^2$ – Servis durumu Depremli durumda ise zemin emniyet gerilmesi $q_d = 289 \text{ x } 1.50 = 433.5 \text{ kN/m}^2$

A2 aksı için:

Tablo 5.4: Terzaghi (1943)'e Göre Zemin ve Temel Verileri.

B(m) ,L (m)	K1	K2	C(kPa)	¢°
8, 21	1.08	0.46	78.15	9.83
γ1	Nc	Nq	Νγ	Df (m)
9	8.45	2.15	0.85	2.5

$q_{d} = K_{1} C N_{c} + \gamma_{1} D_{f} N_{q} + K_{2} N_{\gamma} B \gamma_{2}$

 $q_d = 1.08 \text{ x } 78.15 \text{ x } 8.45 + 9 \text{ x } 2.5 \text{ x } 2.15 + 0.46 \text{ x } 0.85 \text{ x } 8 \text{ x } 9 = 765.09 \text{ kN/m}^2$ G.S = 3 durumunda qd = 765.09 / 3 = **255 kN/m^2** – Servis durumu Depremli durumda ise zemin emniyet gerilmesi q_d = 255 x 1.50 = **382 kN/m** <u>P1 aksı için:</u>

Tablo 5.5: Terzaghi(1943)'e GöreZemin ve Temel'in Verileri.

B(m)	L (m)	K1	K2	C(kPa)	φ°
7	17	1.08	0.46	78.15	9.83
γ1		Nc	Nq	Νγ	Df (m)
9		8.45	2.15	0.85	2.5

qd = $1.08 \times 78.15 \times 8.45 + 9 \times 2.5 \times 2.15 + 0.46 \times 0.85 \times 9 = 765.13 \text{ kN/m2}$ G.S = 3 durumunda qd = $765.13 / 3 = 255 \text{ kN/m}^2$ – Servis durumu Depremli durumda ise zemin emniyet gerilmesi qd = $255 \times 1.50 = 382 \text{ kN/m}^2$

II. Meyerhof (1963) Yöntemine Göre Taşıma Gücü Hesabı:

Meyerhof (1963) denklemine göre elden edilen değerler aşağıdaki tablolarda verilmiştir (Tablo 5.6 - Tablo 5.8).

$$q_{k} = C N_{c} S_{c} d_{c} + q N_{q} S_{q} d_{q} + 0.5 \gamma B' N_{\gamma} S_{\gamma} d_{\gamma}$$
(16)

$$N_{q} = e^{\pi t a n \phi'} t a n^2 \left(45 + \phi' \frac{1}{2} \right) \tag{17}$$

$$N_c = \left(N_q - 1\right) \cot \phi' \tag{18}$$

$$N\gamma = 2(Nq - 1)tan\phi'$$
(19)

A1 aksı için , YKS21 Sondajı 6° = 8.22 Kp=1.33

Tablo 5.6: Meyerhof (1963)'e Göre Zemin ve Temel'in Verileri.

TBDY 2018'e Göre Zeminin ve Temel Taşıma gücü için parametreleri								
C(kPa)	¢°	yn(kPa)	yd(kPa)	Df(m)	q=γ*D	B(m)	Lor	rt(m)
102.66	8.22	19.5	22.5	3	19.5*3	8	2	21
Nc	Nq	Νγ	Sc	Sq	Sγ	dc	dq	dγ
7.61	2.155	0.223	1.102	1.051	1.051	1.09	1.09	1.09

 $q_{k} = 102.66 * 7.61 * 1.102 * 1.09 + 19.5 * 3 * 2.155 * 1.051 * 1.09$

 $+0.5 * 12.69 * 8 * 0.223 * 1.051 * 1.09 = 1140.1 \text{ kN/m}^2$

 $G.S = 3 \text{ durumunda } q_d = 1140.98 / 3 =$ **380 kN/m^2**- Servis durumuDepremli durumda ise zemin emniyet gerilmesi $q_d =$ **380 x 1.50 = 570 kN/m^2** A2 aksı için: φ° = 9.83; Kp=1.41

TBDY 2018'e Göre Zeminin ve Temel Taşıma Gücü için Parametreleri									
C(kPa)	¢٥	yn(kPa)	yd(kPa)	Df(m)	q=y*D	B(m)	Lor	t(m)	
78.15	9.83	19.5	22.5	2.5	19.5*2.5	8	2	1	
Nc	Nq	Νγ	Sc	Sq	Sγ	dc	dq	dγ	
8.30	2.45	0.362	1.1074	1.054	1.054	1.074	1.074	1.074	

 Tablo 5.7:
 Meyerhof (1963)'e Göre
 Zemin ve Temel Verileri.

 $q_{k} = C N_{c} S_{c} d_{c} + q N_{q} S_{q} d_{q} + 0.5 \gamma B' N_{\gamma} S_{\gamma} d_{\gamma}$

 $q_{k} = 78.15 * 8.30 * 1.1074 * 1.074 + 19.5 * 2.5 * 2.45 * 1.054 * 1.074$

 $+0.5 * 12.69 * 8 * 0.362 * 1.054 * 1.074 = 927.46 \text{ kN/m}^2$

 $G.S = 3 \text{ durumunda } q_d = 927.46 / 3 = 309.15 \text{ kN/m}^2 - \text{Servis durumu}$ Depremli durumda ise zemin emniyet gerilmesi $q_d = 389.81 \text{ x } 1.50 = 463.73 \text{ kN/m}^2$

P1 aksı için: $\phi^{\circ} = 9.83$; Kp=1.41; Df=2.5m, B=7m, L=17m c=78.15kPa

TBDY 2018'e Göre Zeminin ve Temel Taşıma Gücü için Parametreleri										
c (kPa)	¢°	γn(k	γd(kPa)	Df(m)	q=γ*D	B(m)	Lort(m)			
		Pa)								
78.15	9.83	19.5	22.5	2.5	19.5*2.5	7	1	7		
Nc	Nq	Νγ	Sc	Sq	Sγ	dc	dq	dγ		
8.30	2.45	0.362	1.116	1.058	1.058	1.085	1.085	1.085		

Tablo 5.8: Meyerhof (1963)'e Göre Zemin ve Temel Verileri.

 $q_{k} = 78.15 * 8.30 * 1.116 * 1.085 + 19.5 * 2.5 * 2.45 * 1.058 * 1.085$
G.S = 3 durumunda $q_d = 859.84 / 3 = 286.61 \text{ kN/m}^2 - \text{Servis durumu}$

Depremli durumda ise zemin emniyet gerilmesi $q_d = 286.61 \text{ x } 1.50 = 429.92 \text{ kN/m}$

III. Hansen (1970) & Vesic(1973) Yöntemlerin TBDY2018`in Önerdiği Yöntem Olarak Taşıma Gücü Hesabı:

Hansen (1970), Vesic (1973) ve TBDY 2018 denklemlerine göre elden edilen değerler aşağıdaki tablolarda verilmiştir (Tablo 5.9 - Tablo 5.11).

A1 aksı için , YKS21 Sondajı $\phi^\circ = 8.22$

TBDY 2018'e Göre Zeminin ve Temel Taşıma Gücü için Parametreleri								
c (kPa)	¢°	γn(kPa)	γ _d (kPa)	Df(m)	q=γ*D	B(m)	Lort(n	n)
102.66	8.22	19.5	22.5	3	19.5*3	8	4	21
Nc	Nq	Νγ	Sc	Sq	S γ	dc	dq	dγ
13.94	3.01	0.6	1.0165	1.055	0.85	1.15	1.093	1

Tablo 5.9: TBDY 2018'e Göre Zemin ve Temel Verileri.

$$q_{k} = C N_c S_c d_c + q N_q S_q d_q + 0.5 \gamma B' N_\gamma S_\gamma d_\gamma$$
(20)

 $q_{k} = 102.66 * 13.94 * 1.0165 * 1.15 + 19.5 * 3 * 3.01 * 1.055 * 1.093$

+0.5 * 12.69 * 8 * 0.6 * 0.85 * 1 = 1901.83 kN/m²

G.S = 3 durumunda q_d = 1901.83 / 3 = **633.94 kN/m²** – Servis durumu Depremli durumda ise zemin emniyet gerilmesi qd =**633.94** x 1.50 = **950.92 kN/m²** A2 aksı için: $\phi^{\circ} = 9.83$; Kp=1.41

TBDY 2018'e Göre Zeminin ve Temel Taşıma Gücü için Parametreleri								
c (kPa)	¢°	yn(kPa)	γd(kPa)	Df(m)	q=y*D	B(m)	Lort	(m)
78.15	9.83	19.5	22.5	2.5	19.5*2.5	8	2	1
Nc	Nq	Νγ	Sc	Sq	Sγ	dc	dq	dγ
13.94	3.42	0.8	1.019	1.065	0.85	1.135	1.075	1

Tablo 5.10: TBDY 2018'e Göre Zemin ve Temel Verileri.

 $q_{k} = C N_{c} S_{c} d_{c} + q N_{q} S_{q} d_{q} + 0.5 \gamma B' N_{\gamma} S_{\gamma} d_{\gamma}$

 $q_k = 78.15 * 13.94 * 1.019 * 1.135 + 19.5 * 2.5 * 3.42 * 1.065 * 1.075$

 $+0.5 * 12.69 * 8 * 0.8 * 0.85 * 1 = 1485.4 \text{ kN/m}^2$

 $G.S = 3 \text{ durumunda } q_d = 1485.4 / 3 = 495.13 \text{ kN/m}^2 - \text{Servis durumu}$ Depremli durumda ise zemin emniyet gerilmesi qd = 495.13 x 1.50 = 742.70 kN/m²

P1 aksı için: $\phi^{\circ} = 9.83$; Kp=1.41; Df=2.5m, B=7m, L=17m c=78.15kpa

TBDY2018'e Göre Zeminin ve Temel Taşıma Gücü için Parametreleri								
c(kPa)	¢°	γn(kPa)	γ _d (kPa)	Df(m)	q=γ*D	B(m)	Lor	t(m)
78.15	9.83	19.5	22.5	2.5	19.5*2.5	7	1	7
Nc	Nq	Νγ	Sc	Sq	Sγ	dc	dq	dγ
13.94	3.42	0.8	1.02	1.070	0.83	1.143	1.085	1

Tablo 5.11: TBDY 2018'e GöreZemin ve Temel'in Verileri.

 $q_{k} = 78.15 * 13.94 * 1.02 * 1.143 + 19.5 * 2.5 * 3.42 * 1.070 * 1.085$

+0.5 * 12.69 * 7 * 0.8 * 0.83 * 1 = 1493.15 kN/m²

G.S = 3 durumunda q_d = 1493.15 / 3 = 497.72 kN/m² – Servis durumu Depremli durumda ise zemin emniyet gerilmesi q_d = 497.72 x 1.50 = 746.575 kN/m

	I. Terza	ghi(1943)	Ayaklarda Oluşan Gerilmenin ve Kapasite Kontrolü				
Aks No.	Statik Durum Dinamik Durum		Statik Durum		Dinamik Durum		
	qd (kN/m²)	qd (kN/m²)	σ (kN/m ²)	Kontrolü	σ (kN/m ²)	Kontrolü	
A1	289	434	250		394	1	
A2	255	382	250	1	394	Х	
P1	255	382	250	1	394	Х	
	II. Myerhof (1963)		Ayaklarda C)luşan Geril	menin ve Kapa	site Kontrolü	
Aks No.	Statik Durum	Dinamik Durum	Statik D)urum	Dinamik	x Durum	
	qd (kN/m²)	qd (kN/m²)	σ (kN/m ²)	Kontrolü	σ (kN/m ²)	Kontrolü	
A1	380	570	250	1	394	1	
A2	309	464	250	1	394	1	
P1	287	430	250	1	394	1	
	III. Hansen (197	70) & Vesic(1973)	Ayaklarda C	Ayaklarda Oluşan Gerilmenin ve Kapasite Kontro			
Aks No.	Statik Durum	Dinamik Durum	Statik D)urum	Dinamik	. Durum	
	qd (kN/m²)	qd (kN/m²)	$\sigma (kN/m^2)$	Kontrolü	σ (kN/m ²)	kotrolu	
A1	634	951	250	√	394	1	
A2	495	743	250	1	394	1	
P1	498	747	250	1	394	1	

Tablo 5.12: Temelin Kapasitesi için Sonuçların Kontrolü.

Sonuçların ışığında sadece projede kullanıldığı yöntem (Terzaghi 1943)'e göre A2 kenar ayağında statik durumda zemin kapasitesi sınırda iken dinamik durumda yetersiz görülmüştür. P1 orta ayak için her iki durumda zemin emniyet gerilmesinin aşıldığını görülmektedir (Tablo 5.12). Terzaghi (1943) sonraki yöntemlerde yüzeysel temel taşıma kapasitesi yeterli çıkmıştır. Gazetas vd. (2020) araştırma sonucu ile 1969'de Japonya'da yapılmış olan Fukai Köprü faciasında köprünün yüzeysel temel olması durumunda yeterli olması ve göçmeyi en az hasar ile atlatabildiği halde, derin temel olması durumunda köprü-zemin etkileşiminden köprü ayağının rijitliği arttığından dolayı göçmüştür. Bu durumun tekrar yaşanmaması için derin temele geçmeden yüzeysel temel durumu en güvenilir yöntemler ile zemin taşıma kapasitesi dikkatli incelenmelidir.

Depremli durumda ise zemin emniyet gerilmesi $q_d = 255 \times 1.50 = 382 \text{ kN/m}^2$ Köprü kenar ayak temellerinin yüzeysel temeli olması durumunda oluşan temel altı gerilmesi servis durumu için 250 kN/m² dir. Depremli durumda oluşan temel gerilmesi 394 kN/m² dir.

 $Q_d=255\ kN/m^2>250\ kN/m^2$ Servis Durumunda Zemin Emniyet Gerilmesi Aşılmamıştır. $Q_d=382\ kN/m^2<394\ kN/m^2$ Deprem Durumunda Zemin Emniyet Gerilmesi Aşılmıştır.

Köprü orta ayak temellerinin yüzeysel temelli olması durumunda oluşan temel altı gerilmesi servis durumu için 198 kN/m² dir. Depremli durumda oluşan temel gerilmesi 503 kN/m² dir.

 $Q_d=255\ kN/m^2>198\ kN/m^2$ Servis Durumunda Zemin Emniyet Gerilmesi Aşılmamıştır. $Q_d=382\ kN/m^2<503\ kN/m^2$ Deprem Durumunda Zemin Emniyet Gerilmesi Aşılmıştır.

Yüzeysel temeli olması durumunda oluşan temel gerilmeleri kenar ayaklarda servis durumu için oldukça sınırda, depremli durumda ise zemin emniyet gerilmesinin üzerindedir. Orta ayakta ise depremli durumda zemin emniyet gerilmesinin içsel sürtünme açısının dikkate alınmasından dolayı bir miktar yüksek kaldığı hâkim birimin kil olması dolayısıyla içsel sürtünme açısının zemin emniyet gerilmesi hesaplarında kullanılmaması durumunda zemin emniyet gerilmesi düşecektir. Bu durumlar dikkate alındığında köprü temellerinin kazıklı olarak projelendirilmelidir. Köprü kenar ve orta ayaklarının φ100 fore kazıklı olarak yapılması uygun görülmüştür.

6. KAZIKLI TMEMEL DURUMU İÇİN KAZIK TAŞIMA GÜCÜ HESAPLARI

6.1 Kazık Uç Dayanımı

Zemin ve kazık karakteristiğine bağlı (q_0 ve f_s) formülleri geliştirilmiştir.

Kazık uç taşıma kapasitesini belirlemek için kullanılan klasik teoriler yerine daha gelişmiş olan lineer veya non lineer elasto – plastik teoriler daha sağlıklı sonuçlar vermektedirler.

Mevcut geleneksel teoriler zeminin temel seviyesinde kohezyonu (c) ve efektif gerilmesi Mohr – Coulomb'a bağlı geliştirilmiştir. Aşağıdaki denklemde Nc* ve Nq* boyutsuz taşıma kapasite faktörlerdir (Tablo 6.2, Şekil 6.1).

$$\mathbf{q}_{\mathbf{0}} = c N c^* + \mathbf{q}_{\mathbf{v}} N q^* \tag{21}$$

 $Nc^* = (Nq^* - 1)\cot\phi \tag{22}$

Şekil 6.1: Mohr - Coulomb (1900, 1776), Göçme Mekanizması.

Bu formül kayma dayanımı açısının (ϕ) sabit olduğu nominal lineer durumunda geçerlidir. Bu konundaki araştırmalar kazıkların uç direnci sadece düşey

zemin gerilmesine bağlı (q_v) değil aynı anda zemin ortalama normal gerilmesinden (σ_0) etkilendiğini göstermişlerdir.

$$\sigma_0 = \frac{1+2K_0}{3} q_v \tag{23}$$

Bu denklemde K_0 , sükûnet durumdaki yanal basınç katsayısını temsil

etmektedir. Böylece, taşıma kapasite denklemi zeminin normal gerilmesine bağlı aşağıdaki gibi revize edilmiş formda kullanılmalıdır.

$$\mathbf{q}_0 = CN_c^* + \sigma_0 N_\sigma \tag{24}$$

$$N_{q}^{*} = 1/3(1 + 2K_{0})N_{\sigma}$$
(25)

 N_{c}^{*} ve N_{σ} faktörler için denklem (22) ve (25)'ye bağlı bakılmalıdır (Şekil

6.6, Şekil 6.7). Ayrıca σ_0 zeminin ortalama normal gerilme miktarını temsil

etmektedir.hesaplanması için prensip olarak, zeminin göçmeden önceki

 N_{σ} 'nin deformasyonu gerçekçi kırılma mekanizması dikkate alınan herhangi geoteknik analizi ile bulunması mümkündür. Kazık modelindeki gözlemler sonucunda, kazık ucunda sıktırılmış konik bir kama bölgesi her zaman mevcuttur (Şekil 6.2). Nispeten yumuşak zeminde, bu kama kayama yüzeyi oluşturmadan kütle içine doğru zorlanmaktadır. Anacak, nispeten yoğun zemin tabakasında kama I, radyal kayma bölgesi olan II'i yanal olarak plastik bölgesi olan III'e doğru itmektedir. Böylece, yoğun zemin tabakasında ilerleyen kazıklar (BD) dairesel kesimde yanal genleşmesine ve I ve II bölgesinde ise sıkıştırmasına sebep olabilmektedir (Şekil 6.3-Şekil 6.5).

Şekil 6.2: Kazık Ucunda Oluşan Kırılma Mekanizması; ψ =45+ ϕ /2 (Vesic, 1977).

Şekil 6.3: Kazık Ucunda Oluşan Kırılma Mekanizması; ψ =45+ ϕ /2 (Vesic, 1972).

Şekil 6.4: Gevşek Killi (a) ve Sert(yoğun) Kumlu (b) ve Zeminde Kazık Ucunda Oluşan Kırılma Mekanizması (Vesic, 1977).

Şekil 6.5: Tek Tabakalı Homojen Zeminin Düşey Yükler Altında Analitik Çözümü için Tek Kazıklı Durumunda Kazık Ucu Göçme Mekanizması (<u>https://theconstructor.org/geotechnical/pile-foundation-spacing-skin-friction-group/17100</u>, 2023).

Bu sentez Şekil 6.2'deki geometri ve sınır koşullarına bağlı olarak N_{σ} değerinin yaklaşık değeri BD boyunca oluşan normal gerilmenin, sonsuz zemin kütlesinde genleşme ve dairesel oyuğun oluşması için gereken nihai basınca eşit olduğu kabul edilebilmektedir. Zemin kütlesinin c (kohezyon), ϕ (sürtünme açısı), μ (poisson oranı), E (deformasyon modülü) ve Δ (III bölgede oyuk çevresindeki plastik bölgede oluşan hacimsel değişimine)'ye bağlı zemin davranışı ideal elasto – plastik kabulü ile N_{σ} aşağıdaki gibi bulunabilmektedir.

$$N_{\sigma} = \frac{3}{3-\sin\phi} e^{\left(\frac{\pi}{2}-\phi\right)\tan\phi} \tan\phi^2 \left(\frac{\pi}{4}+\frac{\phi}{2}\right) I_{rr}^{\frac{4\sin\phi}{3(+\sin\phi)}}$$
(26)

Zeminin rijitlik azalım değeri aşağıdaki gibi açıklanabilir.

$$I_{\rm rr} = \frac{I_{\rm r}}{1 + I_{\rm r} \Delta} \tag{27}$$

Hacimsel değişimin olmadığı (derenajsız durumunda) veya az hacimsel değişimim (sert zemin tabakası) olduğu durumlarda rijitlik indeksi $I_{\rm r} = I_{\rm rr}$ aşağıdaki gibi açıklanabilir:

$$I_{\rm r} = \frac{E}{2(1+\nu)(c+\bar{q}\tan\phi)} = \frac{G}{(c+\bar{q}\tan\phi)}$$
(28)

 $\phi=0$ olduğu koşullarda N_c^* faktörü aşağıdaki gibi açıklanabilir.

$$N_{c}^{*} = \frac{4}{3} \left(ln I_{rr} + 1 \right) + \frac{\pi}{2} + 1$$
⁽²⁹⁾

Denk. 24'ü dikkate alarak kazık ucunda ortalama normal gerilmeyi bulmak için aşağıdaki yol izlenebilmektedir.

$$\overline{q} orta = \frac{(1+2K_0)}{3}\overline{q}$$
(30)

Aslında Denk. 11 ile aynı : \overline{q} ; efektif gerilme miktarı

I_r'ı bulma metotları:

I. Elektrik koniyi kullanarak CPT deneyinden, I_{r} sürtünme oranına Fr (friction ration) bağlı olarak aşağıdaki gibi bulunabilmektedir.

$$I_{\rm r} = \frac{170}{F_{\rm r}} \tag{31}$$

II. Kum ve silt için tipik değerleri;

- ≻ Kum : 70 150
- ➢ Silt ve Kil (drenajlı) : 50 − 100
- ➤ Kil (drenajsız) : 100 200

III. E, v ve e_{vol} Değerlerini bulmak için aşağıdaki tipik yöntemler önerilir :

$$\mathbf{E} = \mathbf{m} \, \mathbf{P}_{\mathbf{a}} \tag{32}$$

 P_a : hava basıncı, standart atmosfer basıncı = 101.325 P_a (kN/m3)

- \blacktriangleright m = 100 200 gevşek granüler zemin
- \rightarrow m = 200 500 orta yoğunluktaki zemin

 \blacktriangleright m = 500 - 1000 yoğun zemin

$$\nu = 0.1 + 0.3 \left(\frac{\phi - 25}{20}\right) \le 0.4 \tag{33}$$

$$\Delta = 0.005 \left(1 - \frac{\phi - 25}{20} \right) \frac{\bar{q}}{pa} \tag{34}$$

 $N_c^* ve N_{\sigma}$ faktörlerin numerik olarak aşağıdaki grafiklerde verilmiştir (Şekil 6.6 - Şekil 6.7).

Şekil 6.6: Taşıma Kapasite Faktörün (N σ), ϕ ve Ir ile Değişimi .

Şekil 6.7: Taşıma Kapasite Faktörün (Nc), ϕ ve Ir ile Değişimi .

6.2. Kazık Sürtünme Dayanımı

Kazıkların sürtünme direnci, rijit bir cismin zeminle temasta olduğu durumda kayma dayanımının hesaplanmasına benzemektedir. Sürtünme direnci iki bileşenden oluşur: temel şaftına etkiyen normal gerilmeye (q_s)bağımsız olan adezyona (c_a), ve

normal gerilmeye orantılı olan sürtünme miktarıdır. Böylece, temel şaftı ile temas halinde olan herhangi bir tabakada:

$$f_s = c_a + q_s \tan\delta \tag{35}$$

Bu denklemde $tan \delta$ zemin ve temel şaftı arasındaki sürtünme katsayısını temsil etmektedir. Deneylere göre normal rijitlikteki kazıklar için doğal zeminde efektif gerilme durumunda sürtme katsayısını $tan\phi$ 'e eşit olarak kabul edilebilmektedir. Kazık – Zemin adezyon katsayısı normal durumlarda küçük değerler aldığı için tasarım aşamasında ihmal edilebilir (Şekil 6.8-Şekil 6.9), (Tablo 6.1-Tablo 6.2), (Vesic 1977).

Şekil 6.8: NAVAC (1982) Tarafından Önerilen Adezyon Eğrileri.

Pile material	Soil Consistency	Cohesion rang Cu(kPa)	Adhesion(α)
Timber and	Very Soft	0 - 12	0.0 - 1.0
Concrete	Soft	12 - 24	1.0 - 0.96
Piles	Medium Stiff	24 - 48	0.96 - 0.75
	Stiff	48 - 96	0.75 - 0.48
	Very Stiff	96 - 192	0.48 - 0.33
Steel Pile	Very Soft	0 - 12	0.0 - 1.00
	Soft	12 - 24	1.0 - 0.92
	Medium Stiff	24 - 48	0.92 - 0.70
	Stiff	48-96	0.70-0.36
	Very Stiff	96 - 192	0.36 - 0.19

Şekil 6.9: API (1984), Peck ve diğer (1974) ve Bowels (1996) Tarafından Drenajsız Kayma Mukavemetine (c_u) Değişimine Bağlı Önerilen Adezyon (α) Katsayısı.

Tablo 6.2: Kumlu Zeminde Deneysel Olarak Nq* Değerleri (Vesic 1977).

Kum `un Sıkılık Seviyesi	Göreceli Sıkılık (%)	Fore Kazık, Nq*	Fore Kazık, Nq*
Çok sert	> 80	60-200	40-80
Sert	60 - 80	40-80	20-40
Orta	40- 60	25-60	11232
Gevşek	< 40	20-30	42125

Şaftta oluşan normal gerilme (q_s) geleneksel olarak kazığın yüzeysel basınç (Ks)

seviyesine bağlı düşey efektif gerilme ile ilişkilidir. Ayrıca denklem (36) aşağıdaki gibi yeniden yazılabilir.

$$f_s = K_s \ q_v \ tan\phi \tag{36}$$

K_s katsayısı esas olarak zemin ilk gerilmesine ve kazığın yerleştirme

metoduna bağlıdır. Bununla birlikte, kazığın şeklinden(özellikle konik kesitli kazık) ve uzunluğundan da etkilenmektedir.

Fore kazık (jetli kazık) $K_s \leq K_0$ (durağan durumdaki zemin basıncı

katsayına) dir. yumuşak, rijit ve sert killerde Fore kazığınlar için şaft sürtünme dayanımı denk (37) ile çözülebilmektedir bu denklemi tasarım kolaylığı için aşağıdaki gibi basitleştirebiliriz (Şekil 6. 13- Şekil 6.14).

$$f_{s} = N_{s} q_{v} \tag{37}$$

 N_s , bu denklemde ϕ ile çok az değişen boyutsuz taşıma kapasite faktörüdür.

Yanal gerilme koşullarında değişime uğramamış normal konsolide killer için:

$$K_s = K_0 = 1 - \sin \phi' \tag{38} \text{ almabilir.}$$

$$N_s = (1 - \sin\phi') tan\phi' \tag{39}$$

Örselenmemiş drenajsız killi zemin koşullarında kayama dayanımı için, Denk. 39'da $15^{\circ} < \phi < 30^{\circ}$ için 0.20 – 0.29 aralığında değişmektedir.

Çakma kazık durumunda zeminin düşey gerilme bileşeninde (*pz*) değişim olmadığı kabul ederek, kazığın sürtünme direncinde değişime uğramaktadır. Bu olayı dikkate almak N_s değeri aşağıdaki gibi değişmektedir (Şekil 6.10.).

$$N_{s} = \frac{\sin\phi' \cos\phi'}{1+\sin^{2}\phi'} \tag{40}$$

 N_s değer çakma kazık durumunda yaklaşık olarak, fore kazık durumun %20 fazla çıkmaktadır.

Şekil 6.10: Normal Konsolide Killer İçin Kazık Yüzey Sürtünme Taşıma Kapasite Faktörü Ns Deneysel Olarak İncelenmiştir.

Şekil 6.10'da görüldüğü gibi deneysel olarak N_s değeri kazık yükleme deneyi farklı lokasyon için yapılmış, zemin ve kazık türüne göre çok az değiştiği ve sonuç olarak Denk. (40)'ı da dikkate alarak ön tasarım için 0.29 önerilebilmektedir.

Denk. 32'e göre ortalama $N_{s \text{ ort}} = 0.24$ çekme kazıklar veya negatif sürtünme dirençli kazıklar için uygundur. Uzun kazıklar için N_s değeri küçük ve kısa kazıklar için ise N_s değeri büyük değer çıkabilmektedir. Aşırı konsolide killer örselenmemiş ise, K_0 derinliğe göre değişim gösterir, N_s değeri de kazık boyunca değişir ve aşağıdaki gibi hesaplanabilmektedir.

$$N_s = \frac{\tan \phi'}{D q_{va}} \int_0^D q_v K_0 dz \tag{41}$$

 q_{va} ; dikkate alınan (D) kazık boyunca ortalama düşey zemin gerilmesidir. London kili için bu formülden az derinlikte $N_s = 1.20$ ve çok derin tabakada ise $N_s < 1$ sonuç verir. London kili üzerinde deneyleri incelendiği zaman, ilk tasarım aşaması için $N_s = 0.80$ değeri korumacı değerdir.

Şekil 6.11 çakma kazık ve Şekil 6.1 2çakma kazık veya fore kazık, aşırı konsolide killer için, kazık şaftında oluşan yanal gerilmeden ötürü, N_s değeri yükleme deneyi sonucu ile genel olarak yüksek değerler çıkmıştır. Şekil 6.1 2de görüldüğü üzere N_s değeri kısa kazıklar için 5mkat daha fazla çıkarken, nispeten uzun kazıkların yoğun (sert) kumu da değerleri düştüğü görülmüştür. Sürtünme direnci yük taşıma mekanizması aşağıdaki Şekil 6.13 ve Şekil 6.14'te verilmiştir

Şekil 6.11: Fore Kazıklar için London Kil Zeminde, N_s Değerinin İncelenmesi (Vesic, 1977).

Şekil 6.12: Çakma Kazıklar için Rijit Aşırı Konsolide Killerde N_s Değerleri (Vesic, 1977).

Şekil 6. 13: Tek Tabakalı Homojen Zeminin Düşey Yükler Altında Analitik Çözümü İçin Tek Kazıklı Durumunda Kazık Sürtünme Direnci Göçme Mekanizması (<u>https://theconstructor.org/geotechnical/pile-foundation-spacing-skin-friction-group/17100</u>,

2023).

Şekil 6. 14: Tek Tabakalı Zemin İçin Kazıkların Yük Transfer Mekanizması (Das, 2011).

6.3. Kazıkların Grup Etkisi

Grup etkisi zemin cinsine, drenaj durumuna, kazıkların malzemesine, çapına ve derinliğine, kazıklar arasındaki mesafeye, bir sıradaki ve toplam gruptaki kazık sayısına, kazık yerleşim şekline göre değişmektedir.

ASCE (Amerikan İnşaat Mühendisler Derneği) derin temeller komitesi raporuna göre (CDF, 1984), grup etkisinin kullanılmamasını önermektedir. Bu komite tarafından 1963'te yayınlanan çalışma sentezi gerçekçi bir kılavuz olabilir. Ayrıca bu araştırmada kohezyonsuz zemin durumu ve çakma kazıklı derin temeller için kazık aralığı S = 2D – 3D olması durumunda grup etkisinin (Eg >1) birden büyük olduğu söylenmiştir. Çünkü kohezyonsuz zeminde çakma kazığın oluşturduğu deplasman + sürüklenme vibrasyonu etkisiyle, kazıkların çevresinde zeminin yoğunluğunun arttırdığı kabul edilmiştir.

Kohezyonlu zeminlerde grup kapasitesini dikkate almak için blok kayması + grubun kazık uç kapasitesi kullanılarak belirlenir, ancak hiçbir durumda grup etkisi için tekil kazığın kapasitesi bir grup içindeki tek kazık kapasitesine eşit olamaz. Grup etkisi ancak köprü ayak kapağı yere temas halinde olduğu durumda dahil edilmelidir. Eğer kapak zeminden yüksek ise, grup etkisi blok çevre kesme kuvveti + kazık bireysel uç kapasitesi dikkate alınacaktır. Eğer köprü ayak kapağı zeminle temasta değil ise, zeminle kazığın oturması kadar oturma gerçekleşebilecektir.

Kazıklar için temelin grup etkisi aşağıdaki formüller ile çözülebilmektedir. Converse – Labarre (Bolin, 1991) ve AASHTO (1990) formülleri sürtünme kazıklar için önerilen, grup etkisini dikkate alan en yaygın yöntemdir (Şekil 6.15 - Şekil 6.16).

$$Qg_u = \eta \ \Sigma Q_u \tag{42}$$

$$\eta = 1 - \frac{\alpha}{90} \left(\frac{(n-1)m + (m-1)n}{m.m} \right)$$
(43)

η : Grup etki katsayısı

m: Kazıkların x,y yönünde sıra sayısı

n: kazıkların düşey yönde kolon sayısı

 α : tan⁻¹(d/s)

- d: kazık çapı
- s: merkezden merkeze kazık mesafesi

Garg (1979), S = 3d için farklı sıra sayısına göre sonuçlarını grafiğe dökmüştür, grafikten görüldüğü üzere kazık grup sıra sayısı artınca grup etkisinin (performans) düştüğü anlaşılmaktadır.

Şekil 6.15: Converse - Labarre Formülüne Göre Grup Etkisi (Garg, 1979).

Los Angeles (1944), grup etkisi formülü aşağıdaki gibi açıklanır:

$$\eta = 1 - \frac{D}{n \ln 2 \, d\pi} \left[n_1 (n_2 - 1) + n_2 (n_1 - 1) + \sqrt{2} (n_1 - 1) (n_2 - 1) \right] \tag{44}$$

Seiler ve Keeney (1944), grup etkisi formülü aşağıdaki gibi açıklanır:

$$\eta = \left\{ 1 - \left[\frac{11d}{7(d^2 - 1)} \right] \left[\frac{n_1 + n_2 - 2}{n_1 + n_2 - 1} \right] \right\} + \frac{0.3}{n_1 + n_2}$$
(45)

d: kazık çapı (birimi, ft), 1ft = 0.3048 m

Şekil 6.16: Farklı Formüllere Göre Grup Etkisi (Garg, 1979'dan sonra).

Yukarıdaki üç metotta 1.5d–2.5d arasındaki grup etkisi için Seiler Kenney formülündeki değerler diğer iki yönteme göre daha yüksek çıkmaktadır.

Bu formüllerde sadece kazıkların geometrik koşulları (gruptaki kazık sayısı, kazıkların mesafesi) dikkate alınmıştır. Grup ektisi için kazık boyu, kazık başının bağlı olup olmaması, zemin koşulları, grup boyutu, kazıkların tekil veya grup halindeki oturması vs. gibi diğer önemli parametreleri dikkate alınmamıştır.

Feld (1943), kumlu zemin durumu için tekil kazığın yük kapasitesini, gömülü kazık gruplar için etkisini araştırmıştır. Bu yönteme göre bir kazığın kapasitesi bitişik diyagonal veya sırları 1/16 kadar azaltmıştır. Bu yöntemde farklı yük seviyeleri ve farklı kazık gruplar için gruptaki yük kapasite dağılımını sunmaktadır (Tablo 6.3, Şekil 6.17).

		Bitişik	Her kazık için	
Kazık Tipi	Kazık sırası	kazık sayısı	Azalım faktörü	Nihai kapasite
А	1	8	1 - 8/16	0.5 Qu
В	4	5	1-5/16	2.75 Qu
С	4	3	1-3/16	3.75 Qu

 Tablo 6.3:
 Kazığın Grup Etkisinin Bulunması.

$$\eta = \frac{Q_{g(u)}}{\sum Q_{u}} = 6.5 \frac{Q_{g(u)}}{9Q_{u}} = \% \ 72 = 0.72$$
(46)

Şekil 6.17: Sürtünme kazıkların grup kapasite tahmini için Feld (1943) metodu (DAS, 2011).

Feld (1943), kazıkların grup etkisi için sadece plan geometrisini (böylece, kazık mesafesini, çapını, gruptaki sayısını) dikkate ederek analiz etmiştir. Bu yöntem diğer etkili parametreler, zemin koşulları, kazık başı bağlılık durumu, yükleme çeşidi, kazığın uzunluk ve mesafe oranı (L/d) dikkate alınmamıştır.

Terzaghi ve Peck (1967), kazık grup bloğun (köprü ayak şaftın) yükü altındaki zemine aktarabilmek için kazık grubun yakın zeminini rijit bir blok olarak kabul etmiştir.

$$p^{f^{group}} = ab p^f + 2l(a+b)^{\tau_g}$$

$$\tag{47}$$

p^{f^{group}}: grup kazıkların kapasitesi

 p^f : tek kazığın kapasitesi

a: blok uzunluğu

b: blok genişliği

l: kazık uzunluğu

 $\mathit{\tau_{s}}$: blok şaftındaki (dingil) zeminin ortalama kayma dayanımı

Terzaghi ve Peck (1967)'e göre

- a. Tek sıradaki kazıklar için grup etkisi ΣQ_u (1 sıradaki) ≤ Q_u (tek parça), bu tek sıradaki kazıkların sayısına (n) ve kazıklar arası mesafesine (d) bağlı artabilmektedir.
- b. Yakın mesafede yerleştirilmiş kazıkların grup etkisi kazıkların sayısına (n) ve mesafesine (d) artışına bağlı artmaktadır. Maksimum etki, kazıklar arasındaki mesafe S= 3d olduğunda elde edilebilmektedir (Şekil 6.1 8- Şekil 6.19).

Şekil 6.18: Kazık grupların Taşıma kapasitesi (Terzaghi ve Peck, 1967).

Şekil 6.19: Kazık grupların etkisi (a) yakın mesafeli kazık grubu (b) orta sertlik kum (Terzaghi ve Peck, 1967).

6.3.1. Grup Kazıkların Mesafe Etkisi

Kazıklar arasındaki mesafe kazığın uzunluğuna, taşıma mekanizmasına ve rijit veya gevşek zemin tabakasının kalınlığına göre etkisi değişebilmektedir. Kazık taşıma mekanizmasına göre yakın mesafede olan kazıkların kapasitesi düşer ve mesafesi artınca kazık kapasitesi de artmaktadır.

Bu hususta IS 2911'de (Hindistan Standardı) aşağıdaki gibi öneride bulunmuştur. Sürtünme kazık durumunda zeminde oluşan etki yük çizgilerin bölgesinin çakışmamasını önermiştir. Eğer yük etki çizgilerin bölgesi çakışırsa, kazık taşıma kapasitesinin ve oturmanın azalmasına sebep olacaktır. Bu nedenle minimum aralığın köşegen boyutundan veya kazığın çapından az olmaması gerektiğini belirtmiştir. Sıkışabilir zeminler için kazıklar arası minimum 2.5d ve maksimum ise 3.5d az sıkışabilir veya rijit (sert) killi zeminler için uygun bulunmuştur. Hindistan yol kongresi, sürtünme kazıklar için kazıklar arası minimum 3d veya kazık çevresine eşit seviyede önermiştir. Uç taşıma kazıklar için bitişik yerleştirilen kazıklar arasında mesafe kazığın genişliğinden (veya çap), S≥D olmamasını önermiştir.

İngiltere'de uygulamada kazıklar arasındaki mesafeyi aşağıdaki formülle hesaplanmaktadır.

- \blacktriangleright Uç taşıma kazıklar için : S = 2.5d + 0.02L
- \blacktriangleright Kohezyon (sürtünme) kazıklar için : S = 3.5d + 0.02*L

d, kazık çapı ve L, ise kazık uzunluğunu temsil etmektedir. Ayrıca bu standart 300 kN'a kadar kazık kapasiteler için, kazık kenarından kazık gövdesine kadar mesafenin 100mm ve daha yüksek kapasiteli kazıklar için ise belirtilen mesafe (paspayı) 150mm olmasını şart koşmuştur.

6.4.Kazık Taşıma Gücü Hesabı için Verilerin Elde Edilmesi

Literatürde, soket kazıklarda tabanın tamamen temizlenememesi riskine karşı uç direncinin alınmaması önerilmiştir. Bu nedenlerden dolayı kazık taşıma kapasitesi hesaplarında kiltaşı için sadece çevre sürtünme soket direnci esas alınmıştır. Ayrıca, kazıklar kaya veya sıkı zeminler içinde teşkil edilen kazıklarda grup etkisinin dikkate alınmasına gerekli olmadığını söylemiştir (Ordemir, 1984).

Sondaj çalışmaları sonucunda kayada tek eksenli basınç verisi bulunmuştur. Bu nedenle, kiltaşı birimi için soket direnci hesaplarında kayada tek eksenli basınç deney sonuçları kullanılacaktır.

YSK21 (A1 Aksı Kenar Ayak, P1 Aksı Orta Ayak) için ; $q_u = 0.72$ Mpa 7.50 – 12.50 m Arası – 5.0 m $q_u = 0.97$ Mpa 12.50 – 15.50 m Arası – 3.0 m $q_u = 2.12$ Mpa 15.50 – 18.00 m Arası – 2.5 m $q_u = 3.04$ Mpa 18.00 – Soket Sonu Arası
$$\begin{split} &YSK22 \ (\ A2 \ Aks1 \ Kenar \ Ayak \) \ için \ ; \\ &q_u = 1.32 \ Mpa \ 9.00 - 12.50 \ m \ Aras1 - 3.5 \ m \\ &q_u = 1.90 \ Mpa \ 12.50 - 15.00 \ m \ Aras1 - 2.5 \ m \\ &q_u = 3.17 \ Mpa \ 15.00 - Soket \ Sonu \ Aras1 \end{split}$$

6.5.A1-P1 Aksı Kazık Taşıma Gücü Hesapları

A1-P1 aksı kazıkları ilk 4.0 m de siltli kil tabakası içindedir. 4.0 m'den sonra kazıklar kayada tek eksenli basınç dayanımı verilen kiltaşı tabakasına girmiştir. Hesaplarda ilk 4.0 m kil tabakası için sürtünme taşıma gücü hesaplanacak, daha sonra Kiltaşı için sürtünme taşıma gücü hesaplanacaktır. Kazıklar 100 cm çapında fore kazık olarak seçilmiştir (Şekil 6.20).

Şekil 6.20: A1-P1 Köprü Ayak Kazıkların Gösterimi.

Q_f-kil = AASHTO'ye göre Kazığın Kil zemini içinde çevre taşıma gücü ile taşıyacağı yükü temsil eder.

$$Q_{f-kil} = c x \alpha x As$$
 (48)

 $c = Kohezyon = 102.66 \text{ kN/m}^2$

$$\label{eq:adecyon} \begin{split} \alpha &= adecyon \; katsay_{1S1} = 0.45 \\ As &= Kaczik \; \mbox{Cevre Alan1} = 2 \; x \; 3.1415 \; x \; 0.50 \; x \; 4.0 \; m = 12.57 \; m^2 \\ Q_{f-kil} &= 102.66 \; x \; 0.45 \; x \; 12.57 = 580.69 \; kN \\ Q_{f-kil} &= 580 \; kN \end{split}$$

Kayaya soketli kazıklarda kazık çevre sürtünmesi,

 $Q_{\text{cevre}} = L_{\text{soket}} x f_{\text{s}} x A_{\text{cevre}} \phi 100$ Fore Kazık

Soket birim sürtünme direncinin (f_s) belirlenmesine yönelik değişik yöntemler kullanılmıştır (Tablo 6.4).

i) CFEM (1992) Canadian Foundation Engineering

$$f_s / \operatorname{Pa} = \mathbf{b} \cdot \begin{bmatrix} \mathbf{q}_{\mathbf{u}-\mathbf{k} \operatorname{arot}} \\ \mathbf{p}_{\mathbf{a}} \end{bmatrix}^{0.5}$$
 (49)

b = 0.63 $q_u = kPA$

ii) Amir (1989)

$$f_s = 0.43 \,.\, (qu - karot)^{0.35}$$
 (50)

 $q_u = Mpa$

iii) Wyllie (1992)

$$f_s = 0.25 \cdot (qu - karot)^{0.5}$$
 (51)

 $q_u = Mpa$ Çatlaklı kaya % 40 azaltma uygulanır.

iv) Horward & Kenney (1979)

 $f_s = 6.56 \cdot (qu - karot)^{0.5}$ (52)

 $q_u = kPa$

v) Poulos & Davis (1980)

 $f_s = 0.05 . (q_u - karot)$ (53)

 $q_u = kpa$

v) Hobbs & Healy

$$f_s = 13.00 \cdot (qu - karot)^{0.5}$$
 (54)

 $q_u = Kpa$

Ortalama hesaplanırken max ve min değerler ortalamaya dahil edilmemiştir.

	Kayada Tek Eksenli Basınç Dayanımı (qu) - Mpa				
Yöntem	7.5-12.5 m	12.5-15.5 m	15.5-18.0 m	18.0-Soket Sonu	
	0.72	0.97	2.12	3.04	
CFEM (1992)	169.05	196.21	290.07	347.36	
Amir (1989)	383.30	425.44	559.35	634.56	
Wyllie (1992)	127.28	147.73	218.40	261.53	
Howard & Kenney (1979)	176.02	204.31	302.05	361.69	
Poulos & Davis (1980)	36.00	48.50	106.00	152.00	
Hobbs & Healy	348.83	404.88	598.56	716.77	
Ortalama Birim Sürtünme Direnci (kPA)	205.29	238.28	342.47	401.29	
L boyu (m)	5	3	2.5	1.5	
Yüzey Alanı (m2)	15.71	9.42	7.85	4.71	
Soket Sürtünme Dayanımı (kN)	3224.75	2245.78	2689.74	1891.02	
Toplam Soket Boyu (m)	12				
Toplam Soket Sürtünme Dayanımı (kN)	10051.29				

Tablo 6.4: Kazığın Soket Dayanımının Bulunması.

6.5.1 Negatif Çevre Sürtünmesi

Kiltaşı tabakası üstündeki özellikle düşük SPT sayılı katmanların kazık yapıldıktan sonra yapılacak olan kenar ayak geri dolgusu sebebiyle oturması sonucu negatif çevre sürtünmesi oluşabilmektedir. Bu durumda kazık kapasitesi hesaplanan miktar kadar azalmaktadır. Yaklaşım dolguları olan bölgede zeminde sıyırma ve granüler malzeme serilmesi yapılacaktır. Oluşabilecek oturma uzun süreli konsolidasyon oturmalarıdır. Oturma yapabilecek üst katmanlarda spt sayıları 20-R arasındadır. Bu sebeplerden negatif çevre sürtünmesi kenar ayaklarda ihmal edilmiştir.

A1 ve P1 Aksı İçin 16 m **φ100 Kazık Toplam Kazık Taşıma Gücü**

Soket boyu 12.0 m düşünülür ise toplam kazık boyu 4.0 m + 12.0 = 16.0 m olmaktadır. $W_{kazık} = 0.7854 \text{ m}^2 \text{ x } 16 \text{ m x } (25 \text{ kN/m}^3) = 315 \text{ kN}$

A1 Aksı İçin

$$\begin{split} P_{servis} &= \text{Servis Durumu Kazık Kuvveti} = 2552 \text{ kN} + 315 \text{ kN} = 2867 \text{ kN} - \text{Basınç} \\ P_{eq} &= \text{Deprem Durumu Kazık Kuvveti} = 3603 \text{ kN} + 315 \text{ kN} = 3918 \text{ kN} - \text{Basınç} \\ P_{eq} &= \text{Deprem Durumu Kazık Kuvveti} = 1187 \text{ kN} - 315 \text{ kN} = 872 \text{ kN} - \text{Çekme} \\ \text{Grup Faktörü} &= 0.95 (\text{Converse-Labarre Formülü}) \\ Q_{em} &= (Q_{f\text{-kil}} + Q_{f\text{-soket}}) / (\text{G.S.} = 3.0) - Q_{negatif} \\ Q_{em} &= (580 + 10051)/3 = 3543 \text{ kN} \text{ x } 0.95 = 3365 \text{ kN} > 2867 \text{ kN} - \text{Servis Durumu Basınç} \\ Q_{em} &= 3365 \text{ kN} \text{ x } 1.5 = 5047 \text{ kN} > 3918 \text{ kN} - \text{Deprem Durumu Basınç} \\ Q_{em} &= 3365 \text{ kN} \text{ x } 0.70 = 2355 \text{ kN} > 872 \text{ kN} - \text{Deprem Durumu Çekme} \end{split}$$

P1 Aksı İçin

$$\begin{split} P_{servis} &= Servis \ Durumu \ Kazık \ Kuvveti = 1545 \ kN + 315 \ kN = 1860 \ kN \ -Basınç \\ P_{eq} &= Deprem \ Durumu \ Kazık \ Kuvveti = 3462 \ kN + 315 \ kN = 3777 \ kN \ -Basınç \\ P_{eq} &= Deprem \ Durumu \ Kazık \ Kuvveti = 1128 \ kN \ - 315 \ kN = 813 \ kN \ - Çekme \\ Grup \ Faktörü &= 0.98 \ (\ Converse-Labarre \ Formülü \) \\ Q_{em} &= (\ Q_{f-kil} + \ Q_{f-soket}) \ / \ (\ G.S. = 3.0 \) \ - \ Q_{negatif} \\ Q_{em} &= (\ S80 + 10051) \ / 3 = 3543 \ kN \ x \ 0.98 = 3472 \ > 1860 \ kN \ - \ Servis \ Durumu \ Basınç \\ Q_{em} &= 3472 \ kN \ x \ 1.5 = 5208 \ kN \ > 3777 \ kN \ -Deprem \ Durumu \ Basınç \\ Q_{em} &= 3472 \ kN \ x \ 0.70 = 2430 \ kN \ > 813 \ kN \ - \ Deprem \ Durumu \ Çekme \\ \hline \underline{A1 \ ve \ P1 \ aksı \ için \ L = 16.0 \ m \ \phi = 100'lük \ Kazık \ Uygundur. \end{split}$$

6.6. A2 Aksı Kazık Taşıma Gücü Hesapları

A2 aksı kazıkları ilk 4.5 m de Siltli Kil tabakası içindedir. 4.5 m'den sonra kazıklar kayada tek eksenli basınç dayanımı verilen kiltaşı tabakasına girmektedir. Kiltaşı tabakası için ilk deney sonucu ise 9-9.5 m aralığında verilmiştir. Kiltaşı birimi ile ilk laboratuvar deneyi arasında 1.5 m fark vardır. Bu sebeple hesaplarda ilk 6.0 m kil tabakası için sürtünme taşıma gücü hesaplanacak, daha sonra Kiltaşı için sürtünme taşıma gücü hesaplanacak, daha sonra Kiltaşı için sürtünme taşıma gücü hesaplanacak, daha sonra Kiltaşı için sürtünme taşıma gücü hesaplanacaktır. Kazıklar 100 cm çapında fore kazıktır (Şekil 6.21), (Tablo 6.5).

Şekil 6.21: A2 Köprü Ayak Kazıkların Gösterimi.

 $Q_{f-kil} = Kazığın Kil Zemini İçinde çevre taşıma gücü ile taşıyacağı yük olmak üzere$

$$\begin{split} &Q_{f\text{-kil}} = C \ x \ \alpha \ x \ As \\ &C = Kohezyon = 78.15 \ kN/m2 \\ &\alpha = adezyon \ katsayısı = 0.45 \\ &As = Kazık \ Çevre \ Alanı = 2 \ x \ 3.1415 \ x \ 0.50 \ x \ 6.0 \ m = 18.85 \ m2 \\ &Q_{f\text{-kil}} = 78.15 \ x \ 0.45 \ x \ 18.85 = 662.9 \ kN \\ &Q_{f\text{-kil}} = 663 \ kN \end{split}$$

Kayaya soketli kazıklarda kazık çevre sürtünmesi,

 $Q_{\text{cevre}} = L_{\text{soket}} x f_s x A_{\text{cevre}} \phi 100$ Fore Kazık Soket birim sürtünme direnci'nin (f_s) belirlenmesine yönelik değişik yöntemler kullanılmıştır.

i) CFEM (1992) Canadian Foundation Engineering

$$f_s / Pa = b \cdot \left[\frac{q_{u-karot}}{p_a} \right]^{0.5}$$
, $b = 0.63 \ qu = kPA$

ii) Amir (1989)

$$f_s = 0.43$$
. $(qu - karot)^{0.35}$, $qu = Mpa$

iii) Wyllie (1992)

 $f_s = 0.25 . (qu - karot)^{0.5}$

qu = Mpa Çatlaklı kaya % 40 azaltma uygulanır

iv) Horward & Kenney (1979)

 $f_s = 6.56 \cdot (qu - karot)^{0.5}$

 $q_u = kPa$

v) Poulos & Davis (1980)

 $f_s = 0.05$. (*qu-karot*)

 $q_u = kPa$

v) Hobbs & Healy

$$f_s = 13.00 . (qu - karot)^{0.5}$$

 $q_u = kPa$

Ortalama hesaplanırken max ve min değerler ortalamaya dahil edilmemiştir.

	Kayada Tek Eksenli Basınç Dayanımı (qu) - Mpa				
Yöntem	9.0-12.5 m	12.5-15.0 m	15.0 - Soket Sonu		
	1.32	1.9	3.17		
CFEM (1992)	228.89	274.61	354.71		
Amir (1989)	473.88	538.31	643.93		
Wyllie (1992)	172.34	206.76	267.07		
Howard & Kenney (1979)	238.34	285.94	369.35		
Poulos & Davis (1980)	66.00	95.00	158.50		
Hobbs & Healy	472.31	566.66	731.94		
Ortalama Birim Sürtünme Direnci (kPA)	277.97	326.41	408.76		
L boyu (m)	3.5	2.5	4		
Yüzey Alam (m2)	11.00	7.85	12.57		
Soket Sürtünme Dayanımı (kN)	3056.43	2563.59	5136.67		
Toplam Soket Boyu (m)	10				
Toplam Soket Sürtünme Dayanımı (kN)		10756.69			

Tablo 6.5: Kazığın Soket Dayanımının Bulunması.

6.6.1 Negatif Çevre Sürtünmesi,

Kiltaşı tabakası üstündeki özellikle düşük SPT sayılı katmanların kazık yapıldıktan sonra yapılacak olan kenarayak geri dolgusu sebebiyle oturması sonucu negatif çevre sürtünmesi oluşabilecektir. Bu durumda kazık kapasitesi hesaplanan miktar kadar azalmaktadır. Yaklaşım dolguları olan bölgede zeminde sıyırma ve granüler malzeme serilmesi yapılacaktır. Oluşabilecek oturma uzun süreli konsolidasyon oturmalarıdır. Oturma yapabilecek üst katmanlarda spt sayıları 22-R arasındadır. Bu sebeplerden negatif çevre sürtünmesi kenar ayaklarda ihmal edilmiştir.

A2 Aksı İçin 16.0 m ¢100 Kazık Toplam Kazık Taşıma Gücü

Soket boyu 10.0 m düşünülür ise toplam kazık boyu 6.0 m + 10.00 = 16.00 m olmaktadır.

$$\begin{split} W_{kazık} &= 0.7854 \text{ m2 x } 16.0 \text{ m x } (25 \text{ kN/m3}) = 315 \text{ kN} \\ P_{servis} &= \text{Servis Durumu Kazık Kuvveti} = 2552 \text{ kN} + 315 \text{ kN} = 2867 \text{ kN} - \text{Basınç} \\ P_{eq} &= \text{Deprem Durumu Kazık Kuvveti} = 3603 \text{ kN} + 315 \text{ kN} = 3918 \text{ kN} - \text{Basınç} \\ P_{eq} &= \text{Deprem Durumu Kazık Kuvveti} = 1187 \text{ kN} - 315 \text{ kN} = 872 \text{ kN} - \text{Çekme} \\ \text{Grup Faktörü} &= 0.95 (\text{Converse-Labarre Formülü}) \\ Q_{em} &= (Q_{f\text{-kil}} + Q_{f\text{-soket}}) / (\text{G.S.} = 3.0) - Q_{\text{negatif}} \\ Q_{em} &= (663 + 10756)/3 = 3806 \text{ kN x } 0.95 = 3615 \text{ kN} > 2867 \text{ kN} - \text{Servis Durumu} \\ \text{Basınç} \\ Q_{em} &= 3615 \text{ kN x } 1.5 = 5422 \text{ kN} > 3918 \text{ kN-Deprem Durumu Basınç} \\ Q_{em} &= 3615 \text{ kN x } 0.70 = 2530 \text{ kN} > 875 \text{ kN} - \text{Deprem Durumu Çekme} \\ \underline{A2 \text{ aksı için L} = 16.0 \text{ m} \phi = 100'lük Kazık Uygundur.} \end{split}$$

6.7.Köprü Temelleri Geoteknik Sonuçları

Yapılan analizlerde köprü temellerinin yüzeysel olması durumunda kenarayaklarda temel altı zemini için zemin emniyet gerilmesi min 255 kN/m² hesaplanmıştır. Temel altında oluşan gerilme servis durumu için 250 kN/m² hesaplanmıştır. Kenarayaklarda depremli durum için hesaplanan zemin emniyet gerilmesi 382 kN/m² oluşan gerilme ise 394 kN/ m² dir. Orta ayakta ise temel altı zemini için zemin emniyet gerilmesi 255 kN/ m² hesaplanmıştır. Orta ayak temel altında oluşan gerilme servis durumu için 198 kN/ m² dir. Orta ayaklar için depremli durumda zemin emniyet gerilmesi 382 kN/m² hesaplanmış oluşan gerilme ise 503 kN/m² hesaplanmış oluşan gerilme ise 503 kN/m² dir. Bu durumda köprü temellerinin yüzeysel olması uygun görülmemiştir. SPT sayılarına bakıldığında hesaplanan zemin emniyet gerilmesinin içsel sürtünme açısının dikkate alınmasından dolayı bir miktar yüksek kaldığı hâkim birimin kil olması

dolayısıyla içsel sürtünme açısının zemin emniyet gerilmesi hesaplarında kullanılmaması durumunda zemin emniyet gerilmesi düşecektir. Bu durum dikkate alındığında köprü temellerinin kazıklı olarak projelendirilmelidir. ϕ 100 cm çaplı fore kazıklar YSK-21 ve YSK-22 sondajında 7.50- 12 m de gözüken kiltaşı tabakasında A1-P1 aksında min 12.0 ilerleyecek şekilde L=16.0 m, A2 aksında ise min 10.0 m ilerleyecek şekilde L=16.0 kazık boyu hesaplanmıştır. Kiltaşı tabakası foraj esnasında ilgili sondaj loğlarında gösterilen derinliklerden daha aşağıda çıkması durumunda kazık boyu verilen soket miktarlarını sağlayacak şekilde uzatılacaktır. Soket yapılan kiltaşı tabakası mühendislik parametrelerinin bu raporda kazık taşıma gücü hesaplarında kullanılan parametreler ile uygunluğu kontrol edilmelidir.

7. ÖRNEK KÖPRÜNÜN ÖZELLİKLERİ

Bu hesap raporu, T.C. Karayolları Genel Müdürlüğü Karayolları 1.Bölge Müdürlüğü'nün ihale ettiği "Çatalca - Subaşı Yolu Güzergahında Bulunan Toplam 12 Adet Sanat Yapıları Projelerinin Hazırlanması Danışmanlık Hizmet Alımı " işi kapsamında projelendirilen Çatalca-Subaşı Yolu K2 Kavşağı Çevre Yolu-2 Kavşak Köprüsü (Anayol Km:4+781.433- Bağlantı Yolu Km:0+382.044) uygulama proje hesaplarını içerir. Hesaplar büyük olan sağ köprüye göre yapılmıştır. Yapılacak olan köprünün temel geometrik özellikleri şu şekildedir.

Açıklık sayısı : 2 Köprü verevliği : 6.30[°] Köprü genişliği : Sol Köprü 18.0 m, Sağ Köprü 19.7~18.0 Taşıt yolu genişliği : Sol Köprü 15.00 m, Sağ Köprü 16.7~15.0 Trafik şeridi sayısı : 4 şerit Hareketli Yük Sınıfı : H₃₀ – S₂₄ Hareketli yük azaltma katsayısı : 0.75 Sol yaya kaldırımı genişliği : 2.00 m Sağ yaya kaldırımı genişliği : 1.00 m Temel sistemi : φ100 Kazıklı Temel

Köprü geoteknik raporuna göre temelleri kazıklıdır. Kazık boyları bu rapora göre belirlenmiştir. Köprü geoteknik raporuna göre kazık boyu YKS21 ve YKS22 numaralı sondaj loglarında 7.5 -12 m de gösterilen kiltaşı tabakasında Min. 12 m ilerlemektedir. Kiltaşı tabakası foraj esnasında sondaj loglarında verilen derinlikten daha çıkar ise kazık boyu Min. 12 m özellikleri belirtilen kiltaşı tabakasında ilerleyecektir. Kiltaşı tabakası parametrelerinin hesaplarda kullanılan parametrelere uygunluğu kontrol edilecektir.

7.1. YAPISAL MODEL AÇIKLAMASI

Yapısal modellerin hazırlanmasında, DIANA-3D yazılımı kullanılmıştır. Zeminin nonlinear davranışını ve kazıkların davranışı etkisini zemin modeline bağlı olarak üst yapıya iletilmesi için Drucker–Prager (Dr-Pr), Egg Cam Clay(E-CC), Cam – Clay (CC) ve Pekleşen Zeminler(HS), olmak üzere 3 farklı zemin modeli dikkate alınarak analizler gerçekleştirilmiştir (Tablo 7.1., Tablo 7.2., Tablo 7.3.). Analiz için İmperial Valley (1979) ve Kocaeli (1999) ivme kayıtlarının yerel zemin koşuluna uygun olması için SeismoMatch yazılımı ile 2s periyod aralığında ölçeklendirilmiştir (Tablo 7.5). Zaman tanım analiz yöntemiyle nonlinear analizi için Eurocode 2010 dinamik durum yük kombinasyonu dikkate alınarak DIANA-3D yazılımı kullanılarak analiz yapılmıştır. Yapı-Kazık-Zemin dinamik etkileşimin sağlıklı sonuç verebilmesi için sismik dalgalarının sınırda çapılarak zemine geri dönüş yapılmasını engellemek için DIANA yazılımının (Lysmer ve Khlemeyer, 1969) sönümleyici mesnet (viskoz sınır koşulu) kullanılarak analiz yapılmıştır (Şekil 7.1).

Ana kaya sınır koşulları için ise rijit mesnet dikkate alınmıştır. Zemin sınır modelini ise Rayhani ve Niggar santrifüj (2008) deney sonuç ile önerdiklerine göre zeminin yatay sınırı, yapı genişliğinin 5 katı ve taban kaya derinliği ise 30 m olarak seçilmiştir. Analiz süresini azaltmak için köprü kirişinin kütlesini, toplanmış kütle olarak dikkate alınarak köprü yerine, köprü ayağı analize dikkate alınmıştır (Şekil 7.2, Şekil 7.3).

Şekil 7.1: Sönümleyici Sınır Koşullarının Elemanların Özellikleri (DIANA 10.5 Manual).

Şekil 7.2: Zeminin Sınır koşularının, Sınırlı ve Sınırsız Ortamları (DIANA 10.5 Manual).

Şekil 7.3: Zeminin Sınır koşularının, Sınırlı Ortamı ve Serbest Sahasının Gösterimi (DIANA 10.5 Manual).

7.2. Modellemedeki Zemin Model Özellikleri

Aşağıdaki üç farklı zemin modeli seçilerek, beton malzemesinin ve kazık özellikleri aşağıdaki gibi dikkate alınmıştır (Tablo 7.1-Tablo 7.5), (Şekil 7.4 - Şekil 7.9).

Drucker-Pragr Plastisitesi (Mohr-Coulumb)								
ν	K_0 Ε(Kpa) $\gamma_{k(Kpa)}$ C(Kpa) ϕ° ψ°							
0,39	0,64	33000	15	102	8,22	0		
0,42	0,72	85200	15	102	8,22	0		
0,48	0,92	90000	15	102	8,22	0		

 Tablo 7.1: Drucker – Prager Plastisitesi (Mohr- Coulumb).

Tablo 7.2: Egg Cam Clay Zemin Modeli Parametreleri.

Egg Cam Clay zemin parametreleri									
E(Kpa)	$\gamma_{k(Kpa)}$	¢°	λ	κ	OCR	n			
33000	15	8,22	0,0492	0,0123	2	0,43			
85200	15	8,22	0,0492	0,0123	2	0,43			
90000	15	8,22	0,0492	0,0123	2	0,43			
ν	Λ	α	М	γ	بح	α			
0,39	0,750	1,00	0,3	1	0.00001	1,00			
0,42	0,750	1,00	0,3	1	0.00000001	1,00			
0,48	0,750	3	0,3	1	0.00000001	1			

Tablo 7.3: Pekleşen Zeminlerin (Modified Mohr Coulumb) Parametreleri .

Pekleşen Zeminlerin (Modified Mohr Coulumb) Parametreleri									
Е ₅₀ (Кра)	E _{oed} (Kpa)	E_{ur} (Kpa)	_(Kpa) ν		C(Kpa) φ°		Rf		
33000	33000	69300	0,39	102	8,22	0	0,9		
85200	85200	187440	0,42	102	8,22	0	0,9		
90000	90000	207000	0,48	102	8,22	0	0,9		
K ₀	m	Pref (Kpa)	Pc(Kpa)	Pt(Kpa)	γ_k (Kpa)	n	K ₀		
0,64	0,55	100	200	10	15	0,43	0,64		
0,72	0,55	100	200	10	15	0,43	0,72		
0,92	0,55	100	200	10	15	0,43	0,92		

Radye Temel'de Kazık Kısmı için Malzeme Özellikleri							
Kn (kazığa dik yönünde) (kN /m ³)	KS (kazık boyunca) (kN /m ³)	E(kN/m ²)	Ybet(t/m ³)	Qult (kN /m)			
1E+10	1E+10 1000000 25900000 2.5 10000000						
	İ						
Kn (kazığa dik yönünde) (kN /m ³)	KS (kazık boyunca) (kN /m ³)	Kn' (pile direction) (kN /m ³)	KS' (kazığa dik yönünde) (kN /m ³)	Ybet(t/m ³)	Qult (kN /m)	Qtip, Resist. (kN /m)	
10000000	1000000	1000000	100000	2.5	5208	1	

Tablo 7.4: Kazıkların Malzeme Özellikleri.

Şekil 7.4: C30 Betonun Basınç Dayanımı Durumunda Pekleşme Grafiği.

Şekil 7.5: C30 Betonun Çekme Dayanımı Durumunda Pekleşme Grafiği.

DIANA-3D Köprünün DIANA Yazılımında Modellenmesi;

Şekil 7.6: Köprünü X Yönündeki Görüntüsü.

Şekil 7.7: Köprünü Y Yönündeki Görüntüsü.

Şekil 7.8: Köprünü Üç Boyutlu Model Görüntüsü.

Şekil 7.9: Köprünün Üç Boyutlu Model ve Kazık Görüntüsü.

7.3.Analiz Öncesi İvmelerin Seçim Aşaması:

TBDY 2018'e uygun ivmeler seçilmiş ve Seismomatch Yazılımı ile

ölçeklendirilmiştir (Tablo 7.5), (Şekil 7.10 – Şekil 7.27).

Deprem Adı	Yıl	R _{jb} (km)	R _{rup} (km)	V _s (m/s)	Fay Tipi	Mg	Zemin Sınıfı	Skale Faktörü	Sönüm Oranı
İmperial Valley	1979	12.56	12.56	195	Doğrultu Atımlı	6.53	D	1	0.05
Kocaeli Türkiye	1999	13.6	15.37	282	Doğrultu Atımlı	7.51	D	1	0.05

Tablo 7.5. İvmelerin Özellikleri.

X - Yönünde Dikkate Alınan İvmeler:

Şekil 7.10: Köprü Analizi İçin Seçilen İvmeler, Ölçeklendirme Öncesi.

Şekil 7.11: Köprü Analizi İçin Seçilen İvmeler, Ölçeklendirme Sonrası.

Şekil 7.12: Köprü Analizi İçin Seçilen İmperial Valley İvmesinin, Ölçeklendirme Öncesi ve Sonrası.

Şekil 7.13: Köprü Analizi İçin Seçilen Kocaeli İvmesinin, Ölçeklendirme Öncesi ve Sonrası.

X - Yönünde Elde Edilen Spektrumlar:

Şekil 7.14: Köprü Analizi İçin Seçilen İvmelerin Ölçeklendirme Önce Spektrum Tepkisi.

Şekil 7.15: Köprü Analizi İçin Seçilen İvmelerin Ölçeklendirme Sonra Spektrum Tepkisi.

Y - Yönünde Dikkate Alınan İvmeler:

Şekil 7.16: Köprü Analizi İçin Seçilen İvmeler, Ölçeklendirme Öncesi.

Şekil 7.17: Köprü Analizi İçin Seçilen İvmeler, Ölçeklendirme Sonrası.

Şekil 7.18: Köprü Analizi İçin Seçilen İmperial Valley İvmesinin, Ölçeklendirme Öncesi ve Sonrası.

Şekil 7.19: Köprü Analizi İçin Seçilen Kocaeli İvmesinin, Ölçeklendirme Öncesi ve Sonrası.

Y- Yönünde Elde Edilen Spektrumlar;

Şekil 7.20: Köprü Analizi İçin Seçilen İvmelerin Ölçeklendirme Önce Spektrum Tepkisi.

Şekil 7.21: Köprü Analizi İçin Seçilen İvmelerin Ölçeklendirme Sonra Spektrum Tepkisi.

Z - Yönünde Dikkate Alınan İvmeler;

Şekil 7.22: Köprü Analizi İçin Seçilen İvmeler, Ölçeklendirme Öncesi.

Şekil 7.23: Köprü Analizi İçin Seçilen İvmeler, Ölçeklendirme Sonrası.

Şekil 7.24: Köprü Analizi İçin Seçilen İmperial Valley İvmesinin, Ölçeklendirme Öncesi ve Sonrası.

Şekil 7.25: Köprü Analizi İçin Seçilen Kocaeli İvmesinin, Ölçeklendirme Öncesi ve Sonrası.

Z- yönünde elde edilen Spektrumlar:

Şekil 7.26: Köprü Analizi İçin Seçilen İvmelerin Ölçeklendirme Önce Spektrum Tepkisi.

Şekil 7.27: Köprü Analizi İçin Seçilen İvmelerin Ölçeklendirme Sonra Spektrum Tepkisi.

8. YAPI - ZEMİN ETKİLEŞİM ANALİZİ

Yapı zemin etkileşimi konusu gerek akademik gerek uygulamada araştırılması gereken en güncel konulardan biri olup TBDY 2018 ile bu konunun önemi bir kez daha vurgulanmaktadır. Yapı – Temel – Zemin (YTZ) etkileşimi özellikle dinamik durumundaki ana kayadan gelen deprem ivmelerinin zeminden temele ve sonrası yapıya akışını sağlayarak, bir kısmı temelden zeminine geri dönüş yaparken diğer bir kısmı ise yapıda sönümlenerek, temel ve zemine geri dönüş yapan ivmesinin oluşturduğu kuvvetlerin (ve momentlerin) yapı, temel ve zeminde doğrusal olmayan etkisinin dikkate alınan bir araştırma konusudur.

TBDY 2018'de YTZ etkileşimi için üst yapı, temel ve zeminin birlikte dikkate alındığı ortak sistemde doğrusal olmayan davranışının dikkate alınmasını önermektedir. Ancak altsistem yaklaşımında, üstyapı - temel ile temel-kazıkzemin (altyapı) ayrı ayrı modellenip altyapıda oluşan kuvvetlerin (ve momentlerin) üst yapıda etkileşimi inceleyen bu yöntem doğrusal davranış esasına dayanmaktadır. Ancak pratikte belirli yöntemler ile altsistem için de doğrusal olmayan davranışının dikkate alınmasına izin vermektedir.

TBDY 2018 uygulamayı dikkate alarak önermiş olduğu yaylar ile kinematik ve eylemsizlik etkileşimin farklı yükseklikteki binalar, yerel zemin sınıfları ve deprem tasarım sınıflarına bağlı alt sistem için üç yöntemi önermektedir.

Bina türü yapılarda, göreli gevşek zeminlerde dinamik yapı-zemin etkileşiminin genellikle zeminden yapıya geçen deprem dalgalarının deprem yüklerini azalttığını kabul ederek bodrumlu binalar dahil olmak üzere bu yapılarda, güvenli tarafta kalabilmek için yapı-zemin etkileşiminin ihmal edilmesini önermektedir.

Ancak gevşek zeminlerde derin temelli inşa edilen yapılarda taban kayadan yayılan deprem ivmelerinin kazıkları önemli ölçüde zorlayarak şekil değiştirmelerine sebep olan bir kısmı radye temelden geri zemine yansımakta ve bu olaya kinematik etkileşim denir. Diğer bir kısmı ise radyeden yapıya geçerek, yapında ek kuvvetlere ve momentlere sebep olan ve zemine geri dönüş yapan bu kısmına ise YTZ'in eylemsizlik etkileşimi denmektedir. Bu sebeplerden ötürü zayıf zeminli kazıklı binalarda yapı-zemin-temel etkileşimi dikkate alınması gereklidir.

Pekleşen zemin modeli (HS), Drucker Prager (Dr-Pr) ve Cam Clay (CC) zemin modellerini dikkate alarak, İmperial Valley(1979) ve Kocaeli(1999) deprem ivme kayıtlarını analize dahil ederek dinamik durumundaki zaman tanım analizi yöntemi ile Yapı-Temel-Zemin-Deprem (YTZD) etkileşimi araştırılmaktadır.

Köprü analizinde kullanılan zemin modellerinin dinamik durumundaki etkileşim analiz sonuçları aşağıda verilmektedir (Şekil 8.1-Şekil 8.8).

Şekil 8.1: Köprü Analizi Sonucunda E-CC Zemin Modelinde X Yönünde Oluşan Deplasmanlar.

Şekil 8.2: Köprü Analizi Sonucunda E-CC Zemin Modelinde Y Yönünde Oluşan Deplasmanlar.

Şekil 8.3: Köprü Analizi Sonucunda E-CC Zemin Modelinde Z Yönünde Oluşan Deplasmanlar.

Şekil 8.4: Köprü Analizi Sonucunda E-CC Zemin Modelinde Z Yönünde Oluşan Kesme Kuvveti.

Şekil 8.5: Köprü Analizi Sonucunda E-CC Zemin Modelinde Z Yönünde Oluşan Momentler.

Şekil 8.6: Köprü Analizi Sonucunda HS Zemin Modelinde Y Yönünde Oluşan Deplasmanlar.

Şekil 8.7: Köprü Analizi Sonucunda HS Zemin Modelinde Z Yönünde Oluşan Momentler.

Şekil 8.8: Köprü Analizi Sonucunda Dr-Pr Zemin Modelinde Y Yönünde Oluşan Deplasmanlar.

8.1. Üç Farklı Zemin Modelinin Dinamik Durumundaki Yapı-Temel-Zemin Etkileşim Analiz Sonuçları

8.1.1. İmperial Valley (1979) Deprem İvmesinin Analiz Sonuçları (Normal Konsolidasyon Durum)

X yönünde oluşan deplasmanlar:

Zeminde ve yapıda oluşan deplasmanlar açısından Dr-Pr modeli en büyük, HS modeli orta ve CC modeli ise en küçük deplasmanları vermektedir (Şekil A.1).

Y yönünde oluşan deplasmanlar:

Zeminde ve yapıda oluşan deplasmanlar açısından Dr-Pr modeli en büyük, HS modeli orta ve CC modeli ise en küçük deplasmanları vermektedir (Şekil A.2).

Z yönünde oluşan deplasmanlar (oturmalar):

Zeminde ve yapıda oluşan oturmalar (deplasmanlar) açısından Dr-Pr modeli en büyük, HS modeli orta ve CC modeli ise en küçük deplasmanları vermektedir.

Yani normal konsolidasyon durumu için Dr-Pr zemin modelin, HS ve CC zemin modeline göre deplasmanı büyük değerlere ulaşmaktadır (Şekil A.3).

X- Yönünde zeminde ve yapıda oluşan gerilmeler

Köprü ayağında oluşan gerilmeler incelendiğinde en büyük gerilmeler Dr-Pr zemin modelinde, orta düzeyde gerilmeler CC ve en küçük gerilmeler HS zemin modelinde oluşmaktadır. Zeminde oluşan gerilmeler her üç model için hemen hemen aynı düzeydedir (Şekil A.5).

Y- Yönünde zeminde ve yapıda oluşan gerilmeler

Köprü ayağında oluşan gerilmeler incelendiğinde en büyük gerilmeler CC zemin modelinde, Dr-Pr ve HS modelinde ise yakın seviyede gerilmeler oluşurken, yüzeysel temelin -4m derinliğine baktığımızda CC ve Hs modelinde zeminde oluşan gerilmeler Hs'e göre daha büyük ve yakın seviyedeyken, HS zemin modelinde oluşan zemin gerilmesi daha küçük çıkmaktadır ve bu zemin davranışı derinlik artarken ihmal edilecek kadar az fark görülmektedir (Şekil A.7).

Z- Yönünde zeminde ve yapıda oluşan gerilmeler

Köprü ayağında oluşan gerilme incelendiğinde her üç model için yakın seviyede gerilme akışı sağlarken köprü yağı ve yüzeysel temel birleşiminde CC ve Dr-Pr kesme şeklinde gerilme akışı oluşurken Hs zemin modelinde gerilme akışı yön değiştirmemiş ve daha doğru sonuç vermektedir (Şekil A.9).

X- Yönünde zeminde ve yapıda oluşan şekil değiştirmeler

Köprü ayağında oluşan şekil değiştirmesi açısından en büyük değer Hs, orta değer CC ve Dr-Pr modeli ise en küçük değer vermektedir. Zemin oluşan şekil değiştirmeler açısından en küçük değer CC, orta düzeyde değer HS, en büyük değer ise Dr-Pr zemin modelinde oluşmaktadır. Ayrıca HS ve CC modelinde maksimum gerilme temel ve köprü ayak birleşiminde oluşurken, Dr-Pr zemin modelinde ise -5m de yani daha derinde ve dolaysıyla hatalı konumda oluşmaktadır (Şekil A.10).

Y- Yönünde zeminde ve yapıda oluşan şekil değiştirmeler

Köprü ayağında oluşan şekil değiştirmesi açısından en büyük değer Dr-Pr, CC ve Hs modeli ise benzer ve daha küçük değer vermektedir. Zemin oluşan şekil değiştirmeler açısından en küçük değer CC, orta düzeyde değer HS, en büyük değer ise Dr-Pr zemin modelinde oluşmaktadır. Ayrıca HS, CC ve Dr-Pr modelinde maksimum gerilme temel ve köprü ayak birleşiminde yakınında oluşurken, X yönünde oluşan şekil değiştirmelere baktığımızda küçük gerilmeli durumlarda maksimum

gerilme yeri hatalıyken, Y yönünde oluşan şekil değiştirmeler değerleri büyük olmasına rağmen doğru yerde oluşmaktadır (Şekil A.11).

Z- Yönünde zeminde ve yapıda oluşan şekil değiştirmeler

Köprü ayağında oluşan şekil değiştirmesi açısından en büyük değer Dr-Pr, CC ve Hs modeli ise benzer ve daha küçük değer vermektedir. Zemin oluşan şekil değiştirmeler açısından en küçük değer CC, orta düzeyde değer HS, en büyük değer ise Dr-Pr zemin modelinde oluşmaktadır. Ayrıca HS, CC ve Dr-Pr modelinde maksimum gerilme temel ve köprü ayak birleşiminde oluşmaktadır (Şekil A.12).

Kazıkların gerilme ve şekil değiştirmeleri:

Küçük şekil değiştirmeye maruz kalan kazıklarda CC modeli küçük, Hs modeli orta ve Dr-Pr modeli ise büyük değerler verirken E-CC ise Dr-Pr'e çok yakın değerler verirken, CC ve E-CC her ikisi kazık davranışı doğru temsil edememektedir. Büyük şekil değiştirmesi oluşan kazıklarda ise CC en küçük, HS orta ,Dr-Pr büyük, E-CC büyük ve Dr-Pr'e çok yakın davranış sergilemektedir.

Kazıkların gerilmesine göre şekil değiştirmesi oluştuğundan her ikisinin davranışı biçimi aynıdır. Yani küçük gerilmeli kazıklarda CC ve E-CC kazık davranışı doğru tahmin edememektedir. Dr-Pr ise şekil değiştirmeli durumda olduğu gibi gerilme değerlerini HS modeline göre daha büyük tahmin etmektedir. Ama büyük gerilmeli durumlarda ise her üç model çok yakın davranış biçimi sergilemekle birlikte HS modeline göre Dr-Pr ve E-CC modelin değer benzer şekilde büyük çıkmaktadır (Şekil A.13 – Şekil A.20, Şekil A.21– Şekil A.28).

X yönünde kazıklarda oluşan normal kuvveti

Küçük kesme kuvveti oluştuğu kazılarda CC modeli değeri kazık konumuna göre olması gerektiğinden küçük veya büyük olmasıyla birlikte kazık davranışını hatalı temsil etmekte CC modelin bu eksikliğini gidermek için model rijitliğini artırarak E-CC modeli tercih edilebilir ama yine de E-CC modeli değerleri Dr-Pr ve Hs modeli gibi doğru sonuç vermemektedir. Özellikle kazık uçlarında oluşan kesme kuvvetini CC modeli doğru tahmin ederken, E-CC modelin değerleri kazık boyunca davranış biçimi doğru ama büyük değerler verirken kazık ucunda değerleri de büyük değer vermektedir (Şekil A.29 – Şekil A.34).

Y yönünde kazıklarda oluşan normal kuvveti

Dr-Pr modeli HS zemin modeline göre büyük değerler vermesine rağmen kazık davranışını doğru tahmin etmektedir. CC ve E-CC, Hs zemin modeline göre daha küçük değerler vermekte, E-CC, CC zemin modelin hatalı kazık davranışını ıslah etmekle birlikte Hs'e göre küçük kesme kuvvetleri vermektedir. Dr-Pr zemin modeli kazık uç kuvvetli durumlarda kazık uç davranışını 3,4 kazıkta olduğu gibi hatalı tahmin etmektedir (Şekil A.35 – Şekil A.38).

Z yönünde kazıklarda oluşan normal kuvveti

küçük kuvvetlerin oluştuğu durumlarda Dr-Pr modeli, HS zemin modeline göre daha küçük değerler vermektedir. Küçük kuvvetli kazıklarda CC modeli kazık davranışı hatalı değer verirken büyük kuvvetli kazıklarda ise küçük değerler vermesine rağmen kazık kuvvetinin yönü değiştirerek hatalı sonuç vermekte bu sorunun giderilmesi için E-CC modeli geçebilir ama kazık uç direnci olduğu veya kazık ucu kuvvetli durumlarda, kazık uç değerini olması gerektiğinden büyük değer vermektedir (Şekil A.39 – Şekil A.45).

Y yönünde kazıklarda oluşan momentler

Küçük momentli durumlarda Dr-Pr' değeri HS zemin modeline göre hatalı sonuç verirken büyük momentli durumlarda kazık moment değerin HS zemin modeline çok yakın sonuçlar vermektedir. Momentlerin değeri küçük olduğu durumlarda CC kazık davranışı hatalı tahmin etmekte ve büyük momentlerin oluştuğu durumlarda ise kazık moment değerini küçük ve yetersiz tahmin etmektedir bu sorunu çözmek için ise E-CC modeline geçilebilir ama yine de Dr-Pr kadar kazık gerçek davranışını sergileyen HS zemine modelini temsil edememektedir (Şekil A.46 – Şekil A.51).

Z yönünde kazıklarda oluşan momentler

Momentlerin değeri küçük olduğu durumlarda Dr-Pr davranış biçimi doğru ama değerleri gerçek zemin davranışını sergileyen HS modeline göre çok büyük çıkmakta iken büyük momentlerin oluştuğu durumlarda ise her üç model birbirine çok yakın değerler vermektedir. My için HS zemin modeline çok yakın sonuç veren zemin modeli CC olup, E-CC durumu ise küçük momentli durumda Dr-Pr'e çok yakın ve Hs'e göre çok büyük değerler verirken, büyük momentlerin oluştuğu durumlarda hem büyük hem de hatalı davranış biçimi sergilemektedir (Şekil A.52 – Şekil A.55).

8.1.2. Kocaeli 1999 Deprem İvmesinin Analiz Sonuçları (Aşırı Konsolidasyon Durum)

X- yönünde oluşan deplasmanlar:

Zeminde ve yapıda oluşan deplasmanlar açısından CC modeli en büyük, HS modeli orta ve Dr-Pr modeli ise en küçük deplasmanları vermektedir (Şekil B.1).

Y- yönünde oluşan deplasmanlar:

Zeminde ve yapıda oluşan deplasmanlar açısından CC modeli en büyük, HS modeli orta ve Dr-Pr modeli ise en küçük deplasmanları vermektedir (Şekil B.2).

Z- yönünde oluşan deplasmanlar (oturmalar):

Zeminde ve yapıda oluşan oturmalar (deplasmanlar) açısından CC modeli en büyük, HS modeli orta ve Dr-Pr modeli ise en küçük deplasmanları vermektedir.

Yani aşırı konsolidasyon durumu için Dr-Pr zemin modelin, HS ve CC zemin modeline göre deplasmanı küçük değerler vermektedir (Şekil B.3).

X- yönünde zeminde ve yapıda oluşan gerilmeler

Köprü ayağında oluşan gerilmeler incelendiğinde en büyük gerilmeler HS zemin modelinde, orta düzeyde gerilmeler CC ve en küçük gerilmeler Dr-Pr zemin modelinde oluşmaktadır. Zeminde oluşan gerilmeler her üç model için hemen hemen aynı düzeydedir. Dr-Pr zemin modeli gerilme akışını yönünü değiştirerek kesme gerilmesi oluşurken, HS ve CC zemin modelinde bu hatalı sonuç görülmemektedir (Şekil B.5).

Y- yönünde zeminde ve yapıda oluşan gerilmeler

Köprü ayağında oluşan gerilmeler incelendiğinde en büyük gerilmeler CC zemin modelinde, orta düzeyde zemin gerilmesi HS modelinde, en küçük zemin gerilmesi Dr-Pr modelinde oluşmaktadır. Ayrıca X yönünde Dr-Pr modelinde oluşan kesme gerilmesi, Y yönünde gerilme seviyesi arttığı bu durumda CC modelinde Dr-Pr'e göre daha büyük bir biçimde oluşurken HS modelinde bu hatalı gerilme davranışı şekli görülmemektedir. Temel altındaki derinlik boyunca gerilme azalımı sırasında, üç zemin modeli için gerilme farkı özelliği korunmaktadır (Şekil B.7).

Z- yönünde zeminde ve yapıda oluşan gerilmeler

Köprü ayağında oluşan gerilme incelendiğinde HS ve CC model için birbirine yakın seviyede gerilme oluşurken, Dr-Pr zemin modelinde oluşan gerilmeler daha küçük ve ayrıca köprü yağı ve yüzeysel temel birleşiminde Dr-Pr kesme şeklinde gerilme akışı oluşurken Hs ve CC zemin modelinde gerilme akışı yön değiştirmemiş ve daha doğru sonuç vermektedir.

Temel altındaki derinlik boyunca gerilme azalımı sırasında, üç zemin modeli için gerilme farkı özelliği korunmaktadır (Şekil B.9).

X- yönünde zeminde ve yapıda oluşan şekil değiştirmeler

Köprü ayağında oluşan şekil değiştirmesi açısından en büyük değer CC, orta değer Hs ve Dr-Pr modeli ise en küçük değer vermektedir. Zemin oluşan şekil değiştirmeler açısından en küçük değer Dr-Pr orta düzeyde değer HS, en büyük değer ise CC zemin modelinde oluşmaktadır.

Ayrıca her üç zemin modelinde maksimum gerilme temel ve köprü ayağın birleşim bölgesinde oluşmaktadır (Şekil B.10).

Y- yönünde zeminde ve yapıda oluşan şekil değiştirmeler

Köprü ayağında oluşan şekil değiştirmesi açısından en büyük değer CC ve Hs zemin modelin çok yakın seviyede oluşurken , Dr-Pr modeli ise en küçük değer vermektedir. Zemin oluşan şekil değiştirmeler açısından en küçük değer Dr-Pr orta düzeyde değer HS , en büyük değer ise CC zemin modelinde oluşmaktadır.

Ayrıca, HS zemin modelinde maksimum gerilme temel ve köprü ayağın birleşim bölgesinde oluşurken CC ve Dr-Pr zemin modelinde ise -4m derinlikte oluşmaktadır (Şekil B.11).

Z- yönünde zeminde ve yapıda oluşan şekil değiştirmeler

Köprü ayağında oluşan şekil değiştirmesi açısından en büyük değer CC, orta değer Hs ve Dr-Pr modeli ise en küçük değer vermektedir. Zemin oluşan şekil değiştirmeler açısından en küçük değer Dr-Pr, orta düzeyde değer HS, en büyük değer ise CC zemin modelinde oluşmaktadır.

Ayrıca her üç zemin modelinde maksimum gerilme temel ve köprü ayağın birleşim bölgesinde oluşurken, CC modelinde temel köprü ayağı birleşim bölgesinde oluşan gerilme, HS modelinin iki katı oluşmuştur (Şekil B.12).

Kazıkların gerilme ve şekil değiştirmeleri:

Küçük şekil değiştirmeye maruz kalan kazıklarda Dr-Pr modeli küçük, Hs modeli orta ve CC modeli ise büyük değerler vermesine rağmen birbirine yakın şekil değiştirmesi göstermektedir. Büyük şekil değiştirmelerde ise her üç modelin davranış biçimi ayni iken birbirine göre şekil değiştirme seviyeleri çok fark etmektedir.

Kazıkların gerilmesine göre şekil değiştirmesi oluştuğundan her ikisinin davranışı biçimi aynıdır. Yani küçük gerilme seviyesine maruz kalan kazıklarda Dr-Pr modeli küçük, Hs modeli orta ve CC modeli ise büyük değerler vermesine rağmen birbirine yakın kazık gerilmesi oluşmaktadır. Büyük gerilmelerde ise her üç modelin davranış biçimi ayni iken birbirine göre gerilme seviyeleri çok fark etmektedir (Şekil B.13-Şekil B.18, Şekil B.19- Şekil B.24).

X - yönünde kazıklarda oluşan normal kuvveti

Küçük kesme kuvvetinin oluştuğu kazılarda CC modelin değeri kazık konumuna göre olması gerektiğinden büyük olmasıyla birlikte kazık davranışını hatalı temsil ederken, kesme kuvvetinin büyük olduğu durumlarda kazık davranışı doğru temsil etmesine rağmen Hs modeline göre küçük değerler vermektedir. Dr-Pr zemin modeli ise küçük keseme kuvveti oluştuğu durumlarda Hs zemin modeline oldukça yakın sonuç verirken, kazık kesme kuvveti artarken HS ile arasındaki kuvvet farkı artmaktadır (Şekil B.25 – Şekil B.30).

Y yönünde kazıklarda oluşan normal kuvveti

Küçük kesme kuvvetlerin oluştuğu değerlerde Dr-Pr zemin modelin, HS zemin modeline çok yakın seviyede kesme kuvveti oluşurken, büyük kesme kuvvetine maruz kalan kazıklarda ise bu fark artmaktadır. Her iki durum CC zemin modelinde, HS zemin modeline göre büyük kesme kuvveti oluşmaktadır (Şekil B.31 – Şekil B.37).

Z - Yönünde Kazıklarda Kazık Boyunca Oluşan Kuvvetler

Dr-Pr zemin modeli büyük kuvvetli kazlarda Kazık-Zemin-Yapı etkileşimi sonucu oluşan kuvvetleri son derece HS zemin modeline yakın ve gerçekçi değerler vermekte iken küçük kuvvetlerin oluştuğu durumlarda kazık davranışı HS zemine modeline göre yetersiz davranış sergilemektedir. CC zemin modeli küçük kuvvetlerin oluştuğu kazık durumlarda Kazık-Zemin-Yapı etkileşimi sonucu ile oluşan kuvvetler için son derece hatalı kazık davranışı biçimi sergilemekteyken büyük kuvvetlerin oluştuğu durumlarda kazık davranışını HS zemin modeline çok benzer bir biçimde sergilemektedir (Şekil B.38 – Şekil B.46).

Y - Yönünde Kazıklarda Oluşan Momentler

Küçük momentli durumlarda CC zemin modeli Kazık-Zemin-Yapı dinamik etkileşim sonucu ile oluşan momentlerin davranış biçimi hatalı bulurken, büyük momentli durumlarda kazıkların moment davranışı bir önceki duruma göre doğru tahmin ederken, küçük momentten büyük momente geçiş durumlarda kazık davranışı doğru bulurken kazık - radye temelde oluşan maksimum bölgenin yerinin Hs zemin modelinin ters yönünde bulmaktadır. Dr- Pr zemin modeli ise Kazık-Zemin-Yapı dinamik etkileşim sonucu ile oluşan küçük momentlerin oluştuğu durumlarda kazık davranışı HS zemin modeline göre doğru bulamaz iken, momentlerin büyük olduğu durumlarda HS zemine modeline son derece yakın ve benzer sonuç vermektedir.

Yukarıda bahsettiğimiz CC ve Dr-Pr zemin modelleri arasında, her üç çeşit kazık davranışı açısından kazık ve zemin dinamik davranışını gerçeğe en yakın sonucu veren HS zemin modeline en yakın sonucu Dr-Pr zemin modeli vermektedir (Şekil B.47 – Şekil B.52).

Z -Yönünde Kazıklarda Oluşan Momentler

Hem küçük momentli durumlarda CC zemin modeli Kazık-Zemin-Yapı dinamik etkileşim sonucu ile oluşan momentlerin davranışı HS zemin modeline yakın

sonuç verirken, büyük momentlerin oluştuğu durumlarda kazık davranışı açısından HS zemin modeline yakınlık seviyesi azalmaktadır. Kazıkların küçük momentli durumlarda Dr-Pr zemin modeli Kazık-Zemin-Yapı dinamik etkileşim sonucu ile oluşan momentlerin davranışını HS zemin modeline CC zemin modeline göre daha az yakın sonuç verirken, büyük momentli durumlarda CC zemin modeline göre sonuçları HS zemin modeline daha yakın çıkmaktadır.

Yukarıda bahsettiğimiz her üç zemin modelin üç çeşit kazık davranışı açısından gerçeğe en yakın sonuç veren Hs zemin modelin davranış biçimini, CC ve Dr-PR zemin modellerin doğru tahmin etmektedir (Şekil B.53 – Şekil B.60).

9. SONUÇ VE ÖNERİLER

Normal konsolide ve aşırı konsolide durumları için analiz sonuçları, yorum ve öneriler aşağıda verilmiştir.

9.1.İmperial Valley (1979) Deprem İvmesi İçin Analiz Sonuçları (Normal Konsolide Zemin Durumu İçin)

Zemin Deplasmanları

X,Y,Z yönünde zeminde oluşan deplasmanlar açısından CC zemin modeli, Hs zemin modeline, Dr-Pr zemin modeline göre daha yakın sonuç vermiştir (en küçük CC, ortalama HS ve Maks Dr-Pr), (Şekil A.1, Şekil A.2, Şekil A.3).

CC zemin modeli normal konsolide zemin durumu için aşır konsolide zemin durumuna göre çok daha küçük değerler vermiştir.

Zeminde Oluşan Gerilmeler

Küçük gerilmelerde, CC zemin modeli Dr-Pr'e göre HS'e daha yakın sonuç verirken, büyük gerilmelerde Dr-Pr, HS'e çok yakın sonuç vermektedir. Ama her ikisi (CC ve Dr-Pr) büyük gerilmeli durumda Z yönünde, yapı-temel birleşiminde oluşan gerilmeleri hatalı ve kesme gerilmesi oluşurken HS zemin modelinde böyle durum oluşmaz (Şekil A.5, Şekil A.7, Şekil A.9).

Zeminde Oluşan Şekil Değiştirmeler

Küçük şekil değiştirmeleri CC zemin modeli, HS zemin modeline yakın sonuç verirken, Dr-Pr zemin modelinde yapı-temel birleşiminde oluşması gereken maksimum gerilmesini hatalı ve -4 metre derinliğinde bulmaktadır.

Büyük şekil değiştirmeler için ise maksimum şekil değiştirme yerini doğru bulurken Hs zemin modeline çok büyük bir fark ile büyük şekil değiştirmeler oluşmaktadır. Her iki durum için CC zemin modeli HS zemin modeline daha yakın ve gerçekçi şekil değiştirmeye maruz kalmaktadır (Şekil A.10, Şekil A.11, Şekil A.12).

Kazıkların Gerilme – Şekil Değiştirmesi

Küçük gerilmeli ve şekil değiştirmeli durumlarda Dr-Pr kazık davranışını, özellikle CC ve E-CC zemin modellerin kazıklarının davranışını doğru bulamamaktadır. Ama büyük gerilmelerde E-CC zemin modeli Dr-Pr zemin modeline daha yakın sonuç verirken, CC zemin modelin HS zemin modeline daha yakan sonuç vermektedir (Şekil A.13 – Şekil A.20, Şekil A.21– Şekil A.28).

X-Yönünde Kazıklarda Kazık Boyunca Oluşan Kuvvetler

Kazık boy davranışı açısından E-CC zemin modeli, HS zemin modeline CC zemin modeline göre daha yakın sonuç verirken kazık uç davranışı açısından E-CC zemin modeli kazık uç kuvvetini büyük olarak farklı vermiştir. CC zemin modeli sonuçlarına baktığımızda kazık boy davranışı hatalı olmakla kazık uç kuvvetini, HS zemin modeline çok daha yakın sonuç vermiştir.

Dr-Pr zemin modeli ise hem kazık boy hem de kazık uç davranış açısından Hs zemin modeline en yakın sonucu vererek, kazıkların gerçekçi davranışı sergilemektedir (kazık 1,2-kazık 3,4-kazık 5,6), (Şekil A.29 – Şekil A.34).

Y -Yönünde Kazıklarda Kazık Boyunca Oluşan Kuvvetler

Dr-Pr kazık-radye temel birleşimi için büyük kuvvetlerin oluştuğu durumlarda, birleşim kuvvetini ve kazık boy davranışı HS zemin modeline çok daha yakın sonuç verirken, küçük kuvvetlerin oluştuğu durumlarda hem birleşim ve kazık boy davranış kuvvetini, hem de kazık uç kuvvetini abartılı olarak büyük değerler vermiştir (kazık 23,24 – kazık 1, 2 – kazık 3, 4 – kazık 7, 8), (Şekil A.35 – Şekil A.38).

CC zemin modeli kazık boyu büyük kuvvetlerin oluştuğu durumlarda kazık davranışı hatalı bulurken, E-CC zemin modeli ise HS zemin modeline yakın sonuç vermektedir (kazık 5, 6). CC zemin modeli Y yönünden deprem etki ettiğin durumda ilk sırda iç kazıkların davranışı açısından kazık birleşim bölgesinde büyük kuvvetlerin oluştuğu durumlarda oluşan kuvveti hatalı bulurken, E-CC zemin modelinde bu hatalı

davranış biçimi düzeltilerek HS zemin modeline daha yakın sonuç vermektedir (kazık 35, 36).

CC zemin modelin kazık uç davranışı açısından, uç kuvvetlerin küçük olduğu durumlarda kazık uç kuvvetini büyük ve abartılı olarak hatalı sonuç verirken, E-CC zemin modeli ise tam tersi olarak küçük kuvvetlerin oluştuğu durumlarda HS zemin modeline çok yakın sonuç verirken kazık uç kuvvetlerin büyük olduğu durumda abartılı olarak büyük ve hatalı sonuç vermekte iken bu durumda CC zemin modeli Hs zemin modeline çok daha yakın olarak gerçekçi sonuç vermektedir (kazık 15,16 - kazık 27, 28 - kazık 13, 14).

Z- Yönünde Kazıklarda Kazık Boyunca Oluşan Kuvvetler

Dr-Pr zemin modeli büyük kuvvetli kazlarda Kazık-Zemin-Yapı etkileşimi sonucu oluşan kuvvetleri son derece HS zemin modeline yakın ve gerçekçi değerler vermekte iken küçük kuvvetlerin oluştuğu durumlarda kazık davranışı HS zemine modeline göre yetersiz ve sağlık sonuç vermemektedir.(kazık 1,2- kazık 9,10).

CC zemin modeli küçük kuvvetlerin oluştuğu kazık durumlarda Kazık-Zemin-Yapı etkileşimi sonucu ile oluşan kuvvetler için son derece hatalı kazık davranışı biçimi sergilemekteyken E-CC zemin modeli davranış biçimi doğru olarak bulurken ama değerli abartılı olarak büyük çıkmaktadır (kazık 15, 16)

Kazık-Zemin-Yapı dinamik etkileşim için CC zemin modeli büyük kuvvetlerin oluştuğu durumlarda kazık davranış biçimini bir önceki duruma göre doğru bulduğuna rağmen HS zemin modeline göre küçük değerler ve iç kazık davranış yönünü de değiştirmektedir bu eksiklik E-CC zemin modelinde iyileştirme yapılmıştır (kazık 9, 10 - kazık 11, 12 - kazık 5, 6).

Sonuç olarak Z yönünde kazık davranışı açısın CC zemin modeli, E-CC zemin modeli ve Dr-Pr zemin modeli arasında HS zemin modeline en yakın sonucu Dr-Pr zemin modeli vermektedir (kazık 1, 2 - kazık 33, 34), (Şekil A.39 – Şekil A.45).

Y- Yönünde Kazıklarda Oluşan Momentler

Küçük momentli durumlarda CC zemin modeli Kazık-Zemin-Yapı dinamik etkileşim sonucu ile oluşan momentlerin davranış biçimi hatalı bulurken, büyük momentli durumlarda kazıkların moment davranışı bir önceki duruma göre doğru tahmin ederken, küçük momentten büyük momente geçiş durumlarda kazık davranışı doğru bulurken kazık -radye temelde oluşan maksimum bölgenin yerinin Hs zemin modelinin ters yönünde bulmaktadır (kazık 9, 10 - kazık 15, 16 - kazık 27, 28 - kazık 41, 42 - kazık 1, 2).

E-CC zemin modeli ise Kazık-Zemin-Yapı dinamik etkileşim sonucu ile oluşan momentlerin davranış biçimi hem küçük, hem de büyük olduğu durumlar için kazık davranışı doğru tahmin etmektedir (kazık 1, 2 - kazık 15, 16).

Dr- Pr zemin modeli ise Kazık-Zemin-Yapı dinamik etkileşim sonucu ile oluşan küçük momentlerin oluştuğu durumlarda kazık davranışı HS zemin modeline göre doğru bulamaz iken, momentlerin büyük olduğu durumlarda HS zemine modeline son derece yakın ve benzer sonuç vermektedir (kazık 23, 24 – kazık 17, 18 - kazık 1,2). Yukarıda bahsettiğimiz CC, E-CC ve Dr-Pr zemin modelleri arasında, kazık ve zemin dinamik davranışını gerçeğe en yakın sonucu veren HS zemin modeline en yakın sonucu Dr-Pr zemin modeli vermektedir (Şekil A.46 – Şekil A.51).

Z -Yönünde Kazıklarda Oluşan Momentler

Hem küçük hem de büyük momentli durumlarda CC zemin modeli Kazık-Zemin-Yapı dinamik etkileşim sonucu ile oluşan momentlerin davranışı HS zemin modeline son derece yakın sonuç verirken, E-CC zemin modeli küçük momentli durumlarda HS zemin modeline yakın sonuç verirken, büyük momentlerin oluştuğu durumlarda kazık davranışı biçimini hatalı temsil etmektedir (kazık 15, 16 - kazık 33, 34 - kazık 13, 14).

kazıkların küçük momentli durumlarda Dr-Pr zemin modeli Kazık-Zemin-Yapı dinamik etkileşim sonucu ile oluşan momentlerin davranışını HS zemin modeline göre daha büyük değerler verirken, büyük momentli kazıklar durumlarında CC,E-CC, Dr-Pr ve HS zemin modellerin birbirine yakın sonuçlar vermektedir (kazık 41, 42 - kazık 31, 32).

Yukarıda bahsettiğimiz her üç zemin modeli arasında gerçeğe en yakın sonuç veren Hs zemin modeline en yakın sonucu CC zemin modeli vermektedir (Şekil A.52 – Şekil A.55).

9.2.Kocaeli 1999 Deprem İvmesi İçin Analiz Sonuçları (Aşırı Konsolide Zemin Durumu İçin)

Zemin Oluşan Deplasmanlar

Yap-Zemin dinamik durumda X,Z yönünde zeminde oluşan deplasmanlar açısından Dr-Pr zemin modeli, Hs zemin modeline CC zemin modeline göre daha yakın sonuç vermiştir. Yani aşırı konsolide Siltli kil zeminler için küçük deplasmanlarda Dr-Pr zemin modeli, CC zemin modeline göre yakın sonuç verirken deplasman miktarı Y yönünde olduğu gibi artarken HS zemin modeline yakınlığı azalmaktadır (Şekil B.1, Şekil B.2, Şekil B.3).

Normal konsolide ve aşırı konsolide durumları incelendiğinde, aşırı konsolidasyon durumu siltli kil zemin durumu için deplasmanlar daha büyük çıkmaktadır.

Köprü ayağı ve radye birleşiminde oluşan maksimum deplasmanlar her iki durum için incelendiğinde:

X yönü için Td OC= 10*Td NC

Y yönü için Td OC= 9.7*Td NC

Z yönü için Td OC= 11.62*Td NC

Zeminde Oluşan Gerilmeler

Yap-Zemin dinamik durumda X,Y,Z yönünde zeminde oluşan gerilmeler incelendiğinde, CC zemin modeli küçük gerilme seviyelerinde HS zemin modeline daha yakın sonuç verirken ayrıca bu durumda gerilme davranışı açısından daha doğru
sonuç bulurken, büyük gerilmeli durumlarda yap-radye birleşiminde kesme gerilmesi şeklinde gerilme yön değiştirmektedir (Şekil B.5, Şekil B.7, Şekil B.9).

Dr-Pr zemin modeli ise Yap-Zemin dinamik etkileşimi açısından hem küçük gerilmelerde hem de büyük gerilmelerde gerilmenin maksimum olduğu Yapı-Radye birleşiminde gerilme yön değiştirerek kesme gerilmesi oluşmaktadır. Ayrıca bu hatalı durum HS zemin modelinde oluşmamaktadır.

Zeminde Oluşan Şekil Değiştirmeler

Yap-Zemin dinamik durumda X,Y,Z yönünde zeminde oluşan şekil değiştirmeler incelendiğinde, CC zemin modeli yapıda oluşan şekil değiştirme kısmı radye temele kadar zeminde oluşan kısmına göre çok daha sağlıklı davranış sergilerken ve özellik büyük şekil değiştirmeleri HS zemin modeline daha yakın sonuç verirken zeminde oluşan şekil değiştirme kısmını özellikle Z yönü için sağlıksız biçimde tahmin etmektedir. Ayıca CC zemin modeli için büyük şekil değiştirme seviyelerinde maksimum şekil değiştirme yeri radye temel - zemin birleşiminde oluşması gerekirken -4 m de ve hatalı yerde oluşmaktadır.

Dinamik durumunda Yapı-Zemin etkileşimi açısından Dr-Pr zemin modeli incelendiğinde X,Y,Z yönü için Yapı ve zemin şekil değiştirme davranış biçimini doğru tahmin ederken, şekil değiştirme seviyesi HS zemin modeline göre çok daha küçük değerlerde kalmakta halbuki Normal konsolide durum için şekil değiştirme miktarı CC ve HS zemin modeline göre çok daha büyük miktarda oluşmuştur (Şekil B.10, Şekil B.11, Şekil B.12).

Kazıkların Gerilme – Şekil Değiştirmesi

Küçük gerilmeli ve şekil değiştirmeli durumlarda Dr-Pr zemin modeli kazık davranışını, özellikle CC zemin modeli kazıkların davranışını açısından HS zemin modeline daha yakın sonuç bulmakta iken ama büyük gerilmelerde CC zemin modeli ve Dr-Pr zemin modeli HS zemin modeline olan gerilme-şekil değiştirme seviyeler arasındaki fark artmaktadır (kazık 1, 2 - kazık 3, 4 - kazık 5, 6).

Buradaki sonuç normal konsolide durumundaki zemin modellerin tam tersi davranış oluşmaktadır (Şekil B.13 - Şekil B.18, Şekil B.19 - Şekil B.24).

X-Yönünde Kazıklarda Kazık Boyunca Oluşan Kuvvetler

Kazıkların davranış açısından üç tip kazık davranışı bulunmaktadır. Küçük kuvvetlerin oluştuğu durumlarda Dr-Pr zemin modeli kazıkların gerçeğe en yakın davranışını sergileyen HS zemin modeline yakın davranış gösterirken, büyük kuvvetlerin oluştuğu kazıklarda bu özellik azalmaktadır.

CC zemin modeli küçük kuvvetlerin oluştuğu durumda kazık davranışı sağlıklı tahmin edemezken, kazıklarda oluşan kuvvet seviyesi arttığı durumda HS zemin modeline benzer davranış sergilemektedir.

Dr-Pr zemin modeli ise hem kazık boy hem de kazık uç davranış açısından Hs zemin modeline en yakın sonucu vererek, kazıkların gerçekçi davranışı sergilemektedir (kazık 27, 28 – kazık 39, 40 – kazık 9, 10 – kazık 21, 22) (Şekil B.25 – Şekil B.30).

Y- Yönünde Kazıklarda Kazık Boyunca Oluşan Kuvvetler

Dr-Pr kazık-radye temel birleşimi için büyük kuvvetlerin oluştuğu durumlarda, birleşim kuvvetini ve kazık boy davranışı HS zemin modeline çok daha yakın sonuç verirken, küçük kuvvetlerin oluştuğu durumlarda hem birleşim ve kazık boy davranış kuvvetini, hem de kazık uç kuvvetini yetersiz olarak küçük değerler vermiştir (kazık 1, 2 – kazık 3, 4 – kazık 37, 38 – kazık 27, 28).

CC zemin modeli kazık boyu büyük kuvvetlerin oluştuğu durumlarda kazık davranışını HS zemin modeline yakın sonuç vermektedir (kazık 11, 12 - kazık 17, 18). Kazık boyu ve birleşiminde kuvvetlerin küçük olduğu durumlarda birleşim ve uç kuvvetini büyük ve kazık boyu davranışını büyük kuvvetli duruma göre hatalı biçimde sergilemektedir (kazık 1, 2 -kazık 3, 4 - kazık 7, 8) (Şekil B.31 – Şekil B.37).

Normal konsolide durum için CC zemin modeli HS zemin modeline daha doğru sonuç verirken, aşırı konsolide durum için ise Dr-Pr zemin modeli HS zemin modeline daha doğru sonuç vermektedir.

Z - Yönünde Kazıklarda Kazık Boyunca Oluşan Kuvvetler

Dr-Pr zemin modeli büyük kuvvetli kazlarda Kazık-Zemin-Yapı etkileşimi sonucu oluşan kuvvetleri son derece HS zemin modeline yakın ve gerçekçi değerler vermekte iken küçük kuvvetlerin oluştuğu durumlarda kazık davranışı HS zemine modeline göre yetersiz davranış sergilemektedir (kazık 1, 2 - kazık 15,16 - kazık 31, 32).

CC zemin modeli küçük kuvvetlerin oluştuğu kazık durumlarda Kazık-Zemin-Yapı etkileşimi sonucu ile oluşan kuvvetler için son derece hatalı kazık davranışı biçimi sergilemekteyken büyük kuvvetlerin oluştuğu durumlarda kazık davranışını HS zemin modeline çok benzer bir biçimde sergilemektedir (kazık 15, 16 - kazık 41, 42) (Şekil B.38 – Şekil B.46).

Y -Yönünde Kazıklarda Oluşan Momentler

Küçük momentli durumlarda CC zemin modeli Kazık-Zemin-Yapı dinamik etkileşim sonucu ile oluşan momentlerin davranış biçimi hatalı bulurken, büyük momentli durumlarda kazıkların moment davranışı bir önceki duruma göre doğru tahmin ederken, küçük momentten büyük momente geçiş durumlarda kazık davranışı doğru bulurken kazık -radye temelde oluşan maksimum bölgenin yerinin Hs zemin modelinin ters yönünde bulmaktadır (kazık 3, 4 - kazık 5, 6 - kazık 15, 16 - kazık 29, 30).

Dr-Pr zemin modeli ise Kazık-Zemin-Yapı dinamik etkileşim sonucu ile oluşan küçük momentlerin oluştuğu durumlarda kazık davranışı HS zemin modeline göre doğru bulamaz iken, momentlerin büyük olduğu durumlarda HS zemine modeline son derece yakın ve benzer sonuç vermektedir (kazık 5, 6 - kazık 15, 16 - kazık 13, 14). Yukarıda bahsettiğimiz CC ve Dr-Pr zemin modelleri arasında, her üç çeşit kazık davranışı açısından kazık ve zemin dinamik davranışını gerçeğe en yakın sonucu veren HS zemin modeline en yakın sonucu Dr-Pr zemin modeli vermektedir (Şekil B.47 – Şekil B.52).

Z -Yönünde Kazıklarda Oluşan Momentler

Hem küçük momentli durumlarda CC zemin modeli Kazık-Zemin-Yapı dinamik etkileşim sonucu ile oluşan momentlerin davranışı HS zemin modeline yakın sonuç verirken, büyük momentlerin oluştuğu durumlarda kazık davranışı açısından HS zemin modeline yakınlık seviyesi azalmaktadır (kazık 25, 26 - kazık 33, 34 - kazık 37, 38 - kazık 39, 40).

kazıkların küçük momentli durumlarda Dr-Pr zemin modeli Kazık-Zemin-Yapı dinamik etkileşim sonucu ile oluşan momentlerin davranışını HS zemin modeline CC zemin modeline göre daha az yakın sonuç verirken, büyük momentli durumlarda CC zemin modeline göre sonuçları HS zemin modeline daha yakın çıkmaktadır (kazık 7, 8- kazık 15, 16).

Yukarıda bahsettiğimiz her üç zemin modelin üç çeşit kazık davranışı açısından gerçeğe en yakın sonuç veren Hs zemin modelin davranış biçimini, CC ve Dr-PR zemin modellerin doğru tahmin etmektedir (Şekil B.53 – Şekil B.60).

Normal Konsolidasyon Durumu İçin Analiz Yorumu ve Öneriler :

- CC ve Dr-PR zemin modeli, büyük zemin gerilmeli durum olarak Z yönünde birleşim bölgesinde oluşan gerilme akış yönünü değiştirerek, kesme gerilmesi oluşmakta, bu hatalı davranış biçimi HS modelinde oluşmamaktadır.
- Küçük şekil değiştirmelerde maksimum gerilmenin yeri HS ve CC modelinde birleşim bölgesinde oluştuğuna rağmen, Dr-Pr modelinde ise -4m de oluşmaktadır. Bu hatalı davranış biçim şekil değiştirme seviyesi arttığı zaman düzelmektedir.
- Küçük gerilme-şekil değiştirme seviyelerde kazık davranışı, CC ve E-CC zemin modeli hatalı biçimde sergilemektedir.
- Küçük kesme kuvveti oluştuğu durumda CC zemin modeli X ve Z yönünde kazık davranışını hatalı tahmin ederken bu hatayı düzeltmek için E-CC modeline geçilebilir ama yine de E-CC modeli kazık uç davranışını olması gerektiğinden büyük değerler vermektedir.
- Küçük momentli kazıklarda CC modeli, kazık davranışı hatalı biçimde tahmin etmektedir.
- Yukarıda saydığımız sebeplerden dolayı hem zemin ve yapı hem de kazık davranışı açısından en doğru zemin modeli HS zemin modeli olmaktadır.

Aşırı Konsolidasyon Durumu İçin Analiz Yorumu ve Öneriler :

- Yapı-Zemin dinamik durumda zeminde ve yapıda oluşan deplasmanlar açısından CC zemin modeli, Dr-Pr zemin modeline göre HS zemin modeline daha yakın ve doğru sonuç verirken Y yönünde olduğu gibi deplasmanlar arttığı durumlarda bu yakınlık seviyesi azalmaktadır.
- Normal konsolide ve aşırı konsolide durumların Köprü ayağı ve radye birleşiminde oluşan maksimum deplasmanları karşılaştırıldığında, aşırı konsolidasyon durumunda bu üç zemin modellerde maksimum 10 kat fark ile aşırı konsolidasyon durumu daha fazla çıkmaktadır.
- Küçük gerilmeli durumlarda CC zemin modeli hem sonuçların yakınlık seviyesi, hem de davranış biçimi açısından gerçeğe en yakın sonuç veren HS zemin modeline yakın sonuç verirken, büyük gerilmeli durumlar için Dr-Pr zemin modelinde olduğu gibi kesme gerilmesi oluşmaktadır. Bu sakıncalı durum HS zemin modelinde oluşmamaktadır.
- CC zemin modeli Yapı-Zemin dinamik davranışı açısından yapıdan oluşan şekil değiştirmeleri doğru bulurken, yapı-zemin birleşiminde oluşması gereken maksimum şekil değiştirme yerini ve zemin davranışını hatalı bulurken, Dr-Pr zemin modeli her ikisi açısından davranış biçimi doğru ama sonuç HS zemin modeline göre küçük ve yetersiz kalmaktadır.

10.KAYNAKLAR

Çağlar, N. ve diğ., Deprem Etkisinde Betonarme Yapılarda Yapı-Zemin Etkileşimi (2016).

Kavitha P. E. ve diğ., Numerical Investigations on the Influence of Soil Structure Interaction in the Dynamic Response of SDOF System (2016).

Ahmed, M. ve diğ., 3D-Analysis of Soil-Foundation-Structure Interaction in Layered Soil (2014).

Reyhani, T. M. ve diğ., Three dimensional Finite Element modeling of seismic soil–structure interaction in soft soil (2014).

El-Hoseiny E. K. ve diğ., Influence of Soil Structure Interaction on Seismic Response of Multi-Storey Buildings (2021).

Abate, G. ve diğ., Comparison Between Two Approaches for Non-linear FEM Modelling of the Seismic Behaviour of a Coupled Soil–Structure System (2019).

El Naggar, H. M. ve diğ., Physical and Numerical Modeling of Seismic Soil-Structure Interaction in Layered Soils (2011).

Gandomzadeh, A. ve diğ., Nonlinear Soil Behaviour assessment for Soil structure interaction (2010).

El Naggar, H. M. ve diğ., Interpreting dynamic soil properties of dry Nevada sand from centrifuge modeling (2016).

Leoni, G. ve diğ., Seismic response of bridges on pile foundations considering soil-structure interaction (2008).

Rahmani, A. ve diğ., Performance-based Seismic Design of Bridges Using High Performance Computing Tools (2014).

Rahmani, A. ve diğ., Nonlinear Seismic Soil-Foundation-Structure Interaction for Analysis of Bridge Systems (2015).

El gamal, A. ve diğ., Three-Dimensional Seismic Response of Humboldt Bay Bridge-Foundation-Ground System (2008).

Feng Y., Seismic Performance Analysis of Continuous Rigid Frame Bridges in Expressway under Non-linear Interactions of Soil-Piles (2018).

Spacone, E. ve diğ., Nonlinear soil-structure interaction of a curved bridge on the Italian Tollway A25 (2011).

Mylonakis, G. ve diğ., The Collapse of Fukae (Hanshin Expressway) Bridge, Kobe, 1995: The Role of Soil and Soil-Structure Interaction (2004).

Gazetas, G. ve diğ., Fukae bridge collapse (Kobe 1995) revisited: New insights (2020).

Diana, S. ve diğ., Three-Dimensional Modeling of Soil-Structure Interaction for a Bridge Founded on Caissons under Seismic Conditions (2022).

Maleki, S. ve diğ., Finite element modelling and seismic Behaviour of integral abutment bridges considering soil – structure interaction (2018).

Vinayak, H. V. ve diğ.,2015 Seismic Bridge Pier Analysis For Pile Foundation by Force and Displacement Based Approaches (2015).

Foti, S., Multistation Methods for Geotechnical Characterization using Surface Waves, Ph.D. Diss., Politecnico di Torino, 230 p., Milano(2000).

Akkaya, İ., Kayma Dalgası Hızı (Vs) Kullanılarak Erciş (Van) Yerleşim Alanının Sıvılaşma Potansiyelinin Değerlendirilmesi (2017).

Ordemir, İ., Pile Foundation. METU, Ankara (1984).

British standart,Code of practice for foundations, BS 8004(2004).

Canadian foundation Engineering manual (1992).

Vesic, A. S., "Expansion of Cavities in Infinite Soil Mass." Jrnl. Soil Mech. Found. Div., ASCE, Vol. 98, No. SM3, Proc. Paper 8790 pp. 265-90. (1972).

Bowles, J. E., Foundation Analysis And Design, 5th Edition, Singapore, s. (1996).

U.S. Naval Facilities Engineering Comand (NAVFAC), Deep Foundations-Piles, Washington Navy Yard, s. 177-191 (1982).

NAVAC DM 7.2, Foundation and Earth Structure U.S. Department of the Navy, (1984).

NAVFAC Foundations and earth structures: Design Manual DM-7.02. Technical report, Naval Facilities Engineering Command Publications Transmittal (1986).

Burland, J. B., "Shaft Friction of Piles in Clay- A Simple Fundamental Approach." Ground Engrg., Vol. 6, No. 3 pp. 30-42. Reprinted as Building Research Establishment Current Paper 33 (May 1973).

Vesic, A. S., "Ultimate Loads and Settlements of Deep Foundations in Sand." Bearing Capacity and Settlement of Foundations, Proc. Symposium, Duke Univ. Apr. 5-6, pp. 53-68 (1965).

Terzaghi, K. ve PECK, R.B., "Soil Mechanics in Engineering Practice", John Wiley and Sons, 729p (1967).

Rouiuç, T. L., "Model Studies of a Pile Failure Sur- face in a Cohesive Soil." Master's thesis, Georgia Inst. Tech., Atlanta (1961).

Ladanyi, B., "Etude théorique et expérimentale de l'expansion dans un sol pulvérulent d'une cavité présentant une symétrie sphérique ou cylindrique." Annales des Travaux Publics de Belgique, (1961).

BCP Committee (Koizumi, Yoshimi, et al.), "Field Tests on Piles in Sand." Soils and Foundations, Vol. 11, No. 2, pp. 29-49 (1971).

https://theconstructor.org/geotechnical/pile-foundation-spacing-skingroup/17100 (2023).

ASCE Committee on Deep Foundations report (CDF, 1984).

Nepelski, K., 3D FEM Analysis of the Subsoil-Building Interaction (2022).

Robert, D.J. Soil-pipeline interaction in unsaturated soils, PhD Thesis, University of Cambridge (2010).

Kulhawy, F.H. ve Mayne, P.W. Manual on estimating soil properties for foundation design, Final Report, Project 1493-6, EL-6800, Electric Power Research Institute, Palo Alto, CA (1990).

Potts, D.M. ve Zdravkovic, L. Finite Element Analysis for Geotechnical Engineering: Theory and Applications, Thomas Telford Limited (1999).

Roscoe, K.H., ve Schofield, A.N., Mechanical Behaviour of an Idealised, Wet-Clay. 2nd ECSMFE, 1, 47-54 (1963).

Roscoe, K.H., ve Burland, J.B., On the Generalized Stresstrain Behaviour of Wet Clay. In Engineering Plasticity, eds. J. Heyman and F.A. Leckie, 535-609. Cambridge, England (1968).

Niemunis, A. ve Cudny, M., Discussion on "Dynamic soil-structure interaction: A three- dimensional numerical approach and its application to the Lotung case study". Poor performance of the HSS model (2018).

Atkinson, J. ve Sallfors, G., Experimental determination of soil properties. In Proc. 10th ECSMFE, volume 3, pages 915-956, Florence, Italy (1991).

Lavergne, M., Methodes sismiques. Technip, Paris (1986).

FOWG, Documentation de base pour la verication des ouvrages d'accumulation aux seismes. Technical report, Swiss Federal Oce for Water and Geology (2003).

Lindeburg, M., Civil Engineering Reference Manual for the PE Exam. Professional Publications, Belmont, California (2001).

Viggiani, G. Ve Atkinson, J., Stiffness of Grained Soil at Very Small Strain. G_eotechnique,45(2):249-265 (1995).

Zhang, Y. ve diğ., A Generalized Drucker-Prager Viscoplastic Yield Surface Model for Asphalt Concrete.

British standart code of practice for foundations, BS 8004,(1986).

Kempfert, H. G., ve Gebreselassie B., Excavations and Foundations in Soft Soils Netherlands: Springer-Verlag Berlin Heidelberg, Germany (2006).

Dunne, F., ve Petrinic, N., Introduction to Computational Plasticity, London : OxfordUniversity Press (2005).

Konder, R. L. ve Zelasko, J.S., A hyperbolic stress – strain formulation for sands, (1963).

Duncan, J. M. ve Chang, C.Y., Nonlinear analysis of stress and strain in soil, (1970).

Obrzud R. ve Truty, A., The Haredning Soil Model - A Practical Guidebook Z Soil.PC 100701 report, revised 31.01.(2012).

Kezdi, A., Handbook of Soil Mechanics. Elsevier, Amsterdam (1974).

Prat, M., ve diğ., La modelisation des ouvrages. Hermes, Paris (1995).

Benli, N., The Calibration of Hardening Soil Models For Northern İzmir Bay Area Soils, Msc in civil engineering , Thesis, (2008).

Lysmer, J. ve Kuhlemeyer, R. L., Finite dynamic model for infinite media. J. Eng. Mech., ASCE 95, 4 (1969).

Rayhani, M. H. T. ve El Naggar, M. H., "Numerical Modeling of Seismic Response of Rigid Foundation on Soft Soil," Int. J. Geomech., Vol. 8, No. 6, pp. 336-346 (2008).

EKLER

11.EKLER

EK A. 1 İmperial Valley(1979) Deprem İvmesinin Analiz Sonuçları

İmperial Valley(1979) deprem ivmesinin 5.6 saniyedeki analiz sonuçları;

Td X -CC	Td X -HS	Td X DR - PR	Z(m)
-0.0009	-0.0011	-0.00199	11.891
0.0016	0.0012	0.0019	10.55
-0.0004	-0.0005	-0.00083	10.25
-0.0034	-0.0046	-0.00929	9.75
-0.4359	-0.5808	-1.02454	1.75
0.0014	0.0037	0.00909	0
-0.01	-0.0018	0.00514	-4
0.0199	-0.0793	-0.14002	-10
0.1144	0.0011	-0.00272	-16
0.3137	0.6574	1.15261	-26.5

Tablo A.1: X Yönünde, Zemin ve Yapıda Oluşan Deplasmanlar.

Şekil A.1: X Yönünde Oluşan Deplasmanlar.

HS	Td X DR - PR	Td X - CC	
Td Y-Hs	Td Y-Dr - Pr	Td Y - M CC	Z(m)
-0.084	0.14	-0.074	11.891
-0.022	0.03	-0.017	10.55
-0.032	0.05	-0.028	10.25
-0.509	0.81	-0.439	9.75
-0.871	1.48	-0.785	1.75
-0.086	0.15	-0.048	0
-0.141	0.25	-0.095	-4
-0.202	0.36	-0.044	-10
-0.145	0.26	0.023	-16
0.555	0.97	0.285	-26.5

Tablo A.2: Y Yönünde, Zemin ve Yapıda Oluşan Deplasmanlar.

Şekil A.2: Y Yönünde Oluşan Deplasmanlar.

HS	Td X DR - PR	Td X -	CC
Td Y -HS	Td Z-Dr Pr	Td Y -CC	Z(m)
0.020	0.031	0.018	11.891
0.000	0.000	0.000	10.55
-0.033	0.052	-0.030	10.25
0.179	0.301	0.141	9.75
0.447	0.808	0.227	1.75
-0.013	0.001	-0.017	0
-0.211	0.353	-0.267	-4
-0.562	0.990	-0.329	-16
-0.182	0.317	-0.103	-26.5

Tablo A.3: Z Yönünde, Zemin ve Yapıda Oluşan Deplasmanlar.

Şekil A.3: Z yönünde Oluşan Deplasmanlar.

Zeminde ve Yapıda Oluşan Gerilmeler:

Drucker-prager		hardening soil		CAM CLAY		
Z(m)	SX-max2 Dr-Pr	Sx- min2 Dr-Pr	SX-max1 Hd-S	Sx- min1 Hd-S	SX-max2 CM-CL	Sx-min2 CM-CL
11.891	297	-45	290	-44	80	-35
10.55	-2116	1672	-1981	1634	966	-600
10.25	196	-168	192	-164	196	-103
9.75	-1778	1715	-1740	1677	-1773	1565
1.75	-30970	22372	23716	-13101	26319	-23936
0	8536	-8392	-9763	8070	-9530	9128
-4	-203	110	-204	135	-132	110
-16	-532	147	-481	113	-621	308
-30	-1089	-360	-1029	-366	-2006	-545

Tablo A.4: X Yönünde, Zemin ve Yapıda Oluşan Gerilmeler.

Şekil A.4: X Yönünde Zeminde ve Yapıda Oluşan Gerilmeler.

Şekil A.5: X Yönünde Zeminde ve Yapıda Oluşan Maksimum Gerilmeleri.

hardening soil - gerilmeler			Drucker - Prager		Cam Clay	
Z(m)	Sy-max1-HS	Sy- min1 Hs	Sy-max2 Dr-Pr	Sy-min2 -DR-PR	Sy-max - CC	Sy-Min CC
11.891	196	-96	201	-98	65	-38
10.55	4805	-2490	4916	-2478	2150	-953
10.25	324	-120	332	-123	100	-48
9.75	7569	-4593	7743	-4694	6792	-5357
1.75	63771	-58751	64820	-60430	-91448	70931
0	-12896	11795	-20411	13732	17668	-12266
-4	-259	115	-268	154	-221	69
-16	-350	145	-395	177	-487	392
-30	-1657	-361	-1763	-328	-1991	-537

Tablo A.5: Y Yönünde, Zemin ve Yapıda Oluşan Gerilmeler.

Şekil A.6: Y Yönünde Zeminde ve Yapıda Oluşan Gerilmeler.

Şekil A.7: Y Yönünde Zeminde ve Yapıda Oluşan Maksimum Gerilmeleri.

hardening soil - gerilmeler		Drucker -Prager		Cam Clay		
Z(m)	SZ-max1 Hd-S	SZ- min1 Hd-S	Sz-max2 Dr-Pr	Sz- min2 Dr-Pr	Sz-max2 CM-CL	Sz- min2 CM-CL
11.891	114	-73	116	-75	37	-27
10.55	12062	-7027	13164	-5132	4902	-1856
10.25	-729	-57	-747	-59	-232	-2
9.75	8178	2008	8769	2181	3022	-2216
1.75	62230	-56462	61995	-58069	67180	-57808
0	37382	-33812	-34637	21118	-41010	24372
-4	-228	93	-240	102	-207	73
-16	-669	-7	-715	28	-846	209
-30	-1851.3	-381.315	-2016	-329.3	-2175	-513

Tablo A.6: Z Yönünde, Zemin ve Yapıda Oluşan Gerilmeler.

Şekil A.8: Z Yönünde Zeminde ve Yapıda Oluşan Gerilmeler.

Şekil A.9: Z Yönünde Zeminde ve Yapıda Oluşan Maksimum Gerilmeleri.

Zeminde ve Yapıda Oluşan Şekil Değiştirmeler:

Drucker-Prager Şekil Değiştirmesi		Pekleşen Zemin		Cam Clay		
Z(m)	Ex-maks 2 DR-PR	Ex-min 2 DR-PR	Ex-maks 1 HS	Ex- min 1 HS	Ex- maks 2 C-C	Ex- min 2 C-C
11.891	1E-05	-2E-06	1E-05	-2E-06	4E-06	-2E-06
10.55	-1E-04	2E-05	-1E-04	2E-05	-6E-05	1E-05
10.25	9E-06	-7E-06	9E-06	-7E-06	1E-05	-5E-06
9.75	-1E-04	4E-06	-1E-04	5E-06	-7E-05	6E-05
1.75	9E-04	-5E-04	9E-04	-5E-04	8E-04	-8E-04
0	-5E-04	3E-04	1E-01	-1E-02	6E-02	-1E-02
-4	1E-01	-2E-02	7E-02	-8E-03	3E-02	-9E-03
-16	5E-02	-2E-02	3E-02	-1E-02	2E-02	-7E-03
-30	2E-02	-2E-02	$1E_{-}02$	-1E-02	8E-03	-6E-03

Tablo A.7: X Yönünde, Zemin ve Yapıda Oluşan Şekil Değiştirmeler.

Şekil A.10: X Yönünde Zeminde ve Yapıda Oluşan Şekil Değiştirmeler.

Drucker-Prager		Pekleş	Pekleşen Zemin		lay	
Z(m)	Ey-maks 2 DR-PR	Ey- min 2 DR-PR	Ey-maks 1 HS	Ey- min 1 HS	Ey- maks 2 C-C	Ey-min 2 C-C
11.891	-7E-06	7E-06	-7E-06	7E-06	2E-06	-2E-06
10.55	-2E-04	1E-04	-2E-04	1E-04	-1E-04	7E-05
10.25	2E-05	-1E-06	2E-05	-1E-06	6E-06	-8E-07
9.75	3E-04	-3E-04	3E-04	-3E-04	3E-04	-2E-04
1.75	-3E-03	3E-03	-3E-03	3E-03	-4E-03	3E-03
0	2E-01	-6E-02	1E-01	-4E-02	1E-01	-3E-02
-4	3E-01	-4E-02	1E-01	-2E-02	8E-02	-1E-02
-16	1E-01	9E-04	6E-02	-7E-04	5E-02	2E-03
-30	-2E-02	2E-02	-1E-02	1E-02	-1E-02	7E-03

Tablo A.8: Y Yönünde, Zemin ve Yapıda Oluşan Şekil Değiştirmeler.

Şekil A.11:Y Yönünde Zeminde ve Yapıda Oluşan Şekil Değiştirmeler.

Drucker-Prager		Pekleşen Zemin		Cam Clay		
Z(m)	Ez-maks 2 DR-PR	Ez- min 2 DR-PR	Ez-maks 1 HS	Ez- min 1 HS	Ez-maks 2 C-C	Ez- min 2 C-C
11.891	-6E-06	3E-06	-6E-06	2E-06	-2E-06	1E-06
10.55	6E-04	-3E-04	6E-04	-3E-04	2E-04	-8E-05
10.25	-4E-05	-5E-06	-4E-05	-5E-06	-1E-05	-5E-07
9.75	4E-04	1E-04	4E-04	1E-04	1E-04	-8E-05
1.75	-5E-03	3E-03	-4E-03	3E-03	-5E-03	3E-03
0	2E-01	-2E-02	1E-01	-1E-02	9E-02	-2E-02
-4	7E-02	-5E-02	4E-02	-3E-02	2E-02	-2E-02
-16	-1E-01	6E-03	-7E-02	4E-03	-6E-02	-4E-03
-30	-4E-02	3E-02	-2E-02	2E-02	-1E-02	1E-02

Şekil A.12: Z Yönünde Zeminde ve Yapıda Oluşan Şekil Değiştirmeler.

Kazıklarda Oluşan Gerilmeler ve Şekil Değiştirmeler:

Kazıklarda Oluşan Gerilme Benzerliği					
Kazık no		1,2- 3,4-37,38-39,40			
benzer sayısı		4			
Kazık no		5,6-11,12-17,18-23,24-29,30-35,36-41,42			
benzer sayısı		7			
Kazık no		7,8-9,10-15,16-21,22-31,32-27,28-33,34			
benzer	sayısı	7			
Kazık no		25,26-19,20-13,14			
benzer sayısı		3			

Tablo A.10: Z Yönünde, Kazıklarda Oluşan Gerilmeler Benzerliği.

Tablo A.11: Z Yönünde, 1,2. Kazıkta Oluşan Gerilmeler.

Kazık no. 1,2; Sz(kN/m ²)					
Sz-CC	Sz-HS	Sz-Dr- Pr	Sz- E.CC	Z(m)	
-261	243	264	146	1.75	
-630	415	345	431	1.313	
-2490	-657	-402	-273	0.875	
-9251	-4818	-1846	-3060	0.273	
-15851	-7810	-3027	-3768	0.231	
-20704	-10729	-4728	-5158	0.166	
-25162	-12437	-4175	-4659	0	
-10103	371	8881	8704	-1	
3428	11534	20290	20685	-2	
14230	20792	29665	31087	-3	
22439	27959	36828	39865	-4	
32977	34969	43003	48991	-7	
29507	25478	31906	36660	-10	
17050	11029	14221	15747	-13	
-6947	-4908	-4985	-5539	-14.25	

Şekil A.13: Z Yönünde, 1,2. Kazıkta Oluşan Gerilmelerin Karşılaştırılması.

Kazık no. 3,4; Sz(kN/m ²)						
Sz-CC	Sz-HS	Sz-Dr- Pr	Z(m)			
-1423	-442	-310	1.75			
-5655	-2930	-2268	1.184			
-4229	-2036	-1861	1.142			
-2093	-782	-1335	1.100			
-965	390	-1086	1.071			
-12303	-6493	-4837	0.526			
-39375	-18998	-6232	0			
-14043	4927	20456	-1			
6649	23780	41115	-2			
19993	35177	53216	-3			
28043	41631	60144	-4			
36189	40899	60533	-7			
33402	28451	44967	-10			
16837	12575	20894	-13			
-10533	-6719	-6731	-14.25			

Tablo A.12: Z Yönünde, Kazıklarda Oluşan Gerilmeler.

Şekil A.14: Z Yönünde, 3,4. Kazıkta Oluşan Gerilmelerin Karşılaştırılması.

Ka	azik no. 5,	,6; Sz(kN/n	1*)	
Sz-CC	Sz-HS	Sz-Dr-Pr	Z(m)	
1068	1646	1557	1.75	
943	2184	1891	1.102	
587	1503	1384	0.983	
873	2177	1701	0.936	
-796	2310	1522	0.783	
-14146	-11756	-15013	0.497	
-23953	-20847	-26235	0.397	
-30227	-27158	-33696	0.346	
-76514	-74674	-89136	0	
-33000	-32314	-41455	-1	
2914	3603	-539	-2	
29410	32546	34182	-3	
47709	55214	61583	-4	
59265	68637	82621	-7	
37809	39846	52881	-10	
17106	14133	20954	-13	
-4548	-226	-1113	-14.25	

Tablo A.13: Z Yönünde, 5,6. Kazıkta Oluşan Gerilmeler.

Şekil A.15: Z Yönünde, 5,6. Kazıkta Oluşan Gerilmelerin Karşılaştırılması.

	Kazık no. 13,14; Sz(kN/m²)				
Sz-CC	Sz-HS	Sz-Dr- Pr	Sz- E.CC	Z(m)	
-1691	-343	-319	-266	1.75	
-1573	537	786	902	1.299	
-2264	-71	86	140	1.256	
-1547	283	743	-1319	0.981	
5531	6281	7128	4376	0.751	
-11447	-8121	-9132	-8754	0.466	
11032	49950	86795	31263	0	
9939	42805	73648	32640	-1	
11633	36662	61842	35261	-2	
13097	29966	50107	37885	-3	
14445	23494	39560	40384	-4	
22750	16771	27739	51162	-7	
32438	20175	29277	56295	-10	
19159	13976	18718	35872	-13	
-9761	-6606	-6632	-12547	-14.25	

Tablo A.14: Z Yönünde, 13,14. Kazıkta Oluşan Gerilmeler.

Şekil A.16: Z Yönünde, 13,14. Oluşan Gerilmelerin Karşılaştırılması.

Kazık no. 17,18; Sz(kN/m²)				
Sz-CC	Sz-HS	Sz-Dr-Pr	Z(m)	
1190	1694	1621	1.75	
-938	-1692	-1475	1.170	
5757	8421	7762	0.876	
2973	4585	3940	0.669	
633	1766	1355	0.633	
-907	-263	-408	0.596	
-2341	-1868	-2263	0.522	
5377	7719	6810	0.359	
-15771	-21136	-23958	0.145	
-37497	-47322	-50947	0	
-10667	-17460	-17828	-1	
12062	9275	11481	-2	
28954	31625	35956	-3	
39950	49150	55702	-4	
39287	50335	62727	-7	
14014	21827	29548	-10	
-2180	1563	4507	-13	
-4902	-1702	-2488	-14.25	

Tablo A.15: Z Yönünde, 17,18. Oluşan Gerilmeler.

Şekil A.17: Z Yönünde, 17,18. Oluşan Gerilmelerin Karşılaştırılması.

Kazık no. 19,20; Sz(kN/m ²)				
Sz-CC	Sz-HS	Sz-Dr- Pr	Z(m)	
-725	-206	-183	1.75	
-1602	-1044	-1196	1.301	
-1245	28	177	1.227	
-2300	-1080	-1050	0.995	
-4355	-2190	-2514	0.957	
-5170	-2370	-2635	0.761	
-4120	-2338	-2628	0.694	
-2293	-764	-706	0.633	
-3849	-2867	-4799	0.521	
9209	49199	85179	0	
7980	43076	73217	-1	
10045	37575	62281	-2	
12133	31091	51277	-3	
14378	24572	41341	-4	
24986	20182	33349	-7	
37413	26352	38227	-10	
22495	17341	23516	-13	
-9787	-6673	-6707	-14.25	

Tablo A.16: Z Yönünde, 19,20. Kazıkta Oluşan Gerilmeler.

Şekil A.18: Z Yönünde, 19,20. Kazıkta Oluşan Gerilmelerin Karşılaştırılması.

Kazık no. 31,32; Sz(kN/m ²)				
Sz-CC	Sz-HS	Sz-Dr- Pr	Z(m)	
-1508	-703	-595	1.75	
-1930	-751	-729	1.231	
-4051	-2458	-2355	1.090	
-4017	-2396	-2236	1.041	
-1934	368	445	0.926	
-3881	3092	6770	0.464	
-1623	6129	11682	0.441	
-2403	7299	13447	0.433	
-12850	20077	43237	0	
-396	24648	46900	-1	
9552	27987	48520	-2	
15668	27852	46107	-3	
19700	26351	42581	-4	
28894	22381	35693	-7	
31028	21639	31867	-10	
16451	11202	16184	-13	
-9849	-6446	-6454	-14.25	

Tablo A.17: Z Yönünde, 31,32. Kazıkta Oluşan Gerilmeler.

Şekil A.19: Z Yönünde, 31,32. Kazıkta Oluşan Gerilmelerin Karşılaştırılması.

Kazık no. 33,34; Sz(kN/m ²)				
Sz-CC	Sz-HS	Sz- Dr-Pr	Sz- E.CC	Z(m)
319	411	427	382.76	1.75
-8794	-7347	-7561	-7232	1.685
92955	80584	82215	79721.7	1.471
21733	19030	20139	18142.3	1.361
43940	39216	39938	39232.4	0.968
11291	10042	11154	8955.62	0.766
7159	7408	8124	7609.99	0.538
-7560	-5432	-2866	-5465.9	0.456
-1854	10343	25168	22012.7	0
3536	14563	28243	25993.1	-1
8703	18239	30619	29405.5	-2
13145	20797	31904	32223.1	-3
16693	22569	32262	34411.6	-4
22862	23347	29117	34122.1	-7
21332	14906	17880	23450.9	-10
14655	5361	6021	8917.81	-13
-7087	-5221	-5297	-7193.1	-14.25

Tablo A.18: Z Yönünde, 33,34. Kazıkta Oluşan Gerilmeler.

Şekil A.20: Z Yönünde, 33,34. Kazıkta Oluşan Gerilmelerin Karşılaştırılması.

Kazıklarda Oluşan Şekil Değiştirmeler:

Kazıklarda Oluşan Şekil Değiştirme Benzerliği				
Kazık no	1,2- 3,4-37,38-39,40			
benzer sayısı	4			
Kazık no	5,6-11,12-17,18-23,24-29,30-35,36-41,42			
benzer sayısı	7			
Kazık no	7,8-9,10-15,16-21,22-31,32-27,28-33,34			
benzer sayısı 7				
Kazık no	25,26-19,20-13,14			
benzer sayısı	3			

Tablo A.19: Z Yönünde, Kazıklarda Oluşan Şekil Değiştirmelerin Benzerliği.

	Kazık No. 1,2				
EZ-CC	EZZ- HS	EZZ- Dr-Pr	EZ-E.CC	Z(m)	
-1E-05	9E-06	1E-05	6E-06	1.75	
-2E-05	2E-05	1E-05	2E-05	1.31	
-1E-04	-3E-05	-2E-05	-1E-05	0.88	
-4E-04	-2E-04	-7E-05	-1E-04	0.27	
-6E-04	-3E-04	-1E-04	-1E-04	0.23	
-8E-04	-4E-04	-2E-04	-2E-04	0.17	
-1E-03	-5E-04	-2E-04	-2E-04	0	
-4E-04	1E-05	3E-04	3E-04	-1	
1E-04	4E-04	8E-04	8E-04	-2	
5E-04	8E-04	1E-03	1E-03	-3	
9E-04	1E-03	1E-03	2E-03	-4	
1E-03	1E-03	2E-03	2E-03	-7	
1E-03	1E-03	1E-03	1E-03	-10	
7E-04	4E-04	5E-04	6E-04	-13	
-3E-04	-2E-04	-2E-04	-2E-04	-14.25	

Tablo A.20: Z Yönünde, 1,2 Kazıkta Oluşan Şekil Değiştirmeler.

Şekil A.21: Z Yönünde, 1,2 Kazıkta Oluşan Şekil Değiştirmelerin Karşılaştırılması.

	Kazık no. 3,4				
EZ-CC	EZZ- HS	EZZ- Dr-Pr	EZ- E.CC	Z(m)	
-5E-05	-2E-05	-1E-05	-2E-05	1.75	
-2E-04	-1E-04	-9E-05	-1E-04	1.18	
-2E-04	-8E-05	-7E-05	-6E-05	1.14	
-8E-05	-3E-05	-5E-05	-1E-05	1.10	
-4E-05	2E-05	-4E-05	3E-05	1.07	
-5E-04	-3E-04	-2E-04	-3E-04	0.53	
-2E-03	-7E-04	-2E-04	-1E-03	0	
-5E-04	2E-04	8E-04	-6E-05	-1	
3E-04	9E-04	2E-03	9E-04	-2	
8E-04	1E-03	2E-03	2E-03	-3	
1E-03	2E-03	2E-03	2E-03	-4	
1E-03	2E-03	2E-03	3E-03	-7	
1E-03	1E-03	2E-03	2E-03	-10	
7E-04	5E-04	8E-04	1E-03	-13	
-4E-04	-3E-04	-3E-04	-4E-04	-14.25	

Tablo A.21: Z Yönünde, 3,4 Kazıkta Oluşan Şekil Değiştirmeler.

Şekil A.22: Z Yönünde, 3,4 Kazıkta Oluşan Şekil Değiştirmelerin Karşılaştırılması.

Kazık no. 5,6					
EZZ- CC	EZZ- HS	EZZ-Dr-Pr	Z(m)		
4E-05	6E-05	6E-05	1.75		
4E-05	8E-05	7E-05	1.10		
2E-05	6E-05	5E-05	0.98		
3E-05	8E-05	7E-05	0.94		
-3E-05	9E-05	6E-05	0.78		
-5E-04	-5E-04	-6E-04	0.50		
-9E-04	-8E-04	-1E-03	0.40		
-1E-03	-1E-03	-1E-03	0.35		
-3E-03	-3E-03	-3E-03	0		
-1E-03	-1E-03	-2E-03	-1		
1E-04	1E-04	-2E-05	-2		
1E-03	1E-03	1E-03	-3		
2E-03	2E-03	2E-03	-4		
2E-03	3E-03	3E-03	-7		
1E-03	2E-03	2E-03	-10		
7E-04	5E-04	8E-04	-13		
-2E-04	-9E-06	-4E-05	-14.25		

Tablo A.22: Z Yönünde, 5,6 Kazıkta Oluşan Şekil Değiştirmeler.

Şekil A.23: Z Yönünde, 5,6 Kazıkta Oluşan Şekil Değiştirmelerin Karşılaştırılması.

	Kazık no. 13,14				
EZZ- CC	EZZ- HS	EZZ- Dr-Pr	EZ- E.CC	Z(m)	
-7E-05	-1E-05	-1E-05	-1E-05	1.75	
-6E-05	2E-05	3E-05	3E-05	1.299	
-9E-05	-3E-06	3E-06	5E-06	1.256	
-6E-05	1E-05	3E-05	-5E-05	0.981	
2E-04	2E-04	3E-04	2E-04	0.751	
-4E-04	-3E-04	-4E-04	-3E-04	0.466	
4E-04	2E-03	3E-03	1E-03	0	
4E-04	2E-03	3E-03	1E-03	-1	
4E-04	1E-03	2E-03	1E-03	-2	
5E-04	1E-03	2E-03	1E-03	-3	
6E-04	9E-04	2E-03	2E-03	-4	
9E-04	6E-04	1E-03	2E-03	-7	
1E-03	8E-04	1E-03	2E-03	-10	
7E-04	5E-04	7E-04	1E-03	-13	
-4E-04	-3E-04	-3E-04	-5E-04	-14.25	

 Tablo A.23:
 Z Yönünde, 13,14 Kazıkta Oluşan Şekil Değiştirmeler.

Şekil A.24: Z Yönünde, 13,14 Kazıkta Oluşan Şekil Değiştirmelerin Karşılaştırılması.

Kazık no. 17,18					
EZZ- CC	EZZ- CC HS		Z(m)		
5E-05	7E-05	6E-05	1.75		
-4E-05	-7E-05	-6E-05	1.17		
2E-04	3E-04	3E-04	0.88		
1E-04	2E-04	2E-04	0.67		
2E-05	7E-05	5E-05	0.63		
-4E-05	-1E-05	-2E-05	0.60		
-9E-05	-7E-05	-9E-05	0.52		
2E-04	3E-04	3E-04	0.36		
-6E-04	-8E-04	-9E-04	0.15		
-1E-03	-2E-03	-2E-03	0		
-4E-04	-7E-04	-7E-04	-1		
5E-04	4E-04	4E-04	-2		
1E-03	1E-03	1E-03	-3		
2E-03	2E-03	2E-03	-4		
2E-03	2E-03	2E-03	-7		
5E-04	8E-04	1E-03	-10		
4E-05	6E-05	2E-04	-13		
-2E-04	-7E-05	-1E-04	-14.25		

Tablo A.24: Z Yönünde, 17,18. Kazıkta Oluşan Şekil Değiştirmeler.

Şekil A.25: Z Yönünde, 17,18. Kazıkta Oluşan Şekil Değiştirmelerin Karşılaştırılması.

Kazık no. 19,20				
EZZ- CC	EZZ- HS	EZZ- Dr-Pr	Z(m)	
-3E-05	-8E-06	-7E-06	1.75	
-6E-05	-4E-05	-5E-05	1.30	
-5E-05	1E-06	7E-06	1.23	
-9E-05	-4E-05	-4E-05	0.995	
-2E-04	-8E-05	-1E-04	0.957	
-2E-04	-9E-05	-1E-04	0.761	
-2E-04	-9E-05	-1E-04	0.694	
-9E-05	-3E-05	-3E-05	0.633	
-1E-04	-1E-04	-2E-04	0.521	
4E-04	2E-03	3E-03	0	
3E-04	2E-03	3E-03	-1	
4E-04	1E-03	2E-03	-2	
5E-04	1E-03	2E-03	-3	
6E-04	9E-04	2E-03	-4	
1E-03	8E-04	1E-03	-7	
1E-03	1E-03	1E-03	-10	
9E-04	7E-04	9E-04	-13	
-4E-04	-3E-04	-3E-04	-14.25	

Tablo A.25: Z Yönünde, 19,20. Kazıkta Oluşan Şekil Değiştirmeler.

Şekil A.26. : Z Yönünde, 19,20. Kazıkta Oluşan Şekil Değiştirmelerin Karşılaştırılması.

Kazık no. 31,32				
EZZ- CC	EZZ- HS	EZZ- Dr-Pr	Z(m)	
-6E-05	-3E-05	-2E-05	1.75	
-7E-05	-3E-05	-3E-05	1.231	
-2E-04	-9E-05	-9E-05	1.090	
-2E-04	-9E-05	-9E-05	1.041	
-7E-05	1E-05	2E-05	0.926	
-1E-04	1E-04	3E-04	0.464	
-6E-05	2E-04	5E-04	0.441	
-9E-05	3E-04	5E-04	0.433	
-5E-04	8E-04	2E-03	0	
-2E-05	1E-03	2E-03	-1	
4E-04	1E-03	2E-03	-2	
6E-04	1E-03	2E-03	-3	
8E-04	1E-03	2E-03	-4	
1E-03	9E-04	1E-03	-7	
1E-03	8E-04	1E-03	-10	
6E-04	4E-04	6E-04	-13	
-4E-04	-2E-04	-2E-04	-14.25	

Tablo A.26: Z Yönünde, 31,32. Kazıkta Oluşan Şekil Değiştirmeler.

Şekil A.27: Z Yönünde, 31,32. Kazıkta Oluşan Şekil Değiştirmelerin Karşılaştırılması.
Kazık no. 33,34				
EZZ- CC	EZZ- HS	EZZ- Dr-Pr	EZ- E.CC	Z(m)
1E-05	2E-05	2E-05	1E-05	1.75
-3E-04	-3E-04	-3E-04	-3E-04	1.685
4E-03	3E-03	3E-03	3E-03	1.471
8E-04	7E-04	8E-04	7E-04	1.361
2E-03	2E-03	2E-03	2E-03	0.968
4E-04	4E-04	4E-04	3E-04	0.766
3E-04	3E-04	3E-04	3E-04	0.538
-3E-04	-2E-04	-1E-04	-2E-04	0.456
-7E-05	4E-04	1E-03	8E-04	0
1E-04	6E-04	1E-03	1E-03	-1
3E-04	7E-04	1E-03	1E-03	-2
5E-04	8E-04	1E-03	1E-03	-3
6E-04	9E-04	1E-03	1E-03	-4
9E-04	9E-04	1E-03	1E-03	-7
8E-04	6E-04	7E-04	9E-04	-10
6E-04	2E-04	2E-04	3E-04	-13
-3E-04	-2E-04	-2E-04	-3E-04	-14.25

Tablo A.27: Z Yönünde, 33,34. Kazıkta Oluşan Şekil Değiştirmeler.

Şekil A.28: Z Yönünde, 33,34. Kazıkta Oluşan Şekil Değiştirmelerin Karşılaştırılması.

Kazıklarda X Yönünde Oluşan Kuvvetler:

X Yönünde Kazıklarda Oluşan Normal kuvvetler					
Kazık no	azik no 1,2-9,10-11,12-15,16-21,22-27,28-33,34-39,40				
benzer sayısı 8					
Kazık no	zik no 3,4-7,8-13,14-19,20-25,26-31,32-37,38				
benzer sayısı		7			
Kazk no 5,6-17,18-23,24-29,30-35,36-41,42					
benzer	sayısı	6			

Tablo A.28: X Yönünde, Kazıklarda Oluşan Kuvvetler.

Tablo A.29: X Yönünde, 1,2. Kazıkta Oluşan Kuvvetler.

Kazık no. 1,2; Nx(kN)				
Nx-CC	Nx-HS	Nx-Dr- Pr	Nx- E.CC	Z(m)
-114	191	208	115	1.75
-175	414	413	336	1.31
-359	870	846	745	0.88
-418	1302	1362	871	0.27
-425	1379	1453	893	0.23
-503	1545	1642	960	0.17
-658	1732	1836	1062	0
-756	1727	1830	1057	-1
-919	1588	1686	937	-2
-1152	1401	1493	769	-3
-1703	1126	1213	526	-4
-2444	-1084	-1041	-1662	-7
-2622	-1990	-2002	-2331	-10
-4151	-3848	-3908	-4344	-13
-4155	-3854	-3915	-4350	-14.25

Şekil A.29: X Yönünde, 1,2. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık no.5,6; Nx(kN)					
Nx-CC	Nx-HS	Nx-Dr- Pr	Z(m)		
597	1293	1223	1.75		
1202	2515	2402	1.10		
1357	2824	2701	0.98		
1555	3225	3088	0.94		
2104	4312	4139	0.78		
2778	5626	5412	0.50		
3072	6196	5960	0.40		
3888	7794	7501	0.35		
5209	10351	9984	0		
5207	10345	9978	-1		
4964	10043	9656	-2		
4712	9672	9254	-3		
4309	9107	8662	-4		
3102	7011	6540	-7		
1328	4088	3615	-10		
-2795	1551	1127	-13		
-2798	-178	-874	-14.25		

 Tablo A.30:
 X Yönünde, 5,6. Kazıkta Oluşan Kuvvetler.

Şekil A.30: X Yönünde, 5,6. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık no.7,8; Nx(kN)					
Nx-CC	Nx-HS	Nx-Dr- Pr	Z(m)		
-1256	-651	-652	1.75		
-1388	-806	-779	1.36		
-1446	-866	-828	1.23		
-1521	-946	-896	1.18		
-1701	-1094	-1003	0.99		
-2535	-1711	-1437	0.80		
-4664	-3199	-2753	0		
-4667	-3204	-2759	-1		
-4855	-3458	-3056	-2		
-5050	-3714	-3304	-3		
-5163	-4142	-3755	-4		
-5171	-4450	-4219	-7		
-4968	-4466	-4237	-10		
-5270	-5063	-5071	-13		
-5273	-5070	-5078	-14.25		

Tablo A.31: X Yönünde, 7,8. Kazıkta Oluşan Kuvvetler.

Şekil A.31: X Yönünde, 7,8. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık no.11,12; Nx(kN)				
Nx-CC	Nx-HS	Nx-Dr- Pr	Z(m)	
486	926	879	1.75	
679	1298	1234	1.51	
965	1886	1791	1.13	
1082	2124	2017	1.01	
1258	2476	2352	0.94	
1469	2876	2733	0.77	
1685	3289	3124	0.72	
1941	3795	3606	0.54	
2234	4389	4176	0.51	
2717	5310	5070	0.32	
3243	6323	6054	0.19	
3844	7539	7235	0	
3841	7533	7229	-1	
3632	7279	6983	-2	
3452	7034	6721	-3	
3167	6608	6269	-4	
833	2787	2448	-7	
825	2771	2431	-10	
-2964	-1098	-1694	-13	
-2967	-1105	-1702	-14.25	

Tablo A.32: X Yönünde, 11,12. Kazıkta Oluşan Kuvvetler.

Şekil A.32: X Yönünde, 11,12. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık no.35,36; Nx(kN)				
Nx-CC	Nx-HS	Nx-Dr- Pr	Z(m)	
547	1363	1314	1.75	
655	1514	1450	1.403	
713	1615	1544	1.316	
781	1730	1651	1.230	
1002	2107	2003	1.131	
1511	3204	3040	0.726	
1782	3775	3578	0.619	
1968	4162	3941	0.491	
2006	4243	4017	0.475	
2044	4322	4091	0.462	
2242	4738	4482	0.447	
2844	5777	5460	0.318	
3656	7479	7081	0	
3653	7474	7075	-1	
3419	7212	6807	-2	
3265	6966	6566	-3	
2994	6555	6132	-4	
2098	4998	4575	-7	
722	2814	2409	-10	
-2967	-870	-1538	-13	
-2970	-876	-1545	-14.25	

Tablo A.33: X Yönünde, 35,36. Kazıkta Oluşan Kuvvetler.

Şekil A.33: X Yönünde, 35,36. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık no.37,38; Nx(kN)				
Nx-CC	Nx-HS	Nx- E.CC	Nx-Dr- Pr	Z(m)
-1000	-437	-559	-346	1.75
-1437	-598	-757	-466	1.218
-1599	-656	-835	-509	1.098
-1684	-686	-877	-530	1.009
-1774	-717	-921	-553	1.001
-2338	-918	-1226	-694	0.907
-3916	-1472	-2118	-1025	0.429
-5415	-2023	-2696	-1356	0
-5418	-2029	-2809	-1361	-1
-5497	-2215	-3044	-1587	-2
-5683	-2509	-3344	-1891	-3
-5793	-3296	-4313	-2778	-4
-5801	-4201	-5486	-3917	-7
-5441	-4217	-5500	-3934	-10
-5448	-5093	-8662	-5098	-13
-5452	-5099	-8668	-5105	-14.25

Tablo A.34: X Yönünde, 37,38. Kazıkta Oluşan Kuvvetler.

Şekil A.34: X Yönünde, 37,38. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazıklarda Y Yönünde Oluşan Kuvvetler:

Kazıklarda Oluşan Normal kuvvetler					
Kazık no	Kazık no 1,2-5,6-11,12-17,18-23,24-29,30-33,34-35,36-37,38-39,40-41,42				
Benzer sayısı 11					
Kazık no		7,8-13,14-15,16-19,20-25,26-27,28-31,32-21,22-9,10-3,4			
Benzer	sayısı	10			

Tablo A.35: Y Yönünde, Kazıklarda Oluşan Kuvvetler.

Kazık no. 3,4; Ny(kN)				
Ny-CC	Ny-HS	Ny-Dr- Pr	Z(m)	
-376	-382	-299	1.75	
1264	2182	1026	1.18	
2248	3012	1292	1.14	
3602	3995	1605	1.10	
3602	3995	1605	1.07	
-689	-2148	-555	0.53	
1975	2342	2607	0	
1975	2342	2607	-1	
1531	1852	2029	-2	
865	1153	1232	-3	
414	670	718	-4	
-215	-396	-478	-7	
-523	-519	-787	-10	
-523	-519	-2029	-13	
-1728	-1386	-2029	-14.25	

Tablo A.36: Y Yönünde, 3,4. Kazıkta Oluşan Kuvvetler.

Şekil A.35: Y Yönünde, 3,4. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık no. 15,16; Ny(kN)				
Ny-CC	Ny-HS	Ny-Dr- Pr	Z(m)	
-42	-17	-139	1.75	
224	223	402	1.31	
1510	1316	3025	0.91	
1510	1316	3025	0	
354	438	323	-1	
332	391	242	-2	
202	278	120	-3	
76	-30	-148	-4	
-229	-415	-538	-7	
-229	-415	-538	-10	
-1026	-283	-357	-13	
-1026	-283	-352	-14.25	

Tablo A.37: Y Yönünde, 15,16. Kazıkta Oluşan Kuvvetler.

Şekil A.36: Y Yönünde, 15,16. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık no. 35,36; Ny (kN)				
Ny-CC	Ny-HS	Ny-Dr- Pr	Ny- E.CC	Z(m)
116	-42	-36	-170	1.75
-364	258	288	1123	1.40
-364	258	288	1123	1.32
-60	-965	-846	-1688	1.23
-371	-965	-846	-1688	1.13
1047	1698	1781	3078	0.73
-2579	-3544	-3781	3078	0.62
-5371	-6854	-7679	-5811	0.49
-5371	-6854	-7679	-5811	0.48
-5213	-6703	-7495	-5517	0.46
-4822	-6396	-7071	-5171	0.45
-766	-14960	-16234	-11964	0.32
2302	-14960	-16234	-11964	0
2302	2901	3171	2887	-1
2116	2657	2925	2477	-2
1729	2205	2454	2003	-3
1268	1740	1973	1561	-4
-470	-717	-748	-795	-7
-475	-717	-748	-795	-10
-1058	-627	-1027	-612	-13
-1058	-627	-1027	-612	-14.25

Tablo A.38: Y Yönünde, 35,36. Kazıkta Oluşan Kuvvetler.

Şekil A.37: Y Yönünde, 35,36. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık no. 37,38; Ny(kN)					
Ny-CC	Ny-HS	Ny-Dr- Pr	Z(m)		
52	-48	-16	1.75		
-533	-332	-373	1.22		
-917	-780	-1051	1.10		
-917	-780	-1051	1.01		
-364	-251	-583	1.00		
-1043	-2291	-1973	0.91		
-1417	-2698	-1973	0.43		
2266	-2698	3013	0		
2266	2686	3013	-1		
1764	2137	2382	-2		
1041	1373	1514	-3		
543	825	916	-4		
-258	-457	-539	-7		
-577	-568	-840	-10		
-1652	-1283	-1933	-13		
-1652	-1283	-1933	-14.25		

Tablo A.39: Y Yönünde, 37,38. Kazıkta Oluşan Kuvvetler.

Şekil A.38: Y Yönünde, 37,38. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazıklarda Z Yönünde Oluşan Kuvvetler:

Kazıklarda Oluşan Normal kuvvetler				
Kazık no	Kazık no 1,2-3,4-5,6-7,8-9,10-11,12-15,16-17,18-19,20-23,24-25,26-27,28-33,34-41,42			
Benzer sayisi 14				
Kazık no	Kazk no 13,14-21,22-29,30-31,32-37,38-35,36-39,40			
Benzer sa	yısı	7		

Tablo A.40: Z Yönünde, Kazıklarda Oluşan Kuvvetler.

Kazık no. 1,2; Nz(kN)				
Nz-CC	Nz-HS	Nz-Dr- Pr	Nz- E.CC	Z(m)
-29	-2	-8	17	1.75
196	389	428	318	1.31
545	1510	1678	1187	0.88
2564	12654	14090	10489	0.27
2564	12654	14090	10489	0.23
1332	7095	7723	6532	0.17
1149	4191	4513	3824	0
-419	-1248	-1382	-1047	-1
-370	-1099	-1215	-871	-2
-245	-852	-941	-688	-3
-125	-631	-696	-521	-4
198	383	410	353	-7
198	383	410	353	-10
-392	-360	-350	-584	-13
-392	-360	-350	-584	-14.25

Tablo A.41: Z Yönünde, 1,2. Kazıkta Oluşan Kuvvetler.

Şekil A.39: Z Yönünde, 1,2. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık no. 5,6; Nz(kN)					
Nz-CC	Nz-HS	Nz-Dr- Pr	Nz- E.CC	Z(m)	
61	109	114	118	1.75	
-190	109	-140	118	1.10	
-190	-938	-722	-1309	0.98	
-188	-938	-722	-1309	0.94	
-625	852	651	788	0.78	
-2439	852	651	788	0.50	
-2439	1987	1406	1721	0.40	
-1555	2621	2200	2353	0.35	
-961	2621	2200	2353	0	
293	-609	-552	-636	-1	
293	-473	-402	-486	-2	
288	-361	-278	-384	-3	
237	-317	-240	-303	-4	
152	150	162	238	-7	
-59	150	162	238	-10	
-531	-244	-377	-595	-13	
-531	-244	-377	-595	-14.25	

Şekil A.40: Z Yönünde, 5,6. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık no. 9,10; Nz(kN)				
Nz-CC	Nz-HS	Nz-Dr- Pr	Nz- E.CC	Z(m)
490	309	369	74	1.75
490	309	369	-153	1.611
936	833	891	554	1.440
936	833	891	796	1.319
-202	-585	-550	-808	1.128
-233	-609	-581	-813	0.944
352	-609	-581	-813	0.781
-584	336	92	905	0.777
-584	336	-143	905	0
104	-148	-143	-265	-1
139	-69	-59	-206	-2
139	-33	10	-149	-3
135	-33	49	-101	-4
122	78	102	125	-7
122	78	102	125	-10
-415	-247	-305	-434	-13
-415	-247	-305	-434	-14.25

Tablo A.43: Z Yönünde, 9,10. Kazıkta Oluşan Kuvvetler.

Şekil A.41: Z Yönünde, 9,10. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık no. 15,16; Nz(kN)				
Nz-CC	Nz-HS	Nz-Dr- Pr	Z(m)	Nz- E.CC
-16	-74	-73	1.75	-114
-29	-74	-73	1.31	-114
-62	407	382	0.91	1101
-85	407	382	0	1101
-85	-163	-211	-1	-453
-36	-116	-132	-2	-367
45	-80	-84	-3	-281
55	-59	-56	-4	-207
146	94	109	-7	227
146	94	109	-10	227
-254	-129	-146	-13	-490
-254	-129	-146	-14.25	-490

Tablo A.44: Z Yönünde, 15,16. Kazıkta Oluşan Kuvvetler.

Şekil A.42: Z Yönünde, 15,16. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık no. 35,36; Nz(kN)				
Nz-CC	Nz-HS	Nz-Dr- Pr	Z(m)	
113	130	151	1.75	
226	157	151	1.403	
-506	-1207	-1264	1.316	
-506	-1207	-1264	1.230	
-301	-468	-311	1.131	
1304	1408	1579	0.726	
1304	1408	1579	0.619	
-1067	432	611	0.491	
-1188	111	-499	0.475	
-1463	-486	-1037	0.462	
-1711	-2648	-2925	0.447	
-1711	-3321	-3079	0.318	
-291	-3321	-3079	0	
236	640	686	-1	
167	560	611	-2	
97	444	480	-3	
-62	352	371	-4	
-118	-203	-219	-7	
-118	-203	-219	-10	
195	121	-124	-13	
195	121	60	-14.25	

Tablo A.45: Z Yönünde, 35,36. Kazıkta Oluşan Kuvvetler.

Şekil A.43: Z Yönünde, 35,36. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık no. 37,38; Nz(kN)				
Nz-CC	Nz-CC Nz-HS		Z(m)	
-181	-134	-146	1.75	
-181	-324	-501	1.218	
-239	-360	-501	1.098	
-372	-360	-500	1.009	
-372	233	231	1.001	
-1157	-2907	-3389	0.907	
-2492	-5960	-7211	0.429	
-2492	-5960	-7211	0	
817	1766	2100	-1	
660	1534	1806	-2	
440	1213	1425	-3	
255	915	1078	-4	
-163	-451	-447	-7	
-163	-451	-447	-10	
149	-238	-306	-13	
149	144	-9	-14.25	

Tablo A.46: Z Yönünde, 37,38. Kazıkta Oluşan Kuvvetler.

Şekil A.44: Z Yönünde, 37,38. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık no. 39,40; Nz(kN)				
Nz-CC	Nz-HS	Nz-Dr- Pr	Z(m)	
96	60	57	1.75	
-1748	-1750	-1762	1.284	
-1748	-1750	-1762	1.131	
775	-724	-783	1.002	
724	-724	-783	0.893	
1136	933	664	0.867	
1136	933	907	0.807	
1016	-958	-912	0.686	
-1519	-5020	-5606	0.571	
-1519	-5064	-5761	0.469	
-1014	-5064	-5761	0.434	
-821	-3523	-3697	0	
333	1138	1271	-1	
283	1006	1110	-2	
177	787	870	-3	
88	606	675	-4	
-170	-368	-404	-7	
-170	-368	-404	-10	
268	230	185	-13	
268	230	185	-14.25	

Tablo A.47: Z Yönünde, 39,40. Kazıkta Oluşan Kuvvetler.

Şekil A.45: Z Yönünde, 39,40. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Y-Yönünde Kazıklarda oluşan momentler:

Kazıklarda Oluşan Momentler				
Kazık no 17,18-25,26-27,28-31,32-33,34-35,36-37,38-39,40-41,42				
, 9				
Kazık no		1,2-3,4-5,6-7,8-9,10-11,12-13,14-15,16-19,20-21,22-23,24-29,30		
benzer sa	ayısı	12		

Tablo A.48: Y Yönünde, kazıklarda oluşan momentler.

Kazık no. 1.2: Mv(kN-m)				
My-CC	My-HS	My-Dr- Pr	My- E.CC	Z(m)
-7E-10	7E-10	2E-09	2E-09	1.75
-13	-1	-3	8	1.31
73	169	184	147	0.88
401	1079	1195	862	0.27
509	1609	1785	1301	0.23
596	2071	2288	1726	0.17
786	2765	3035	2360	0.00
367	1517	1653	1313	-1.0
-3	417	438	443	-2.0
-248	-434	-504	-245	-3.0
-373	-1065	-1200	-767	-4.0
-88	-1153	-1366	-524	-7.0
507	-2	-138	534	-10.0
490	449	438	730	-13.0
2E-10	-1E-09	-4E-10	-1E-10	-14.3

Tablo A.49: Y Yönünde, 1,2. Kazıkta Oluşan Momentler.

Şekil A.46: Y Yönünde, 1,2. Kazıkta Oluşan Momentlerin Karşılaştırılması.

Kazık no. 5,6; My(kN-m)				
My-CC	My-HS	My-Dr- Pr	Z(m)	My-E.CC
2E-09	-7E-10	-2E-09	1.75	2.09758E-09
39	71	74	1.10	76
17	67	57	0.98	69
9	23	23	0.94	7
-20	62	60	0.78	59
-199	306	246	0.50	285
-442	382	268	0.40	314
-522	485	341	0.35	403
-855	1391	1101	0.00	1216
-592	782	550	-1	580
-299	309	148	-2	94
-11	-52	-130	-3	-290
226	-369	-371	-4	-593
682	-463	-307	-7	-89
842	-13	180	-10	625
664	305	471	-13	744
1E-10	9E-11	-4E-10	-14.25	4.47471E-10

Tablo A.50: Y Yönünde, 5,6. Kazıkta Oluşan Momentler.

Şekil A.47: Y Yönünde, 5,6. Kazıkta Oluşan Momentlerin Karşılaştırılması.

Kazık no. 15,16; My(kN-m)					
My-CC	My-HS	My-Dr- Pr	My- E.CC	Z(m)	
6E-10	-5E-09	-3E-09	5E-10	1.75	
-7	-33	-32	-50	1.31	
-19	-39	-40	-31	0.91	
-74	329	306	966	0	
-159	166	95	513	-1	
-195	50	-37	146	-2	
-184	-30	-121	-135	-3	
-140	-89	-177	-343	-4	
26	-165	-179	-269	-7	
465	116	147	410	-10	
318	161	182	613	-13	
-2E-10	9E-13	-4E-10	6E-10	-14.25	

Tablo A.51: Y Yönünde, 15,16. Kazıkta Oluşan Momentler.

Şekil A.48: Y- Yönünde, 15,16. Kazıkta Oluşan Momentler Karşılaştırılması.

Kazık no. 25,26; My(kN-m)					
My-CC	My-HS	My-Dr-Pr	My-E.CC	Z(m)	
4E-09	4E-09	-7E-09	-9.30488E-10	1.75	
-39	28	28	67	1.304	
150	-19	-9	-135	0.847	
-148	-14	-20	93	0.750	
-112	-171	-193	-177	0.635	
-14	-257	-288	-371	0.603	
202	164	197	214	0.499	
214	-637	-705	-873	0	
176	-373	-425	-514	-1	
125	-139	-155	-201	-2	
73	76	118	64	-3	
15	253	381	283	-4	
-88	570	829	390	-7	
-440	170	295	-133	-10	
-249	-147	-168	-483	-13	
-4E-10	-7E-10	4E-10	1.73941E-10	-14.25	

Tablo A.52: Y Yönünde, 25,26. Kazıkta Oluşan Momentler.

Şekil A.49: Y Yönünde, 25,26. Kazıkta Oluşan Momentler Karşılaştırılması.

Kazık no. 37,38; My(kN-m)					
My-CC	My-HS	My-Dr- Pr	Z(m)		
4E-09	1E-09	1E-10	1.75		
-96	-71	-78	1.218		
-99	-110	-138	1.098		
-120	-142	-182	1.009		
-123	-142	-183	1.001		
-100	-120	-161	0.907		
-653	-1509	-1780	0.429		
-1721	-4064	-4872	0		
-904	-2298	-2772	-1		
-244	-764	-966	-2		
196	449	458	-3		
450	1364	1536	-4		
402	1888	2270	-7		
-86	535	929	-10		
-187	-180	11	-13		
2E-10	-4E-10	7E-10	-14.25		

Tablo A.53: Y Yönünde, 37,38. Kazıkta Oluşan Momentler.

Şekil B.50: Y Yönünde, 37,38. Kazıkta Oluşan Momentler Karşılaştırılması.

Kazık no. 41,42; My(kN-m)				
My-CC	My-HS	My-Dr- Pr	My-E.CC	Z(m)
-1E-09	-2E-09	7E-10	9.99548E-10	1.75
0	-34	-25	-17	1.098
72	-259	-224	-303	0.690
15	146	151	264	0.634
676	-67	137	99	0.342
754	-87	140	96	0.325
1260	-615	-153	-315	0
899	-223	167	43	-1
525	50	358	286	-2
164	228	448	449	-3
-143	380	510	547	-4
-744	346	256	-3	-7
-942	-51	-249	-586	-10
-730	-308	-477	-636	-13
-3E-11	-5E-10	-8E-11	4.37126E-10	-14.25

Tablo A.54: Y Yönünde, 41,42. Kazıkta Oluşan Momentler.

Şekil A.51: Y Yönünde, 41,42. Kazıkta Oluşan Momentler Karşılaştırılması.

Z-Yönünde Kazıklarda oluşan momentler:

Kazıklarda Oluşan Normal Momentler					
Kazık no	Kazik no 5,6-11,12-17,18-23,24-29,30-35,36-41,42				
benzer say	sayısı 7				
Kazık no	Kazik no 1,2-3,4-7,8-9,10-13,14-15,16-19,20-21,22-25,26-27,28-31,32-33,34-37,38-39,40				
benzer	benzer sayısı 14				

Kazık no. 1,2; Mz(kN-m)				
Mz-CC	Mz-HS	Mz-DP	Mz- E.CC	Z(m)
-1E-10	2E-09	3E-09	1E-09	1.75
-35	-11	-18	0.3	1.31
-110	-116	-91	-69	0.88
-185	-581	-287	-393	0.27
-471	-930	-467	-479	0.23
-662	-1226	-646	-618	0.17
-709	-1414	-615	-577	0.00
344	-179	643	722	-1.0
1280	934	1781	1914	-2.0
2042	1866	2726	2956	-3.0
2621	2604	3464	3848	-4.0
3285	3408	4187	4861	-7.0
2852	2639	3265	3809	-10.0
1713	1334	1649	1839	-13.0
4E-11	-4E-10	-2E-10	4E-10	-14.3

Tablo A.56: Z Yönünde, 1,2. Kazıkta Oluşan Momentler.

Şekil A.52: Z Yönünde, 1,2. Kazıkta Oluşan Momentler Karşılaştırılması.

Kazık no. 5,6; Mz(kN-m)						
Mz-CC	Mz-HS	Mz-DP	Z(m)			
3E-10	-1E-09	2E-09	1.75			
-92	-100	-115	1.10			
-113	-206	-202	0.98			
-143	-189	-219	0.94			
-286	-312	-368	0.78			
-1495	-1693	-1991	0.50			
-2433	-2750	-3252	0.40			
-2995	-3441	-4053	0.35			
-6888	-8305	-9688	0			
-3553	-4428	-5278	-1			
-535	-902	-1210	-2			
1874	1986	2199	-3			
3672	4282	4963	-4			
5499	5862	7294	-7			
3983	3401	4740	-10			
1872	1194	1916	-13			
7E-12	-1E-10	-1E-10	-14.25			

Tablo A.57: Z Yönünde, 5,6. Kazıkta Oluşan Momentler.

Şekil A.53: Z Yönünde, 5,6. Kazıkta Oluşan Momentler Karşılaştırılması.

Kazık no. 9,10; Mz(kN-m)				
Mz-CC	Mz-HS	Mz- E.CC	Mz-DP	Z(m)
-5E-10	5E-08	1E-08	1E-08	1.75
1710	2035	1936	2010	1.61
1226	1435	1418	1447	1.44
2785	3302	3183	3287	1.32
973	1259	1373	1314	1.13
950	1174	1173	1163	0.94
955	1104	976	1048	0.78
950	1097	966	1040	0.78
1538	1343	2638	2901	0
1750	1583	2883	2996	-1
1957	1804	3104	3060	-2
2125	1973	3291	3072	-3
2250	2101	3435	3028	-4
2336	2241	3404	2740	-7
1999	1654	2561	1882	-10
1364	852	1277	923	-13
1E-10	-6E-11	-5E-10	3E-10	-14.25

Tablo A.58: Z Yönünde, 9,10. Kazıkta Oluşan Momentler.

Şekil A.54: Z Yönünde, 9,10. Kazıkta Oluşan Momentler Karşılaştırılması.

Kazık no. 13,14; Mz(kN-m)					
Mz-CC	Mz-HS	Mz- E.CC	Mz-DP	Z(m)	
-1E-11	9E-10	-8E-10	-1E-09	1.75	
21	87	115	109	1.30	
-25	41	69	46	1.26	
159	76	-12	111	0.98	
732	681	547	747	0.75	
-590	-649	-575	-794	0.47	
4460	5053	3354	8624	0	
4135	4444	3590	7426	-1	
3814	3856	3869	6286	-2	
3486	3235	4154	5170	-3	
3187	2629	4430	4163	-4	
2900	2053	5586	3078	-7	
3112	2446	6225	3295	-10	
1879	1849	4273	2302	-13	
8E-11	1E-09	3E-10	-2E-10	-14.25	

Tablo A.59: Z Yönünde, 13,14. Kazıkta Oluşan Momentler.

Şekil A.55: Z Yönünde, 13,14. Kazıkta Oluşan Momentler Karşılaştırılması.

12.EKLER

EK B. 1 Kocaeli(1999) Deprem İvmesinin Analiz Sonuçları

Kocaeli(1999) deprem ivmesinin 10.30 saniyedeki analiz sonuçları aşağıda verilmektedir:

Zeminde tabakalarında ve yapıda oluşan deplasmanlar:

10.30 saniye için ; Td X (m)-Z(m)						
$\Delta(m)$ -hs	Z(m)	$\Delta(m)$ -cc	$\Delta(m)$ –Dr-Pr			
-0.01	11.891	-0.02	-0.005			
0.01	10.55	0.01	0.004			
0.00	10.25	-0.01	-0.002			
-0.06	9.75	-0.08	-0.022			
-4.76	1.75	-10.65	-2.36			
0.00	0	0.03	0.008			
-0.01	-1	0.02	0.005			
-0.01	-2	0.01	0.002			
-0.02	-3	0.00	0.002			
-0.12	-4	-0.23	0.001			
-0.28	-10	-1.17	-0.289			
0.24	-16	1.31	0.055			
4.97	-26.5	10.65	2.58			

Tablo B.1: X Yönünde, Zemin ve Yapıda Oluşan Deplasmanlar.

Şekil B.1: X Yönünde Oluşan Deplasmanlar.

10.30 saniye için ; Td Y (m)-Z(m)								
$\Delta(m)$ -hs	Z(m)	$\Delta(m)$ -cc	$\Delta(m)$ –Dr-Pr					
-0.68	11.891	-1.03	-0.28					
-0.15	10.55	-0.23	-0.06					
-0.25	10.25	-0.38	-0.10					
-4.12	9.75	-6.07	-1.67					
-8.49	1.75	-14.28	-3.33					
-0.67	0	-1.31	-0.32					
-1.16	-4	-2.70	-0.57					
-1.56	-10	-3.14	-0.80					
-0.92	-16	-1.35	-0.54					
4.11	-26.5	9.09	2.18					

Tablo B.2: Y Yönünde, Zemin ve Yapıda Oluşan Deplasmanlar.

Şekil B.2: Y Yönünde Oluşan Deplasmanlar.

10.30	(cc+Mohr c)/2				
Δ (m)-hs	Z(m)	Δ (m)-cc	Δ (m)-Dr-Pr	ORTA	
0.15	11.891	0.23	0.06	0.15	
0.00	10.55	0.00	0.00	0.00	
-0.25	10.25	-0.38	-0.11	-0.24	
1.58	9.75	2.43	0.64	1.53	
3.77	1.75	9.39	1.93	5.66	
-0.001	0	-0.004	0.00	0.00	
-0.003	-1	-0.015	0.00	-0.01	
-0.003	-2	-0.029	-0.01	-0.02	
-0.007	-3	-0.046	-0.02	-0.03	
-0.528	-4	-1.803	-0.28	-1.04	
-1.245	-10	-3.372	-0.59	-1.98	
-4.462	-16	-9.877	-2.26	-6.07	
-1.356	-26.5	-2.833	-0.70	-1.77	

Tablo B.3: Z Yönünde, Zemin ve Yapıda Oluşan Deplasmanlar(Oturmalar).

Şekil B.3: Z Yönünde Oluşan Deplasmanlar(Oturmalar).

Zeminde ve Yapıda Oluşan Gerilmeler:

Tablo B.4: X Yönünde, Zemin ve Yapıda Oluşan Gerilmeler.

Kocaeli depreminde oluşan Gerilmeler, σ									
Cam Clay - KE		Cam Clay - HS		Drucker Prager					
Z(m)	Sx- maks-KE- CC	Sx- min-KE- CC	Sx- maks-KE- Hs	Sx- min-KE-Hs	Sx- maks-KE- Dr-Pr	Sx- min-KE-Dr-Pr			
11.891	541	-83	542	-82	384	-58			
10.55	-3854	3044	-3855	2936	-2619	2159			
10.25	359	-305	358	-306	254	-217			
9.75	-3230	3113	-3240	3123	-2296	2214			
1.75	42862	-34083	-56582	43735	-40107	28933			
0	23427	-20079	-21263	16080	12816	-10352			
-4	-247	179	-460	195	-186	123			
-10	-377.59	83.9875	-199	122	-220	104			
-16	-1093	369	-810	243	-685	201			
-30	-4925	-606	-2612	-362	-991	-434			

Şekil B.4: X Yönünde Oluşan Gerilmelerin Karşılaştırılması.

Şekil B.5: X Yönünde Oluşan Maksimum Gerilmelerin Karşılaştırılması.
	Kocaeli depreminde olușan Gerilmeler, σ						
	Cam Clay -	KE	Cam Cla	ay - HS	Drucke	r Prager	
Z(m)	Sy-maks-KE-CC	Sy-min-KE- CC	Sy-maks-KE-Hs	Sy- min-KE-Hs	Sy- maks-KE-Dr-Pr	Sy- min-KE-Dr-Pr	
11.891	367	-179	366	-179	260	-127	
10.55	8947	-4629	8958	-4631	6350	-3283	
10.25	605	-224	605	-224	429	-159	
9.75	14090	-6216	14111	-6220	10002	-6060	
1.75	99758	-73240	98935	-71330	83503	-78302	
0	-73222	61002	38405	-32161	-32649	26556	
-4	-480	188	-824	178	-356	136	
-10	-286	118	-187	144	-206	121	
-16	-900	386	-645	265	-536	232	
-30	-4688	-553	-2463	-330	-996	-350	

Tablo B.5: Y Yönünde, Zemin ve Yapıda Oluşan Gerilmeler.

Şekil B.6: Y Yönünde Oluşan Gerilmelerin Karşılaştırılması.

Şekil B.7: Y Yönünde Oluşan Maksimum Gerilmelerin Karşılaştırılması.

	Kocaeli depreminde için oluşan Gerilmeler, σ						
	Cam Clay - I	KE	Cam Cla	ay - HS	Drucker	Prager	
Z(m)	Sz- maks-KE- CC	Sz- min-KE- CC	Sz- maks-KE- Hs	Sz- min-KE-Hs	Sz- maks-KE-Dr-Pr	Sz- min-KE-Dr-Pr	
11.891	212	-136	212	-136	150	-96	
10.55	23989	-13102	22497	-13105	17009	-9291	
10.25	-1361	-107	-1361	-107	-965	-76	
9.75	15981	3954	15980	3721	11328	2632	
1.75	99704	-85133	97733	-85438	82145	-75153	
0	55615	-39625	54831	-35333	-42278	35662	
-4	-375	97	-610	136	-264	93	
-10	-589	74	-444	85	-480	90	
-16	-1337	285	-922	130	-885	98	
-30	-5463	-674	-2969	-365	-2692	-360	

Tablo B.6: Z Yönünde, Zemin ve Yapıda Oluşan Gerilmeler.

Şekil B.8: Z Yönünde Oluşan Gerilmelerin Karşılaştırılması.

Şekil B.9: Z Yönünde Oluşan Maksimum Gerilmelerin Karşılaştırılması.

Zeminde ve Yapıda Oluşan Şekil Değiştirmeler:

	Kocaeli depreminde oluşan şekil değiştirmeler, ε							
	Hardening soi	l - KE	Cam Cla	ay -CC	Drucke	r Prager		
Z(m)	Ex max- KE- Hs	Ex min- KE-HS	Ex max- KE- CC	Ex min- KE-CC	Ex- maks-KE- Dr-Pr	Ex- min-KE-Dr-Pr		
11.891	3E-05	-4E-06	3E-05	-4E-06	2E-05	-3E-06		
10.55	-3E-04	4E-05	-3E-04	4E-05	-2E-04	3E-05		
10.25	2E-05	-1E-05	2E-05	-1E-05	1E-05	-9E-06		
9.75	-2E-04	1E-05	-2E-04	1E-05	-2E-04	7E-06		
1.75	2E-03	-1E-03	2E-03	-1E-03	1E-03	-7E-04		
0	8E-01	-1E-01	2E+00	-2E-01	4E-01	-5E-02		
-4	5E-01	-1E-01	9E-01	-3E-01	3E-01	-6E-02		
-10	2E-01	-7E-02	4E-01	-1E-01	9E-02	-3E-02		
-16	2E-01	-1E-01	5E-01	-1E-01	1E-01	-4E-02		
-30	1E-01	-9E-02	-2E-01	2E-01	5E-02	-4E-02		

Tablo B.7: X Yönünde, Zemin ve Yapıda Oluşan Şekil Değiştirmeler.

Şekil B.10: X Yönünde Oluşan Şekil Değiştirmelerin Karşılaştırılması.

	Kocaeli depreminde oluşan şekil değiştirmeler, ε							
	Hardening so	il - KE	Cam C	lay -CC	Drucker	Prager		
Z(m)	Ey max- KE- Hs	Ey min- KE-HS	Ey max- KE- CC	Ey max- KE- CC Ey min- KE-CC 1		Ex- min-KE-Dr-Pr		
11.891	3E-05	-4E-06	-1E-05	1E-05	-9E-06	9E-06		
10.55	-3E-04	4E-05	-4E-04	2E-04	-3E-04	2E-04		
10.25	2E-05	-1E-05	4E-05	-2E-06	3E-05	-2E-06		
9.75	-2E-04	1E-05	6E-04	-5E-04	4E-04	-3E-04		
1.75	2E-03	-1E-03	-6E-03	5E-03	-4E-03	4E-03		
0	2E+00	-2E-01	2E+00	-7E-01	5E-01	-1E-01		
-4	9E-01	-3E-01	2E+00	-6E-01	6E-01	-1E-01		
-10	2E-01	-7E-02	6E-01	-3E-02	2E-01	2E-03		
-16	5E-01	-1E-01	1E+00	7E-02	3E-01	8E-03		
-30	-2E-01	2E-01	-2E-01	2E-01	-5E-02	4E-02		

Tablo B.8: Y Yönünde, Zemin ve Yapıda Oluşan Şekil Değiştirmeler.

Şekil B.11: Y Yönünde Oluşan Şekil Değiştirmelerin Karşılaştırılması.

Kocaeli depreminde oluşan şekil değiştirmeler, e						
	Hardening soil	- KE	Cam Cl	lay -CC	Druck	er Prager
Z(m)	Ez max- KE- Hs	Ez min- KE-HS	Ez max- KE- CC	Ez min- KE-CC	Ex- maks-KE- Dr-P	Ex- min-KE-Dr-Pr
11.891	-1E-05	5E-06	-1E-05	5E-06	-7E-06	3E-06
10.55	1E-03	-6E-04	1E-03	-6E-04	8E-04	-4E-04
10.25	-7E-05	-8E-06	-7E-05	-8E-06	-5E-05	-6E-06
9.75	8E-04	2E-04	8E-04	2E-04	6E-04	1E-04
1.75	-8E-03	5E-03	-8E-03	5E-03	-6E-03	3E-03
0	1E+00	-1E-01	2E+00	-5E-01	5E-01	-5E-02
-4	4E-01	-4E-01	-7E-01	6E-01	2E-01	-1E-01
-10	-3E-01	9E-02	-7E-01	1E-01	-3E-01	2E-01
-16	-6E-01	5E-02	-1E+00	-1E-02	-7E-01	2E-01
-30	-2E-01	2E-01	3E-01	-3E-01	-1E-01	4E-02

Tablo B.9: Z Yönünde, Zemin ve Yapıda Oluşan Şekil Değiştirmeler.

Şekil B.12: Z Yönünde Oluşan Şekil Değiştirmelerin Karşılaştırılması.

Kazıklı Temellerde Oluşan Gerilmeler:

Kazıklarda Oluşan Gerilme Şekilleri						
Kazık no		1,2				
benzer	benzer sayısı 1					
Kazık no	7,8-31,32					
benzer sayısı		2				
Kazık no		3,4-37,37-39,40				
benzer	sayısı	3				
Kazık no	5	,6-11,12-17,18-23,24-29,30-35,36-41,42				
benzer sayısı		7				
Kazık no 9,10-13,14-15,16-19,20-21,22-25,26-27,28-33,34						
benzer	sayısı	8				

Tablo B.10: Z Yönünde, Kazıklı Temelde Kazılarda Oluşan Gerilme Tipler.

	Kazık No. 1,2						
SZZ-CC (KN/m ²)	Z(m)	SZZ-hs (KN/m²)	SZZ-Dr-Pr (KN/m²)				
321	1.75	484	307				
-92	1.313	574	380				
-506	0.875	1470	538				
3999	0.273	8017	2259				
4632	0.231	12438	2720				
5407	0.166	14610	2841				
11831	0	23000	6444				
32288	-1	41021	20564				
50286	-2	56521	32834				
64337	-3	68513	42620				
74630	-4	77204	49754				
76315	-7	76878	52076				
53838	-10	53918	37451				
26140	-13	27446	16450				
-7974	-	-5560	-5968				

Tablo B.11: Z Yönünde, 1,2. Kazıkta Oluşan Gerilmeler.

14.25

Şekil B.13: Z Yönünde 1,2. Kazıkta Oluşan Gerilmelerin Karşılaştırılması.

Kazık No. 3,4					
SZZ- CC	Z(m)	SZZ-hs	SZZ-Dr-Pr		
-562	1.75	-307	-327		
1515	1.184	-2616	-1933		
-3847	1.142	-2423	-2252		
-10266	1.100	-2600	-2666		
-15365	1.071	-3487	-3090		
8178	0.526	-8404	-2750		
124786	0	2424	15523		
176426	-1	65543	46944		
221289	-2	119438	71459		
251941	-3	157222	85086		
270658	-4	182599	92802		
265663	-7	188844	89373		
197857	-10	139458	65943		
91442	-13	65812	30785		
-12320	-14.3	-8866	-8477		

Tablo B.12: Z Yönünde, 3,4. Kazıkta Oluşan Gerilmeler.

Şekil B.14: Z Yönünde 3,4. Kazıkta Oluşan Gerilmelerin Karşılaştırılması.

Kazık No. 5,6					
SZZ-CC	Z(m)	SZZ-hs	SZZ-Dr-Pr		
1971	1.75	2446	1651		
-1172	1.102	2663	1784		
1290	0.983	1738	1289		
-1604	0.936	1456	1314		
-5903	0.783	-1328	833		
-56684	0.497	-33041	-20014		
-97122	0.397	-57540	-34687		
-122800	0.346	-73121	-44201		
-313191	0	-187848	-114550		
-206522	-1	-97972	-55769		
-114228	-2	-21339	-5797		
-36546	-3	43729	35858		
29256	-4	95917	68325		
103832	-7	146957	93845		
82806	-10	110459	63887		
40453	-13	52766	27067		
-5245	-14.25	3330	-2417		

Tablo B.13: Z Yönünde, 5,6. Kazıkta Oluşan Gerilmeler.

Şekil B.15: Z Yönünde 5,6. Kazıkta Oluşan Gerilmelerin Karşılaştırılması.

Kazık No. 7,8					
SZZ-CC	Z(m)	SZZ-hs	SZZ-Dr-Pr		
-1477	1.75	-1015	-979		
483	1.356	729	558		
-4794	1.231	-2641	-2170		
-11885	1.180	-6268	-4472		
-37568	0.990	-19301	-12981		
-27954	0.804	-12682	-8429		
249572	0	128306	77352		
256383	-1	145349	82687		
261625	-2	157541	85166		
259037	-3	160483	81802		
251326	-4	158601	77476		
214884	-7	133767	62463		
158260	-10	98139	47498		
72698	-13	46107	20753		
-11482	-14.25	-8432	-8069		

Tablo B.14: Z Yönünde, 7,8. Kazıkta Oluşan Gerilmeler.

Şekil B.16: Z Yönünde 7,8. Kazıkta Oluşan Gerilmelerin Karşılaştırılması.

Kazık No. 9,10					
SZZ- CC	Z(m)	SZZ-hs	SZZ- Dr-Pr		
1087	1.75	1044	691		
36758	1.611	37572	26017		
29641	1.440	30164	20310		
61725	1.319	63048	43184		
31123	1.128	32380	20769		
25752	0.944	27068	18188		
22189	0.781	22816	16166		
21305	0.777	21992	15626		
123866	0	101658	51048		
111979	-1	95282	50086		
101537	-2	88906	49409		
90455	-3	81758	47980		
78913	-4	74337	45749		
46878	-7	50217	34857		
23257	-10	25780	18482		
10236	-13	12624	5749		
-8105	-14.25	-5916	-6219		

Tablo B.15: Z Yönünde, 9,10. Kazıkta Oluşan Gerilmeler.

Şekil B.17: Z Yönünde 9,10. Kazıkta Oluşan Gerilmelerin Karşılaştırılması.

Kazık No. 13,14					
SZZ- CC	Z(m)	SZZ-hs	SZZ- Dr-Pr		
-271	1.75	-167	-367		
1382	1.299	2221	1102		
-40	1.256	657	175		
3809	0.981	1847	1168		
18479	0.751	13247	9072		
-26222	0.466	-17707	-12017		
320576	0	206307	132374		
302815	-1	193570	115659		
286957	-2	180593	100880		
271868	-3	165985	86463		
257005	-4	151142	73566		
217013	-7	119451	55056		
173660	-10	89953	46037		
87471	-13	49511	24596		
-11262	-14.25	-8589	-8279		

Tablo B.16: Z Yönünde, 13,14. Kazıkta Oluşan Gerilmeler.

Şekil B.18: Z Yönünde 13,14. Kazıkta Oluşan Gerilmelerin Karşılaştırılması.

Kazıklı Temellerde Oluşan Şekil Değiştirmeler:

	Kazıklarda Oluşan Şekil Değiştirme Şekilleri			
Kazık no		1,2		
benzer sayısı		1		
Kazık no		7,8-31,32		
benzer sayısı		2		
Kazık no	3,4-37,37-39,40			
benzer sayısı		3		
Kazık no	5	,6-11,12-17,18-23,24-29,30-35,36-41,42		
benzer sayısı		7		
Kazık no	zik no 9,10-13,14-15,16-19,20-21,22-25,26-27,28-33,34			
benzer sayısı		8		

Tablo B.17: Z Yönünde, Kazıklı Temelde Kazılarda Oluşan Şekil Değiştirme Tipleri.

Kazık No. 1,2			
εZZ-CC	Z(m)	εZZ-HS	εzz-Dr-Pr
1E-05	1.75	2E-05	1E-05
-4E-06	1.313	2E-05	1E-05
-2E-05	0.875	6E-05	2E-05
2E-04	0.273	3E-04	1E-04
2E-04	0.231	5E-04	2E-04
2E-04	0.166	6E-04	2E-04
5E-04	0	9E-04	3E-04
1E-03	-1	2E-03	9E-04
2E-03	-2	2E-03	1E-03
2E-03	-3	3E-03	2E-03
3E-03	-4	3E-03	2E-03
3E-03	-7	3E-03	2E-03
2E-03	-10	2E-03	2E-03
1E-03	-13	1E-03	7E-04
-3E-04	-14.25	-2E-04	-2E-04

Tablo B.18: Z Yönünde, 1,2. Kazıkta Oluşan Şekil Değiştirmeler.

Şekil B.19: Z Yönünde 1,2. Kazıkta Oluşan Şekil Değiştirmelerin Karşılaştırılması.

Kazık No. 3,4			
εZZ-CC	Z(m)	εZZ-HS	εZZ-Dr-Pr
-2E-05	1.75	-1E-05	-1E-05
6E-05	1.18	-1E-04	-8E-05
-1E-04	1.14	-9E-05	-9E-05
-4E-04	1.10	-1E-04	-1E-04
-6E-04	1.07	-1E-04	-1E-04
3E-04	0.53	-3E-04	-1E-04
5E-03	0	9E-05	7E-04
7E-03	-1	3E-03	2E-03
9E-03	-2	5E-03	3E-03
1E-02	-3	6E-03	4E-03
1E-02	-4	7E-03	4E-03
1E-02	-7	7E-03	4E-03
8E-03	-10	5E-03	3E-03
4E-03	-13	3E-03	1E-03
-5E-04	-14.25	-3E-04	-3E-04

Tablo B.19: Z Yönünde, 3,4. Kazıkta Oluşan Şekil Değiştirmeler.

Şekil B.20: Z Yönünde 3,4. Kazıkta Oluşan Şekil Değiştirmelerin Karşılaştırılması.

Kazık No. 5,6			
εZZ- CC	Z(m)	εZZ- HS	εZZ- Dr-Pr
8E-05	1.75	9E-05	7E-05
-5E-05	1.10	1E-04	7E-05
5E-05	0.98	7E-05	5E-05
-6E-05	0.94	6E-05	5E-05
-2E-04	0.78	-5E-05	-4E-05
-2E-03	0.50	-1E-03	-9E-04
-4E-03	0.40	-2E-03	-1E-03
-5E-03	0.35	-3E-03	-2E-03
-1E-02	0	-7E-03	-5E-03
-8E-03	-1	-4E-03	-2E-03
-4E-03	-2	-8E-04	-3E-04
-1E-03	-3	2E-03	1E-03
1E-03	-4	4E-03	3E-03
4E-03	-7	6E-03	4E-03
3E-03	-10	4E-03	3E-03
2E-03	-13	2E-03	1E-03
-2E-04	-14.25	1E-04	-1E-04

Tablo B.20: Z Yönünde, 5,6. Kazıkta Oluşan Şekil Değiştirmeler.

Şekil B.21: Z Yönünde 5,6. Kazıkta Oluşan Şekil Değiştirmelerin Karşılaştırılması.

Kazık No. 7,8			
εZZ- CC	Z(m)	εZZ- HS	εZZ- Dr-Pr
-6E-05	1.75	-4E-05	-4E-05
2E-05	1.36	3E-05	2E-05
-2E-04	1.23	-1E-04	-9E-05
-5E-04	1.18	-2E-04	-2E-04
-1E-03	0.99	-7E-04	-5E-04
-1E-03	0.80	-5E-04	-4E-04
1E-02	0	5E-03	3E-03
1E-02	-1	6E-03	4E-03
1E-02	-2	6E-03	4E-03
1E-02	-3	6E-03	4E-03
1E-02	-4	6E-03	3E-03
8E-03	-7	5E-03	3E-03
6E-03	-10	4E-03	2E-03
3E-03	-13	2E-03	1E-03
-4E-04	-14.25	-3E-04	-3E-04

Tablo B.21: Z Yönünde, 7,8. Kazıkta Oluşan Şekil Değiştirmeler.

Şekil B.22: Z Yönünde 7,8. Kazıkta Oluşan Şekil Değiştirmelerin Karşılaştırılması.

Kazık No. 9,10			
εZZ- CC	Z(m)	εZZ- HS	εZZ- Dr-Pr
4E-05	1.75	4E-05	3E-05
1E-03	1.61	1E-03	1E-03
1E-03	1.44	1E-03	8E-04
2E-03	1.32	2E-03	2E-03
1E-03	1.13	1E-03	9E-04
1E-03	0.94	1E-03	7E-04
9E-04	0.78	9E-04	7E-04
8E-04	0.78	8E-04	6E-04
5E-03	0	4E-03	2E-03
4E-03	-1	4E-03	2E-03
4E-03	-2	3E-03	2E-03
3E-03	-3	3E-03	2E-03
3E-03	-4	3E-03	2E-03
2E-03	-7	2E-03	1E-03
9E-04	-10	1E-03	8E-04
4E-04	-13	5E-04	3E-04
-3E-04	-14.25	-2E-04	-2E-04

Tablo B.22: Z Yönünde, 9,10. Kazıkta Oluşan Şekil Değiştirmeler.

Şekil B.23: Z Yönünde 9,10. Kazıkta Oluşan Şekil Değiştirmelerin Karşılaştırılması.

Kazık No. 13,14			
εZZ- CC	Z(m)	εZZ- HS	εZZ- Dr-Pr
-1.0E-05	1.75	-6.5E-06	-2E-05
5.3E-05	1.299	8.6E-05	5E-05
-1.5E-06	1.256	2.5E-05	6E-06
1.5E-04	0.981	7.1E-05	5E-05
7.1E-04	0.751	5.1E-04	4E-04
-1.0E-03	0.466	-6.8E-04	-5E-04
1.2E-02	0	8.0E-03	6E-03
1.2E-02	-1	7.5E-03	5E-03
1.1E-02	-2	7.0E-03	4E-03
1.0E-02	-3	6.4E-03	4E-03
9.9E-03	-4	5.8E-03	3E-03
8.4E-03	-7	4.6E-03	2E-03
6.7E-03	-10	3.5E-03	2E-03
3.4E-03	-13	1.9E-03	1E-03
-4.3E-04	-14.25	-3.3E-04	-3E-04

Tablo B.23: Z Yönünde, 13,14. Kazıkta Oluşan Şekil Değiştirmeler.

Şekil B.24: Z Yönünde 13,14. Kazıkta Oluşan Şekil Değiştirmelerin Karşılaştırılması.

X Yönünde Kazıklarda Oluşan Kuvvetler:

Kazıklarda Oluşan Normal kuvvetler				
Kazık no		1,2-11,12-15,16-27,28-39,40		
benzer	nzer sayısı 5			
Kazık no	3,4-7,8-13,14-19,20-25,26-31,32-37,38			
benzer sayısı		7		
Kazık no	no 5,6-17,18-23,24-29,30-35,36-41,42			
benzer sayısı		6		
Kazık no	9,10-21,22-33,34			
benzer sayısı		3		

Tablo B.24: X Yönünde, Kazıklarda Oluşan Kuvvetler.

Pile, 11,12 Kocaeli			
Nx(KN)-	7	Nx(KN)-	Nx(KN)-Dr-
CC	L	Hs	Pr
1083	1.75	1374	940
1553	1.51	1932	1322
2251	1.13	2810	1923
2540	1.01	3168	2167
2979	0.94	3699	2529
3455	0.77	4288	2936
3931	0.72	4889	3353
4573	0.54	5646	3872
5359	0.51	6556	4491
6718	0.32	7973	5457
8231	0.19	9540	6522
10048	0	11450	7810
10021	-1	11424	7799
9514	-2	10999	7476
8893	-3	10490	7143
8110	-4	9842	6603
1836	-7	4807	2199
1758	-10	4728	2165
-4260	-13	2081	-2424
-4293	-14.25	1232	-2439

Tablo B.25: X Yönünde, 11,12. Kazıkta Oluşan Kuvvetler.

Şekil B.25: X Yönünde, 11,12. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Pile, 15,16 Kocaeli			
Nx(KN)-	7	Nx(KN)-	Nx(KN)-
CC	L	Hs	Dr-Pr
-55	1.75	-154	-125
-66	1.31	-165	-129
299	0.91	-82	196
748	0	2290	1407
721	-1	2263	1395
291	-2	1925	1111
-193	-3	1322	648
-2638	-4	789	-1055
-4859	-7	-2226	-2301
-6730	-10	-3288	-3582
-6936	-13	-5233	-5524
-6969	-14.25	-5266	-5538

Tablo B.26: X Yönünde, 15,16. Kazıkta Oluşan Kuvvetler.

Şekil B.26: X Yönünde, 15,16. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Pile, 5,6 Kocaeli			
Nx(KN)-	Z	Nx(KN)-	Nx(KN)- Dr Pr
1548	1.75	1921	1296
3234	1.10	3793	2566
3666	0.98	4266	2887
4238	0.94	4886	3306
5767	0.78	6544	4436
7607	0.50	8529	5794
8368	0.40	9374	6375
10545	0.35	11753	8012
14252	0	15675	10680
14226	-1	15649	10669
13630	-2	15190	10294
12939	-3	14645	9819
11963	-4	13874	9135
8244	-7	10872	6635
3278	-10	6776	3270
-4087	-13	3280	-1884
-4119	-14.25	2615	-1898

Tablo B.27: X Yönünde, 5,6. Kazıkta Oluşan Kuvvetler.

Şekil B.27: X Yönünde, 5,6. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Pile, 3,4 Kocaeli			
N _v (KN) CC	7	Nx(KN)-	Nx(KN)-Dr-
	L	Hs	Pr
-441	1.75	-241	-257
-877	1.18	-494	-471
-933	1.14	-527	-499
-977	1.10	-553	-522
-1355	1.07	-762	-715
-2306	0.53	-1292	-1248
-3123	0	-1813	-1784
-3149	-1	-1839	-1795
-3475	-2	-2108	-2119
-4220	-3	-2420	-2488
-6023	-4	-3845	-3573
-8201	-7	-5486	-4970
-8280	-10	-5565	-5003
-9643	-13	-6930	-6644
-9676	-14.25	-6963	-6658

Tablo B.28: X Yönünde, 3,4. Kazıkta Oluşan Kuvvetler.

Şekil B.28: X Yönünde, 3,4. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Pile, 9,10 Kocaeli			
Nx(KN)-	7	Nx(KN)-	Nx(KN)-
CC	L	Hs	Dr-Pr
853	1.75	820	543
2086	1.61	2008	1326
3040	1.44	2944	1941
3828	1.32	3722	2445
4894	1.13	4843	3168
4889	0.94	4839	3166
4778	0.78	4810	3116
4270	0.78	4348	2792
1849	0	2141	1253
-199	-1	1248	422
-538	-2	1018	275
-1072	-3	688	-254
-2255	-4	-494	-1065
-4099	-7	-1966	-2247
-4845	-10	-2710	-2961
-6333	-13	-4614	-4870
-6366	-14.25	-4647	-4884

Tablo B.29: X Yönünde, 9,10. Kazıkta Oluşan Kuvvetler.

Şekil B.29: X Yönünde, 9,10. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Pile, 21,22 Kocaeli			
Nx(KN)-	7	Nx(KN)-	Nx(KN)-
CC	L	Hs	Dr-Pr
325	1.75	315	223
790	1.673	768	542
1081	1.634	1052	743
1529	1.594	1487	1050
3523	1.500	3434	2451
3504	0.794	3416	2443
906	0.735	1219	983
652	0.689	1021	853
-259	0.490	662	637
-503	0	1054	917
-1028	-1	1027	905
-1364	-2	771	657
-1782	-3	227	196
-3328	-4	-1187	-1348
-4846	-7	-2269	-2317
-6922	-10	-3294	-3604
-7001	-13	-5067	-5386
-6651	-14.25	-5100	-5401

Tablo B.30: X Yönünde, 21,22. Kazıkta Oluşan Kuvvetler.

Şekil B.30: X Yönünde, 21,22. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Y Yönünde Kazıklarda Oluşan Kuvvetler:

Kazıklarda Oluşan Normal kuvvetler			
Kazık no	1,2-31,32		
benzer	benzer sayısı 2		
Kazık no	3,4-7,8-13,14-9,10-15,16-19,20-21,22-25,26-27,28-37,38		
benzer sayısı 10		10	
Kazik no 5,6-11,12-17,18-23,24-29,30-33,34-35,36-39,40-41,42		1,12-17,18-23,24-29,30-33,34-35,36-39,40-41,42	
benzer sayısı 9			

Tablo B.31: Y Yönünde, Kazıklarda Oluşan Kuvvetler.

Kazıl	Kazık, 1,2 ; Kocaeli Depremi		
Ny(KN)-	Z	Ny(KN)-	Ny(KN)-
		HS	Dr-Pr
-90	1.75	-78	-47
-119	1.31	-78	-98
463	0.88	888	152
943	0.27	9895	750
943	0.23	9895	750
3656	0.17	4707	1968
3656	0	4707	1968
2012	-1	1773	1388
1799	-2	1545	1226
1427	-3	1213	992
1079	-4	906	746
-636	-7	-672	-413
-864	-10	-816	-643
-2461	-13	-2380	-1542
-2461	-14.25	-2380	-1542

 Tablo B.32: Y Yönünde, 1,2. Kazıkta Oluşan Kuvvetler.

Şekil B.31: Y Yönünde, 1,2. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazıl	Kazık, 31,32; Kocaeli Depremi			
Ny(KN)-	7	Ny(KN)-	Ny(KN)-	
CC	L	Hs	Dr-Pr	
-226	1.75	-40	-4	
-1352	1.231	-1139	-1348	
-1352	1.090	-1139	-1348	
1996	1.041	3445	2534	
7699	0.926	3445	2534	
88091	0.464	48632	33073	
88091	0.441	48632	33073	
87166	0.433	47895	32561	
40092	0	17844	11814	
940	-1	2073	728	
526	-2	1484	292	
-586	-3	684	-362	
-1010	-4	-602	-377	
-1670	-7	-1110	-420	
-2717	-10	-1664	-826	
-6491	-13	-4181	-2279	
-6491	-14.25	-4181	-2279	

Tablo B.33: Y Yönünde, 31,32. Kazıkta Oluşan Kuvvetler.

Şekil B.32: Y Yönünde, 31,32. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazı	Kazık, 3,4 ; Kocaeli Depremi		
Ny(KN)- CC	Z	Ny(KN)- Hs	Ny(KN)- Dr-Pr
363	1.75	-345	-231
-11113	1.18	550	-663
-14870	1.14	550	-900
-15733	1.10	-2119	-900
-15733	1.07	-2119	-609
22004	0.53	2026	3414
22004	0	6216	3414
5162	-1	6216	3130
4408	-2	5294	2408
3061	-3	3790	1400
1931	-4	2530	804
-2147	-7	-1563	-716
-3479	-10	-2407	-1149
-7973	-13	-5696	-2904
-7973	-14.25	-5696	-2904

Tablo B.34: Y Yönünde, 3,4. Kazıkta Oluşan Kuvvetler.

Şekil B.33: Y Yönünde, 3,4. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık	., 13,14 ; F	Kazık, 13,14 ; Kocaeli Depremi		
Ny(KN)-	Z	Ny(KN)-	Ny(KN)- Dr-Pr	
363	1 75	523	321	
-3279	1.75	-3522	-2086	
-3279	1.26	-3522	-2086	
6264	0.98	4885	3394	
-15253	0.75	-10550	-7105	
73057	0.47	47192	30418	
73057	0	47192	30418	
-1533	-1	-1258	-1527	
-1513	-2	-1389	-1431	
-1422	-3	-1408	-1371	
-1402	-4	-1408	-1231	
-1322	-7	-1005	-575	
-2788	-10	-1298	-674	
-7719	-13	-4417	-2405	
-7719	-14.25	-4417	-2405	

Tablo B.35: Y Yönünde, 13,14. Kazıkta Oluşan Kuvvetler.

Şekil B.34: Y Yönünde, 13,14. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazıl	Kazık, 37,38; Kocaeli Depremi			
Ny(KN)-	7	Ny(KN)-	Ny(KN)-	
CC	L	Hs	Dr-Pr	
299	1.75	-82	30	
-480	1.218	-587	-420	
-3283	1.098	-2193	-1480	
-3391	1.009	-2193	-1480	
-3978	1.001	-1675	-1025	
-3978	0.907	-4226	-1309	
19716	0.429	-4226	2221	
19716	0	6907	3654	
6016	-1	6907	3654	
5139	-2	5933	2849	
3720	-3	4382	1772	
2488	-4	2986	1068	
-2091	-7	-1538	-746	
-3590	-10	-2454	-1229	
-7907	-13	-5699	-2816	
-7907	-14.25	-5699	-2816	

Tablo B.36: Y Yönünde, 37,38. Kazıkta Oluşan Kuvvetler.

Şekil B.35: Y Yönünde, 37,38. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık, 5,6 ; Kocaeli Depremi			
Ny(KN)-	Z	Ny(KN)-	Ny(KN)-
CC		Hs	Dr-Pr
-473	1.75	-328	-225
-473	1.10	-1261	-747
-6022	0.98	-2230	-1058
-6022	0.94	-2230	-1233
-18071	0.78	-11592	-7144
-42170	0.50	-26643	-16169
-50662	0.40	-31669	-19495
-54843	0.35	-33432	-20565
-54843	0	-33432	-20565
10082	-1	8390	5484
9147	-2	7591	4965
7748	-3	6391	4091
6463	-4	5220	3273
2595	-7	1795	939
-1238	-10	-1742	-1092
-3205	-13	-3816	-2070
-3205	-14.25	-3816	-2070

Tablo B.37: Y Yönünde, 5,6. Kazıkta Oluşan Kuvvetler.

Şekil B.36: Y Yönünde, 5,6. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazıl	Kazık, 29,30; Kocaeli Depremi		
Ny(KN)-	7	Ny(KN)-	Ny(KN)-
CC	L	Hs	Dr-Pr
768	1.75	659	485
-5097	1.298	-6510	-5042
-5097	1.225	-6510	-5042
4086	0.824	-327	-1889
4783	0.809	-327	-1889
4783	0.799	110	-1434
4662	0.790	75	-1197
-4640	0.719	-1444	-812
-13345	0.573	-7139	-6815
-16718	0.431	-8779	-7126
-29051	0.391	-13858	-12896
-29051	0	-13858	-12896
5653	-1	4703	3716
5022	-2	4127	3294
4134	-3	3348	2721
3301	-4	2647	2175
-1029	-7	-1136	-984
-1029	-10	-1136	-984
-469	-13	-1711	-792
-151	-14.25	-1711	-663

Tablo B.38: Y Yönünde, 29,30. Kazıkta Oluşan Kuvvetler.

Şekil B.37: Y Yönünde, 29,30. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Z Yönünde Kazıklarda Oluşan Kuvvetler:

Kazıklarda Oluşan Normal kuvvetler			
Kazık no	Kazık no 1,2-17,18-13,14-19,20-23,24-25,26-27,28-33,34-41,42		
benzer	sayısı	9	
Kazık no	3,4-7,8-11,12-15,16		
benzer sayısı 4		4	
Kazık no	azık no 5,6-9,10-21,22-29,30-31,32-37,38-35,36-39,40		
benzer	benzer sayısı 8		

Tablo B.39: Z Yönünde, Kazıklarda Oluşan Kuvvetler.

Tablo B.40: Z Yönünde, 1,2. Kazıkta Oluşan Kuvvetler.

Kazı	k, 1,2 ; K	locaeli Dep	oremi
Nz (KN)- CC	Z	Nz(KN)- Hs	Nz(KN)- Dr-Pr
-53	1.75	6	-6
864	1.31	582	482
3505	0.88	2036	1812
29598	0.27	17072	15185
29598	0.23	17072	15185
14729	0.17	10463	8442
8960	0	6091	4964
-2485	-1	-1774	-1544
-2082	-2	-1519	-1327
-1583	-3	-1194	-1022
-1142	-4	-908	-747
549	-7	422	415
549	-10	422	415
-661	-13	270	-314
-661	-14.25	-192	-314

Şekil B.38: Z Yönünde, 1,2. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık, 27,28; Kocaeli Depremi				
Nz (KN)- CC	Z	Nz(KN)- Hs	Nz(KN)- Dr-Pr	
-23	1.75	-18	-10	
112	1.313	63	33	
112	0.876	63	33	
868	0.725	533	283	
868	0.643	533	283	
926	0.511	354	221	
4612	0.435	2594	1833	
4612	0.360	2594	1833	
3243	0.327	1181	1319	
3024	0.302	752	1319	
1831	0	462	149	
-60	-1	203	149	
-144	-2	103	64	
-285	-3	-46	-42	
-375	-4	-111	-42	
-403	-7	-213	-135	
-403	-10	-213	-135	
923	-13	134	161	
923	-14.25	134	161	

Tablo B.41: Z Yönünde, 27,28. Kazıkta Oluşan Kuvvetler.

Şekil B.39: Z Yönünde, 27,28. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık, 7,8 ; Kocaeli Depremi				
Nz (KN)- CC	Z	Nz(KN)- Hs	Nz(KN)- Dr-Pr	
278	1.75	134	68	
-1455	1.36	-1420	-1281	
-2802	1.23	-2168	-1930	
-2802	1.18	-2168	-1930	
-2362	0.99	-1443	-1209	
5201	0.80	3806	3765	
5201	0	3806	3765	
-771	-1	-702	-962	
-703	-2	-661	-891	
-613	-3	-591	-806	
-517	-4	-510	-651	
-174	-7	-343	-282	
-35	-10	170	213	
-307	-13	193	333	
-307	-14.25	193	333	

Tablo B.42: Z Yönünde, 7,8. Kazıkta Oluşan Kuvvetler.

Şekil B.40: Z Yönünde, 7,8. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.
Kazık, 11,12 ; Kocaeli Depremi				
Nz (KN)- CC	Z	Nz(KN)- Hs	Nz(KN)- Dr-Pr	
-22	1.75	-81	-32	
1218	1.51	1414	860	
-4904	1.13	-5101	-3070	
-4904	1.01	-5101	-3070	
2168	0.94	-2594	-1572	
2168	0.77	-2346	-1877	
-1532	0.72	-2346	-1877	
8040	0.54	5146	3331	
8040	0.51	5146	3331	
11971	0.32	7882	5253	
11971	0.19	8277	5537	
11052	0	8277	5537	
-1930	-1	-1481	-914	
-1778	-2	-1334	-847	
-1433	-3	-1064	-674	
-1102	-4	-823	-512	
-423	-7	-301	-136	
303	-10	273	160	
594	-13	305	148	
594	-14.25	305	98	

Tablo B.43: Z Yönünde, 11,12. Kazıkta Oluşan Kuvvetler.

Şekil B.41: Z Yönünde, 11,12. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık, 15,16; Kocaeli Depremi					
Nz (KN)- CC	Z	Nz(KN)- Hs	Nz(KN)- Dr-Pr		
-57	1.75	-126	-79		
-131	1.31	-126	-79		
-223	0.91	746	343		
-234	0	746	343		
-234	-1	-406	-261		
-94	-2	-251	-156		
194	-3	-59	-65		
300	-4	-48	-47		
382	-7	177	127		
382	-10	177	127		
-932	-13	-195	-197		
-932	-14.25	-195	-197		

Tablo B.44: Z Yönünde, 15,16. Kazıkta Oluşan Kuvvetler.

Şekil B.42: Z Yönünde, 15,16. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık, 5,6 ; Kocaeli Depremi					
Nz		N _Z (KN)-	N _Z (KN)-		
(KN)-	Z	Hs	Dr-Pr		
CC		115	DI-11		
198	1.75	192	133		
-929	1.10	-758	-322		
-929	0.98	-1351	-763		
-761	0.94	-1351	-763		
572	0.78	-855	226		
-3037	0.50	-5371	-1317		
-3037	0.40	-5371	-1317		
-1794	0.35	-2687	1249		
961	0	-1251	1249		
-610	-1	123	-390		
-308	-2	250	-209		
61	-3	259	-95		
528	-4	447	171		
528	-7	447	181		
430	-10	253	181		
-1578	-13	-892	-659		
-1578	-14.25	-892	-659		

Tablo B.45: Z Yönünde, 5,6. Kazıkta Oluşan Kuvvetler.

Şekil B.43: Z Yönünde, 5,6. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık, 9,10 ; Kocaeli Depremi					
Nz (KN)- CC	Z	Nz(KN)- Hs	Nz(KN)- Dr-Pr		
1024	1.75	743	499		
1024	1.611	-621	499		
1925	1.440	1647	1123		
1925	1.319	1647	1123		
-744	1.128	-934	-628		
-871	0.944	-1027	-680		
-871	0.781	-1027	-680		
-1569	0.777	-420	-95		
-1569	0	-420	-195		
179	-1	-157	-195		
302	-2	72	-89		
361	-3	106	34		
388	-4	181	117		
388	-7	181	149		
226	-10	96	149		
-887	-13	-348	-384		
-887	-14.25	-348	-384		

Tablo B.46: Z Yönünde, 9,10. Kazıkta Oluşan Kuvvetler.

Şekil B.44: Z Yönünde, 9,10. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık, 37,38; Kocaeli Depremi				
Nz (KN)- CC	Z	Nz(KN)- Hs	Nz(KN)- Dr-Pr	
-248	1.75	-162	-182	
-1471	1.218	-1164	-672	
-1471	1.098	-1177	-672	
-1253	1.009	-1177	-626	
-684	1.001	-304	282	
-8798	0.907	-6634	-4151	
-18240	0.429	-13475	-8890	
-18240	0	-13475	-8890	
4369	-1	3752	2601	
3806	-2	3218	2202	
2988	-3	2512	1701	
2273	-4	1889	1271	
776	-7	652	-452	
-423	-10	-558	-452	
-716	-13	-861	-363	
-716	-14.25	-861	-165	

Tablo B.47: Z Yönünde, 37,38. Kazıkta Oluşan Kuvvetler.

Şekil B.45: Z Yönünde, 37,38. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Kazık, 39,40; Kocaeli Depremi				
Nz (KN)-	7	Nz(KN)-	Nz(KN)-	
CC	L	Hs	Dr-Pr	
-48	1.75	42	48	
-1961	1.284	-2529	-1990	
-1961	1.131	-2529	-1990	
-1531	1.002	701	-855	
-1531	0.893	1279	-855	
205	0.867	1730	781	
1660	0.807	1730	1050	
1660	0.686	914	1050	
-10251	0.571	-5842	-6174	
-11029	0.469	-6050	-6321	
-11029	0.434	-6050	-6321	
-5704	0	-3538	-3968	
2221	-1	1612	1475	
1832	-2	1337	1260	
1355	-3	1052	975	
939	-4	802	741	
-572	-7	-467	-420	
-572	-10	-467	-420	
297	-13	-323	-241	
297	-14.25	-153	75	

Tablo B.48: Z Yönünde, 39,40. Kazıkta Oluşan Kuvvetler.

Şekil B.46: Z Yönünde, 39,40. Kazıkta Oluşan Kuvvetlerin Karşılaştırılması.

Y Yönünde Kazıklarda Oluşan Momentler:

Tablo B.49: Y Yönünde, Kazıklarda Oluşan Momentler.

Kazıklarda Oluşan Momentler						
Kazik no 5,6-9,10-17,18-25,26-31,32-35,36-37,38-39,40						
benzer	sayısı 8					
Kazik no 1,2-3,4-7,8-11,12-13,14-15,16-19,20-21,22-23,24-27,28-29,30-33,34-41,42						
benzer	sayısı	13				

Kazık, 1,2 ; Kocaeli Depremi					
My (kN-m)- CC	Z	My (kN-m)-Hs	My (kN-m)- Dr-Pr		
5E-10	1.75	-3E-08	2E-08		
-23	1.31	3	-2		
355	0.88	257	209		
2466	0.27	1484	1300		
3706	0.23	2199	1937		
4665	0.17	2880	2486		
6149	0.00	3889	3308		
3665	-1	2116	1765		
1583	-2	597	437		
-0.1	-3	-597	-585		
-1143	-4	-1506	-1332		
-1353	-7	-1836	-1499		
295	-10	-570	-253		
826	-13	240	392		
3E-10	-14	6E-10	2E-09		

Tablo B.50: Y Yönünde, 1,2. Kazıkta Oluşan Momentler.

Şekil B.47: Y Yönünde, 1,2. Kazıkta Oluşan Momentlerin Karşılaştırılması.

Kazık, 7,8; Kocaeli Depremi				
My (kN-m)- CC	Z	My (kN-m)-Hs	My (kN-m)- Dr-Pr	
-1E-08	1.75	-3E-08	-3E-08	
110	1.36	53	27	
-72	1.23	-124	-133	
-215	1.18	-235	-232	
-663	0.99	-509	-461	
-577	0.80	-366	-243	
3604	0	2693	2784	
2833	-1	1992	1821	
2130	-2	1331	930	
1517	-3	740	124	
1000	-4	230	-528	
479	-7	-798	-1374	
488	-10	-750	-1056	
384	-13	-242	-417	
2E-10	- 14.25	-5E-10	-5E-10	

Tablo B.51: Y Yönünde, 7,8. Kazıkta Oluşan Momentler.

Şekil B.48: Y Yönünde, 7,8. Kazıkta Oluşan Momentlerin Karşılaştırılması.

Kazık, 15,16; Kocaeli Depremi					
My (kN-m)- CC	Z	My (kN-m)- Hs	My (kN-m)-Dr-Pr		
1E-08	1.75	-2E-08	-1E-08		
-25	1.31	-55	-35		
-79	0.91	-68	-49		
-280	0	607	262		
-514	-1	201	0		
-608	-2	-50	-156		
-566	-3	-109	-221		
-371	-4	-157	-268		
528	-7	-176	-244		
1673	-10	355	137		
1165	-13	244	246		
8E-10	-14.25	-9E-10	2E-09		

Tablo B.52: Y Yönünde, 15,16. Kazıkta Oluşan Momentler.

Şekil B.49: Y Yönünde, 15,16. Kazıkta Oluşan Momentlerin Karşılaştırılması.

Kazık, 27,28; Kocaeli Depremi				
My (kN-m)- CC	Z	My (kN-m)- Hs	My (kN-m)-Dr- Pr	
-1E-08	1.75	-2E-08	2E-08	
-10	1.31	-8	-4	
39	0.88	19	10	
53	0.73	24	8	
124	0.64	68	32	
205	0.51	114	58	
275	0.44	139	75	
622	0.36	334	212	
730	0.33	373	255	
807	0.30	393	289	
1359	0	532	274	
1421	-1	735	423	
1362	-2	838	487	
1218	-3	832	492	
934	-4	786	450	
-192	-7	452	341	
-1400	-10	-186	-63	
-1154	-13	-167	-202	
5E-10	-14.25	7E-10	-1E-09	

Tablo B.53: Y Yönünde, 27,28. Kazıkta Oluşan Momentler.

Şekil B.50: Y Yönünde, 27,28. Kazıkta Oluşan Momentlerin Karşılaştırılması.

Kazık, 33,34; Kocaeli Depremi				
My (kN-m)- CC	Z	My (kN-m)- Hs	My (kN-m)- Dr-Pr	
7E-08	1.75	8E-09	8E-07	
-245	1.685	-244	-163	
-299	1.471	-231	-148	
178	1.361	132	75	
197	0.968	229	160	
-353	0.766	-438	-335	
-510	0.538	-587	-406	
716	0.456	299	146	
1165	0	639	95	
1496	-1	1090	433	
1657	-2	1366	651	
1648	-3	1469	780	
1479	-4	1456	822	
254	-7	903	456	
-724	-10	201	-26	
-681	-13	-10	-263	
-1E-09	-14.25	-5E-10	1E-09	

Tablo B.54: Y Yönünde, 33,34. Kazıkta Oluşan Momentler.

Şekil B.51: Y Yönünde, 33,34. Kazıkta Oluşan Momentlerin Karşılaştırılması.

Kazık, 41,42; Kocaeli Depremi				
My (kN-m)- CC	Z	My (kN-m)- Hs	My (kN-m)-Dr-Pr	
-1E-11	1.75	-3E-09	9E-09	
17	1.098	35	-12	
-190	0.690	-91	-205	
423	0.634	348	191	
1495	0.342	1870	496	
1643	0.325	2073	540	
2537	0	3505	615	
2816	-1	3331	842	
2775	-2	2959	904	
2505	-3	2466	853	
2127	-4	1955	775	
183	-7	256	55	
-1388	-10	-889	-654	
-1558	-13	-945	-777	
1E-09	-14.25	-4E-10	1E-09	

Tablo B.55: Y Yönünde, 41,42. Kazıkta Oluşan Momentler.

Şekil B.52: Y Yönünde, 41,42. Kazıkta Oluşan Momentlerin Karşılaştırılması.

Z Yönünde Kazıklarda Oluşan Momentler:

Kazıklarda Oluşan Normal kuvvetler					
Kazık no		1,2-3,4-37,38-39,40			
benzer	sayısı	4			
Kazık no	5,6-11,12-17,18-23,24-29,30-35,36-41,42				
benzer	sayısı 7				
Kazık no	7,8-9,10-13,14-15,16-19,20-21,22-25,26-27,28-31,32-33,34				
benzer	enzer sayısı 10				

Tablo B.56: Z Yönünde, Kazıklarda Oluşan Momentler.

Kazık, 1,2 ; Kocaeli Depremi				
Mz (kN-m)- CC	Z	Mz (kN-m)-Hs	Mz (kN-m)- Dr-Pr	
1E-08	1.75	-1E-08	-2E-09	
-39	1.31	-34	-20	
-91	0.88	-35	-63	
188	0.27	500	28	
227	0.23	915	60	
265	0.17	1088	44	
871	0.00	1868	370	
2883	-1.0	3641	1758	
4681	-2.0	5185	2984	
6109	-3.0	6398	3976	
7187	-4.0	7304	4721	
7576	-7.0	7438	5095	
5667	-10.0	5421	3856	
3077	-13.0	2974	1928	
1E-10	-14.3	-6E-10	7E-10	

Tablo B.57: Z Yönünde, 1,2. Kazıkta Oluşan Momentler.

Şekil B.53: Z Yönünde, 1,2. Kazıkta Oluşan Momentlerin Karşılaştırılması.

Kazık, 3,4 ; Kocaeli Depremi				
Mz (kN-m)- CC	Z	Mz (kN-m)-Hs	Mz (kN-m)-Dr-Pr	
-1E-08	1.75	1E-08	-5E-09	
206	1.18	-195	-131	
-261	1.14	-172	-159	
-886	1.10	-186	-196	
-1339	1.07	-247	-214	
974	0.53	-664	-114	
12541	0	401	1681	
17703	-1	6618	4811	
22111	-2	11912	7219	
25172	-3	15702	8620	
27103	-4	18232	9423	
26844	-7	19030	9225	
20404	-10	14340	7078	
9967	-13	7120	3630	
-4E-10	-14.25	8E-10	1E-09	

Tablo B.58: Z Yönünde, 3,4. Kazıkta Oluşan Momentler.

Şekil B.54: Z Yönünde, 3,4. Kazıkta Oluşan Momentlerin Karşılaştırılması.

Kazık, 39,40; Kocaeli Depremi				
Mz (kN-m)- CC	Z	Mz (kN-m)- Hs	Mz (kN-m)-Dr-Pr	
2E-08	1.75	1E-08	2E-08	
-63	1.284	-140	-105	
370	1.131	-67	-40	
98	1.002	-154	-126	
-141	0.893	-295	-261	
-136	0.867	-211	-206	
-120	0.807	68	-26	
-13	0.686	300	141	
185	0.571	292	141	
-461	0.469	-54	-228	
-815	0.434	-210	-393	
-511	0	508	-216	
1491	-1	2384	1270	
3318	-2	4072	2639	
4743	-3	5397	3741	
5814	-4	6375	4551	
6218	-7	6608	4882	
4577	-10	4749	3538	
2489	-13	2518	1676	
5E-10	-14.25	6E-10	-8E-10	

Tablo B.59: Z Yönünde, 39,40. Kazıkta Oluşan Momentler.

Kazık, 5,6 ; Kocaeli Depremi				
Mz (kN-m)- CC	Z	Mz (kN-m)- Hs	Mz (kN-m)- Dr-Pr	
-3E-09	1.75	-7E-09	2E-09	
-306	1.10	-213	-146	
-332	0.98	-363	-234	
-616	0.94	-468	-284	
-1109	0.78	-741	-473	
-6285	0.50	-4061	-2519	
-10486	0.40	-6715	-4130	
-13102	0.35	-8350	-5136	
-32065	0	-19910	-12247	
-21982	-1	-11520	-6763	
-12835	-2	-3929	-1798	
-5087	-3	2462	2293	
1377	-4	7682	5566	
9163	-7	13069	8384	
7720	-10	9997	5863	
4007	-13	4770	2587	
3E-09	-14.25	1E-09	-3E-09	

Tablo B.60: Z Yönünde, 5,6. Kazıkta Oluşan Momentler.

Şekil B.56: Z Yönünde, 5,6. Kazıkta Oluşan Momentlerin Karşılaştırılması.

Kazık, 29,30; Kocaeli Depremi				
Mz (kN-m)- CC	Z	Mz (kN-m)- Hs	Mz (kN-m)-Dr- Pr	
5E-09	1.75	-9E-09	2E-08	
347	1.30	298	219	
-28	1.22	-181	-152	
-601	0.82	-215	-162	
-542	0.81	-220	-189	
-495	0.80	-219	-203	
-451	0.79	-218	-214	
-372	0.72	-223	-237	
-1047	0.57	-433	-355	
-2946	0.43	-1450	-1325	
-3616	0.39	-1801	-1610	
-14974	0	-7219	-6652	
-9321	-1	-2516	-2936	
-4299	-2	1611	358	
-164	-3	4958	3079	
3137	-4	7606	5253	
4681	-7	8611	6155	
1594	-10	5202	3203	
188	-13	2139	829	
1E-09	-14.25	-2E-10	4E-11	

Tablo B.61: Z Yönünde, 29,30. Kazıkta Oluşan Momentler.

Şekil B.57: Z Yönünde, 29,30. Kazıkta Oluşan Momentlerin Karşılaştırılması.

Kazık, 7,8 ; Kocaeli Depremi				
Mz (kN-m)- CC	Z	Mz (kN-m)- Hs	Mz (kN-m)-Dr-Pr	
2E-08	1.75	-3E-08	3E-08	
194	1.36	173	151	
-285	1.23	-135	-95	
-963	1.18	-482	-312	
-3470	0.99	-1752	-1135	
-2501	0.80	-1079	-643	
24747	0	12765	7780	
25690	-1	14598	8464	
26208	-2	15799	8708	
26000	-3	16165	8442	
25322	-4	16012	8053	
21922	-7	13699	6669	
16463	-10	10253	5238	
8072	-13	5155	2616	
-1E-09	-14.25	-1E-10	-3E-09	

Tablo B.62: Z Yönünde, 7,8. Kazıkta Oluşan Momentler.

Şekil B.58: Z Yönünde, 7,8. Kazıkta Oluşan Momentlerin Karşılaştırılması.

Kazık, 13,14 ; Kocaeli Depremi				
Mz (kN-m)-CC	Z	Mz (kN-m)-Hs	Mz (kN-m)- Dr-Pr	
-4E-09	1.75	-5E-09	-8E-09	
164	1.30	236	145	
24	1.26	86	56	
400	0.98	204	154	
1844	0.75	1329	937	
-2500	0.47	-1675	-1087	
31549	0	20319	13090	
30015	-1	19185	11563	
28503	-2	17927	10131	
27081	-3	16539	8760	
25680	-4	15131	7529	
21978	-7	12114	5804	
18013	-10	9415	5027	
9649	-13	5521	3006	
2E-09	-14.25	3E-09	3E-09	

Tablo B.63: Z Yönünde, 13,14. Kazıkta Oluşan Momentler.

Şekil B.59: Z Yönünde, 13,14. Kazıkta Oluşan Momentlerin Karşılaştırılması.

Kazık, 33,34; Kocaeli Depremi				
Mz (kN-m)-CC	Z	Mz (kN-m)-Hs	Mz (kN-m)-Dr- Pr	
-3E-07	1.75	7E-08	8E-07	
-1458	1.685	-1434	-961	
14018	1.471	14201	9526	
3447	1.361	3154	2103	
6352	0.968	6621	4424	
1964	0.766	1601	1054	
1267	0.538	1263	768	
734	0.456	-6	-214	
10774	0	8400	4347	
10150	-1	8307	4556	
9358	-2	8076	4680	
8477	-3	7688	4698	
7557	-4	7177	4635	
4797	-7	5112	3747	
2775	-10	2889	2212	
1626	-13	1650	936	
8E-10	-14.25	2E-09	3E-09	

Tablo B.64: Z Yönünde, 33,34. Kazıkta Oluşan Momentler.

Şekil B.60: Z Yönünde, 33,34. Kazıkta Oluşan Momentlerin Karşılaştırılması.