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Possible effects of space-time nonmetricity on neutrino oscillations
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The contribution of gravitational neutrino oscillations to the solar neutrino problem is studied by construct-
ing a Dirac Hamiltonian and calculating the corresponding dynamical phase in the vicinity of the Sun in a
non-Riemann background Kerr space-time with torsion and nonmetricity. We show that certain components of
nonmetricity and the axial as well as nonaxial components of torsion may contribute to neutrino oscillations.
We also note that the rotation of the Sun may cause a suppression of transitions among neutrinos. However, the
observed solar neutrino deficit could not be explained by any of these effects because they are of the order of
Planck scale.
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. INTRODUCTION
#(0), (D)

Oy i

|ﬁI=H¢:¢(t)=ex % Hdt
Neutrinos have always attracted a lot of attention in high

energy physic$1]. A major problem of interest at present is where ¢ is a Dirac 4-spinor and is a 4x 4 matrix. The

the solar neutrino problem. The Sun is a strong source 0|1i| itonianH will d d i | i

electron neutrinog, because of the thermonuclear reactions a(;ntlh_on_lan wi (ejpent ’ orde_>f<fampte_,|on motmeg lf[m. |

taking place in its core. According to the standard solaANd IS 1S expressed not as a ditferential operator but Simply

model, the number of, to be emitted from the Sun can be as a vectof. In this_ paper we investigat(_e within the same
predicted. At the same time, the flux of electron neutrinos""pprq""Ch thg pQSS|bIe effects of space-time nonmetricity on
coming from the Sun can be measured on Earth. The meg_eutnno oscillations.

sured amount ofv, is approximately one-third of the pre-

dicted amount. Essentially, this is the so-callmlar neu- Il. SPACE-TIME GEOMETRY
trino problem One well-known solution to this problem is
provided by the assumption afeutrino oscillations[1,2].
Briefly stated, the neutrino oscillations imply that the elec
tron neutrinos coming out of the Sun may be converted t
other neutrino species, muor, and tauv,, during their
journey towards the Earth, assuming neutrinos to have
mass, whereas the standard electroweak model asserts z _ . . . o
mass for them. It should also be noted that all of the abov&°0rdinate functiongor independent variablggx“(p);, «
arguments have been cast in Minkowski space-time. How=0,1,2,3. This coordinate system forms a setaftural (or
ever, we know that we live in a curved space-time—perhap§oordinate reference frameat p as {(d/9x“)(p)}, with
even in a curved space-time with torsion and nonmetricityshorthand notatiod,= d/9x“. This natural reference frame
Therefore, in more recent years, physicists have turned theig @ basis vector set for the tangent space,alenoted by
attention to specifically gravitational contributions to neu-Tp(M). Similarly, differentials{dx“(p)} of coordinate func-
trino oscillations—se¢3-7] and references therein. We re- tions {x“(p)} at p form anatural (or coordinate reference
cently investigated the effects of space-time torsion on neucoframein the cotangent space at denoted byTy (M).
trino oscillations[8]—see alsd9,10]. The essence of this Interior product of the basis vectors with the basis covectors
work is to calculate the dynamical phase of neutrinos byis defined by the Kroenecker symbol:

finding the form of the Hamiltoniai from the Dirac equa-

Space-time is denoted by the trigl®l,g,V} whereM is a
_four-dimensional differentiable manifold, equipped with a
J-orentzian metrigy which is a(0,2-type covariant, symmet-
ric, nondegenerate tensor, aNdis a connection which de-
ines parallel transport of vectofsr more generally tensors

e shall give a coordinate system set up at a ppiatM by

tion in a non-Riemannian space-time. The phase then follows 9
from the formula dx¢| — | =1, dx¥=6%. 2)
oxB| g
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*Electronic address: I.h.ryder@ukc.ac.uk ries expansion.
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In general, any set of linearly independent vectors in tangent a,ab/\eb: —de?, (12)
space,T,(M), can be taken as basis vectors and these vec-

tors can be orthonormalized by, for example, the GramK?, are the contortion 1-forms,

Schmidt process. We denote a set like this {%,}, a A A b

=0,1,2,3, and call it awrthonormal reference framén this Kop/Ae’=T%, (13
case the metric defined dvi satisfies the relation

9(Xa:Xp) = 7ap )

where 7,, is known as the Minkowski metric which is a
matrix whose diagonal terms arel,1,1,1 and off-diagonal
terms are zero. The basis set dual to the orthonormal refe

ence frame is denoted bBye?}, a=0,1,2,3, and called the . C 2 ! :

orthonormal reference c?fa%éx }, and its duafe®} sat- parts of them to gain physical insight. The irreducible de-
isfies the following set of equalitiaes that is another manifes-compOSItlons of torsion and_non_rnetncny Invariant un(_jer the
tation of Eq.(2): Lorentz group are summarily given below. For details one

may consult Ref{12]. The nonmetricity 1-form€,, can be

andg?, are the antisymmetric tensor 1-forms,

Jab= — (1aQpc) e+ (1pQac) e’. (14

It is cumbersome to take into account all components of
p_onmetricity and torsion in gravitational models. Therefore
we will be content with dealing only with certain irreducible

e(Xp)= |Xb(ea): 5. (4)  split into their trace-fre€,;, and trace parts as
Here we adhere to the foIIowmgAcAorlv?ntlons. indices de Qup=Qup+ ZnabQ’ (15)
noted by Greek letterg, 8,...=0,1,2,3 and u, v, . ..
=1,2,3 are holonomic or coordinate indices, aagb, . . . o b=
=0,1,2,3 and, j, ...=1,2,3 are anholonomic or frame in- where the Weyl 1-formQ=Q", and 7°°Qq,=0. Let us de-

dices. In terms of the local coordinate framg(p), the or- fine

thonormal frameX,(p) can be expanded via the so-called

=1 O2 — a
vierbein (or tetrad h*,(p) as Ap=1,0%, A=A €,

Xa(p)=h*(p)d.(p). (5) Op:="*(Qqp/\e?), O:=e\Oy,
In order forX, to serve as an anholonomic basis, tg(p)
are required to be nondegenerate—i.e.,hdgfp)#0. In Qa:=0,— §'a®’ (16)
T (M) an orthonormal coframe®(p) can be expanded in
terms of the local coordinate cofrande®(p) as so as to use them in the decomposition®y, as
e%(p)=h°4(p)dx¥(p). (6) Qap=0Q%+ Q)+ QR+ QY. (a7

The inverse vierbeihbﬁ(p) has to be nondegenerate as well. where
Moreover, the duality of the frame and the coframe requires

for the vierbein and its inverse to satis 1
b Q= 3* (e +ey\ ), (18
Ix,6"=h"(p)h’(p)= 3. (7)
2 1
We set the space-time orientation by the chaiggs=1. The Q)= 9| Aaot Apea= 5 7aph |,
nonmetricity 1-forms, torsion 2-forms, and curvature (19)
2-forms are defined by the Cartan structure equations
1
2Qap= ~D7ap=Aapt Apa, 8 QS))I 2 NapQ, (20
T2=De?:=de?+ A3 /\eP, (9)
QY= Qap— QY — QY- QL. (21)

a _ a ._ a 1+ A2 AAS, .

TPREERTESRY 1g e nave rQ@-10@=0, 50~ 708~ 70
=0, ande®\Q{})=0. In a similar way the irreducible de-

d, D, 15, and * denote the exterior derivative, the covariantcomposition of T®s invariant under the Lorentz group is

exterior derivative, the interior derivative, and the Hodge stagiven in terms of

operator, respectively. The linear connection 1-forms can be

decomposed in a unique way according 1d] a=1,T?, o=¢e,/\T? (22
A?y=w?,+ K%+ g%, + Q% (11)  so that
wherew?; are the Levi-Civitaconnection 1-forms, Ta=TaM) 4 Ta) 4 TAG), (23
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where . 1 1
. D= pdx’+ 9, pdx*+ S %0 apo ™Y+ 7€°Qcy
T2)= §ea/\a, (24)
. 1
. =h0.e%ap+ h¥ €%, Y+ zeCQC,aboabz//
a(3)_— —a
T 3 130, (25 1
+ Ze ch/"v (33)
t2:=Tal=Ta_Ta2)_TaB) (26)

. whereA (a5 :=Q 4= 2" is the antisymmetric part of the
Here 'a_ta:'aTa(s):O' ea_/\ta:ea/\Ta(z):_o- To give the ¢ connection 1-form andQ=Q,e?, and using *y
contortion components in terms of the irreducible compo-_ y.*€e* and the identitye®/\eP= — 72°* 1 we calculate
nents of torsion, we first write a

2K ap=1aTp~ 15T~ (1ol Tc)€° 27) *yADY=| —h0oya—hrcya, i
from Eq. (13) and then substituting Eq23) into above we 1 1
find - EQc,ab'}’CUabw— ZQC')’C‘;D *1. (39
2
2K ap=latp— 1pta— (1alptc) €S+ §(ea/\|ba—eb/\|aa) Putting this into Eq(30) we obtain
2 1 WOy au= — ey, b M = Qg oy
+301alb0) = 3 (lalplco) €%, (28) Y % Y %u 2 rcabY

1
In componentsK ;=K ap€%, ta=3tpc €%, a=F.€% o — QY. (35
=(1/31)0,p£2P° this becomes 4

1 1 We multiply this from the left by
Kc,ab:E(tac,b_tbc,a'l'tab,c) + §(Fb77ac_ Fa77bc) - go'abc-

. —ih .
(29 0%y = (W), (36)
ll. HAMILTONIAN OF A DIRAC PARTICLE
IN ARBITRARY SPACE-TIMES where
The Dirac equation in a non-Riemannian space-time with b2::(h60)2+ haihai. (37

torsion and nonmetricity is written §43-19 3
When we compare the result with the Sdlirger equation

oy
ih—-=Hu, (39)

* yAD¢+M*1y=0 (30

in terms of the Clifford algebreC{; -valued 1-formsy
=%, andM =mc/A. We use the Dirac matrices

pey %)l 7).

where o' are the Pauli matricesy is a 4-component

we deduce the Dirac Hamiltonian matfix,8,15—-20Q

c . imc? .
H= Ehoah“byaybi hd,— ?hoaya

complex-valued Dirac spinor whose covariant exterior de- i5c ihc
rivative is given explicitly by + _hbdQC a7 Yo+ _hf)aQb,ya,yb. (39)
. 1 2b? ’ 4p?
= Z Alab] _ . . ..
Dy=dy+ 2A Tap+ 4Q¢‘ (32) The right-hand side of Eq(39) need not be a Hermitian
matrix in general; e.g., %+ 0, then the mass term contains
where an anti-Hermitian part such as
1 H=Hq+iH,, 40
oab=70 72 0] (32 ot 0

whereH; =H, andH; =H;. However, the decomposition
are the spin generators of the Lorentz group. We write it out40) is frame dependent. That is, we can always find a local
explicitly as Lorentz frame in which Hamiltonian is fully Hermitian
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[17,18. First we can get rid of the anti-Hermitian part of the and obtain

mass term by diagonalizing the matti%, via a frame trans-

formation
Fo(X) = Ag(X)L ™ 4(X),
Gap(X)—=0,s(X)L 7L, (41)
Thug
h%(x) — f(x)43, (42)

wherex stands forx® and f(x) is composed oh“,(x). Un-
der this change Eq39) goes over to

H—H=cf(x)y°y'ind;—imc?f,(x)y°
+ificf3(X) Qe apy* Y o2+ ific4(X)Qpy°yP,
(43)

wheref;(x) are composed dfi“,(x). Putting in the defini-
tion

QQab: €adeSd (44
and using the identity
1 1 1
a _bc_" _ab.,c_ — _ac,b__ — _abcd
yior=57 SN Y 5 € yays, (49

where ys= y4¥1Y27Y3, the Hamiltonian matrix becomes

H=cfy(x) 12y i%d —imc2fo(x) Y2 +ihCNL(X) Y0y

+ificfs(x) S,y ys, (46)
where we introduced
Na:=f3(x) Q% pat f4(X) Q-
If we now define the canonical momenta
ppz—iﬁ(&ﬁm (47)
f1(x)
and assume
P =pi. (48)

Eq. (46) takes the form
H="f1(x)cp'yoyi +imc?f5(X) yo+ificfs(X)Syoyays
—i7icNy(X). (49

In order eliminate the last term in EG49) one may further
perform a locally unitary transformation

W(X) — UT(X)(x), H — UT(X)HU(x) (50

2L €S0, (1,3) whereS0.(1,3) is special orthochronous Lorentz

group.

H—H=f;0)cp'U"(x) 07U (x)
+imc2f,(x)U T (X) yoU ()
+ihcts(x)SPU T (X) ¥o¥aysU(X)
—ihc[F(X)UT(X) y0718 U(X)+ No(X)].

(51)

Under the solvable matrix equation

No(X)

U*(X)¥07id'U(x)=— 100"

(52

we give the final form of our Hermitian Hamiltonian matrix
(up to a sign by the expression

H="f1(x)cp'yoyi +imc?fo(X) yo+i ﬁCf5(X)Sa707a75(-53)

IV. NEUTRINO OSCILLATIONS IN THE KERR
BACKGROUND

Here we construct the Hamiltonian matrix of a Dirac par-
ticle (i.e., a massive neutrinaf massm in the background
space-time geometry of a heavy, slowly rotating body of
massM such as the Sun. Its exterior gravitational field will
be described by weak constant, uniform torsion and non-
metricity fields, together with the Kerr metrj@1]:

2MGr p?
ds?=—| 1- cdtocdt+ —dredr+p?doede
c2p? A
a’> 2MGa’r
+| r’+ —+ ————sirfg | siffde®de
c2 c*p?
AMGar
- sirfadtede, (54
c?p?

where A=r2—(2MG/c?)r +(a/c)?, p?=r2+(alc)’cos,
a=J/M=2R?w. The Sun is assumed a uniform sphere of
radiusR. HereM, J, andw are the mass, angular momentum,
and angular velocity of the Sun, respectively. We choose the
orthonormal coframe

VA a p
e’= —| cdt— —sirfode |, el=——dr,
p c VA
siné 2
e’=pdf, ed=——||r?+|= )dgo—adt,

and using the definitions
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1 1
de+ w3, N\eP=0 & wy=— Sladep+ S 1pde,

af
e°=fcdt—Fd<p, el=—dr,

PHYSICAL REVIEW D 69, 123002 (2004

1
f

1 a
+ 5 (lalpde) €, (56) e’=0, &= _dt+rde, (59)
calculate the Levi-Civitaconnection 1-forms where
o MG[r?—(a/c)cosd] £=f2~ _2MG 60
w = dt = (60)
1 4 2 2
[(MG/c2—r)p?—2MGr?/c?]asirg The inverses of these relations to the same order of approxi-
+ 2 do, mation are
p“c
1 a
cdt=—-e’+ —e® dr=fe!, d#=0,
2MGracosé f rc
4.2
pC a 0 1 3
d<p=—2e +—e°, (62
a\?2 frec r
Al —| sirfd—[r?+(alc)?]? S
c which give
+ cosfdo,
4
p .1 . a . . a .1
hoo -, h03:_, h]'l:f, hgo:_, h33:_,
. f cr for? r
\/Xa sinf# cosé 62
a)02= - fd(p, (62
pC with all other components neglected. To this order of ap-
proximation Eq.(57) gives
\/Xr sinég
wly=————do, a a a
pz w01:f’eo+ _93, w3~ _el, w31= _e0+ _eg,
cr? cr? cr?
. (63
o \/Xacose arsiné
w 3= 5 do— 5 dr, with the remaining ones neglected. Then the Hamiltonian
p-C \/KP c matrix (39) reads

a’sin 6 cosé rVA

p2\AC? p

To simplify the discussions, we consider only the motion of
massive neutrinos restricted to the equatorial plane of the
Sun. Thus we sef= 7/2 andd #=0. Furthermore, since the
Sun rotates very slowljw=3x10"° (rad/s)] we approxi-
mate the metric functions. Therefore, in reasonably far away
distances from the Sun, the restricted line element will be
taken as

(57)

2MG omG\ ~t
ds?=—| 1— cdtocdt+| 1— dredr
c’r c’r
a MG
+rde®rde—4— ——cdterde. (58)
Cc c2r2

We also write the orthonormal coframe approximately up to
O(alrc) as

123002-5

i
H=f2cp,yoy1+fcp,yoys+ifmcy,— Sheff yon

3
+ Eithsa)’o?’s?’a_ ihCTN®yoya— T Pan

+

where

afd

iaf f2f’ iamc 2 iakf
Y3V1— vzt 5, YoY27s
2r 2r
3iakf? iahf?
o S ¥3Yayst N®Y3¥a,
i J +
Pre=—10 5 T 1 )
py+=0,
ih 9
p(p'_ T@i

(64)

(65

(66)

(67)
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Na:zi tba,b+ Fat ZQa_Aa) .

(68)
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The way we approach the solar neutrino problem starts by
writing down the Dirac equation in a rotating, axially sym-

metric background space-time geometry and finding phases
corresponding to neutrino mass eigenstates, then finally cal-

Note that the contributions of axial components of torsionculating the phase differences among them. There are two
are given byS® while certain components of nonmetricity cases of special interest: the azimuthal motion and the radial

and the nonaxial components of torsion occur onliXjand
the rotation effects are given in terms of the paramaté&¥e
rewrite the Hamiltonian X4 matrix in terms of 22 ma-

trices as follows:

(69

(70

_(Hn le)
H21 H22,
with
_ afd
H11=fmC2+IA+BO'1+ C_|Tpr O'2+DO'3,
_ af®
H22:_fmC2+|A+BO'1+ C_|Tpr 0'2+D0'3,
H12:F+(f2Cpr+|G)Ul+|H0'2
amc )
+| fepy+ +iK | o3,
Ha=F+(f’cp,+iG)o+iHo,
amc ]
+| fep,— +iK | o3,
where we set
ahf?
Az_ﬁCfNo'f' r N3,
5 3h +aﬁf2
=zheSt =N,
3 ahf?
C=—-hcS,— ——(1+rf’ +rNy),
2 2r2
b Sﬁ 3ahf?
=2MCS™ 5%
c 3h 3ar f?
T2 CS- 2r Ss»
G hctf’ N 3afif?
BT T
3afif?
Hz—ﬁchz—Tsl,
ah f?

r

(71)

motion. The analysis of the azimuthal motion wilﬂi]
=(pr.Ps,P,)=(0,0p) yields for ultrarelativistic neutrinos,
for which pc=E andcdt=Rde, the phase for the spin up
state

fm?c? RA@
d'=| fE+ + VA, +iI(A+K) | — (72
2E o FiC ) fic (72
and similarly for the phase of the spin down state
fm?c? RA @
dl=| fE+ —VA+i(A+K) | —, (73
2E T ) fic 73
where

A,~B?+C2+D?+F?+G?+H?+2(DF+BH-CG).
(74)

These phases alone do not have an absolute meaning; the
quantities relevant for the interference pattern at the obser-
vation point of the neutrinos are the phase differentds
=d,— P, whered, andd, are the absolute phases of the
neutrino mass eigenstates and v,. It is thus seen from
Egs. (72) and (73) that the phase differences can have ex-
plicit dependence on nonmetricity in the case of opposite
spin polarizations of mass eigenstates for the azimuthal mo-
tion via Eq.(74):

Am?c* RA@
AD=DL—Pl= —2VA, | —, 75
2 (Z(E/f) “’) hic (79
Am?c? RA@
AD=d)—di= +2VA, | —,
2(E/f) he

(76)

whereAm?=m3—mj.

The Hamiltonian for the radial motion on the other hand
is obtained by the assumptiq}lz(p,0,0). In this case with
the further assumptionsc=E andcdt=dr, the phases ap-
propriate to the spin up and spin down particles are, respec-
tively,

1 m?c*
qﬁ:—f f2E+ ——+ VA, +i(A+G) |dr, (77
fic 2E
1 m?c*
(I)iz—f f°E+ —— — A, +i(A+G) |dr,
he ( 2E i ))
(78)
where
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amH) 2 amG) 2
A,=(D—H)?>+|B+F+—— C+K———
rp rp
a’f*
- ——(mc—fp)?
r2
2iaf? amG
+ (mc—fp) C+K—? . (79)

In this case the relevant phase differences depending on nonf_ Ehc
metricity via N® and rotation viaa come from the opposite

spin polarization states

Am?c3 2
ADP=dl—dl= Ar——f\/Adr, 80
2= 1= P, r (80)
AD=Pl—Pl= Ar+—j VA, dr.
2 71 onE

(81)

We point out thatA,=ReA,+ilmA, implies \/A—r=a

PHYSICAL REVIEW D 69, 123002 (2004

as components of torsion other than the axial ones. The ro-
tation of the Sun implies a damping of neutrino oscillations.
However, this result is frame dependent as we explained in
Sec. lll in general. We have shown that there are contribu-
tions coming from nonaxial components of space-time tor-
sion and definite components of space-time nonmetricity de-
pending on the polarizations of the spin states of the mass
eigenstates. If we set the rotation parameterO, then Eq.
(79 gives

2 27172

2

(82

2
(So+S)?+| S,— nga

which means that there is no suppression among the neutri-
nos and onlyN, andN5; components ofN? contribute to the
oscillations. If we further seN®=0, we reach agreement
with our previous results ifi8]. It should be clear that the
above scheme only works if the neutrino masses are different
from each other and hence, in general, different from zero.
This means there are right-handed neutrinos as well as left-
handed ones which, however, must interact with matter very
weakly as they have not yet been observed. Finally, we note

+ip _and hence the rotation Qf the _Sun would suppress thenat all possible contributions discussed here so far would be
transitions among the neutrinos via the phase differencef the order of the Planck scale, and hence do not suffice to

equationg80),(81) in opposite spin polarizations.

V. CONCLUSION

account for the observed solar neutrino deficit.
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