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Possible effects of space-time nonmetricity on neutrino oscillations
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The contribution of gravitational neutrino oscillations to the solar neutrino problem is studied by construct-
ing a Dirac Hamiltonian and calculating the corresponding dynamical phase in the vicinity of the Sun in a
non-Riemann background Kerr space-time with torsion and nonmetricity. We show that certain components of
nonmetricity and the axial as well as nonaxial components of torsion may contribute to neutrino oscillations.
We also note that the rotation of the Sun may cause a suppression of transitions among neutrinos. However, the
observed solar neutrino deficit could not be explained by any of these effects because they are of the order of
Planck scale.
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I. INTRODUCTION

Neutrinos have always attracted a lot of attention in h
energy physics@1#. A major problem of interest at present
the solar neutrino problem. The Sun is a strong source
electron neutrinosne because of the thermonuclear reactio
taking place in its core. According to the standard so
model, the number ofne to be emitted from the Sun can b
predicted. At the same time, the flux of electron neutrin
coming from the Sun can be measured on Earth. The m
sured amount ofne is approximately one-third of the pre
dicted amount. Essentially, this is the so-calledsolar neu-
trino problem. One well-known solution to this problem i
provided by the assumption ofneutrino oscillations@1,2#.
Briefly stated, the neutrino oscillations imply that the ele
tron neutrinos coming out of the Sun may be converted
other neutrino species, muonnm and taunt , during their
journey towards the Earth, assuming neutrinos to hav
mass, whereas the standard electroweak model asserts
mass for them. It should also be noted that all of the ab
arguments have been cast in Minkowski space-time. H
ever, we know that we live in a curved space-time—perh
even in a curved space-time with torsion and nonmetric
Therefore, in more recent years, physicists have turned t
attention to specifically gravitational contributions to ne
trino oscillations—see@3–7# and references therein. We re
cently investigated the effects of space-time torsion on n
trino oscillations@8#—see also@9,10#. The essence of this
work is to calculate the dynamical phase of neutrinos
finding the form of the HamiltonianH from the Dirac equa-
tion in a non-Riemannian space-time. The phase then foll
from the formula
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5Hc⇒c~ t !5expS 2

i

\E HdtDc~0!, ~1!

where c is a Dirac 4-spinor andH is a 434 matrix. The
HamiltonianH will depend, for example, on momentumpW ,
and this is expressed not as a differential operator but sim
as a vector.1 In this paper we investigate within the sam
approach the possible effects of space-time nonmetricity
neutrino oscillations.

II. SPACE-TIME GEOMETRY

Space-time is denoted by the triple$M ,g,¹% whereM is a
four-dimensional differentiable manifold, equipped with
Lorentzian metricg which is a~0,2!-type covariant, symmet-
ric, nondegenerate tensor, and¹ is a connection which de
fines parallel transport of vectors~or more generally tensors!.
We shall give a coordinate system set up at a pointpPM by
coordinate functions~or independent variables! $xa(p)%, a

50̂,1̂,2̂,3̂. This coordinate system forms a set ofnatural ~or
coordinate! reference frameat p as $(]/]xa)(p)%, with
shorthand notation]a[]/]xa. This natural reference fram
is a basis vector set for the tangent space atp, denoted by
Tp(M ). Similarly, differentials$dxa(p)% of coordinate func-
tions $xa(p)% at p form a natural ~or coordinate! reference
coframe in the cotangent space atp, denoted byTp* (M ).
Interior product of the basis vectors with the basis covect
is defined by the Kroenecker symbol:

dxaS ]

]xbD [ı]b
dxa5db

a . ~2!

1The exponential of exp@2(i/\)*Hdt# is defined by its power se
ries expansion.
©2004 The American Physical Society02-1
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In general, any set of linearly independent vectors in tang
space,Tp(M ), can be taken as basis vectors and these v
tors can be orthonormalized by, for example, the Gra
Schmidt process. We denote a set like this by$Xa%, a
50,1,2,3, and call it anorthonormal reference frame. In this
case the metric defined onM satisfies the relation

g~Xa ,Xb!5hab , ~3!

where hab is known as the Minkowski metric which is
matrix whose diagonal terms are21,1,1,1 and off-diagona
terms are zero. The basis set dual to the orthonormal re
ence frame is denoted by$ea%, a50,1,2,3, and called the
orthonormal reference coframe. $Xa%, and its dual$ea% sat-
isfies the following set of equalities that is another manif
tation of Eq.~2!:

ea~Xb![ıXb
~ea!5db

a . ~4!

Here we adhere to the following conventions: indices
noted by Greek lettersa, b, . . . 50̂,1̂,2̂,3̂ and m, n, . . .
51̂,2̂,3̂ are holonomic or coordinate indices, anda, b, . . .
50,1,2,3 andi, j , . . . 51,2,3 are anholonomic or frame in
dices. In terms of the local coordinate frame]a(p), the or-
thonormal frameXa(p) can be expanded via the so-calle
vierbein ~or tetrad! ha

a(p) as

Xa~p!5ha
a~p!]a~p!. ~5!

In order forXa to serve as an anholonomic basis, theha
a(p)

are required to be nondegenerate—i.e., detha
a(p)Þ0. In

Tp* (M ) an orthonormal coframeea(p) can be expanded in
terms of the local coordinate coframedxa(p) as

eb~p!5hb
b~p!dxb~p!. ~6!

The inverse vierbeinhb
b(p) has to be nondegenerate as we

Moreover, the duality of the frame and the coframe requi
for the vierbein and its inverse to satisfy

ıXa
eb5ha

a~p!hb
a~p!5da

b . ~7!

We set the space-time orientation by the choicee012351. The
nonmetricity 1-forms, torsion 2-forms, and curvatu
2-forms are defined by the Cartan structure equations

2Qab52DhabªLab1Lba , ~8!

Ta5Dea
ªdea1La

b`eb, ~9!

Ra
b5DLa

bªdLa
b1La

c`Lc
b .

~10!

d, D, ıa , and * denote the exterior derivative, the covaria
exterior derivative, the interior derivative, and the Hodge s
operator, respectively. The linear connection 1-forms can
decomposed in a unique way according to@11#

La
b5va

b1Ka
b1qa

b1Qa
b , ~11!

whereva
b are the Levi-Civita` connection 1-forms,
12300
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va
b`eb52dea, ~12!

Ka
b are the contortion 1-forms,

Ka
b`eb5Ta, ~13!

andqa
b are the antisymmetric tensor 1-forms,

qab52~ ıaQbc!e
c1~ ıbQac!e

c. ~14!

It is cumbersome to take into account all components
nonmetricity and torsion in gravitational models. Therefo
we will be content with dealing only with certain irreducib
parts of them to gain physical insight. The irreducible d
compositions of torsion and nonmetricity invariant under t
Lorentz group are summarily given below. For details o
may consult Ref.@12#. The nonmetricity 1-formsQab can be
split into their trace-freeQ̄ab and trace parts as

Qab5Q̄ab1
1

4
habQ, ~15!

where the Weyl 1-formQ5Qa
a andhabQ̄ab50. Let us de-

fine

LbªıaQ̄a
b , LªLaea,

Qbª * ~Q̄ab`ea!, Qªeb`Qb ,

VaªQa2
1

3
ıaQ, ~16!

so as to use them in the decomposition ofQab as

Qab5Qab
(1)1Qab

(2)1Qab
(3)1Qab

(4) , ~17!

where

Qab
(2)5

1

3
* ~ea`Vb1eb`Va!, ~18!

Qab
(3)5

2

9 S Laeb1Lbea2
1

2
habL D ,

~19!

Qab
(4)5

1

4
habQ, ~20!

Qab
(1)5Qab2Qab

(2)2Qab
(3)2Qab

(4) . ~21!

We have ıaQab
(1)5ıaQab

(2)50, habQab
(1)5habQab

(2)5habQab
(3)

50, andea`Qab
(1)50. In a similar way the irreducible de

composition ofTa’s invariant under the Lorentz group i
given in terms of

a5ıaTa, s5ea`Ta, ~22!

so that

Ta5Ta(1)1Ta(2)1Ta(3), ~23!
2-2
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where

Ta(2)5
1

3
ea`a, ~24!

Ta(3)5
1

3
ıas, ~25!

ta
ªTa(1)5Ta2Ta(2)2Ta(3). ~26!

Here ıata5ıaTa(3)50, ea`ta5ea`Ta(2)50. To give the
contortion components in terms of the irreducible comp
nents of torsion, we first write

2Kab5ıaTb2ıbTa2~ ıaıbTc!e
c ~27!

from Eq. ~13! and then substituting Eq.~23! into above we
find

2Kab5ıatb2ıbta2~ ıaıbtc!e
c1

2

3
~ea`ıba2eb`ıaa!

1
2

3
~ ıaıbs!2

1

3
~ ıaıbıcs!ec. ~28!

In componentsKab5Kc,abe
c, ta5 1

2 tbc,aebc, a5Faea, s
5(1/3!)sabce

abc this becomes

Kc,ab5
1

2
~ tac,b2tbc,a1tab,c!1

1

3
~Fbhac2Fahbc!2

1

6
sabc .

~29!

III. HAMILTONIAN OF A DIRAC PARTICLE
IN ARBITRARY SPACE-TIMES

The Dirac equation in a non-Riemannian space-time w
torsion and nonmetricity is written as@13–15#

* g`Dc1M* 1c50 ~30!

in terms of the Clifford algebraC,3,1-valued 1-formsg
5gaea andM5mc/\. We use the Dirac matrices

g05 i S I 0

0 2I D , g i5 i S 0 s i

2s i 0 D ,

where s i are the Pauli matrices.c is a 4-component
complex-valued Dirac spinor whose covariant exterior
rivative is given explicitly by

Dc5dc1
1

2
L [ab]sabc1

1

4
Qc, ~31!

where

sab5
1

4
@ga ,gb# ~32!

are the spin generators of the Lorentz group. We write it
explicitly as
12300
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Dc5] tcdx0̂1]mcdxm1
1

2
ecVc,abs

abc1
1

4
ecQcc

5h0̂
ce

c] tc1hm
ce

c]mc1
1

2
ecVc,abs

abc

1
1

4
ecQcc, ~33!

whereL [ab]ªVab5Vc,abe
c is the antisymmetric part of the

full connection 1-form andQ5Qaea, and using * g
5ga* ea and the identity* ea`eb52hab* 1 we calculate

* g`Dc5S 2h0̂
cg

c] tc2hm
cg

c]mc

2
1

2
Vc,abg

csabc2
1

4
Qcg

cc D * 1. ~34!

Putting this into Eq.~30! we obtain

h0̂
cg

c] tc52hm
cg

c]mc1Mc2
1

2
Vc,abg

csabc

2
1

4
Qcg

cc. ~35!

We multiply this from the left by

i\~h0̂
aga!215

2 i\

b2
~h0̂

aga!, ~36!

where

b2
ª~h0̂

0!21h0̂
ih

0̂i . ~37!

When we compare the result with the Schro¨dinger equation

i\
]c

]t
5Hc, ~38!

we deduce the Dirac Hamiltonian matrix@7,8,15–20#

H5
c

b2
h0̂

ahm
bgagbi\]m2

imc2

b2
h0̂

aga

1
i\c

2b2
h0̂

dVc,abg
dgcsab1

i\c

4b2
h0̂

aQbgagb. ~39!

The right-hand side of Eq.~39! need not be a Hermitian
matrix in general; e.g., ifh0̂

iÞ0, then the mass term contain
an anti-Hermitian part such as

H5H01 iH 1 , ~40!

whereH0
15H0 andH1

15H1 . However, the decomposition
~40! is frame dependent. That is, we can always find a lo
Lorentz frame in which Hamiltonian is fully Hermitian
2-3
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@17,18#. First we can get rid of the anti-Hermitian part of th
mass term by diagonalizing the matrixha

a via a frame trans-
formation

]a~x!→]b~x!L21b
a~x!,

gab~x!→ggd~x!L21g
aL21d

b . ~41!

Thus2

ha
a~x! → f ~x!da

a , ~42!

wherex stands forxa and f (x) is composed ofha
a(x). Un-

der this change Eq.~39! goes over to

H→H5c f1~x!g0g i i\] î 2 imc2f 2~x!g0

1 i\c f3~x!Vc,abg
0gcsab1 i\c f4~x!Qbg0gb,

~43!

where f i(x) are composed ofha
a(x). Putting in the defini-

tion

Vc,ab5eabcdS
d ~44!

and using the identity

gasbc5
1

2
habgc2

1

2
hacgb2

1

2
eabcdgdg5 , ~45!

whereg55g0g1g2g3 , the Hamiltonian matrix becomes

H5c f1~x!g0g i i\] î 2 imc2f 2~x!g01 i\cNa~x!g0ga

1 i\c f5~x!Sag0gag5 , ~46!

where we introduced

Naª f 3~x!Vb,
ba1 f 4~x!Qa .

If we now define the canonical momenta

piª2 i\S ] î 1
Ni~x!

f 1~x! D ~47!

and assume

pi
15pi , ~48!

Eq. ~46! takes the form

H5 f 1~x!cpig0g i1 imc2f 2~x!g01 i\c f5~x!Sag0gag5

2 i\cN0~x!. ~49!

In order eliminate the last term in Eq.~49! one may further
perform a locally unitary transformation

c~x! → U1~x!c~x!, H → U1~x!HU~x! ~50!

2LPSO1(1,3) whereSO1(1,3) is special orthochronous Loren
group.
12300
and obtain

H→H5 f 1~x!cpiU1~x!g0g iU~x!

1 imc2f 2~x!U1~x!g0U~x!

1 i\c f5~x!SaU1~x!g0gag5U~x!

2 i\c@ f 1~x!U1~x!g0g i]
îU~x!1N0~x!#.

~51!

Under the solvable matrix equation

U1~x!g0g i]
îU~x!52

N0~x!

f 1~x!
, ~52!

we give the final form of our Hermitian Hamiltonian matri
~up to a sign! by the expression

H5 f 1~x!cpig0g i1 imc2f 2~x!g01 i\c f5~x!Sag0gag5 .
~53!

IV. NEUTRINO OSCILLATIONS IN THE KERR
BACKGROUND

Here we construct the Hamiltonian matrix of a Dirac pa
ticle ~i.e., a massive neutrino! of massm in the background
space-time geometry of a heavy, slowly rotating body
massM such as the Sun. Its exterior gravitational field w
be described by weak constant, uniform torsion and n
metricity fields, together with the Kerr metric@21#:

ds252S 12
2MGr

c2r2 D cdt^ cdt1
r2

D
dr ^ dr1r2du ^ du

1S r 21
a2

c2
1

2MGa2r

c4r2
sin2u D sin2udw ^ dw

2
4MGar

c2r2
sin2udt^ dw, ~54!

where D5r 22(2MG/c2)r 1(a/c)2, r25r 21(a/c)2cos2u,
a[J/M5 2

5 R2v. The Sun is assumed a uniform sphere
radiusR. HereM, J, andv are the mass, angular momentum
and angular velocity of the Sun, respectively. We choose
orthonormal coframe

e05
AD

r
S cdt2

a

c
sin2udw D , e15

r

AD
dr,

e25rdu, e35
sinu

r F S r 21S a

cD 2Ddw2adtG ,
~55!

and using the definitions
2-4
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dea1va
b`eb50 ⇔ vab52

1

2
ıadeb1

1

2
ıbdea

1
1

2
~ ıaıbdec!e

c, ~56!

calculate the Levi-Civita` connection 1-forms

v 1
0 5

MG@r 22~a/c!2cos2u#

r4c
dt

1
@~MG/c22r !r222MGr2/c2#a sin2u

r4c
dw,

v 3
2 5

2MGra cosu

r4c2
dt

1

DS a

c
D 2

sin2u2@r 21~a/c!2#2

r4
cosudw,

v 2
0 52

ADa sinu cosu

r2c
dw,

v 3
1 52

ADr sinu

r2
dw,

v 3
0 5

ADa cosu

r2c
du2

ar sinu

ADr2c
dr,

v 2
1 52

a2sinu cosu

r2ADc2
dr2

rAD

r2
du. ~57!

To simplify the discussions, we consider only the motion
massive neutrinos restricted to the equatorial plane of
Sun. Thus we setu5p/2 anddu50. Furthermore, since th
Sun rotates very slowly@v.331026 (rad/s)# we approxi-
mate the metric functions. Therefore, in reasonably far aw
distances from the Sun, the restricted line element will
taken as

ds2.2S 12
2MG

c2r
D cdt^ cdt1S 12

2MG

c2r
D 21

dr ^ dr

1rdw ^ rdw24
a

c

MG

c2r 2
cdt^ rdw. ~58!

We also write the orthonormal coframe approximately up
O(a/rc) as
12300
f
e
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o

e05 f cdt2
a f

c
dw, e15

1

f
dr,

e250, e352
a

r
dt1rdw, ~59!

where

D

r2
[ f 2.12

2MG

c2r
. ~60!

The inverses of these relations to the same order of appr
mation are

cdt5
1

f
e01

a

rc
e3, dr5 f e1, du50,

dw5
a

f r 2c
e01

1

r
e3, ~61!

which give

h0̂
05

1

f
, h0̂

35
a

cr
, h1̂

15 f , h3̂
05

a

f cr2
, h3̂

35
1

r
,

~62!

with all other components neglected. To this order of a
proximation Eq.~57! gives

v01. f 8e01
a

cr2
e3, v03.

a

cr2
e1, v31.

a

cr2
e01

f

r
e3,

~63!

with the remaining ones neglected. Then the Hamilton
matrix ~39! reads

H. f 2cprg0g11 f cpwg0g31 i f mc2g02
i

2
\c f f8g0g1

1
3

2
i\c f Sag0g5ga2 i\c f Nag0ga2

a f3

r
prg3g1

1
ia\ f 2f 8

2r
g3g12

iamc f2

r
g31

ia\ f

2r 2
g0g2g5

1
3ia\ f 2

2r
Sag3gag51

ia\ f 2

r
Nag3ga , ~64!

where

prª2 i\S ]

]r
1

1

r D , ~65!

puª0, ~66!

pwª2
i\

r

]

]w
, ~67!
2-5
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Naª
1

2 S tb
a,b1Fa1

5

4
Qa2LaD .

~68!

Note that the contributions of axial components of tors
are given bySa while certain components of nonmetricit
and the nonaxial components of torsion occur only inNa and
the rotation effects are given in terms of the parametera. We
rewrite the Hamiltonian 434 matrix in terms of 232 ma-
trices as follows:

H5S H11 H12

H21 H22
D , ~69!

with

H115 f mc21 iA1Bs11S C2 i
a f3

r
pr Ds21Ds3 ,

H2252 f mc21 iA1Bs11S C2 i
a f3

r
pr Ds21Ds3 ,

H125F1~ f 2cpr1 iG !s11 iHs2

1S f cpw1
amc f2

r
1 iK Ds3 ,

H215F1~ f 2cpr1 iG !s11 iHs2

1S f cpw2
amc f2

r
1 iK Ds3 , ~70!

where we set

A.2\c f N01
a\ f 2

r
N3 ,

B.
3

2
\cS11

a\ f 2

r
N2 ,

C.
3

2
\cS22

a\ f 2

2r 2
~11r f 81rN1!,

D.
3

2
\cS32

3a\ f 2

2r
S0 ,

F.
3

2
\cS02

3a\ f 2

2r
S3 ,

G.2
\c f f8

2r
2\c f N11

3a\ f 2

2r
S2 ,

H.2\c f N22
3a\ f 2

2r
S1 ,

K.2\c f N31
a\ f 2

r
N0 . ~71!
12300
The way we approach the solar neutrino problem starts
writing down the Dirac equation in a rotating, axially sym
metric background space-time geometry and finding pha
corresponding to neutrino mass eigenstates, then finally
culating the phase differences among them. There are
cases of special interest: the azimuthal motion and the ra
motion. The analysis of the azimuthal motion withpW
5(pr ,pu ,pw)5(0,0,p) yields for ultrarelativistic neutrinos
for which pc.E andcdt.Rdw, the phase for the spin up
state

F↑5S f E1
f m2c4

2E
1ADw1 i ~A1K !D RDw

\c
~72!

and similarly for the phase of the spin down state

F↓5S f E1
f m2c4

2E
2ADw1 i ~A1K !D RDw

\c
, ~73!

where

Dw.B21C21D21F21G21H212~DF1BH2CG!.
~74!

These phases alone do not have an absolute meaning
quantities relevant for the interference pattern at the ob
vation point of the neutrinos are the phase differencesDF
5F22F1 whereF1 andF2 are the absolute phases of th
neutrino mass eigenstatesn1 and n2 . It is thus seen from
Eqs. ~72! and ~73! that the phase differences can have e
plicit dependence on nonmetricity in the case of oppos
spin polarizations of mass eigenstates for the azimuthal
tion via Eq.~74!:

DF5F2
↓2F1

↑5S Dm2c4

2~E/ f !
22ADwD RDw

\c
, ~75!

DF5F2
↑2F1

↓5S Dm2c4

2~E/ f !
12ADwD RDw

\c
,

~76!

whereDm25m2
22m1

2.
The Hamiltonian for the radial motion on the other ha

is obtained by the assumptionpW 5(p,0,0). In this case with
the further assumptionspc.E andcdt.dr, the phases ap
propriate to the spin up and spin down particles are, resp
tively,

F↑5
1

\c
E S f 2E1

m2c4

2E
1AD r1 i ~A1G!D dr, ~77!

F↓5
1

\c
E S f 2E1

m2c4

2E
2AD r1 i ~A1G!D dr,

~78!

where
2-6
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D r.~D2H !21S B1F1
amH

rp
D 2

1S C1K2
amG

rp
D 2

2
a2f 4

r 2
~mc2 f p!2

1
2ia f 2

r
~mc2 f p!S C1K2

amG

rp
D . ~79!

In this case the relevant phase differences depending on
metricity via Na and rotation viaa come from the opposite
spin polarization states

DF5F2
↓2F1

↑5
Dm2c3

2\E
Dr 2

2

\c
E AD rdr, ~80!

DF5F2
↑2F1

↓5
Dm2c3

2\E
Dr 1

2

\c
E AD rdr.

~81!

We point out that D r5ReD r1 i Im D r implies AD r5a
1 ib and hence the rotation of the Sun would suppress
transitions among the neutrinos via the phase differe
equations~80!,~81! in opposite spin polarizations.

V. CONCLUSION

We have here extended our recent study of gravitation
induced neutrino oscillations@8# by including the effects of
rotation of the Sun and space-time nonmetricity and as w
12300
n-

e
e

ly

ll

as components of torsion other than the axial ones. The
tation of the Sun implies a damping of neutrino oscillation
However, this result is frame dependent as we explaine
Sec. III in general. We have shown that there are contri
tions coming from nonaxial components of space-time t
sion and definite components of space-time nonmetricity
pending on the polarizations of the spin states of the m
eigenstates. If we set the rotation parametera50, then Eq.
~79! gives

AD r5
3

2
\cF ~S01S1!21S S22

2

3
f N3D 2

1S S31
2

3
f N2D2G1/2

,

~82!

which means that there is no suppression among the ne
nos and onlyN2 andN3 components ofNa contribute to the
oscillations. If we further setNa50, we reach agreemen
with our previous results in@8#. It should be clear that the
above scheme only works if the neutrino masses are diffe
from each other and hence, in general, different from ze
This means there are right-handed neutrinos as well as
handed ones which, however, must interact with matter v
weakly as they have not yet been observed. Finally, we n
that all possible contributions discussed here so far would
of the order of the Planck scale, and hence do not suffic
account for the observed solar neutrino deficit.
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