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Abstract: In this paper, new single/double-layer N-way Wilkinson power dividers (WPDs) were
designed by using slow-wave structures such as narrow-slit-loaded and meandered transmission
lines. For size reduction, the slit-loaded and meandered lines were used instead of the quarter-
wavelength transmission lines of a conventional WPD. Based on the proposed approaches, two-,
four-, and eight-way power dividers were designed, simulated, and fabricated. The fabricated 2-,
4-, and 8-way circuits were measured at the center frequencies of 2.03, 1.77, and 1.73 GHz, which
are in excellent agreement with the predicted ones. The meandered transmission lines were also
used to design WPD types with novel input/output port arrangements. For this purpose, two
three-way WPDs were located on both sides of the same board to have different power-splitting
ratios at different inputs and outputs in order to provide alternative solutions for antenna arrays.
Furthermore, a five-way dual-layer WPD was introduced by locating the meandered transmission
lines into two layers. The most important advantage of the proposed 3- and 5-way WPDs is that they
allowed the input power at the next output port to be halved, in the order of P/2, P/4, P/8, P/16,
and P/16. All the designed power-halving WPDs were simulated, fabricated, and successfully tested.

Keywords: N-way; Wilkinson power dividers (WPDs); meandered transmission line; power halving

1. Introduction

There are different design approaches for WPDs, such as tapered transmission lines [1],
three-section [2], dual-band structures [3], dual-lines [4], and triple lines [5]. In addition
to these, open-/short-circuited stubs and defected ground structures are used to achieve
improved isolation [6–8]. Single- or multi-band WPDs operating in a wide frequency band
have also been studied. Among these, semi-lumped-element power dividers with dual-
band characteristics in the UHF/SHF bands [9], flexible design schemes for single− and
dual−band power-dividing operations [10], dual-band unequal WPDs [11], multi-T-section
characterization of high-impedance transmission lines [12], multi-band reconfigurable
differential power dividers [13], multiband WPDs based on multisection LC ladder cir-
cuits [14], and single/multi-band WPDs with transversal filtering sections [15] stand out.
Such WPDs may find application areas especially in multifunctional communication sys-
tems. Moreover, the placement of power dividers in antenna arrays is one of the main
focuses for researchers. Therefore, size reduction is another important parameter for WPDs,
since it is required for feeding the elements of the antenna array within a relatively reduced
area. To date, slow-wave structures have been especially used for size reduction. For this
purpose, capacitively loaded stubs [16,17] and narrow-slit-loaded and meandered transmis-
sion lines [18,19] are largely employed for WPD designs. Periodically, loaded slow-wave
structures are modified for different targets, including dual-band applications [20,21], SiGe
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BiCMOS processes [22], filtering power dividers having resonant LC branches [23], etc.
In some structures, coupled lines are used to suppress undesirable harmonics so that the
signal can be transmitted within the desired frequency region [24]. On the other hand, in
order to adjust the directivity, antenna array elements may need different power ratios
at different elements. Therefore, unequal power dividers may also find applications in
antenna arrays to meet the asymmetric power division requirement [25–27]. There are two
types of equal WPDs: N-way and cascaded models. N-way WPDs have an input port and
N output ports with the impedance of Z0

√
2, whereas cascaded model WPDs divide the

input power by 2 at each cascaded path [28].
In this paper, two-, four-, and eight-way cascaded WPDs are designed by using slow-

wave structures. For this purpose, the two-, four-, and eight-way WPDs constructed by
using narrow-slit-loaded transmission lines in [28] were first taken into account. Next,
they were replaced with meandered transmission lines to improve the compactness. Two-,
four-, and eight-way WPDs having meandered transmission lines were also fabricated
and successfully measured for demonstration. Based on the meandered transmission
lines, three- and five-way WPDs with new input/output port arrangements were designed,
fabricated, and successfully measured for demonstration. The proposed three- and five-way
circuits allow halving the input power at the next output port.

2. Materials and Methods
2.1. Analysis of WPDs

The S-parameters of a WPD can be calculated by using even–odd mode analysis.
An equivalent circuit model for a conventional 2-way WPD is shown in Figure 1a. As
can be seen from the figure, quarter-wavelength transmission lines having characteristic
impedances of Z0

√
2 are used in both output paths. Furthermore, an isolation resistor of

2Z0 is located between the two output ports. Based on this model, slow-wave transmission
lines can be employed instead of the conventional quarter-wavelength transmission lines.
Therefore, these models are the starting point of the entire design procedure.
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The S parameters of the WPD given in Figure 1a can be obtained by different ap-
proaches. In order to obtain S11, the circuit model should be considered as illustrated in
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Figure 1b, since no current will flow through the isolation resistor. As can be seen from
Figure 1b, S11 can be calculated from the following set of equations:

S11 =
Zin − Z0

Zin + Z0
(1)

Zin =
ZLine

2
(2)

ZLine = Z0
√

2
Z0 + jZ0

√
2tan θ

Zo
√

2 + jZ0tan θ
(3)

θ =
2π
λ

.
λ0

4
(4)

For equal power splitting, S21 and S31 can be obtained from S11. Furthermore, the
isolation between the output ports can be calculated by using even–odd mode analysis. For
this purpose, the even- and odd-mode half-circuits can be obtained by locating the magnetic
and electric walls, respectively, on the symmetry axis shown in Figure 2a. Figure 2b,c
illustrate the even- and odd-mode half-circuit models, respectively. It should be noted that
the isolation resistor can be neglected for the even-mode circuit since the symmetry axis is
open-circuited. In addition, the isolation resistor is Z0 for the odd-mode circuit due to the
short-circuited symmetry axis. The isolation between the output ports, S32, can be found
by deriving the even-mode and odd-mode input impedances. Here, the circuit model
shown in Figure 1a should be considered a 2-port network, with the input port as port 2
and the output port as port 3. Thus, under the even- and odd-mode excitations, the input
impedance seen from port 2 or 3 will be the even- and odd-mode input impedances, so that
the isolation can be expressed as

S32 =
(Zeven − Zodd )Z0

(Zeven − Z0 )(Z0 + Zodd )
(5)

The even-mode input impedance shown in Figure 2b can be expressed as

Zeven = Z0
√

2
2Z0 + jZ0

√
2tan θ

Zo
√

2 + jZ0tan θ
(6)

The odd-mode input impedance can be calculated as

Zodd =
ZxZ0

Zx + Z0
(7)

Zx = jZ0

√
2tan θ (8)

Similar analyses can also be applied to 4- and 8-way WPDs. Since 2 and 3 quarter-
wavelength transmission lines should be used in each output path for 4- and 8-way WPDs,
respectively, they will excite 2 and 3 transmission poles within the power-dividing fre-
quency band.

2.2. N-Way Wilkinson Power Dividers Based on Slow-Wave Structures

As is well known, 1-to-N-way WPDs consist of N branches which have characteristic
impedances of Z0

√
N, as shown Figure 3. Although they provide better size reduction

than that of the cascaded structures, they suffer from the narrow band and poor isolation
between output ports [28].
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Equivalent circuit models for conventional 2-, 4-, and 8-way cascaded WPDs are
illustrated in Figure 4a–c, respectively. As can be seen from Figure 4, conventional 2-way
WPDs comprise 2 quarter-wavelength (λ/4) transmission lines with the characteristic
impedances of Z0

√
2. The same transmission line length and impedance values are also

valid for 4- and 8-way WPDs, as depicted in Figure 4b,c. In order to obtain high isolation
between the output ports, an isolation resistor of 2Z0 is connected between 2 output ports.
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In addition, the input/output ports must have characteristic impedances of Z0 for good
impedance matching [28].
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In order to reduce the overall circuit size, quarter-wavelength transmission lines can
be capacitively or inductively loaded by different approaches, as shown in Figure 5. Due
to the increase in the capacitance or inductance per unit length of the transmission line,
the phase velocity on it decreases, so such a transmission line can be called a slow-wave
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structure. Among the slow-wave structures shown in Figure 5, slit-loaded and meandered
transmission lines are widely preferred for different kinds of microwave circuits because
of their easy fabrication processes. However, the fabrication of interdigital capacitor-
loaded transmission lines are more difficult than the others since they may need extra via
connections. The number of narrow slits and meandered sections can be determined with
respect to the desired center frequency. Here, it should be taken into consideration that a
transmission line with narrow slits and meandered sections should exhibit similar behavior
to a quarter-wavelength transmission line having the characteristic impedance of Z0

√
2.

Thus, the designed WPD would have optimum performance in terms of return loss and
isolation. For this purpose, all dimensions and the number of narrow slits and meandered
sections were determined by using the parameter sweep in Sonnet Software. Investigations
into the related parameters are described in the following sections.
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2.2.1. WPDs with Narrow-Slit-Loaded Transmission Lines

A 2-way WPD was constructed by loading narrow slits as shown in Figure 6 [28].
An RT/Duroid substrate with a relative dielectric constant of 10.2 and a thickness of
1.27 mm was used in all design processes. The number of slits and the location of the
isolation resistor affect the frequency response as depicted in Figure 7a,b, respectively. It is
clear that the center frequency decreases as the number of narrow slits increases. Therefore,
a very compact size can be achieved by using the maximum number of slits. Since 50-ohm
port impedances were utilized, the isolation resistor was chosen as 100 ohm.
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Figure 6. (a) Conventional 2-way WPD-loading with narrow slits, and (b) location of the
isolation resistor.

The proposed slit-loaded transmission lines in [28] were also used to design 4- and
8-way WPDs. Figure 8 illustrates the layouts of the 4- and 8-way WPDs in a cascaded
model. It is clear that 2 more paths have been added instead of output ports for the 4- and
8-way power dividers.
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2.2.2. WPDs with Meandered Transmission Lines

The meandered line model taken into consideration in this paper is shown in Figure 9.
According to the even or odd number of meandered sections, the equivalent circuit model
is depicted in Table 1 [29].
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In a similar manner to the slit-loaded transmission lines, meandered sections can also
be used for size reduction. Figure 10a illustrates a 2-way cascaded WPD constructed by
meandered transmission lines. An RT/Duroid substrate with a relative dielectric constant
of 10.2 and a thickness of 1.27 mm was used in all design processes. Effects of the number
of meandered sections on the frequency response are depicted in Figure 10b. Here, the
number of meandered sections is changed, starting from the middle of the transmission
line. Depending on the proposed approach, a size reduction of 20.14% can be achieved.
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In addition to 2-way WPDs, more than 2 power-dividing operations can be necessary
for the antenna arrays to be used in multi-way systems. For this purpose, the designed
2-way WPDs can be enhanced to 4-and 8-way circuits by means of meandered transmission
lines, as shown in Figure 11a,b. As can be seen from Figure 11a, two two-way WPDs were
connected in cascade for the four-way design. In this case, two reflection zeros can be
observed since there are two identical transmission lines. In the eight-way WPDs, three
reflection zeros appear due to the three cascaded transmission lines shown in Figure 11b.
Here, the dimensions of the transmission lines, the isolation resistor and the resistor
position are same as the 2-way WPDs. Accordingly, it is possible to achieve power-dividing
operations in wider frequency bands by using more cascaded sections. The size reductions
for the proposed 4- and 8-way power dividers are 16.62% and 9.99%, respectively. Electrical
lengths of the proposed 2-, 4-, and 8-way WPDs are 0.20 λg × 0.078 λg, 0.56 λg × 0.25
λg, and 0.63 λg × 0.57 λg, respectively, where λg is the guided wavelength at the center
frequency. Frequency responses of the designed circuits are given with the experimental
studies in the following section.
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2.2.3. Alternative Input/Output Port Arrangements for Various Power-Division Processes

In order to introduce various types of WPDs to be used for different feeding schemes
of antenna arrays, new WPD configurations with different power-division ratios and
input/output port arrangements were proposed by using meandered transmission lines.
For this purpose, 3 different circuit topologies, including 3-way, 3-way double-layer, and
5-way double-layer WPDs were proposed. The main challenge of the proposed circuits is
their power-halving property. Hence, the input power is halved at the next output ports
and equal power-dividing ratios are achieved at the last two output ports.

Figure 12 illustrates the circuit for two three-way WPDs located at the same side of the
board. As can be seen from Figure 12a, there are two input ports located at the upper left
and bottom right. The upper output ports belong to the upper circuit, whereas the bottom
output ports are for the bottom circuit. Both these WPDs perform the same operations in
different paths, so the proposed arrangement actually behaves like a power-divider bank
to be used for a multi-input—multi-output (MIMO) system. They are useful for different
antenna arrays serving different operations. Moreover, the input power is halved at output
port 2, while the power at output ports 3 and 4 is equal. The simulated frequency responses
are demonstrated in Figure 12b. The magnitude and phase differences are also shown in
Figure 12c,d, respectively.

The second WPD configuration was created for double-layer applications, as shown
in Figure 13a. Here, a common ground plane was located between two layers, where
both layers included two three-way power dividers for utilization in MIMO systems. The
power divider in the upper layer is completely similar to the one in the bottom layer, so the
proposed approach can be useful for bidirectional MIMO systems. The bottom and upper
power dividers exhibit similar circuit performances. The S parameters of one of the two
proposed WPDs are given in Figure 13b. Figure 13c,d represent the simulated magnitude
and phase differences, respectively.

The last configuration was a 5-way WPD, as shown in Figure 14a. As can be seen from
the figure, two layers were combined so as to have a common ground plane. The input port
was located at the upper layer, and there were five output ports for power splitting. Two
of the outputs are in the upper layer, whereas the remaining ports are in the bottom layer.
The designed 5-way WPD halves the input power at the next port in a similar manner
to the previous configuration. Hence, port 2 has 1/2, port 3 has 1/4, port 4 has 1/8, and
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ports 5 and 6 both have 1/16 of the input power. This phenomenon can be seen from the
simulated frequency responses shown in Figure 14b. The |S21|, |S31|, |S41|, |S51|, and |S61|
parameters were approximately 3, 6, 9, 12, and 12 dB at the center frequency, respectively.
Figure 14c,d show the magnitude and phase difference of the simulated S parameters.
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3. Results

To demonstrate the proposed approaches, all the circuits designed with narrow-slit-
loaded and meandered transmission lines were fabricated and tested. All circuits were
simulated by using a full-wave electromagnetic simulator, Sonnet.

First, experimental studies of the power dividers having narrow-slit-loaded transmis-
sion lines introduced in [28] are presented. Photographs of the manufactured N-way WPDs
having narrow slits in [28] are shown in Figure 15. Figure 16 illustrates a measurement
view, where 50-ohm loads were used to match the idle output ports for 4- and 8-way power
dividers since the measurement device has only four ports. The measured results of the
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power dividers having narrow-slit-loaded transmission lines were compared with the
simulated results in Figure 17 [28]. It is obvious that the measured and simulated results
are in very good agreement. In Figure 17a, the center frequency was 2 GHz at the 15 dB
fractional bandwidth (FBW) of 36.26%. As can be seen from the figure, the return loss
and isolation level were better than 15 and 20 dB within the FBW, respectively. Within
the FBW, the minimum isolation level and insertion loss were approximately 29.56 dB at
2 GHz and 3.29 dB, respectively. The measured and simulated results of the 4-way WPD are
illustrated in Figure 17b, with the return loss and isolation level of better than 15 and 20 dB,
respectively. The center frequency was 1.8 GHz at the FBW of 94.44%, and the insertion
loss was better than 3 + 0.5 dB. Moreover, the center frequency of the 8-way WPD was
measured at 1.9 GHz at the FBW of 81.05%. The measured results were compared with
the simulated ones in Figure 17c, where the insertion loss, return loss, and isolation level
obtained were better than 9 + 0.5, 15, and 20 dB, respectively.
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Meandered-transmission-line-based two-, four-, and eight-way WPDs were also man-
ufactured and tested. Photographs of the fabricated circuits are shown in Figure 18.
The simulated and measured frequency responses for the 2-way WPD are compared in
Figure 19a, where the return loss and isolation level are better than 15 and 30 dB, respec-
tively. Frequencies of the minimum isolation and return loss levels are different because of
fabrication errors. The measured center frequency was 2 GHz at the FBW of 75%. It should
also be noted that there was only one reflection zero within the related frequency band. The
measured magnitude and phase difference can be observed from Figure 19b,c, respectively.
The center frequency of the 4-way power divider was measured at 1.77 GHz at the FBW
of 73.09% as depicted in Figure 19a. At that frequency, the measured return and insertion
losses were 24 and 3.1 dB, respectively. Isolation levels between the output ports were
measured as better than 26 dB. In the frequency response of the four-way power divider,
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there are two reflection zeros, since the circuit is composed of two cascaded sections. The
measured magnitude and phase differences are also shown in Figure 20b,c, respectively.
The simulated and measured results of the eight-way WPD are compared in Figure 21a
and were found to be in very good agreement. In this case, three reflection zeros can
be observed due to the utilization of three cascaded sections. The center frequency was
measured at 1.73 GHz at the 15 dB FBW of 87.86%. Isolation levels between the output
ports were better than 15 dB, 26 dB, 24 dB within the FBW, where the minimum insertion
losses were 3.6 dB, 6.5, and 9.6 for 2-, 4-, and 8-way WPDs, respectively. The measured
magnitude differences are shown in Figure 21b, with acceptable values smaller than 1 dB,
and the phase differences can be observed in Figure 21c.
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Meandered-transmission-line-based WPDs with alternative input/output port con-
figurations were manufactured and tested for demonstration. A photograph of the two
fabricated three-way WPDs is shown in Figure 22a. The frequency response of the designed
power divider is depicted in Figure 22b. As can be seen from the figure, the designed
circuit can serve within the frequency band of 1.5–2.0 GHz. Within this frequency region,
the isolation level between the output ports is better than 19.96 dB, the return loss is better
than 17.71 dB, and the insertion loss is better than 3 + 0.5 dB. Figure 22c shows the magni-
tude differences, which are better than 4.4 dB. The phase responses corresponding to the
S-parameters are also illustrated in Figure 22d.

The multilayer three-way WPD was implemented as shown in Figure 23a,b. It is
obvious that the implemented circuit is different from the previous one, since two WPDs
are located at both sides of the structure with a common ground plane. Comparisons of the
simulated and measured results in terms of the return loss, insertion loss, and isolation level
are depicted in Figure 23c. Within the frequency band of 1.5–2 GHz, the return loss was
observed as better than 15 dB with an insertion loss of better than 3 + 0.5 dB at each output
port. Furthermore, the isolation levels between all output ports were better than 19 dB.
Figure 23d,e show the measured magnitude differences and phase responses, respectively.
Unwanted differences for the measured results result from the fabrication errors which
especially appeared during the combination of two layers. Two layers were combined by
using copper tape to transfer the ground plane into the upper/down plane. Because of the
small circuit size and the laboratory conditions, two circuit boards could not be combined
by using screws.
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A meandered-transmission-line-based multilayer five-way WPD was manufactured and
successfully tested. Photographs of the front and back views of the fabricated circuits are
shown in Figure 24a,b, respectively. The measured and simulated return and insertion losses
of the proposed five-way power divider are compared in Figure 24c, with an acceptable
agreement. The measured and simulated isolation levels between the output ports are also
depicted in Figure 24d. It is clear that the proposed multilayer 5-way WPD can be used for
different communication systems. Within the frequency band of 1.5–2 GHz, the return loss,
insertion loss, and isolation levels are better than 16.52, 3 + 0.5, and 14.47 dB, respectively.
The differences between the measured and simulated responses resulted from the fabrication
errors and especially from the layer-combining process. Magnitude differences between the
insertion losses and the phase responses are shown in Figure 24e,f, respectively.
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Table 2 summarizes and compares the measurements of the proposed designs with
the work published in the literature. The proposed configurations in this work introduce
WPDs with new input/output configurations that may be used in front of antenna arrays to



Appl. Sci. 2023, 13, 6852 19 of 21

be used for different personal and mobile communication systems. For this purpose, WPDs
based on single- and dual-layer slow-wave structures providing equal power division have
been introduced for the first time in this paper. The proposed circuits in this work also
have promising circuit sizes.

Table 2. Performance comparison of the proposed WPD with previous works.

Ref fo (GHz) Size (λ2
g) FBW (%) Structure Topology

[2] 1.32 - 103.60 Three-section TL lines &
three resistors

[6] 2.1 0.6386 80 Two-stage
with coupled lines

[10] 2.6 0.096 18.2 ITPD

[28] 2 0.0156 36.26 Slit-loaded transmission
lines

Meandered line (this work) 2.03 0.0156 56.79 Meandered transmission
lines

3-way WPDs (this work) 1.95 0.12 52.5 Microstrip transmission
lines

3-way WPDs with common
ground plane (this work) 1.74 0.079 52.29 Microstrip transmission

lines

5-way WPDs with common
ground plane (this work) 1.97 0.073 51.26 Microstrip transmission

lines

4. Conclusions

In this study, various types of WPDs have been developed and experimentally investi-
gated by using slow-wave structures. For this purpose, WPDs having narrow-slit-loaded
transmission lines were investigated, and novel meandered-transmission-line-based WPDs
were introduced for the first time. The proposed meandered-line-based two-, four-, and
eight-way power dividers have been fabricated and measured successfully. The proposed
meandered transmission lines have also been used to design new types of WPDs with
new input/output port arrangements. In this context, two three-way WPDs have been
located on the same plane for similar power-splitting processes. Next, this circuit has been
developed by locating one of the power dividers to another layer. The proposed circuits
can behave like a power-divider bank to be used for alternative antenna array applications.
Moreover, a five-way WPD has been designed by using meandered transmission lines in
two layers. These alternative WPD topologies allow halving of the input power at the
next output port. These WPDs have been implemented and their measurements show an
acceptable agreement with the simulated results.
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Abbreviation

Smm Reflection coefficient at port m.
Smn Transmission coefficient from port n to port m.
WPD Wilkinson power divider.
Meas Measured.
Sim. Simulated.
f0 Center frequency.
FBW Fractional bandwidth.
λg Guided wavelength.
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