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Abstract We consider a Weyl–Lorentz-U (1)-invariant grav-
ity model written in terms of a scalar field, electromagnetic
field and nonmetricity without torsion and curvature, the
so-called symmetric teleparallel geometry, in three dimen-
sions. Firstly, we obtain variational field equations from a
Lagrangian. Then, we find some classes of circularly sym-
metric rotating solutions by making only a metric ansatz. The
coincident gauge of symmetric teleparallel spacetime allows
us for doing so.

1 Introduction

Einstein’s theory of gravity, General Relativity (GR), is
described by field equations containing the second order
derivatives of metric components. Those equations are
derived by a calculus of variation from the Einstein–Hilbert
action integral. GR is in perfect agreement with the observa-
tional results in the solar system. On the other hand, recently
the observed results of change of linear velocities of stars in
the outer arms of disk-shaped galaxies with distance from
the center of galaxy do not agree with the predictions of
GR. This mismatch is called the dark matter problem [1].
In addition, when the velocities of galaxies are measured, it
is observed that they increase instead of decrease, which is
the prediction of GR. This contradiction is called the cos-
mic acceleration problem. Today, we explain this observa-
tion with hypothetical dark energy, which we don’t know its
content [2]. Furthermore, the vain efforts to quantise GR [3–
5] give strong signals that it needs to be altered. For these
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reasons, the search for alternative gravity models is a very
important and hot research field from point of view of theo-
retical physics. The search for a new theory of gravity free
from the problems mentioned here can be done in differ-
ent ways. However, we will try to do this with the help of
non-Riemannian geometries in this paper. While doing this,
we will work in a spacetime geometry where full curvature
and torsion are zero, but the nonmetricity is not zero. Such
geometries are known as symmetric teleparallel spacetime
or Minkowski-Weyl spacetime. More mathematical motiva-
tions for the choice of such geometry will be given in the
subsequent section.

On the other hand, 3-dimensional gravity models have
attracted a lot of attention in recent years, because GR in
(2+1) dimensions has no propagating degrees of freedom
and quantum gravity studies give promising results in 3-
dimensional spacetimes. For example, Banados–Teitelboim–
Zanelli (BTZ) found a 3-dimensional black hole solution to
Einstein’s equations with negative cosmological constant [6].
That has revealed interesting properties at both the classi-
cal and quantum levels, and also has some common behav-
iors with the 4-dimensional Kerr black hole [7]. In fact,
it is the presence of this BTZ black hole that makes 3-
dimensional gravity an attractive field of theoretical physics
studies. Meanwhile, if the odd-parity Chern–Simons term is
added to the Einstein–Hilbert action, a 3-dimensional the-
ory of propagating gravity, the so-called Topologically Mas-
sive Gravity (TMG), is obtained [8,9]. Later, it was demon-
strated by holographic methods that the TMG model has a
unitary or bulk versus boundary clash problem [10]. To elim-
inate this problem, a new massive gravity (NMG) theory
has been proposed by adding even-parity quadratic curva-
ture terms and discarding the odd-parity topological Chen–
Simons term of TMG [11]. However, it has been seen that
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the NMG model cannot fully solve the problems encoun-
tered in the TMG model. Accordingly, Generalized Mas-
sive Gravity (GMG) model was introduced by adding the
odd-parity Chern–Simons term back to the NMG action in
the hope that the bulk versus boundary problem would be
solved [12]. Then, the Minimal Massive Gravity (MMG)
model [13], obtained by adding torsion and an axial field
to the TMG model, solved the bulk-boundary clash prob-
lem in certain ranges of the parameters [14]. Although such
3-dimensional models of gravity have no direct effects for
real-world gravity, they are likely to have applications in solid
state physics [15]. For further read on 3-dimensional grav-
ity models one may consult for [16–23]. Despite the above
efforts on 3-dimensional gravitational researches, the formu-
lation of a quantum theory of gravity is definitely still an open
problem. Thus, it is worthwhile to perform further effort on
3-dimensional scenarios.

2 Mathematical motivations

After the brief and fast summary of literature on why modi-
fied theories of gravity and 3-dimensional spacetime have to
be studied, in this section we give more mathematical moti-
vations on our work. GR is formulated in the language of
exterior algebra in 4-dimensional spacetimes as follows

˜Ga := 1

2
˜Rb

c ∧ ∗(ea ∧ eb ∧ ec) = κτ̃a[mat], (1)

where ea is the g-orthonormal coframe (or orthonormal basis
1-form), ˜Ra

b is the Riemann curvature 2-form which is
expressed uniquely in terms g-orthonormal coframe, ∗ rep-
resents Hodge dual map, κ is a coupling constant, τ̃a[mat]
denotes energy–momentum 3-form of matter and ˜Ga is the
Einstein tensor 3-form. It is well known that one can obtain ea

and ˜Ra
b from the metric tensor, g = ηabea ⊗ eb where ηab

is the Minkowski metric with the signature (−,+,+,+).
In four dimensions Einstein tensor 3-form has 16 compo-
nents. On the other hand, the Riemannian curvature 2-form
has 20 independent components (36 from ˜Ra

b minus 16 from
the Bianchi identity, ˜Ra

b ∧ eb = 0). Thus, in vacuum, i.e.,
τ̃a[mat] = 0, though all components of the Einstein ten-
sor vanish, some components of ˜Ra

b may still live and then
gravitational waves are allowed in an empty spacetime.

If one does the similar analysis in a three-dimensional
spacetime, it is seen that there are 9 components of ˜Ga 2-
form and 6 independent components of ˜Ra

b 2-form. Conse-
quently, as the Einstein tensor vanishes, all components of
˜Ra

b must also be zero. It means that there can not be gravita-
tional waves in vacuum. Correspondingly, the bare Einstein’s
general relativity is not a dynamical theory in 3-dimensions.

Therefore, there is a wide literature on 3-dimensional modi-
fied theories of gravity [6–23].

One way of modifying the Einstein’s theory of gravity is to
go beyond the Riemannian geometry. In this work we render
the symmetric teleparallel geometry which is characterized
by only the nonmetricity tensor [24–35]. One can read [36]
in order to catch the literature on the teleparallel geometries
consisting of the metric (Weitzenböck) teleparallel geometry
described by only torsion, the symmetric teleparallel geom-
etry described by only nonmetricity and the general telepar-
allel geometry described by torsion and nonmetricity. Now,
we count the numbers of components of equations and non-
metricity in 3 dimensions in order to see if there is a similar
feature as in the Einstein’s equation. The field equation for
the bare symmetric teleparallel gravity (STPG) in vacuum is
written in the Eq. (29), with � = 0,

ιbD�b
a + τa = 0. (2)

Here we know that the 2-forms τa and�b
a contain the metric-

orthonormal coframe ea and the nonmetricity 1-form Qab. As
seen explicitly in the forthcoming sections ea is determined
by metric in general and Qab could be computed in terms of
metric in the coincident gauge. In spite of that the bare STPG
equation has 9 components, Qab has 18 components. There-
fore, we could expect that STPG might accommodate also
theories with non-trivial local dynamics.1 Even in 2 dimen-
sions, in which GR is trivial, STPG is a dynamical theory in
vacuum [28].

We generally consider STPG models which are invari-
ant under the Lorentz transformations which form Lorentz
group, SO(1, 2). Meanwhile, SO(1, 2) is doubly folded
by Spin(1, 2) group that is generated by the even sub-
algebra, Cl+(1, 2), of the Clifford algebra. Furthermore,
Cl+(1, 2) is spanned by the set {1, σab}. As the element,
σab = −σba , generates the Lorentz group by the expo-
nentiation eσabθ

ab(x)/2 ∈ SO(1, 2), the unity generates the
Weyl (scale) group, e1ψ(x) ∈ W , where θab(x) and ψ(x)
are the transformation parameters. Consequently, we think
that the complete gauge group for STPG models should be
SO(1, 2) ⊗W [35]. This is the mathematical motivation for
the inclusion of a scalar field to a model of STPG.

Under a SO(1, 2) transformation the metric, g = ηabea⊗
eb, and the affine connection 1-form, ωa

b, transform as fol-
lows

ea
′ = La′

ae
a and ηa′b′ = La

a′Lb
b′ηab, (3a)

1 Another heuristic argument can be based on symmetry considerations.
The metric tensor in 3 dimensions has 6 independent components, but
due to the diffeomorphism invariance of Einstein’s theory, we are left
with 6 − 2 × 3 = 0 dynamical degrees of freedom. However, a generic
STPG theory breaks the symmetry, rendering (some of) degrees of free-
dom from gauge to dynamical.
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ωa′
b′ = La′

a L
b
b′ωa

b + La′
adL

a
b′, (3b)

where La
a′(x), La′

a(x) ∈ SO(1, 2). On the other hand,
under a Weyl transformation they behave as

êa = eψea and η̂ab = ηab, (4a)

ω̂a
b = ωa

b − δabdψ, (4b)

where eψ(x) ∈ W . In fact, one can choose ω̂a
b = ωa

b

instead of (4b), because both leave the curvature, Ra
b :=

dωa
b + ωa

c ∧ ωc
b, invariant. However, since we want to

stay in the symmetric teleparallel geometry before and after
a Weyl transformation we prefer the rule (4b) rather than
ω̂a

b = ωa
b. It is worthy to notice that the other option yields

some torsion after a Weyl transformation [23]. In general, the
simplest geometry which is invariant under a Weyl transfor-
mation is the symmetric teleparallel one [35]. That is one of
reasons for adhering the symmetric teleparallel geometry.

In addition to these motivations, we couple the electro-
magnetic field to our model, as it is among our future projects
to apply the mathematical techniques we have developed
here to our photonic crystal studies [37–40]. Consequently,
firstly we consider a modified theory of gravity, the so-called
STPG, formulated in 3-dimensional symmetric teleparallel
spacetime, then couple minimally the Maxwell field to it and
finally add a scalar field to the STPG-Maxwell theory in a
non-minimal way for scale invariance in order to gain phys-
ical insights about nonmetricity and to see new interactions
among nonmetricity, electromagnetic field and scalar field.

The plan of the work is as follows. Since we will use the
language of exterior algebra through the paper in the next
section we summarize our notations and conventions, then
formulate our theory by writing down a Lagrangian 3-form.
After obtaining variational field equations we search a cir-
cularly symmetric rotating solutions by using the coincident
gauge of the symmetric teleparallel geometry. We especially
give all details of how the coincident gauge is used in cal-
culations. Then, we obtain some classes of exact solutions
together with discussions of singularity structure for each
case. As looking for exact solutions we extensively use the
computer algebra system REDUCE [41] and its exterior alge-
bra package EXCALC [42]. In the section of Discussion, we
collect our results, relate our findings with material science
literature and remark on some future projects.

3 Notations, conventions, definitions

The triple {M, g,∇} defines a spacetime where M is three-
dimensional orientable and differentiable manifold, g is non-
degenerate metric and ∇ is full (or affine) connection [43,44].
We denote the g-orthonormal coframe by ea , then write the

metric as g = ηabea ⊗eb where ηab is the Minkowski metric
with the signature (−,+,+). The full connection is deter-
mined by the full connection 1-form ωa

b via the definition
∇ea := −ωa

b ∧ eb. In the language of exterior algebra, ea

is called orthonormal 1-form and the Cartan structure equa-
tions are given by nonmetricity 1-form, torsion 2-form and
curvature 2-form tensors, respectively,

Qab := −1

2
Dηab = 1

2
(ωab + ωba), (5a)

T a := Dea = dea + ωa
b ∧ eb, (5b)

Ra
b := Dωa

b := dωa
b + ωa

c ∧ ωc
b, (5c)

where d is the exterior derivative, D is the Lorentz-covariant
exterior derivative and ∧ is the exterior product. They satisfy
the Bianchi identities

DQab = 1

2
(Rab + Rba),

DTa = Ra
b ∧ eb, DRa

b = 0. (6)

The full connection, ωa
b, can be decomposed uniquely

to a Riemannian piece, ω̃ab(g) determined by metric, and
a non-Riemannian piece, Lab(T, Q) determined by torsion
and nonmetricity [45–47],

ωab = ω̃ab + Lab, (7)

where ω̃ab is the anti-symmetric 1-form, the so-called Levi-
Civita connection 1-form,

ω̃ab = 1

2

[−ιadeb + ιbdea + (ιaιbdec)e
c] or

ω̃a
b ∧ eb = −dea (8)

and Lab is an asymmetric 1-form, the so-called distortion
tensor 1-form,

Lab = Qab + (ıbQac − ıa Qbc)e
c

+1

2

[

ιaTb − ιbTa − (ιaιbTc)e
c] . (9)

Here ιa ≡ ιXa denotes the interior product with respect to the
orthonormal base vector Xa . In the literature it is common to
define the anti-symmetric contortion tensor 1-form, Kab, in
terms of torsion tensor 2-form

Kab = 1

2

[

ιaTb − ιbTa − (ιaιbTc)e
c] or

Ka
b ∧ eb = T a . (10)

It is worthy to notice that the symmetric part of the affine con-
nection is determined by only nonmetricity, ω(ab) = Qab, the
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remainder of ωab is the anti-symmetric.2 All the Riemannian
quantities will be labelled by a tilde over them in this paper.

Under a Lorentz transformation, SO(1, 2), the quantities
transform as follows

ea
′ = La′

ae
a, ηa′b′ = La

a′Lb
b′ηab,

ωa′
b′ = La′

aω
a
bL

b
b′ + La′

adL
a
b′, φ′ = φ, A′ = A

(11)

where φ is a scalar field and A is the Maxwell potential 1-
form. Since ηa′b′ = ηab = diag(−1,+1,+1), transforma-
tion elements depending on local coordinates, La′

a(x) and
La

a′(x), form the Lorentz group, and also satisfy La′
a La

b′ =
La

a′La′
b = δab . Similarly, a coordinate dependent Weyl

(scale) transformation yields

êa = eψ(x)ea, η̂ab = ηab,

ω̂a
b = ωa

b − δabdψ(x), φ̂ = e−ψ(x)φ, Â = A (12)

where the transformation function, ψ(x), is real and eψ(x)

forms the Weyl group, W . The effect of these transformation
rules on the Hodge map is as follows

∗̂ � = e(3−2p)ψ ∗ � (13)

where � is any p-form. Finally under a local U (1) transfor-
mation they behave as

ea → ea, ηab → ηab, ωa
b → ωa

b,

φ → φ, A → A + d f (x) (14)

where the transformation function is real and ei f (x) ∈ U (1)

together with i = √−1. Accordingly, we define the Lorentz-
covariant exterior derivative of any (p, q)-type tensor-valued
exterior form T

a1a2···ap
b1b2···bq below

DT
a1a2···ap

b1b2···bq = dT
a1a2···ap

b1b2···bq + ωa1
c ∧ T

ca2···ap
b1b2···bq

+ · · · + ωap
c ∧ T

a1a2···c
b1b2···bq

−ωc
b1 ∧ T

a1a2···ap
cb2···bq − · · ·

−ωc
bq ∧ T

a1a2···ap
b1b2···c. (15)

In the calculations we use some abbreviations and identities

eab··· := ea ∧ eb ∧ · · · , ιab··· := ιaιb · · · , ∂a := ιad,

(16a)

D ∗ ea = −Q ∧ ∗ea + ∗eab ∧ T b, (16b)

D ∗ eab = −Q ∧ ∗eab + ∗eabc ∧ T c, (16c)

2 Here ω(ab) := 1
2 (ωab + ωba) = Qab is the reason why we adopt the

factor − 1
2 in the definition of nonmetricity (5a).

D ∗ eabc = −Q ∧ ∗eabc, (16d)

where ∗ is the Hodge map fixed by ∗1 = 1
3!εabce

a∧eb∧ec =
e012 in terms of totally antisymmetric epsilon tensor, εabc,
and Q = ηabQab is the nonmetricity trace 1-form.

4 Scale invariant symmetric teleparallel theory of
gravity coupled to electromagnetic field

Instead of attacking impatiently the most general problem
we prefer to approach it in three steps from relatively easier
to harder. Therefore, firstly we forget scalar field and electro-
magnetic field and consider the bare symmetric teleparallel
gravity (STPG).

4.1 STPG in three dimensions

We formulate STPG by writing the Lagrangian 3-form

L1[Q] =L[Q2] + � ∗ 1 + T a ∧ λa + Ra
b ∧ ρb

a (17)

where � is cosmological constant, λa and ρb
a are Lagrange

multiplier 1-forms constraining torsion and curvature to
zero, respectively, and L[Q2] is the even parity quadratic
Lagrangian 3-form,

L[Q2] = c1Qab ∧ ∗Qab + c2

(

Qab ∧ eb
)

∧ ∗ (

Qac ∧ ec
)

+ c3 (Qab ∧ ec) ∧ ∗
(

Qac ∧ eb
)

+ c4Q ∧ ∗Q + c5(Q ∧ eb) ∧ ∗(Qab ∧ ea). (18)

Here ci , i = 1, 2, . . . , 5, are coupling constants. In order
for our theory formulated in terms of exterior algebra to be
compared easily with the literature using tensor formulation
we firstly write Qab = Qabcec where (0, 3)-type Qabc non-
metricity tensor 0-form is symmetric in the first two indices,
Qabc = Q(ab)c. Correspondingly, L[Q2] turns out to be,

L[Q2] = {

(c1 + c2 + c3)QabcQ
abc

− c2QabcQ
acb − c3Qab

bQac
c

+ (c4 + c5)Q
a
acQb

bc − c5Q
a
abQ

bc
c
} ∗ 1. (19)

The Lagrangian (18) or (19) is Lorentz invariant, and also
equivalent to GR for the values of ci s,

c1 = 1

2κ
, c2 = − 1

κ
, c3 = 0, c4 = − 1

2κ
, c5 = 1

κ
,

(20)

where κ is coupling constant. These values are consistent
with those written just after the equation (54) of [32] and
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with (31) of [29]. If one wants to see the standard results, it
is enough to substitute these values of ci s to the solutions.

We now will perform calculation of variation on the
Lagrangian (17). We always use the general result from [27],

δ(α ∧ ∗β) = δα ∧ ∗β + δβ ∧ ∗α − δea

∧ [

(ιaβ) ∧ ∗α − (−1)pα ∧ (ιa ∗ β)
]

(21)

whereα andβ are any p-forms inn dimensions, (0 ≤ p ≤ n).
So, the variations δλa , δρb

a , δea and δωa
b yield the following

field equations, respectively,

T a = 0, (22a)

Ra
b = 0, (22b)

τa[Q] + � ∗ ea + Dλa = 0, (22c)

�b
a[Q] + eb ∧ λa + Dρb

a = 0, (22d)

where we dismissed the exact forms. Energy–momentum 2-
form of nonmetricity is

τa[Q] =
5

∑

i=1

ci
(i)
τa[Q] (23)

where

(1)
τa [Q] = −

(

ιaQ
bc

)

∧ ∗Qbc − Qbc ∧
(

ιa ∗ Qbc
)

, (24a)

(2)
τa [Q] = −2Qab ∧ ∗

(

Qbc ∧ ec
)

−
[

ιa

(

Qdc ∧ ec
)]

∧ ∗
(

Qdb ∧ eb
)

+
(

Qdb ∧ eb
)

∧
[

ιa ∗
(

Qdc∧ec
)]

,

(24b)

(3)
τa [Q] = −2Qbc ∧ ∗ (Qac ∧ eb) −

[

ιa

(

Qdc ∧ eb
)]

∧ ∗ (Qdb ∧ ec)+(Qdb ∧ ec)∧
[

ιa ∗
(

Qdc ∧ eb
)]

,

(24c)

(4)
τa [Q] = − (ιaQ) ∧ ∗Q − Q ∧ (ιa ∗ Q) , (24d)

(5)
τa [Q] = −Q ∧ ∗

(

Qab ∧ eb
)

− Qab ∧ ∗
(

Q ∧ eb
)

− [

ιa
(

Qbc ∧ ec
)] ∧ ∗

(

Q ∧ eb
)

+
(

Q ∧ eb
)

∧ [

ιa ∗ (

Qbc ∧ ec
)]

. (24e)

Angular (hyper) momentum 2-form of nonmetricity is

�b
a[Q] =

5
∑

i=1

ci
(i)

�b
a[Q] (25)

where

(1)

�b
a[Q] = 2 ∗ Qb

a, (26a)

(2)

�b
a[Q] = eb ∧ ∗ (

Qac ∧ ec
) + ea ∧ ∗

(

Qbc ∧ ec
)

, (26b)

(3)

�b
a[Q] = ec ∧ ∗

(

Qac ∧ eb
)

+ ec ∧ ∗
(

Qbc ∧ ea
)

, (26c)

(4)

�b
a[Q] = 2δba ∗ Q, (26d)

(5)

�b
a[Q] = δbae

c ∧ ∗
(

Qcd ∧ ed
)

+ 1

2

[

ea ∧ ∗
(

Q ∧ eb
)

+eb ∧ ∗ (Q ∧ ea)
]

. (26e)

It is worthy to remark that all angular momentum 1-forms are

symmetric,
(i)

�ab[Q] = (i)
�ba[Q]. We can eliminate Dλa in the

Eq. (22c) by taking covariant exterior derivative of (22d),

D�b
a[Q] − eb ∧ Dλa = 0 (27)

where we used the results Deb = T b = 0 and D2ρb
a =

Rb
c ∧ ρc

a − Rc
a ∧ ρb

c = 0 in the symmetric teleparallel
geometry. Then, we multiply the result by ιb for computing
Dλa explicitly

Dλa = ιbD�b
a[Q], (28)

where we used the identities, ιaeb = δba and ea ∧ ιaα = pα
for any p-form α. By inserting that into (22c) we obtain our
essential field equation of STPG which is the combination of
(22c) and (22d)

Ga[Q,�] := ιbD�b
a[Q] + τa[Q] + � ∗ ea = 0. (29)

Accordingly, the new tensor 2-form Ga[Q,�] corresponds
to the Einstein tensor 2-form ˜Ga[˜R,�] := − 1

2
˜Rb

c ∧ eabc +
� ∗ ea for the values (20) with κ = −1.

It may be enlightening to compare our STPG model with
its counterpart, the so-called metric (Weitzenböck) telepar-
allel model of gravity (WTPG),3 in which there are much
more literature than STPG, see [20,48–50] and the references
therein. One generally formulates WTPG in the orthonormal
frame. When the orthonormal (or spin) connection 1-form is
set to zero, ωa

b = 0, as the nonmetricity and the curvature
vanish automatically, torsion does not T a = dea �= 0 via
the definitions (5). So, zero-spin connection seems enough
for Weitzenböck teleparallelism. If one does it from the out-
set, that is, from the level of Lagrangian, then the developed

3 A gravity model developed in a spacetime with only torsion was called
teleparallel model of gravity in the past, but nowadays it is called metric
(Weitzenböck) teleparallel model of gravity.
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theory is not invariant under the Lorentz transformations. In
this case, the choice of ωa

b = 0 means giving up gauge free-
dom. In other words, it is a gauge fixing. Thus, the variational
field equations obtained from that non-invariant Lagrangian
will be non-covariant and accordingly the found classes of
solutions will be special to that gauge or that frame. As a con-
sequence, diagonal and non-diagonal choices of the coframes
give rise to results suffering from frame-dependent artifacts.
On the other hand, if one does not substitute zero-spin con-
nection to the Lagrangian of metric teleparallel gravity, then it
becomes a Lorentz-invariant and the field equations obtained
from it through the independent variations with respect to
coframe and connection become covariant. Correspondingly,
the solutions to them do not suffer from frame-dependent
problems [49,50]. As seen from our Lagrangians (17) and
(18), our theory of STPG is Lorentz invariant and the cor-
responding variational field equations are Lorentz covariant.
Therefore, our model is free from artifacts concerning with
diagonal or non-diagonal choices of the coframes. For exam-
ple, the solution class of (37) is valid under the following
transformations

e0 → e0′ =
(

1 + w2
0

r2

)

e0 − w0
f (r)

r
e2 (30a)

e1 → e1′ = e1 (30b)

e2 → e2′ = − w0

r f (r)

(

1 + w2
0 + r2

r2

)

e0 + w2
0 + r2

r2 e2

(30c)

which are generated by the transformations

t → t − w0ϕ, r → r, ϕ → ϕ, w0 → −w0 .

(31)

4.2 The rotating circularly symmetric metric and
coincident gauge

Now, we will solve the field equations (22a), (22b) and (29).
Since BTZ black-hole solution of the Einstein’s equation with
a negative cosmological constant obtained in the circularly
symmetric Riemannian spacetime yields interesting results
at both classical and quantum levels and shares several nice
properties of the Kerr black hole obtained in 4-dimensional
GR, we consider the rotating circularly symmetric metric as
well. While searching solution we will prefer to follow the
route of the coincident (or natural or inertial) gauge [26,30].
We will write its steps explicitly below.

Step 1. We make a metric ansatz for circularly symmetric
rotating solutions in polar coordinates (t, r, ϕ)

ds2 = − f 2(r)dt2 + g2(r)dr2 + h2(r) [w(r)dt + dϕ]2 ,

(32)

where f (r), g(r), h(r), w(r) are unknown metric functions
to be calculated from the field equations.
Step 2. We choose the orthonormal coframe for this metric

e0= f (r)dt, e1=g(r)dr, e2=h(r) [w(r)dt+dϕ]
(33)

where ds2 = − (

e0
)2 + (

e1
)2 + (

e2
)2

. Please, notice that g-
orthonormal coframe is written in terms of metric functions.
Step 3. We calculate the dreibeins and its inverse through the
relations ea = haμdxμ and dxμ = hμ

aea as

haμ =
⎡

⎣

f 0 0
0 g 0

wh 0 h

⎤

⎦ and

hμ
a =

⎡

⎣

1/ f 0 0
0 1/g 0

−w/ f 0 1/h

⎤

⎦ . (34)

Again notice that dreibeins are written in terms of metric
functions.
Step 4. We write not only the orthonormal coframe, but also
the affine connection in terms of the dreibein as ea = haμdxμ

and ωa
b = haμdhμ

b. Then, the connection 1-form is calcu-
lated

ωa
b =

⎡

⎣

−e1 f ′/ f g 0 0
0 −e1g′/g2 0

−e1hw′/ f g 0 −e1h′/gh

⎤

⎦ . (35)

Again notice that affine connection 1-form is written in terms
of metric functions.
Step 5. We compute T a = 0, Ra

b = 0 and

Qab = 1

2
(ωab + ωba)

=
⎡

⎣

e1 f ′/ f g 0 −e1hw′/2 f g
0 −e1g′/g2 0

−e1hw′/2 f g 0 −e1h′/gh

⎤

⎦ .

(36)

Again notice that nonmetricity 1-form is written in terms of
metric functions.

After calculating Qab via the coincident gauge in terms
of metric functions we assume very well known BTZ metric
of the Einstein’s equation

h(r) = r, w(r) = w0

r2 ,

f (r) = 1

g(r)
=

√

m0 + w2
0

r2 − �r2 (37)
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where m0 and w0 are constants. Then, we have checked that
the field equation (29) of STPG is satisfied as long as the
following relations for ci s are valid

c1 = −1

2
, c3 = 1 − c2, c4 = 1

2
, c5 = −1. (38)

It is worthy to notice that there are four free parameters here,
c2, m0, w0, �. Correspondingly, we calculate covariant exte-
rior derivative STPG equation (29) whether it vanishes or
not, because the corresponding operation in general relativ-
ity yields zero, ˜D˜Ga[˜R,�] = 0. We saw DGa[Q,�] = 0
like in GR. Furthermore, we calculate covariant derivatives
of two Eqs. (22c) and (22d) separately. Firstly we do it for
the coframe equation by noticing D2λa = −Rb

a ∧ λb = 0
and found that D(τa[Q] + � ∗ ea + Dλa) = 0. Secondly
we perform it for the connection equation by using (28) and
D2ρb

a = 0. As a result we found D(�b
a[Q] + eb ∧ λa +

Dρb
a) = 0. Consequently, we have still four free parameter,

c2, m0, w0, �, in our hand.
Besides, we found a class of non-GR solution to STPG

equations for vanishing cosmological constant, � = 0,

h(r) = r, w(r) = w0

r2 ,

f (r) = 1

g(r)
=

√

m0 + w2
0

r2 + m2
0

2w0
r2 = m0r

2w0
+ w0

r
(39)

under the relations

c3 = −(3c1 + c2), c4 = −c1, c5 = 2c1. (40)

Here there are four free parameters, c1, c2, m0, w0. Since
GR-equivalent values (20) do not satisfy the constraint c3 =
−(3c1 + c2) we call it as non-GR solution. While searching
exact solutions we heavily use the computer algebra system
REDUCE [41] and its exterior algebra package EXCALC
[42].

Finally, we remark on the singularities and the horizons
of the above solutions. In this context, the first step is to find
at which r do the metric functions become zero or infinity.
However, since these singularities could correspond to coor-
dinate singularities, the usual process is to compute various
invariants. Then, if these invariants diverge at one point, they
will do it independently of the specific coordinate system.
It is worthy to notice that the opposite is not true, i.e., the
finiteness of an invariant is not a proof that there is not a
physical singularity there, e.g, BTZ black hole of GR. Since
in STPG all invariants generated from nonmetricity are cast
in the Lagrangian (18), we will compute 0-form ∗L[Q2].
Meanwhile, we will calculate the following 0-form ∗K [˜R]
written in terms the scalar invariants of the Riemannian cur-

vature 2-form,

K [˜R] = l1 ˜Rab ∧ ∗eab + l2(ιa ˜Rab) ∧ ∗(ιc˜Rcb)

+ l3 ˜Rab ∧ ∗˜Rab (41)

where l1, l2, l3 are arbitrary constants to be used for tracing
the invariants, ˜Rab∧∗eab is the Riemannian Einstein–Hilbert
3-form containing the Riemannian curvature scalar, ιa ˜Rab

is the Riemannian Ricci curvature 1-form and the last term
yields the Kretschmann scalar. Thus, we are able to com-
pare two results and deduce some insights. For the solution
(37), while three singular points are obtained from the metric
functions

r0 = 0, r± =
√

√

√

√

m0

2�

(

1 ±
√

1 − 4�w2
0

m2
0

)

(42)

the both invariants are finite everywhere

∗L[Q2] = −�, ∗K [˜R] = −6l1� − 12l2�
2 − 13l3�

2.

(43)

As seen, w2
0 ≤ m2

0/4� must be valid for the existence of r±
singularities. Thus, we can deduce that our STPG solution
(37) has the same singularity and horizon structures as GR.
We repeat the similar calculations for the solution (39) and
arrive at

r0 = 0, r =
√

−2w2
0

m0
, ∗L[Q2] = 0,

∗ K [˜R] = 12l1m2
0w

2
0 − 6l2m4

0 − 3l3m4
0

8w4
0

. (44)

This time, for existence of an outer singularity (horizon)
it must be m0 < 0. Then, we conclude that this non-GR
solution may have black hole properties as well. In order
to understand singularity, horizon and black hole structures
of symmetric teleparallel gravity models in a deeper level
more rigorous analysis similar to the Raychaudhuri and opti-
cal equations for null geodesic congruences in GR is needed
[51].

4.3 Minimal coupling of Maxwell field to STPG theory

As the second stage we include electromagnetic field in
the game. We couple minimally the electromagnetic field
to STPG by adding the Maxwell Lagrangian to our STPG
Lagrangian (17)

L2[Q, A] = L1[Q] + d A ∧ ∗d A (45)
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where A is the electromagnetic potential 1-form. This
Lagrangian is invariant under SO(1, 2) ⊗ U (1) group. The
variational field equations are obtained as

T a = 0, (46a)

Ra
b = 0, (46b)

τa[Q] + � ∗ ea + τa[A] + Dλa = 0, (46c)

�b
a[Q] + eb ∧ λa + Dρb

a = 0, (46d)

d ∗ d A = 0, (46e)

where τa[Q] is given by (23), �b
a[Q] by (25) and the

energy–momentum 2-form of electromagnetic field is

τa[A] = −(

ιad A
) ∧ ∗d A + d A ∧ (

ιa ∗ d A
)

. (47)

The Eq. (46e) is the Maxwell equation. Again, we combine
the coframe and connection equations by repeating the pre-
vious calculation and obtain our STPG equation

ιbD�b
a[Q] + τa[Q] + τa[A] + � ∗ ea = 0. (48)

Together with the metric ansatz (33) we assume the electro-
magnetic potential 1-form

A = E(r)dt + B(r)dϕ, (49)

where E(r) and B(r) are new unknown functions aside from
the metric functions to be calculated from the field equations.
With help of the literature on spinning charged solutions
to three-dimensional Einstein–Maxwell theory, e.g. [52–54],
we have considered the following configuration

f (r) = r

h(r)

√

r2

l2
− l20q

2
0

l2
ln

(

r

r0

)

, (50a)

g(r) = r

h(r) f (r)
, (50b)

h(r) =
√

r2 + w2
0q

2
0 ln

(

r

r0

)

, (50c)

w(r) = − w0q2
0

[h(r)]2 ln

(

r

r0

)

, (50d)

E(r) = − B(r)

w0
= −k0q0 ln

(

r

r0

)

, (50e)

where l, l0, r0, q0, w0, k0 are free parameters. Under the
following relations among the free parameters and coupling
constants

c1 = −k2
0, c3 = 2k2

0 − c2, c4 = k2
0, c5 = −2k2

0,

� = −2k2
0

l2
, l20 = l2 − w2

0, (51)

the functions (50) are a class of solution to our field equa-
tions (46). Please notice that c2, w0, q0, r0, l, k0 are six
free parameters. We also calculated the covariant derivatives
of the coframe, connection and combined equations respec-
tively,

D (τa[Q] + � ∗ ea + τa[A] + Dλa) = 0, (52a)

D
(

�b
a[Q] + eb ∧ λa + Dρb

a

)

= 0, (52b)

D
(

ιbD�b
a[Q] + τa[Q] + τa[A] + � ∗ ea

)

= 0. (52c)

Furthermore, we want to remark that although the covariant
derivative of the electromagnetic energy–momentum with
respect to the full connection do not vanish, Dτa[A] �= 0, it
is zero with respect to the Levi-Civita (Riemannian) connec-
tion, ˜Dτa[A] = 0. That can be explained through the decom-
position (7) which gives Dτa[A] = ˜Dτa[A] − Lb

a ∧ τb[A].
If someone persistently asks for Dτa[A] = 0, it becomes
possible by setting l2 = w2

0 (or l0 = 0). In this case, the
unknown functions turn out to be

f (r) = r2

lh(r)
, g(r) = l

r
,

h(r) =
√

r2 + l2q2
0 ln

(

r

r0

)

,

w(r) = − lq2
0

[h(r)]2 ln

(

r

r0

)

,

E(r) = − B(r)

l
= −k0q0 ln

(

r

r0

)

. (53)

Then, the number of free parameters reduces to five.
Now, in order to proceed to the singularities and horizons

investigation along the lines at the end of the previous sub-

section, we have to solve the equation r2 − l20q
2
0 ln

(

r
r0

)

= 0

coming from the solution (50) in order to obtain singular
points apart from r = 0. However, we can clearly see that in
general this is a transcendental equation, whose roots cannot
be obtained analytically. Thus, by plotting the graphs of two

functions y1(r) = r2 and y2(r) = l20q
2
0 ln

(

r
r0

)

on the same

system of axes and then searching their intersection points
one can see that three cases are possible in general. There
may be two intersections (singular points) at most or only
one intersection (singular point) or none. They depend on
values of constants, l0 and q0. We also calculated the related
invariants, ∗L[Q2] and ∗K [˜R], and saw that they have sin-
gularity only at r = 0. Thus, we conclude that when there is
at least one outer singular point shielding the one at origin,
that structure may define a black hole. A discussion on the
singularity structure of the solution (53) will be written at
end of the next subsection.
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4.4 Nonminimal coupling of scalar field to the
Maxwell-STPG theory

As the third and final stage we couple nonminimally a scalar
field, φ, to our Maxwell-STPG theory (45) as follows

L3[Q, A, φ] = φL[Q2] + φ−1dφ ∧ ∗dφ + c6Q ∧ ∗dφ

+ c7(Qab ∧ eb) ∧ ∗(dφ ∧ ea)

+ �φ3 ∗ 1 + φ−1d A ∧ ∗d A
+ T a ∧ λa + Ra

b ∧ ρb
a, (54)

where c6 and c7 are new coupling constants. For φ = 1 the
Lagrangian (54) reduces to Maxwell-STPG Lagrangian (45).
SO(1, 2) ⊗ U (1)-invariance of Lagrangian (54) is explicit,
but is also invariant under the Weyl transformation (12)
together with the relations among ci s,

2c2 + 2c3 + 3c5 + c7 = 0, (55a)

2c1 + 2c2 + 2c3 + 6c4 + 5c5 + c6 + c7 = 0, (55b)

1 + 3c1 + 2c2 + 2c3 + 9c4 + 6c5 + 3c6 + 2c7 = 0, (55c)

2 + 3c6 + 2c7 = 0. (55d)

Although four equations appear, three are linearly indepen-
dent. It may be worthwhile to point that by defining the Weyl-
covariant exterior derivative of scalar field

Dφ = dφ +
[

k6 ηabQab + k7 (ιaQ
ab)eb

]

φ (56)

we can rewrite the Lagrangian (54) in a tidier form as

L ′
3[Q, A, φ] = φL ′[Q2] + φ−1Dφ ∧ ∗Dφ + �φ3 ∗ 1

+φ−1d A ∧ ∗d A + T a ∧ λa + Ra
b ∧ ρb

a,

(57)

where

L ′[Q2] = k1Qab ∧ ∗Qab + k2

(

Qab ∧ eb
)

∧ ∗ (

Qac ∧ ec
)

+k3 (Qab ∧ ec) ∧ ∗
(

Qac ∧ eb
)

+k4Q ∧ ∗Q + k5(Q ∧ eb) ∧ ∗(Qab ∧ ea). (58)

Here ki , i = 1, 2, . . . , 7, are new coupling constants. We
showed that Lagrangian (54) and Lagrangian (57) are equiv-
alent under the following relations among the coupling con-
stants,

c1 = k1 + k2
7, c2 = k2, c3 = k3 − k2

7,

c4 = k4 + k2
6 + 2k6k7,

c5 = k5 − 2k6k7, c6 = 2(k6 + k7), c7 = −2k7.

(59)

We have also checked that the algebraic equations (55) for
Weyl invariance are consistent with (56a)–(56c) of Ref.[32]
with n = 3.

Thus, the variations δλa , δρb
a , δφ, δA, δea and δωa

b yield
the following field equations, respectively,

T a = 0, (60a)

Ra
b = 0, (60b)

L[Q2] − 2φ−1d ∗ dφ + φ−2dφ ∧ ∗dφ

+ 3�φ2 ∗ 1 − φ−2d A ∧ ∗d A
− c6 d ∗ Q − c7 d[ea ∧ ∗(Qab ∧ eb)] = 0, (60c)

d
(

φ−1 ∗ d A
) = 0, (60d)

τa[Q] + τa[φ] + τa[A] + Dλa = 0, (60e)

�b
a[Q] + �b

a[φ] + eb ∧ λa + Dρb
a = 0. (60f)

Energy–momentum 2-form of nonmetricity is

τa[Q] = φ

5
∑

i=1

ci
(i)
τa[Q] (61)

where
(i)
τa[Q] are given by Eq. (24). Angular (hyper) momen-

tum 2-form of nonmetricity is

�b
a[Q] = φ

5
∑

i=1

ci
(i)

�b
a[Q] (62)

where
(i)

�b
a[Q] are given by the Eq. (26). Energy–momentum

2-form of electromagnetic field is by the Eq. (47)

τa[A] = −φ−1 [(

ιad A
) ∧ ∗d A − d A ∧ (

ιa ∗ d A
)]

. (63)

Energy–momentum 2-form of the scalar field is

τa[φ] = − φ−1[(ιadφ
) ∧ ∗dφ + dφ ∧ (

ιa ∗ dφ
)]

− c6[(ιadφ) ∧ ∗Q + Q ∧ (ιa ∗ dφ)]
− c7[ιa(dφ ∧ eb) ∧ ∗(Qbc ∧ ec)

− (Qbc ∧ ec) ∧ ιa ∗ (dφ ∧ eb)]
− c7[Qab ∧ ∗(dφ ∧ eb) + dφ ∧ ∗(Qab ∧ eb)]
+ �φ3 ∗ ea . (64)

Angular momentum 2-form of scalar field is

�b
a[φ] = c6δ

b
a ∗ dφ + c7

2

[

eb ∧ ∗(dφ ∧ ea)

+ ea ∧ ∗(dφ ∧ eb)

]

. (65)

Because of the nonminimal couplings angular momentum
of scalar field appears. It is worthy to remark that all angular
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momentum 1-forms are symmetric, �ab = �ba . Again as
done earlier we combine the coframe and connection equa-
tions as follows

ιbD
(

�b
a[Q] + �b

a[φ]) + τa[Q] + τa[A] + τa[φ] = 0.

(66)

Although the field equations we must solve are (60a),
(60b), (60c), (60d) and (66), since the zero-torsion and zero-
curvature equations are satisfied automatically by the coinci-
dent gauge, we effectively have to solve the Eqs. (60c), (60d)
and (66).

Before attempting to find a solution, we want to remark on
the Maxwell equation (60d). The effects of non-minimal cou-
pling of electromagnetic fields to other fields can be encoded
into the definition a constitutive tensor. For electromagnetic
2-form, F = d A, in an arbitrary medium Maxwell’s equa-
tions could be expressed

dF = 0 and d ∗ G = J (67)

where G is called the excitation 2-form and J is the source
electric current 2-form (3-form in 4-dimensions). To close
the system we need electromagnetic constitutive relations
among G, J, F . In our case J = 0 and we assume a simple
linear constitutive relation G = Z(F) whereZ is (2, 2)-type
constitutive tensor. For our case, it is

G = φ−1F. (68)

As the final job in this section we want to find a class
of circularly symmetric rotating solution to the Eqs. (60c),
(60d) and (66) by assuming the Eqs. (36), (49) and φ = φ(r).
Firstly, we found that the solution (50) is also a solution to
the Eq. (60) for φ(r) = 1 under the conditions

c1 = −k2
0, c3 = 2k2

0 − c2, c4 = k2
0, c5 = −2k2

0,

c6 = 0, c7 = 2k2
0, � = −2k2

0

l2
, l20 = l2 − w2

0 . (69)

Here there are six free parameters, c2, k0, l, r0, w0, q0. These
ci values do not satisfy the scale invariance conditions (55).
Besides, we checked D(66) = 0, D(60e) = 0, D(60f) = 0,
Dτa[A] �= 0 and ˜Dτa[A] = 0. When w0 = l (or l0 = 0),
in which case the number of free parameters reduces to five,

it becomes Dτa[A] = 0 and (53) is the new solution set.
In this case the scale invariance conditions (55) are still not
satisfied.

Secondly, by virtue of the Weyl transformation (12) we
write down the orthonormal coframe and affine connection
together with φ(r) = e−ψ(r) as

e0 = eψ(r) f (r)dt, e1 = eψ(r)g(r)dr, e2 = eψ(r)h(r) [w(r)dt + dϕ] , (70)

ωa
b =

⎡

⎣

−e1( f ′+ f ψ ′)/( f geψ) 0 0
0 −e1(g′+gψ ′)/(g2eψ) 0

−e1hw′/( f geψ) 0 −e1(h′+hψ ′)/(gheψ)

⎤

⎦ (71)

where ψ(r) is called the scale (Weyl) function. This connec-
tion (71) is the affine connection derived from the orthonor-
mal coframe (70) through the coincident gauge recipe. In this
case the functions (53) are solutions under the constraints,

c3 = k2
0 − c1 − c2, c4 = 1 − 7c1 − 2k2

0

3
,

c5 = 10c1 + 2k2
0 − 1

3
,

c6 = 16c1 + 8k2
0 − 4

3
, c7 = 1 − 8c1 − 4k2

0,

� = 16c1 + 8k2
0 − 1

3l2
, w0 = l. (72)

Now, c1, c2, k0, l, r0, q0, ψ(r) are arbitrary. This configura-
tion satisfies the scale invariance conditions (55). Besides, we
verified D (66) = 0, D (60e) = 0, D (60f) = 0, Dτa[A] = 0
and ˜Dτa[A] = 0.

For singularity analysis of this last solution we look at
the Eq. (53). Those functions have only one singularity at
r = 0, no horizon meaning that they are naked singularities.
But, here our metric functions are obtained by multiplying
them by eψ(r) and the function ψ(r) is arbitrary. We again
calculated ∗L[Q2] and ∗K [˜R] and saw that they could posses
singular points depending on ψ(r). Consequently, depended
on the behaviour of ψ(r) there may be outer singularities
apart from the one at origin.

5 Discussion

In 1 + 2 dimensions Einstein’s general theory of relativity
does not have dynamical (propagating) degrees of freedom
in vacuum, therefore there is a wide literature on modified
theories of three dimensional gravity. In this work we too
investigate an alternative model of gravity by going to a
non-Riemannian spacetime, more precisely the symmetric
teleparallel spacetime defined by just the nonmetricity ten-
sor. We formulated our theory by a Lagrangian 3-form and
then obtained the field equations by independent variations.
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By adhering the coincident gauge which was applied explic-
itly step by step we warranted the conditions of zero-torsion
and zero-curvature and could obtain the orthonormal coframe
and the nonmetricity in terms of only a metric ansatz. We vis-
ited three models, adjacently, i. STPG, ii. minimal Maxwell-
STPG, iii. non-minimal scalar-Maxwell-STPG. We founded
some classes of exact solutions for each and give some discus-
sions on the singularity and horizon structures. As far as we
know all these results are new for the symmetric teleparallel
gravity literature. Furthermore, although GR is not a dynami-
cal theory in 3 dimensions, we showed that three dimensional
STPG is dynamic. In fact, we know that STPG has dynam-
ical degrees of freedom even in 2 dimensions [28], but GR
is trivial. Thus, one can deduce that STPG has much richer
structure than GR.

As with future perspective, we think that mathematical
results and techniques developed in this work may find
opportunity of applicability in material science concerning
the crystal defects because there is a wide literature on the
non-Riemannian interpretations relating torsion, curvature
and nonmetricity with densities of dislocations, disclinations
and metric anomalies, respectively, [55–60] and the refer-
ences therein. Especially, photonic crystal field seems a suit-
able avenue for 1+2 dimensional scale invariant symmetric
teleparallel geometry. Let us explain why. In photonic crys-
tal researches, in which the aim is to manipulate behaviour
of electromagnetic wave (photon) by forming certain defects
in crystal lattice, firstly computational studies are performed
numerically in a scale independent way. After meaningful
results, the associated experiments are performed in microm-
eter scale laboratories. Since Maxwell’s electromagnetic the-
ory is scale invariant, measurements done micrometer scale
will be valid in nanometer scale as well. Although 3 space
dimensional photonic crystal structures are possible, in prac-
tice 2 space dimensional ones are studied [37–40]. Conse-
quently, while there are crystal defects in 2 space dimensions,
Maxwell field and scale invariance in theoretical photonic
crystal researches, there are nonmetricity, Maxwell field and
a scalar field for scale invariance in our model in this paper.
Therefore, we conclude that the mathematical techniques and
results obtained in this work may lead to new insights in the
photonic crystal studies. It is among our future projects.
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