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Abstract

Artificial neural networks (ANNs) are a widely used machine learning

approach for estimating low-cycle fatigue parameters. ANN structure has its

parameters such as hidden layers, hidden neurons, activation functions, train-

ing functions, and so forth, and these parameters have a significant influence

over the results. Three hidden layer combinations, the hidden neurons ranging

from 1 to 25, and different activation functions like hyperbolic tangent sigmoid

(tansig), logistic sigmoid (logsig), and linear (purelin) were used, and their

effects on the low-cycle fatigue parameter estimation were investigated to

determine optimal ANN structure. Based on the results, suggestions regarding

ANN structure for the estimation of the low-cycle fatigue parameters and

transition fatigue life were presented. For the output layer and hidden layers,

the most suitable activation function was tansig. The optimal hidden neuron

range has been found between 4 and 9. The neural network structure with one

hidden layer was determined to be most suitable in terms of less knowledge,

structural complexity, and computational time and power.
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1 | INTRODUCTION

Artificial neural networks (ANNs) usually consist of
highly complex network structures. However, this
enables ANNs to solve any type of problem by optimizing
their structure. ANNs generally have three layers: input,
hidden, and output. Inputs, outputs, and hidden layer
(HL) numbers can be customized according to the
problem. Some problems require many inputs to solve
the problem. For many researchers,1–5 increasing the HL

has the advantage of performance and estimation
accuracy increase over single-layer perceptron. On the
other hand, increasing the number of HLs often led to
structural complexity, which slowed the estimation
process and occasionally caused overfitting problems. For
this reason, increasing the inputs and HLs is not always
recommended. In addition, small datasets do not require
structural complexity to solve the problem while larger
datasets may require complex and well-optimized
structures. Generally, the users can start with simple
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structures to estimate the outputs and increase the
complexity of the structure if it is deemed to be inade-
quate to solve the problem. A simple ANN structure has
only one HL. On the other hand, an ANN structure with
multiple HLs is called a multilayer perceptron (MLP) or
deep neural network (DNN). The input and output layers
should not be counted as the HLs. There are a lot of
hyperparameters such as training functions, activation
functions, hidden neuron numbers, epoch numbers, HL
numbers, training ratios, testing ratios, and validation
ratios. All these parameters must be selected properly
because these hyperparameters are significantly affecting
results such as training, testing, validation regressions,
and errors. ANNs require high computational power and
memory; for this reason, the elapsed time must be
considered while estimating the outputs. All the parame-
ters mentioned above also have a significant impact over
the elapsed time. The main goal should be to lower the
elapsed time and error rates while increasing the estima-
tion accuracy. Optimization of these parameters is
especially important for obtaining low-cycle fatigue
(LCF) parameters since conventional fatigue testing is a
costly and time-consuming process. However, it must be
emphasized that fatigue assessments are crucial for struc-
tural durability evaluations. Training a neural network to
estimate LCF parameters can aid these conventional
fatigue estimation methods, potentially lowering costs
associated with fatigue testing. However, it is not
practical for users to optimize the ANN structure for each
fatigue assessment. The aim of this paper is to serve as a
potential network structure recommendation for inter-
ested parties who would like to use ANN to estimate
fatigue parameters and transition fatigue life.

A brief investigation of the state of the art regarding
ANN structures and fatigue assessments using ANN
reveals the rising popularity of neural networks in fatigue
estimations. Soyer et al.6 estimated high-strength steel's
LCF parameters and fatigue life using ANNs with one
HL. The used dataset consisted of 38 high-strength steel,
which is a small dataset. They also recommended that
5–20 is adequate for estimating the LCF parameters with
small datasets. The LCF parameters and fatigue life
estimation accuracy were over 99.99%. As mentioned
above, small datasets do not require structural complexity
in estimation problems. Hojjat7 predicted accurately the
Nusselt number of non-Newtonian nanofluids with the
ANN approach and used particle swarm optimization for
training. ANN structure consisted of two HLs with six
and nine neurons, respectively; the activation functions
in the HLs were hyperbolic tangent sigmoid (tansig), and
the output's activation function was linear (purelin).
Raghu and Sriraam8 worked on the optimal configura-
tion of the MLP classifier. They used tansig, logistic

sigmoid (logsig), purelin, and Elliot symmetric sigmoid
(elliotsig) activation functions. They concluded that
linear activation function was more suitable for the
output layer than the HLs and tansig was more suitable
for the HLs. Also, they tested six different training
functions, and the best training function was Levenberg–
Marquardt (trainlm) among all. Zadeh et al.9 predicted
daily outflow by MLP using two HLs. They compared
two combinations of activation functions: tansig–tansig–
purelin and logsig–logsig–purelin in HL1–HL2–output
layer and four to six hidden neurons, respectively. They
showed that tansig performed better than the logsig in
HLs. Altikat10 predicted CO2 emissions with DNN using
two HLs with trainlm training function and logsig activa-
tion function in the HLs. Altikat tested different combi-
nations of hidden neurons in each HL, and the lowest
MAE for the two HL combinations was 14–10 neurons,
respectively. Karsoliya11 explained that unnecessarily
increasing the HLs brings structural complexity and high
amounts of time. In addition, even if the main goal is
high estimation accuracy, increasing the HL numbers up
to three was considered enough. There is no need to
increase the HL number by more than four due to time,
complexity, and overfitting issues. Usually, one or two
HLs are sufficient for nonlinear estimation problems. In
addition, Shen et al.12 studied neural network approxima-
tion, and they concluded that three HLs are sufficient for
estimation with high accuracy. Pareek et al.1 highlighted
that the universal approximation theory proposes that
one HL with large enough hidden neurons can handle
any prediction problem. Collins and Tissot2 used one HL
to predict thunderstorms with ANN and remarked that
one HL is sufficient for the prediction. Al-kaf et al.3

predicted diesel fuel properties with the ANN approach
and compared single-layer and multilayer performance.
They concluded that a single layer achieved better
estimation accuracy than complex methodologies. Uzair
and Jamil4 investigated the effects of HLs on the
efficiency of neural networks. In line with previously
mentioned inferences, they concluded that a large
number of HLs significantly slow the training process.
Increasing the HLs provides better accuracy, but if the
time complexity is the main goal, then lowering the HLs
was deemed as the better solution, also pointing out the
overfitting issues of highly complex network structures.
Additionally, Tran et al.5 demonstrated that the single
layer performed better than the two and three HLs. They
remarked that increasing the HL number beyond a
certain point led to structural complexity, which slows
the training process without significantly improving the
performance. Therefore, four and more HL numbers are
not considered in this study. Increasing the hidden
neuron numbers in one HL structure causes a significant
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increase in time, and it increases exponentially by adding
more layers.

In addition, there are various algorithms for predict-
ing different types of materials manufactured by different
fabrication methods. Kalayci et al.13 estimated fatigue
lives of magnesium alloy welds by means of bee colony
intelligence. The model showed good agreement to fit the
Wöhler lines with high accuracy. Karakas et al.14

estimated the fatigue strength of welded joints in

magnesium alloy using genetic algorithm. They
estimated the fatigue strength in heat affected zone with
0.8% and 0.6% for the weld metal. Zhou et al.15 estimated
the fatigue life of friction stir welded aluminum alloys
with the ANN/genetic hybrid algorithm. They also
noted that the ANN/genetic hybrid algorithm is superior
to ANN in terms of predicting fatigue properties.
Zeng et al.16 estimated the fatigue properties of stainless
steel fabricated with selective laser melting and S–N

TABLE 1 Research with different numbers of hidden layer numbers and activation functions.

Hidden layer 1 Hidden layer 2 Hidden layer 3 Hidden layer 4
Output
layer

Used hidden layer
number Reference

Logsig Logsig Logsig Logsig Logsig 4 hidden layers 20

Tansig Tansig Tansig - Tansig 3 hidden layers 21

Logsig Logsig Logsig - Purelin 3 hidden layers 22

Tansig Tansig - - Purelin 2 hidden layers 7

Tansig Tansig - - Purelin 2 hidden layers 23

Tansig Tansig - - Purelin 2 hidden layers 24

Logsig Logsig - - Purelin 2 hidden layers 25

Tansig - - - Purelin 1 hidden layer 26

Tansig - - - Purelin 1 hidden layer 27

Tansig - - - Purelin 1 hidden layer 8

Tansig - - - Tansig 1 hidden layer 28

Tansig - - - Purelin 1 hidden layer 29

Logsig - - - Logsig 1 hidden layer 6

Logsig - - - Logsig 1 hidden layer 30

Logsig - - - Logsig 1 hidden layer 31

Logsig - - - Logsig 1 hidden layer 32

Logsig - - - Purelin 1 hidden layer 33

FIGURE 1 Strain amplitude and

reversals to failure curve.45

SOYER ET AL. 2931
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curve via dynamic multiswarm particle optimization suc-
cessfully. Moghaddam et al.17 predicted the fatigue life of
polyethylene terephthalate-modified asphalt mixtures
with the support vector machine firefly algorithm. They
also compared the algorithm with the support vector
machine, genetic algorithm, and ANN in terms of pre-
dicting the fatigue life. Also, Karakas et al.18 mentioned
the importance of the data science and machine learning
methodologies for fatigue and fracture assessment to
overcome various difficulties like time, knowledge, and
cost with various published studies in the virtual special
issue.

Table 1 shows various research about the estimation
of fatigue properties with different activation functions
and HL numbers. Only the output layer's activation
function has been changed by the researchers. The
activation function combinations in more than two HLs
are the same as the first HL. The most widely used
output activation function was purelin, and the most
used activation function in HLs was equally tansig and
logsig. In addition, the reason purelin is never used in
HLs is if all activation functions of the layers including
the output are purelin, then there is no importance in
using more than one HL because the last activation
function of the output layer becomes a linear function of
the first layer's input.19 Also, the purelin activation
function provides better correlation coefficients in the
output layer.

As stated before, the estimation of the LCF parame-
ters is vital for safety, cost, and time considerations.
Obtaining the LCF parameters by means of conventional
methods is a costly and time-consuming process. To
lower the time and cost, machine learning approaches
can be adapted. The ANN is the overwhelmingly popular
and widely used approach for estimating the fatigue life
of materials.34 The LCF parameters,6,30,35,36 fatigue

lives,28,37–39 cyclic properties,40,41 and stress–strain
curves42,43 have been estimated in various research.

Fatigue damage is an unpredictable phenomenon and
is very difficult to detect before a sudden failure occurs.
High stress amplitude and low frequency often cause
fatigue damage to accumulate faster in comparison to
low stress amplitude with high frequency, thereby lower-
ing the fatigue lives of components. Due to the rapid
deterioration of structural stability, LCF is usually consid-
ered more dangerous than high-cycle fatigue (HCF). In
LCF, the number of cycles to failure is less than the
5 � 104 cycles, and the main deformation is plastic; thus,
the deformation is irreversible. As the load cycle repeats,
the deformation continues to accumulate until fatigue
failure occurs. Since most work conditions require
components to endure loads high enough to cause fatigue
damage, estimation of fatigue lives is essential to
eliminate the risk of sudden and unexpected failures. For
this reason, the present study estimates the fatigue lives

FIGURE 2 Structure of the ANN.

TABLE 2 A summary of the ANN structure parameters.

Hidden layer number 1–3

Hidden neuron range 1–25

Activation functions Tansig, logsig, purelin

Training function Levenberg–Marquardt

Inputs E, RA%, BHN, σy, σu

Outputs b, c, σ0f, ϵ0f, Nt

Dataset size 73

Data division 75% training, 25% testing

Error type Mean squared error (MSE)

Maximum epoch 100

Normalization process mapminmax

Software MATLAB R2022a

2932 SOYER ET AL.
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alongside various fatigue parameters. All the fatigue lives
used in this study were calculated with Equation (1)44:

2Ntð Þ¼ ϵ0fE
σ0f

� � 1
b�cð Þ

ð1Þ

where b and c are the fatigue strength and ductility
exponents, σ0f and ϵ0f are the fatigue strength and
ductility coefficients, E is Young's modulus, and Nt is the
transition fatigue life. As seen in Figure 1, when the
elastic strain amplitude is equal to the plastic strain

FIGURE 3 Comparison of the

elapsed times of low-cycle fatigue

parameters in one hidden layer

structure. [Colour figure can be viewed

at wileyonlinelibrary.com]

FIGURE 4 Comparison of the

elapsed times of low-cycle fatigue

parameters in two hidden layer

structure. [Colour figure can be viewed

at wileyonlinelibrary.com]

SOYER ET AL. 2933
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amplitude, transition fatigue life occurs at the inter-
section of the elastic and plastic strain lines.

Elastic strain is more prevalent on the left side of the
transition fatigue life point and plastic strain is more
prevalent on the right side of the transition fatigue life

point, which correspond to LCF and HCF regions respec-
tively. Fatigue strength exponent and coefficient are
determined via the elastic strain line and fatigue ductility
exponent, and the coefficient is determined via the plastic
strain line. Estimation of the fatigue transition point also

FIGURE 5 Comparison of the

elapsed times of low-cycle fatigue

parameters in three hidden layer

structure. [Colour figure can be viewed

at wileyonlinelibrary.com]

FIGURE 6 Comparison of the total

elapsed times in one, two, and three

hidden layer structures. [Colour figure

can be viewed at wileyonlinelibrary.

com]

2934 SOYER ET AL.
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allows accurate estimation of fatigue strength and fatigue
ductility parameters.46 Therefore, transition fatigue lives
(Nt) are chosen for estimations.

In this study, changes in ANN parameters (hidden
neuron numbers, HL numbers, and activation functions)
and their effects on the LCF parameters of various steel
alloys were investigated. In total, 73 steel alloys were
used, and each of them used in this study was tested
under fully reversed strains (R = �1). The tested strain
amplitudes were ranging between 0.15% and 2%. The
dataset was obtained from the literature44,47,48 and was
previously published in Genel.30 The modified dataset to
include Nt is listed in Table A1. The estimated fatigue
parameters are fatigue strength exponent (b), fatigue
ductility exponent (c), fatigue strength coefficient (σ0f ),
fatigue ductility coefficient (ϵ0f ), and transition fatigue
life (Nt). Five inputs were used: Young's modulus (E),
reduction of area (RA%), Brinell hardness (BHN), yield
strength (σy), and ultimate tensile strength (σu). The
ANN approach was demonstrated to be an accurate and
efficient method to estimate fatigue parameters in a
previous study.6 The present paper serves as a continua-
tion of the previous article and investigates the effect of
increasing the HL numbers and activation functions on
estimation accuracy on the LCF parameters. The main
goal of this study is to recommend an optimal ANN
structure without complexity by decreasing the hidden
neuron and HL numbers, in addition to choosing the

most suitable activation functions in each layer for each
estimation parameter. Thus, an ANN structure that is
efficient in terms of both estimation time and accuracy
can be used for selected LCF parameters.

2 | ANNs

ANNs can be used to solve complex problems with rela-
tive ease. The general ANN structure consists of three
layers: input, hidden, and output. The ANN structure
that has multiple HLs is called a DNN. Increasing the HL
number deepens the network. The structure of the ANN
used in this study is given in Figure 2. Used activation
functions in this study are hyperbolic tangent sigmoid
(tansig), logistic sigmoid (logsig), and linear (purelin) as
they are commonly used in multilayer perceptron studies
as previously mentioned. Levenberg–Marquardt (trainlm)
is the most widely used training function and was
selected as a backpropagation algorithm because it is rel-
atively less memory-intensive in addition to reliable and
rapid solutions relative to the other algorithms. Consider-
ing how much memory and training time are required as
the HL number increases, the proper choice of training
functions optimized for memory and time becomes
essential. The maximum epoch number is set to 100; 75%
of the data were used for training and 25% were used for
testing. Normalization process made with MATLAB's

TABLE 5 Best results belonging to the low-cycle fatigue parameters and transition fatigue life (b, c, σ0f, ϵ0f, and Nt) with one hidden

layer.

Parameter
Best
range

Best
MSE

Best
regression

Average
MSE

Average
regression

HL1
neuron

HL1 activation
function

Output
activation
function

b 6–9 4.4E � 05 0.944 8.5E � 05 0.874 6 Logsig Tansig

c 21–25 3.5E � 03 0.999 5.0E � 02 0.999 22 Purelin Tansig

σ0f 6–9 6.8E + 03 0.989 3.4E + 04 0.944 6 Purelin Tansig

ϵ0f 10–15 1.6E � 02 0.929 3.7E � 02 0.857 10 Logsig Tansig

Nt 16–20 1.7E + 04 0.972 3.3E + 04 0.921 19 Tansig Tansig

TABLE 6 Differences between the

sum of gaps and total elapsed times of

low-cycle fatigue parameters and

transition fatigue life in different

hidden layers.

Parameter 3 hidden layers 2 hidden layers 1 hidden layer

b 2.9 6.6 5.6

c 0.1 0.1 0.1

σ0f 0.7 0.9 1.1

ϵ0f 3.2 6.5 7.1

Nt 0.1 0.6 2.8

Sum of elapsed times (s) 737 46,397 768,060

Sum of gaps (%) 7 14.7 16.7

2936 SOYER ET AL.
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“mapminmax” function ranges between [�1,1]. Mean
squared error (MSE) is selected as the error function. The
following basic material properties are selected as inputs:
Young's modulus (E), reduction of area (RA%), Brinell
hardness (BHN), yield strength (σy), and ultimate tensile
strength (σu). The following LCF parameters are selected
as outputs: fatigue strength exponent (b), fatigue strength
coefficient (σ0f ), fatigue ductility exponent (c), fatigue
ductility coefficient (ϵ0f ), and transition fatigue life (Nt).

All the tests were performed on the MATLAB R2022a
software with an i3-1115G4 3.00 GHz processor, 8 GB
RAM, 3500–2500 MB/s read/write NVMe M.2 SSD, and
Windows 10 operating system. A summary of the ANN
structure parameters is given in Table 2.

3 | RESULTS AND DISCUSSION

3.1 | Comparison of the elapsed times in
different HL numbers

Elapsed time represents how long the algorithm ran from
beginning to end. Elapsed time is a highly important
parameter and can be correlated to performance. Gener-
ally, the main goal is to increase the estimation accuracy
while lowering estimation time. Comparisons of the
elapsed times of LCF parameters in one, two, and three
HL structures are given in Figures 3–5, respectively.

Changes in the ANN structure are considered the
main reason for the increase in the elapsed time. Parame-
ters affecting the elapsed time are hidden neuron

number, number of HLs, and activation functions in the
HL and output layer. One HL structure consists of one
hidden neuron (HL1) and two activation function (HL1
and output layer) combinations. For two HL structure,
there are two hidden neurons (HL1 and HL2) and three
activation function (HL1, HL2, and output layer) combi-
nations. For three HL structure, there are three hidden
neurons (HL1, HL2, and HL3) and four activation func-
tion (HL1, HL2, HL3, and output layer) combinations.
With the increase of the hidden neuron numbers and
HLs, the elapsed time increases since each layer of the
network computes all the weights and biases by activa-
tion functions. Also, increased neuron numbers of the
more complex network structures were significantly
affecting the computing time. As expected, with the more
structural complexity, the elapsed time has drastically
increased. Comparisons of total elapsed times consider-
ing Figures 3–5 (including all LCF parameters and transi-
tion fatigue life) for one, two, and three HL structures
were presented in Figure 6.

There is a huge difference in the elapsed times
between the HL changes. The three HL structure requires
more time and higher amounts of computing power.
However, the one HL structure takes less time and com-
puting power. There are significant elapsed time differ-
ences between the output parameters. The highest to
lowest elapsed times of the output parameters were
fatigue strength exponent, transition fatigue life, fatigue
ductility exponent, fatigue ductility coefficient, and
fatigue strength coefficient, respectively. Normally, it
does not take this much time to estimate the parameters,

TABLE 8 The total number of used activation functions in the hidden layers and the output layer for each parameter.

b Tansig Logsig Purelin c Tansig Logsig Purelin

HL1 432 359 259 HL1 337 401 312

HL2 446 444 160 HL2 411 388 251

HL3 429 297 274 HL3 359 325 316

Output 240 0 260 Output 345 6 149

σ 0f Tansig Logsig Purelin ϵ0f Tansig Logsig Purelin

HL1 388 329 333 HL1 441 372 237

HL2 432 380 238 HL2 440 432 178

HL3 388 240 372 HL3 512 228 260

Output 169 0 331 Output 304 0 196

Nt Tansig Logsig Purelin General Tansig Logsig Purelin

HL1 395 397 258 HL1 1598 1461 1141

HL2 414 406 230 HL2 1729 1644 827

HL3 441 207 352 HL3 1688 1090 1222

Output 304 0 196 Output 1058 6 936

2938 SOYER ET AL.
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but experimental studies must be made for increasing the
prediction accuracy and seeing the neural network struc-
ture hyperparameter effects on the estimated parameters.
Each network structure component, such as function,
layer, and neurons, affects the results directly. This “trial-
and-error” approach is required to determine the best
and most robust network structure. The present study
assists in understanding the ANN structure parameters
and serves as a guide for researchers who want to
estimate the LCF parameters using neural networks.

3.2 | LCF parameter estimation results
and comparison of the activation functions
in different HL numbers

MATLAB toolbox has several activation functions such
as hyperbolic tangent sigmoid (tansig), logistic sigmoid
(logsig), linear (purelin), positive linear (poslin), positive
hard limit (hardlim), triangular basis (tanbas), and so
forth. Aside from these functions, there are several acti-
vation functions that are not part of the MATLAB tool-
box library like rectified linear unit (ReLU), leaky ReLU
(Leaky ReLU), parametric ReLU (PReLU), randomized
leaky ReLU (RReLU), and exponential linear unit (ELU).
In order to ensure ease of use and accessibility for the
network structure, only the most used activation func-
tions (tansig, logsig, and purelin) of the MATLAB toolbox
library were tested. This choice of activation functions
also aligns with the goal of simplifying ANN structure
and eliminating complexity. The hidden neuron numbers
were selected within the range of 1–25 hidden neurons.
In order to find the best suitable hidden neuron number
range for the specified HL numbers, the hidden neuron
range was divided into five parts: 1–5, 6–9, 10–15, 16–20,
and 21–25. Additionally, CPU power, RAM usage, and
time considerably rose with the increasing number of
HLs and hidden neuron numbers, as anticipated. Aver-
age MSE and regression values of the current HL number
and hidden neuron range are called average MSE and
average regression, respectively. Average MSE and
regression values were calculated with the average of the
best 10 values belonging to the hidden neuron range. The
best range was determined with the hidden neuron range
that has the lowest average MSE and the highest regres-
sion value. The hidden neuron is unavailable in the input
and output layers, and the activation function is also una-
vailable in the input layer. Three different layers, activa-
tion functions, and 25 different hidden neurons were
tested in the present study. The best combinations
belonging to the LCF parameters and transition fatigue
life with three HLs, two HLs, and one HL were presented
in Tables 3–5, respectively.

As mentioned before, increasing the HL number
increases the estimation accuracy. The lowest MSE and
the highest regression values were obtained in the three
HLs. When the regression value is reached “1,” then the
maximum estimation accuracy is obtained. The percent-
age difference between the best regression values of the
estimated parameters and the maximum regression value
is named the “gap.” The gap values and total elapsed
times (sum of the elapsed times of b, c, σ0f, ϵ0f, and Nt)
are given in Table 6. Regression values of the LCF param-
eters and transition fatigue life show no significant differ-
ence with the increase in the HL number. Therefore, the
higher number of HLs cannot be justified with small dif-
ferences in regression since the elapsed time difference
was overwhelmingly huge.

It should be noted that individual best results are not
a good enough indication for determining the best hidden
neuron range and activation functions because even if
nothing changes, the ANN results differ on each run.
Therefore, the best average results must be considered.
Replication can be performed to prevent the difference;
however, replication was not performed in the present
study due to time limitations. The full factorial experi-
ment of three HLs took 598,380 s (�7 days), and this
value is multiplied by the number of replications. For
100 replications, three HLs with three different activation
functions and five different hidden neuron parts ranging
from 1 to 25 hidden neurons would take about 70 days,
two HLs 43 days, and one layer less than 1 day. For this
reason, one HL is deemed sufficient for the estimation
problems. Changing the ANN parameters and specializ-
ing the network for the estimation problem with one HL
are more reasonable in terms of time, complexity, and
knowledge. Our previous work6 is supporting these
inferences.

Each HL and output layer includes three activation
functions, and each HL consists of 25 hidden neurons.
For each parameter, if the hidden neuron range was not
divided into five parts, 25 � 25 � 25 � 3 � 3 �
3 � 3 = 1,265,625 results would have been obtained for
three HLs and 16,875 for two HLs. By dividing the hidden
neuron range, the resulting number was reduced to
53,055 for three and 3429 for two HLs, respectively. One
HL result numbers did not change because of consisting
only one HL. The best hundred values that have the
highest regression and the lowest MSE in three and two
HLs were separated. Then the number of activation func-
tions and hidden neurons was counted via Excel. For one
HL, the best 10 values were considered because the total
number of the results belonging to each parameter was
below a hundred. The number of used activation func-
tions for each parameter belonging to HLs and output
layer is provided in Table 7.

SOYER ET AL. 2939
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The total number of used activation functions in the
HLs and the output layer for each parameter is given in
Table 8. The “General” in this context represents the total
of all estimation parameters (b, c, σ0f, ϵ0f, and Nt).

3.2.1 | Output layer

For one HL, fatigue strength exponent (b) was highly
dependent on tansig, fatigue ductility exponent (c)
was dependent on tansig and logsig, fatigue strength
coefficient (σ0f ) was dependent on tansig and purelin,
fatigue ductility coefficient (ϵ0f ) was highly dependent
on tansig, and transition fatigue life (Nt) was dependent
on tansig and purelin. For two HLs, b was dependent
on tansig and purelin, c was dependent on purelin, σ0f
was highly dependent on purelin, ϵ0f was highly depen-
dent on tansig, and Nt was dependent on tansig and
purelin. For three HLs, b was dependent on tansig and
purelin, c was highly dependent on tansig, σ0f was
highly dependent on purelin, ϵ0f was highly dependent
on tansig, and Nt was highly dependent on tansig.
The logistic sigmoid activation function (logsig) rarely
performed well in the output layers, and the results

have shown that logsig is not suitable in the output
layer for all estimation parameters. Logsig only
performed well in the one and two HL configurations
for fatigue ductility exponent (c).

3.2.2 | HLs

In HLs, b, c, σ0f, ϵ0f, and Nt showed good agreement with
tansig and logsig, and tansig performed a little better
than the logsig. As seen in Table 1, for many authors,
purelin was chosen only in the output layer. The total
percentage values of the used activation functions of esti-
mated parameters and general with the HLs and the out-
put layer are given in Figure 7.

3.3 | Determining the best hidden
neuron number range

The hidden neuron number is a highly important hyper-
parameter, and it is difficult to determine the best range.
Unsurprisingly, an increase in the hidden neuron increases
the complexity and elapsed time. It is also worth

FIGURE 7 The total percentage values of the used activation functions of estimated parameters and general. [Colour figure can be

viewed at wileyonlinelibrary.com]
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mentioning that there is no upper or lower limit to the hid-
den neuron number. As stated before, recommendations
for the HL are the same for the hidden neuron number as
well; it should not be increased unnecessarily. Also, there
is no theoretical basis between the hidden neuron number
and the estimation accuracy. Each input parameter, output
parameter, data size, activation function, and training
function behave differently according to the increase/
decrease of the hidden neuron number, so estimation prob-
lems and their parameters must be specialized according
to the network. There is no exactly a “true” hidden neuron
value or HL value for all types of problems, but there are
some tips and suggestions about which is worse or better
in certain conditions for ANN investigations. The best
100 results for each hidden neuron range (1–5, 6–9, 10–15,
16–20, and 21–25) belonging to each parameter were
selected and counted the number of the best performed
hidden neurons in HLs. Figure 8 shows the number of
used hidden neurons for estimation parameters in all HLs.

The best range has been found to be within “4–9” and
the second-best range within “22–25” for all estimation
parameters and HLs, but the best average results have
been obtained within “10–15” hidden neurons. “4–9” and
“22–25” were the most used ranges for the best hundred
results, but the best 10 results were obtained in the
“10–15” hidden neuron range.

Selecting the right parameters for the network is the
most important factor in obtaining highly accurate
results in a reasonable estimation time. At first, estima-
tion accuracy can seem to be directly proportional to the
HL and hidden neuron number. However, unnecessarily
increasing the hidden neuron and HL causes structural
complexity and a high amount of estimation time with-
out a significant increase in the estimation accuracy. For

evaluations of inherently complex LCF parameters,
which already require time-intensive testing processes,
using an equally time-consuming ANN structure mostly
defeats the purpose without adequate results. Therefore,
it is imperative to choose the optimal HL, hidden neuron
numbers, and activation function combinations to ensure
rapid and accurate estimations.

3.4 | Comparison of the estimated and
experimental parameter values

ANN structure and its results give highly important infor-
mation about how good the estimation results are with
the MSE and regression values. To further demonstrate
the estimation quality, comparisons of estimated data of
one, two, and three HLs were provided along with experi-
mental values in the form of graphs. Comparisons of esti-
mated and experimental parameters values (b, c, σ0f, ϵ0f,
and Nt) are given in Figures 9–13, respectively. Estimated
parameter values are obtained from the ANN structure
with the best results. Percentage errors are calculated
with mean absolute percentage error (MAPE), which is
given in Equation (2):

MAPE¼ 100
N

XN

1

V true�V estimatedj j
V true

ð2Þ

where Vtrue is the true value of the parameter, Vestimated

is the estimated value of the parameter, N is the
number of observations, and “100” is to convert results to
percentages. MAPE results of three, two, and one HL
structures belonging to the estimated parameters are given
in Table 9.

FIGURE 8 The number of used

hidden neurons for estimation

parameters in all hidden layers.

[Colour figure can be viewed at

wileyonlinelibrary.com]
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In addition to considering Figure 9, three HL struc-
ture gave the best MAPE result. However, there was no
considerable difference between the three HL and one
HL structures. Additionally, three HL structure requires
a lot of time, computational power, and structural

complexity. For these reasons, selecting the one HL struc-
ture is considered a better choice.

Fatigue ductility exponent resulted in the lowest
MAPE values compared to all estimation parameters, and
one HL structure performed the best. Figure 10 shows

FIGURE 9 Comparison of

estimated and experimental values of

fatigue strength exponent (b). [Colour

figure can be viewed at

wileyonlinelibrary.com]

FIGURE 10 Comparison of

estimated and experimental values of

fatigue ductility exponent (c). [Colour

figure can be viewed at

wileyonlinelibrary.com]
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that the estimated fatigue ductility exponent mostly
coincides with the experimental values, confirming the
low MAPE value.

MAPE value of three HL structure was the lowest for
fatigue strength coefficient. However, the difference
between MAPE values between one, two, and three

HL structures was not high enough to warrant increased
estimation time. Figure 11 similarly shows the estimation
quality of the structures. Several differences can be seen
between estimated and experimental values. However,
they mostly coincide or remain within an acceptable
margin of the experimental values.

FIGURE 11 Comparison of

estimated and experimental values of

fatigue strength coefficient (σ0f). [Colour
figure can be viewed at

wileyonlinelibrary.com]

FIGURE 12 Comparison of

estimated and experimental values of

fatigue ductility coefficient (ϵ0f). [Colour
figure can be viewed at

wileyonlinelibrary.com]

SOYER ET AL. 2943

 14602695, 2023, 8, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ffe.14054 by Pam

ukkale U
niversity, W

iley O
nline L

ibrary on [04/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


Compared to other estimation parameters, the MAPE
results of the fatigue ductility coefficient are relatively
high. Three HL structure provided the best result, while
one HL structure performed relatively poorly. Despite its
disadvantages, three HL structure should be preferred for
the fatigue ductility coefficient to ensure estimation accu-
racy. Figure 12 shows the difference between estimated
and experimental data with three HL data points coincid-
ing with experimental ones.

Once again, three HL structure performed the best for
fatigue life as well in terms of MAPE values. There were
relatively high differences between the layers. One HL
performed the worst result when MAPE values were
compared. However, as seen in Figure 13, only one
clearly visible point seems to be responsible for the high
MAPE value. For this reason, choosing the best HL
combination might be difficult. MSE, regression, time,
complexity, computational power, and MAPE difference
between the experimental and estimated values must be

considered together while selecting the best structure for
estimation parameters.

4 | CONCLUSIONS

In this work, LCF parameters and transition fatigue life
have been estimated by the ANN approach. Also,
different HLs (one, two, and three), activation functions
(tansig, logsig, and purelin), and hidden neurons (1–25)
and their effects on the estimation accuracy, MSE, and
elapsed time have been investigated. Increasing the HL
increased the estimation accuracy at the cost of drasti-
cally increasing elapsed time. There was no direct consis-
tent correlation between the hidden neuron increase and
estimation accuracy. Three activation functions were
tested in different HLs with different hidden neurons.
The results have shown that the most suitable activation
functions for the output layer were firstly the hyperbolic

FIGURE 13 Comparison of

estimated and experimental values of

transition fatigue life (Nt). [Colour figure

can be viewed at wileyonlinelibrary.

com]

TABLE 9 MAPE results of the

estimated parameters (b, c, σ0f, ϵ0f, and
Nt).

Parameter 3 hidden layers 2 hidden layers 1 hidden layer

b 1.035 1.641 1.206

c 0.326 0.411 0.285

σ0f 0.969 1.261 1.334

ϵ0f 1.461 2.686 3.904

Nt 0.573 0.944 1.695

2944 SOYER ET AL.
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tangent sigmoid (tansig) and secondly the linear (purelin)
activation functions in one, two, and three HL structures.
On the other hand, the logistic sigmoid activation func-
tion never performed well in the output layer. For the
HLs, tansig resulted in the best solutions in comparison to
the results of logsig and purelin. Purelin can be used in
the HLs, but it is not preferred as linearity is mostly
needed in the output layer. The best structure for the three
hidden layered was tansig–tansig–tansig/purelin and 10–
15 hidden neurons in each HL, for two hidden layered
was tansig–logsig–purelin/tansig and 10–15 hidden neu-
rons, and for one hidden layered was purelin–tansig and
1–5 hidden neurons. Although the three HLs resulted in
better regression and lower MSE values, there is no signifi-
cant difference between the one HL structure. The disad-
vantages of the three HLs are significant differences in the
elapsed time and more structural complexity. As a result,
one HL structure provides less structural complexity,
knowledge, computation time, and power. Also, estimated
and experimental parameter values showed good agree-
ment in terms of small mean absolute percentage errors.

In the future, the authors intend to expand the use of
the optimized ANN structures in the evaluation of fatigue
parameters by performing estimations for different
materials and structures. Additionally, optimization of
ANN structure for other energy parameters should be
considered as future research.

NOMENCLATURE
ANN artificial neural network
b fatigue strength exponent
BHN Brinell hardness
c fatigue ductility exponent
DNN deep neural network
E Young's modulus
elliotsig Elliot symmetric sigmoid activation function
ELU exponential linear unit
hardlim hard limit activation function
HCF high-cycle fatigue
HL hidden layer
logsig logistic sigmoid activation function
MLP multilayer perceptron
MSE mean squared error
Nt transition fatigue life
poslin positive linear activation function
PReLU parametric rectified linear unit
purelin linear activation function
RA% reduction of area
ReLU rectified linear unit
RReLU randomized leaky rectified linear unit
tanbas triangular basis activation function
tansig hyperbolic tangent sigmoid activation function
trainlm Levenberg–Marquardt training function

Vestimated estimated value of the parameter
Vtrue true value of the parameter
ϵ0f fatigue ductility coefficient
σ0f fatigue strength coefficient
σu ultimate tensile strength
σy yield strength
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APPENDIX A

TABLE A1 Monotonic, low-cycle fatigue, and transition fatigue properties of various steel alloys used in this study.

Steel
type

E
(GPa)

RA
(%)

σu
(MPa)

BHN
(kgf/mm2)

σy
(MPa) b c

σ0f
(MPa) ϵ0f

Nt

(cycles) Ref.

1141 217 54 802 241 602 �0.079 �0.508 1080 0.361 10,862 44

1141 214 49 725 217 450 �0.102 �0.529 1255 0.43 11,674 44

1141 215 58 797 252 610 �0.086 �0.555 1162 0.534 8958 44

1141 220 47 789 229 493 �0.103 �0.58 1326 0.602 7776 44

1038 201 54 582 163 331 �0.107 �0.48 1043 0.309 28,664 44

1038 219 53 652 185 359 �0.098 �0.44 1004 0.202 32,075 44

1038 219 67 649 195 410 �0.097 �0.46 1009 0.225 22,446 44

1541 205 55 783 180 475 �0.135 �0.548 1622 0.515 12,304 44

1541 205 42 906 195 475 �0.083 �0.557 1044 0.513 8415 44

1050 211 50 821 205 465 �0.126 �0.512 989 0.433 61,820 44

1050 203 34 829 220 460 �0.075 �0.502 1094 0.309 6563 44

1090 203 14 1090 259 735 �0.091 �0.496 1310 0.25 4172 44

1090 217 22 1147 309 650 �0.12 �0.6 1878 0.7 4717 44

1090 203 14 1251 279 760 �0.12 �0.642 1928 0.734 2070 44

1141 216 57 771 223 457 �0.097 �0.464 1168 0.257 18,548 44

1141 227 59 925 277 814 �0.066 �0.514 1127 0.309 5053 44

1141 220 53 695 199 418 �0.096 �0.462 1117 0.264 24,402 44

A538Aa 185 67 1515 405 1482 �0.065 �0.62 1655 0.3 280 47

A538Ba 185 56 1860 460 1793 �0.071 �0.71 2135 0.8 380 47

1541F 206 49 951 290 889 �0.076 �0.65 1276 0.68 1794 47

1541F 206 60 889 260 786 �0.071 �0.65 1276 0.93 2871 47

A538Ca 180 55 200 480 1931 �0.07 �0.75 2240 0.6 149 47

AM-350b 180 20 1905 496 1861 �0.102 �0.42 2690 0.1 197 47

H-11 205 33 2585 660 2034 �0.077 �0.74 3170 0.08 6 47

RQC-100b 205 43 940 290 896 �0.07 �0.69 1240 0.66 968 47

RQC-100b 205 67 930 290 883 �0.07 �0.69 1240 0.66 968 47

10B62 195 38 1640 430 1510 �0.067 �0.56 1780 0.32 680 47

1005–1009 205 73 360 90 269 �0.09 �0.43 580 0.15 58,991 47

1005–1009 205 66 470 125 448 �0.059 �0.51 515 0.3 20,158 47

1005–1009 200 64 415 125 400 �0.073 �0.41 540 0.11 29,957 47

1005–1009 200 80 345 90 262 �0.109 �0.39 640 0.1 104,405 47

1015 205 68 415 80 228 �0.11 �0.64 825 0.95 15,010 47

1020 205 62 440 108 262 �0.12 �0.51 895 0.41 57,176 47

1040 200 60 620 225 345 �0.14 �0.57 1540 0.61 13,028 47

1045 200 65 725 225 634 �0.095 �0.66 1225 1 4127 47

1045 200 51 1450 410 1365 �0.073 �0.7 1860 0.6 385 47

1045 205 59 1345 390 1276 �0.074 �0.68 1585 0.45 409 47

1045 205 55 1585 450 1517 �0.07 �0.69 1795 0.35 192 47

1045 205 51 1825 500 1689 �0.08 �0.68 2275 0.25 90 47

1045 205 41 2240 595 1862 �0.081 �0.6 2725 0.07 12 47

(Continues)
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TABLE A1 (Continued)

Steel
type

E
(GPa)

RA
(%)

σu
(MPa)

BHN
(kgf/mm2)

σy
(MPa) b c

σ0f
(MPa) ϵ0f

Nt

(cycles) Ref.

4130 220 67 895 258 779 �0.083 �0.63 1275 0.92 5275 47

4130 200 55 1425 365 1358 �0.081 �0.69 1695 0.89 1042 47

4142 200 29 1060 310 1048 �0.1 �0.51 1450 0.22 2060 47

4142 205 48 1415 380 1379 �0.08 �0.75 1825 0.45 175 47

4142 200 42 1760 450 1586 �0.08 �0.73 2000 0.4 146 47

4142 200 37 1930 450 1862 �0.09 �0.76 2105 0.6 209 47

4142 205 35 1930 475 1724 �0.081 �0.61 2170 0.09 29 47

4142 205 27 2240 560 1689 �0.089 �0.76 2655 0.07 6 47

4142 200 47 1550 400 1448 �0.09 �0.75 1895 0.5 204 47

4142 200 20 2035 475 1896 �0.082 �0.77 2070 0.2 37 47

4340 195 43 825 243 634 �0.095 �0.54 1200 0.45 7725 47

4340 200 38 1470 409 1372 �0.091 �0.6 2000 0.48 1005 47

4340 195 57 1240 350 1172 �0.076 �0.62 1655 0.73 1799 47

5160 195 42 1670 430 1531 �0.071 �0.57 1930 0.4 829 47

52,100 205 11 2015 518 1924 �0.09 �0.56 2585 0.18 143 47

9262 205 14 925 260 455 �0.071 �0.47 1040 0.16 2854 47

9262 195 33 1000 280 786 �0.073 �0.6 1220 0.41 1399 47

9262 200 32 1565 410 1379 �0.057 �0.65 1855 0.38 262 47

950C 205 69 565 150 324 �0.11 �0.59 970 0.85 24,868 47

950X 205 65 440 150 345 �0.075 �0.54 625 0.35 13,457 47

950X 205 72 530 156 331 �0.1 �0.61 1005 0.85 12,279 47

980X 195 68 695 225 565 �0.08 �0.53 1055 0.21 1699 47

1144 195 33 930 265 717 �0.08 �0.58 1000 0.32 1947 47

1144 200 25 1035 305 1020 �0.09 �0.53 1585 0.27 1519 47

950C 205 64 565 159 315 �0.12 �0.61 1170 0.95 17,069 47

SNCM630 196 49 1100 327 951 �0.073 �0.823 1270 1.54 736 48

SNCM439 208 37 1050 323 950 �0.072 �0.801 1380 1.89 1164 48

525C 209 52 508 153 280 �0.096 �0.458 821 0.216 32,086 48

545C 206 39 798 234 590 �0.107 �0.561 1400 0.449 5102 48

SFNCM85S 201 66 825 241 565 �0.092 �0.522 1040 0.316 7114 48

SF60 208 53 820 167 580 �0.082 �0.439 978 0.187 15,120 48

SCM435 210 66 951 300 795 �0.067 �0.708 1100 0.996 1797 48

SCM440 204 36 1000 319 846 �0.088 �0.65 1400 0.675 1757 48
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