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Abstract: This study revealed the synthesis of cross-linked chitosan/Citrus reticulata peel waste
(C/CRPW) composites that could be used as low-cost and green bio-adsorbents for the removal of
Congo red (CR) dye from aqueous solutions. C/CRPW composites containing different amounts of
Citrus reticulata peel waste (CRPW) and chitosan were prepared and cross-linked with glutaraldehyde.
The composites were characterized by FESEM, EDS, FTIR, XRD, BET, and zeta potential measure-
ments. The C/CRPW composites as a new type of bio-adsorbents displayed superior adsorption
capability toward anionic CR molecules, and the adsorption capacities increased with the incorpora-
tion of CRPW. Effects of different ambient conditions, such as contact time, pH, adsorbent dosage,
initial adsorbate concentration, and temperature, were fully studied. The conditions which obtained
43.57 mg/g of the highest adsorption capacity were conducted at pH 4 with an initial concentration
of 100 mg/L, adsorbent dosage of 2.0 g/L, and contact time of 24 h at 328 K. The adsorption data
was found to follow the pseudo-second-order kinetic model and the Freundlich isotherm model.
According to the findings of this investigation, it was observed that the C/CRWP composites could
be used as adsorbents due to their advantages, including the simple preparation process, being
environmentally friendly, renewable, efficient, and low-cost.

Keywords: Citrus reticulata peel waste; chitosan; Congo red; green adsorbents

1. Introduction

Dye pollution in the aquatic water system is a serious environmental problem be-
cause of the decrease in the photosynthetic activity of water streams and the equilibrium
disruption of the aquatic environment. Most synthetic dyes found in many industrial
wastewater effluents are also toxic and carcinogenic to both human and animal health at a
very low percentage of concentration. Various physical, physicochemical, chemical, and
biological treatment processes have been used to remove dyes from wastewater, including
adsorption [1], membrane separation [2], coagulation–flocculation [3], ion exchange [4],
and ozonation [5]. Among these techniques, adsorption has superior advantages, such as
low investment and operational cost, simple design, easy operation, high effectiveness, and
so on, for removing dyes.

Congo red (CR) [1-naphthalenesulfonic acid, 3,3′-(4,4′-biphenylenebis (azo)) bis(4-amino-)
disodium salt] is an anionic diazo dye [6] used in several industries, such as paper, plastic,
leather, textiles, etc., for coloring their final products. Wastewater containing CR dye is a
kind of threatening wastewater because of the difficulty of its degradation. In addition,
a carcinogen product, such as benzidine, is formed because of its decomposition under
anaerobic conditions [7]. In this present study, CR is chosen as an anionic dye for the
adsorption process due to its chemical structure, environmental concern, and potential
toxicity to humans. Many adsorbents, such as carbonized leonardite [8], nickel-based
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materials [7], MIL-88A [9], MXene–carbon foam hybrid aerogel [10], and polycrystalline
α-Fe2O3 nanoparticles [11], have been reported in the literature for the adsorption of CR
dye. However, most of the commercial adsorbents used in the treatment of dye effluent are
not economically viable and some are not technically efficient.

Agricultural waste materials have attracted more attention to be used as adsorbents
for the removal of contaminants in aqueous solutions due to their viable properties, such
as being eco-friendly, renewable, their biodegradable nature, being inexpensive, available
in abundance, and the easy-to-obtain composites with them. Furthermore, agricultural
wastes have various functional groups which enhance their chemical reactivity and are
responsible for the removal of various water pollutants. Some researchers have studied the
feasibility of using agricultural solid waste, such as coir pith [12], potato plant [13], durian
peel [14], grapefruit peel [15], mandarin orange peels [16], citrus limetta peel [17], orange
peel [18], kiwi peel [19], etc., as adsorbents for the removal of dyes and/or heavy metals
from wastewater.

Mandarin (Citrus reticulata) peel waste, an agricultural waste from peels that accounts
for approximately 30% of the mass of mandarin fruit, is obtained as by-products from
the food industry and juice companies, besides household waste [20]. It is estimated
that around 110–120 million tons of citrus waste are produced annually worldwide. The
dumping of this waste in landfills or marine environments results in nitrogen deficiency
during microorganic activities and a significant increase in the levels of biological oxygen
demand and chemical oxygen demand [21]. Hence, the reusability of this waste in different
areas is significant due to increased environmental damage. The Citrus reticulata peel waste
(CRPW), abundantly available in Mediterranean countries, Brazil, Japan, Argentina, the
United States, and Australia, can be used as an effective adsorbent for the removal and
recovery of dyes and heavy metals from wastewater because of the various functional
groups, such as hydroxyl, carboxyl, phenolic, and amino [22]. In this study, CRPW was
utilized as an alternative material that offers a high affinity for dye molecules to synthesize
polymeric composites as bio-adsorbents.

Chitosan, which has been obtained from the alkaline hydrolysis of chitin, is one of the
most popular adsorbents for various adsorption processes due to its high absorptivity and
affinity for environmental contaminants, biodegradability, biocompatibility, nontoxicity,
hydrophilicity, physicochemical characteristics, high chemical reactivity, and hydrophilic-
ity [23]. Because of its significant advantages, chitosan has positive feedback from many
researchers employing chitosan as an adsorbent. However, chitosan has disadvantages,
such as poor mechanical strength, thermal instability, and low surface area. In recent
studies, it has been observed that this problem has been largely overcome with the use of
chitosan-based composites obtained using agricultural waste [24]. However, the literature
studies reveal that so far, no considerable effort has been made to study the removal of
CR dye by chitosan-based composites containing the fruit peel of mandarin. In this re-
search, the efficiency of the cross-linked chitosan/Citrus reticulata peel waste (C/CRPW)
composites in the adsorption of CR dye from an aqueous solution has been investigated.

Batch experiments were carried out to study the effect of several experimental parame-
ters, such as contact time, pH, adsorbent dosage, initial CR concentration, and temperature.
Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherm models were used to
analyze mechanisms of adsorption. The adsorption kinetics were analyzed by Lagergren’s
pseudo-first-order, pseudo-second-order, and Weber–Morris intraparticle diffusion kinetic
models. Furthermore, the thermodynamic parameters, such as enthalpy, entropy, and free
energy, were also investigated. This study explores the possibility of utilizing CRPW to
synthesize cross-linked chitosan-based composites as cost-effective and efficient adsorbents
for the adsorptive removal of CR dye from polluted wastewater.
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2. Materials and Methods
2.1. Materials

Chitosan (medium molecular weight, Mw: 190,000–310,000 Da, viscosity 200–800 cP,
1 wt.% in 1% acetic acid, Deacetylation 75–85%) and CR (3,3′-[(1,1′-Biphenyl)-4,4′-diylbis(azo)]
bis(4-amino-1-naphthalenesulfonic Acid) 2Na, dye content 97%, CAS 573-58-0) were ob-
tained from Sigma-Aldrich (Sigma-Aldrich Inc., St. Louis, MO, USA). Glutaraldehyde
(50 wt.% solution in ethanol) was supplied from Acros Organics (Geel, Belgium). Hy-
drochloric acid (HCl, 37%) and sodium hydroxide (NaOH, reagent grade) were purchased
from JT Baker (Phillipsburg, NJ, USA). All materials reached analytical grade and were
used directly.

The CRPW used in this study was obtained from the Seferihisar region of Izmir, Turkey.
The CRPW was washed with distilled water and cut into 1 cm2 pieces before being dried in
an air oven (Natural Convection Oven, JSON-100, JSR, Gongju-City, Chungchungnam-Do,
Republic of Korea) at 100 ◦C. After drying, it was ground into a fine powder and then
passed through a sieve to be in the size range of 500 µm to 250 µm.

2.2. Preparation of the Cross-Linked C/CRPW Composites

The synthesis processes of cross-linked C/CRPW composites were accomplished
based on three main steps. First, the determined amounts of chitosan (1.75 g, 1.50 g, and
1.25 g) were dissolved in 75 mL of acetic acid solutions (5%, w/w), forming gels, and then
mixed with the different amount of CRPW (0.25 g, 0.50 g, and 0.75 g) under stirring with
a magnetic stirrer (ISOLAB Laborgeräte GmbH, Eschau, Germany) for 24 h. This was
followed by treating C/CRPW powder mixtures with ultrasonic irradiation at 20 kHz, 50%
amplitude, and a no pulsation ultrasound regime at 20 min in an ultrasonicator device
(Bandelin, HD4100, Berlin, Germany) to accelerate the intercalation of chitosan between
CRPW. The mixtures were then added into the NaOH solutions (1.0 M) dropwise to allow
the formation of gel beads, and the mixtures were stirred at 150 rpm for another 24 h.
After this process, the obtained C/CRPW composites containing different amounts of
chitosan and CRWP were filtered and washed multiple times with deionized water until
the pH reached 7. In the third stage, the obtained composites were crosslinked with
glutaraldehyde solution (2.5%, v/v) in a water bath at 60 ◦C for 24 h to enhance their
mechanical properties and stability in acidic solutions. Lastly, dried C/CRPW composites
were obtained by washing these composites exhaustively with deionized water three times
followed by drying in an oven (Natural Convection Oven, JSON-100, JSR, Gongju-City,
Chungchungnam-Do, Republic of Korea) at 60 ◦C for 48 h.

The cross-linked C/CRPW composites containing different amounts of chitosan and
CRPW were referred to as xC/yCRPW, where x and y denote the amount of chitosan and
CRPW used in the synthesis process, respectively. Three different composites obtained in
this study were named 1.75C/0.25CRPW, 1.50C/0.50CRPW, and 1.25C/0.75CRPW.

2.3. Characterization of the CRPW and Cross-Linked C/CRPW Composites

Surface morphology and elemental analysis of the cross-linked C/CRPW composites
and CRPW were observed with field emission scanning electron microscope (FESEM,
Gemini Supra 40 VP, Carl Zeiss, Jena, Germany) and energy dispersive X-ray spectroscopy
(EDS), respectively. The samples were coated with a thin layer of gold using a sputter coater
(Quorum Q150R ES, Quorum Technologies Ltd., Laughton, UK). The chemical structure of
the cross-linked C/CRPW composites was determined using a Fourier transform infrared
(FTIR) spectroscope (Thermo Scientific Nicolet iS50FT-IR, Waltham, MA, USA). The spectral
data of all composites were acquired in the wavenumber range of 400–4000 cm−1 with
50 scans at a resolution of 4 cm−1. N2 adsorption–desorption was measured at a liquid
nitrogen temperature of 77 K using a Quantachrome Autosorb-1C-MS instrument. The
specific surface area was determined using the multipoint Brunauer–Emmett–Teller (BET)
technique. The pore volume and pore size were derived from the desorption branches of
the isotherms using the Barrett–Joyner–Halenda (BJH) method.
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Zeta potentials of the CRPW and cross-linked C/CRPW composites were measured
over the pH range of 4.0–9.0 on a Zetasizer (Malvern, Zetasizer Nano ZSP, Malvern Panalyt-
ical Ltd., Malvern, UK). The zero potential point (pHpzc) of composite aerogel was obtained
using a zeta potential analyzer.

X-ray diffraction (XRD) measurements were carried out on an X-ray diffractometer
(Rigaku-SmartLab, Tokyo, Japan) with Cu Kα radiation at 40 kV and 30 mA in the range of
10–80◦ at room temperature.

2.4. Batch Adsorption Studies

The adsorption of CR dye onto the C/CRPW composites (1.75C/0.25CRPW, 1.50C/
0.50CRPW, and 1.25C/0.75CRPW) and CRPW were carried out in batch mode. A stock
solution of CR dye (1000 mg/L) was prepared, which was diluted to desired concentra-
tions for further usage. All the adsorption experiments were performed by adding the
determined amount of adsorbent to 100 mL CR dye solutions in a thermostatic shaker bath
(Nuve ST 30) at a fixed agitation speed of 150 rpm for the pre-determined time. The pH
of CR dye solutions was adjusted using HCl (0.1 N) and NaOH (0.1 N) solutions. After
adsorption, the concentration of the CR dye was measured spectrophotometrically by
monitoring the absorbance at 497 nm using a Hitachi U-2900 spectrophotometer (Hitachi
High Technologies Corporation, Tokyo, Japan).

The equilibrium adsorption capacities of the C/CRPW composites and CRPW
(qe (mg/g)) were estimated using Equation (1):

qe =
Ci − Ce

m
×V (1)

where Ci is the initial dye concentration (mg/L), Ce is the dye concentration at equilibrium
(mg/L), V is the volume of the dye solution (L), and m is the mass of the adsorbents (g).

The effects of contact time (0–24 h), initial solution pH (4–9), adsorbent dosage
(2–6 g/L), initial CR concentration (20–100 mg/L), and temperature (298.15–328.15 K)
on the adsorption of CR dye were investigated. To verify that the results are repeatable, all
adsorption experiments were conducted in triplicates and the mean value was reported.

3. Results
3.1. Characterization of the Cross-Linked C/CRPW Composites

In the synthesis process, spherical composite beads produced by injecting chitosan
solution, including CRPW, whose sizes ranged from 500 µm to 250 µm (Figure 1a), into an
alkaline bath possess uniform bead sizes 4 mm in diameter. Photographs of the undried
and dried C/CRPW composites are shown in Figure 1b and Figure 1c, respectively. The size
of the dried C/CRPW composites changes in the range of 2–4 mm (Figure 1c). Although
the CRPW, as powder-type adsorbents, have a relatively high adsorption capacity due to
their large surface area, they are not preferred for industrial adsorption processes because
of being lost easily and damaging the adsorption column. The cross-linked C/CRPW
composites, as millimeter-sized spherical adsorbents, are more suitable in the practical
adsorption processes due to easy separating and recycling.
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Figure 1. Photographs of fine CRPW (a), undried C/CRPW composites (b), and dried C/CRPW
composites (c).
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The FESEM images of 1.75C/0.25CRPW, 1.50C/0.50CRPW, and 1.25C/0.75CRPW com-
posites and CRPW are presented in Figure 2. As shown in Figure 2, all the composites have
broadly large pores, while many pores of different sizes are observed. The 1.25C/0.75CRPW
composites have rougher surfaces, are more porous with well-developed pore openings,
and have more irregular shapes than the other composites. The surface roughness of the
adsorbents affects the adsorption capacity because it causes high hydrophilicity [25]. SEM
image of the CRPW also revealed that there are a great number of holes on the surface of
the CRPW.
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Figure 2. FESEM images of the cross-linked 1.75C/0.25CRPW (a,b), 1.50C/0.50CRPW (c,d), and
1.25C/0.75CRPW composites (e,f) and CRPW (g,h).

Figure 3 shows the FESEM images and EDX spectra of the cross-linked C/CRPW
composites and CRPW before and after adsorption of CR dye. As shown in Figure 3, while
the cross-linked C/CRPW composites before adsorption show a porous and plate-like
surface, they exhibit an agglomerate-like surface after adsorption because the pores are
filled with CR molecules. In the EDS spectra of all the cross-linked C/CRPW and CRPW,
nitrogen, oxygen, and carbon, which are the main elements of chitosan and CRPW, were
observed. In addition, there is an additional sulfur peak in the EDS spectra of cross-linked
C/CRPW and CRPW after adsorption of CR dye, which confirms the adsorption of CR dye
on cross-linked C/CRPW and CRPW.

Polymers 2023, 15, x FOR PEER REVIEW 6 of 26 
 

 

  
(g) (h) 

Figure 2. FESEM images of the cross-linked 1.75C/0.25CRPW (a,b), 1.50C/0.50CRPW (c,d), and 
1.25C/0.75CRPW composites (e,f) and CRPW (g,h). 

Figure 3 shows the FESEM images and EDX spectra of the cross-linked C/CRPW 
composites and CRPW before and after adsorption of CR dye. As shown in Figure 3, while 
the cross-linked C/CRPW composites before adsorption show a porous and plate-like sur-
face, they exhibit an agglomerate-like surface after adsorption because the pores are filled 
with CR molecules. In the EDS spectra of all the cross-linked C/CRPW and CRPW, nitro-
gen, oxygen, and carbon, which are the main elements of chitosan and CRPW, were ob-
served. In addition, there is an additional sulfur peak in the EDS spectra of cross-linked 
C/CRPW and CRPW after adsorption of CR dye, which confirms the adsorption of CR dye 
on cross-linked C/CRPW and CRPW. 

 
 

(a) (b) 

  
(c) (d) 

Figure 3. Cont.



Polymers 2023, 15, 3246 7 of 25Polymers 2023, 15, x FOR PEER REVIEW 7 of 26 
 

 

(e) (f) 

(g) (h) 

Figure 3. FESEM images and EDS spectra of the cross-linked 1.75C/0.25CRPW (a,b), 
1.50C/0.50CRPW (c,d), and 1.25C/0.75CRPW composites (e,f) and CRPW (g,h) before and after ad-
sorption of CR dye. 

The FTIR spectra of chitosan, CRPW, and the cross-linked C/CRPW composites are 
given in Figure 4. The FTIR spectrum of CRPW showed a broad and intense band at 3286 
cm−1, corresponding to the O–H stretching vibration that existed in the inter- and intra-
molecular hydrogen bonding [26]. The bands at 2920 and 1734 cm−1 can be attributed to 
the C–H stretching and C=O stretching vibrations of carboxy groups appearing in CRPW 
constituents, such as pectin, lignin, and cellulose [27]. The C-H group band at 2920 cm−1 
of CRPW was moved to around 2930 cm−1 in the cross-linked C/CRPW composites, while 
the C=O group observed at 1734 cm−1 of CRPW was moved to 1653 cm−1 in the cross-linked 
C/CRPW composites. The decreased intensity and shifting of these peaks could be a result 
of lower cellulose content in the cross-linked C/CRPW composites. Furthermore, the 
strong band at 1016 cm–1 represents the C–O–H functional group in CRPW, while it is 
observed in the cross-linked C/CRPW composites at around 1027 cm–1 [16]. 

The FTIR spectrum of chitosan showed main peaks at 3400, 2925, 1651, 1375, 1151, 
and 1066 cm−1, representing the N–H and O–H stretching vibration, CH3 symmetric 
stretch, C=O stretching vibration, CH3 bending vibration, C–O–C bending vibration, and 
C–OH stretching vibration, respectively. The peaks observed at 1375 cm−1 and 1151 cm−1 
in the FTIR spectrum of chitosan disappeared in the FTIR spectrum of the cross-linked 
C/CRPW composites because of the cross-linking of chitosan with glutaraldehyde. Fur-
thermore, the spectrum of the cross-linked C/CRPW composites show a new peak at 1650 
cm−1 that can be attributed to amide (-C(=O)N-) due to the cross-linking reaction of chi-
tosan and glutaraldehyde [28]. 

 

Figure 3. FESEM images and EDS spectra of the cross-linked 1.75C/0.25CRPW (a,b),
1.50C/0.50CRPW (c,d), and 1.25C/0.75CRPW composites (e,f) and CRPW (g,h) before and after
adsorption of CR dye.

The FTIR spectra of chitosan, CRPW, and the cross-linked C/CRPW composites are
given in Figure 4. The FTIR spectrum of CRPW showed a broad and intense band at
3286 cm−1, corresponding to the O–H stretching vibration that existed in the inter- and
intramolecular hydrogen bonding [26]. The bands at 2920 and 1734 cm−1 can be attributed
to the C–H stretching and C=O stretching vibrations of carboxy groups appearing in CRPW
constituents, such as pectin, lignin, and cellulose [27]. The C-H group band at 2920 cm−1 of
CRPW was moved to around 2930 cm−1 in the cross-linked C/CRPW composites, while the
C=O group observed at 1734 cm−1 of CRPW was moved to 1653 cm−1 in the cross-linked
C/CRPW composites. The decreased intensity and shifting of these peaks could be a result
of lower cellulose content in the cross-linked C/CRPW composites. Furthermore, the strong
band at 1016 cm–1 represents the C–O–H functional group in CRPW, while it is observed in
the cross-linked C/CRPW composites at around 1027 cm–1 [16].

The FTIR spectrum of chitosan showed main peaks at 3400, 2925, 1651, 1375, 1151, and
1066 cm−1, representing the N–H and O–H stretching vibration, CH3 symmetric stretch,
C=O stretching vibration, CH3 bending vibration, C–O–C bending vibration, and C–OH
stretching vibration, respectively. The peaks observed at 1375 cm−1 and 1151 cm−1 in the
FTIR spectrum of chitosan disappeared in the FTIR spectrum of the cross-linked C/CRPW
composites because of the cross-linking of chitosan with glutaraldehyde. Furthermore, the
spectrum of the cross-linked C/CRPW composites show a new peak at 1650 cm−1 that
can be attributed to amide (-C(=O)N-) due to the cross-linking reaction of chitosan and
glutaraldehyde [28].
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The XRD patterns of the chitosan, CRPW, and cross-linked C/CRPW composites are
shown in Figure 5. In the XRD pattern of the CRPW, broad peaks around 2θ = 15–21◦

indicate the amorphous structure of CRPW due to the presence of a large amount of
pectin. In addition, sharp peaks at 2θ = 24.4◦ and other small sharp peaks originated from
inorganic substances [29]. In the XRD patterns of the C/CRPW composites, while the peak
at around 2θ = 25◦ is not evident for 1.75C/0.25CRPW and 1.50C/0.50CRPW composites, it
becomes evident for the 1.75C/0.25CRPW composites due to the increasing ratio of CRPW
in the composite structure. The XRD pattern of the chitosan has characteristic crystalline
diffraction peaks at 2θ = 19.9◦ and 2θ = 29.4◦ [30]. The small peak at 2θ = 29.4◦ is not
observed in the patterns of the C/CRPW composites. Additionally, the diffraction peak
at 2θ = 19.9◦ broadened and its intensity decreased. The reason is that the incorporation
of CRPW in the chitosan-based composite causes a decrease in crystallinity due to the
disordered intercalated structure.

The diffraction pattern of the C/CRPW composites did not significantly change after
CR dye adsorption (Figure 6), indicating that the crystallinity of the C/CRPW composites
was not changed by the adsorption process. However, it is evident from the XRD results
that significant differences occurred in the peak intensities for the C/CRPW composites
before and after adsorption. As shown in Figure 6, a more significant change was observed
between the diffraction patterns of CRPW before and after adsorption. The change could
be due to the hydrogen bonds formed during the adsorption of CR onto the surface of
CRPW [31].
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properties and pore structure of the CRPW and cross-linked C/CRPW composites. BET
specific surface area, average pore diameter, and total pore volume based on the BJH theory
of the sample were measured and are represented in Table 1. It has been found that the
increase of the CRPW amount in the chitosan matrix leads to an increase in the surface
area and total pore volume of the C/CRPW composites. This result explains that the
interfacial interaction between the chitosan matrix and CRPW greatly affects the material
pore structure [32].

Table 1. Surface parameters of the CRPW and cross-linked C/CRPW composites.

Samples BET Surface Area (m2/g) BJH Pore Volume (cm3/g)
BJH Pore Size

(A◦)

1.75C/0.25CRPW 10.04 0.06225 29.83
1.50C/0.50CRPW 13.86 0.1014 16.17
1.25C/0.75CRPW 20.42 0.1500 16.39

CRPW 17.61 0.02269 18.85
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The effect of solution pH on the surface of CRPW and crosslinked C/CRPW composites
was examined by zeta potential measurements and the results are shown in Figure 7. The
zero-point charge (pHzpc) values were found to be 5.13, 4.20, and 4.65 for the cross-linked
1.25C/0.75CRPW, 1.50C/0.50CRPW, and 1.75C/0.25CRPW composites, respectively. At
a pH of 4, the higher zeta potential value of 1.25C/0.75CRPW composites compared to
the other adsorbents shows that the cross-linked 1.75C/0.25CRPW composites are more
favorable to adsorb CR anions [33]. This result also supports the batch adsorption results
obtained in this study.

3.2. Effect of Contact Time and Adsorption Kinetic Models

Anionic CR was chosen to examine the adsorption capacity of the CRPW and the
cross-linked C/CRPW composites. In adsorption studies, an increase in the contact time of
the prepared adsorbents with CR led to a progressive reduction in their absorption intensity
(Figure 8a) and a remarkable reduction in the absorption intensity of CR after adsorption
(Figure 8b). In addition, a visible color change in CR solutions was observed during the
adsorption process (Figure 8c).

The effect of contact time on the adsorption capacities of the cross-linked C/CRPW
composites and CRPW is shown in Figure 9a. As shown in Figure 9a, the adsorption
capacities of the C/CRPW composites increase with contact time and reach equilibrium
after 24 h. However, the increase in adsorption capacity values is relatively higher during
the initial 12 h due to plenty of vacant sites available for the adsorption of CR molecules.
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Consequently, a large mass transfer rate was observed during the initial 12 h of the process,
and equilibrium was achieved at approximately 95% efficiency. After that, a gradual
decrease in the adsorption rate is observed until 24 h as the empty spaces on the adsorbent
surface gradually decrease. After 24 h, equilibrium was achieved for all the cross-linked
C/CRPW composites.
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When the effect of contact time on the adsorption capacity of CRPW was examined, it
was observed that the adsorption of CR dye on CRPW was much faster than that of the
C/CRPW composites. During the initial 1 h of the adsorption process of CRPW, equilibrium
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ln (qe − qt) = ln qe − k1·t (2)

Pseudo-second-order kinetic model [35]:

t
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=
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k2·q2
e
+

t
qe

(3)
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where qe and qt (mg/g) are the adsorption amount of CR at equilibrium and t (hour),
respectively; k1 (1/hour) and k2 (g/mg hour) are the rate constants of the Lagergren’s
pseudo-first-order and pseudo-second-order model, respectively.

The representative graphs for Lagergren’s pseudo-first-order and pseudo-second-
order equations are displayed in Figure 9b and Figure 9c, respectively, and the kinetic
model parameters are shown in Table 2.

It can be seen from the data in Table 2 that the pseudo-second-order model has a higher
correlation coefficient (R2 > 0.99) for CR adsorption onto all the cross-linked C/CRPW
composites and CRPW. The adsorption capacities of 1.75C/0.25CRPW, 1.50C/0.50CRPW,
and 1.25C/0.75CRPW composites and CRPW were 5.69, 6.94, 12.35, and 17.35 mg/g,
respectively. The data also showed that the adsorption capacity of the C/CRPW composites
increases with increasing CRPW contents. The 1.25C/0.75CRPW composites exhibited the
best adsorption performance among the composites. This result is due to the addition of
CRPW increasing the porosity and surface area of the C/CRPW composites, as well as the
high adsorption capacity of CRPW for the CR dye molecules. This result is supported by
the SEM images shown in Figure 2.
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Figure 8. Removal of CR dye from aqueous solution by the cross-linked C/CRPW composites.
(a) Time-dependent absorption spectra of 60 mg/L of CR in the presence of 1.25C/0.75CRPW
(2.0 g/L). (b) Absorption spectra of 60 mg/L of CR before and after addition of 1.25C/0.75CRPW
(2.0 g/L). (c) Photographs of 100, 80, 60, 40, and 20 mg/L of CR solutions before and after addition of
the cross-linked 1.25C/0.75CRPW composites.

The Weber–Morris intraparticle diffusion model was also studied to better under-
stand the adsorption mechanism of CR dye onto the cross-linked C/CRPW composites
and CRPW.

Equation (4) shows the linear form of the intraparticle diffusion kinetic model [36]:

qt = C + Kid·t0.5 (4)
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where qt is the adsorption amount of CR at t (hour), t is adsorption time (hour), Kid (mg/g
hour0.5) is intraparticle diffusion rate constant, and C is mass transfer residence due to the
thickness of the boundary layer.

The intraparticle diffusion plots of adsorption capacity qt versus t0.5 for the adsorption
of CR onto the cross-linked C/CRPW composites and CRPW are shown in Figure 3d. The
kinetic parameters, Kid and C, were determined by the intercept and slope of linear plots
and are given in Table 2. As can be seen from Figure 9d, the linear lines at early contact
times did not pass through the origin, suggesting that there was a boundary layer effect and
internal diffusion was not merely a rate-controlling step. In other words, the adsorption of
the CR molecules onto the cross-linked C/CRPW composites and CRPW was controlled by
more than one adsorption rate process. The phenomena can be explained by the presence
of micropores in the cross-linked C/CRPW composites and CRPW [37].

Table 2. Kinetic parameters of the Lagergren’s pseudo-first-order, pseudo-second-order, and intra-
particle diffusion kinetic models for CR onto the cross-linked C/CRPW composites and CRPW.

Models Parameters
Values

1.75C/0.25CRPW 1.50C/0.50CRPW 1.25C/0.75CRPW CRPW

Experimental result qe,exp (mg/g) 5.69 6.94 12.35 17.35

Lagergren’s
pseudo-first-order

qe,cal (mg/g) 5.09 6.34 12.81 5.59

k1 (1/h) 0.2021 0.2775 0.2763 1.4133

R2 0.9950 0.9652 0.9893 0.8725

Pseudo-second-order

qe,cal (mg/g) 6.39 7.78 13.91 17.54

k2
(g/mg h) 0.0545 0.0548 0.0275 1.0481

R2 0.9971 0.9963 0.9968 0.9999

Intraparticle
diffusion

kid,1
(mg/g h0.5)

1.7985 2.4436 4.0972 3.4778

C1 −0.1430 −0.2177 −0.3548 13.075

R2 0.9901 0.9876 0.9968 0.9623

kid,2
(mg/g h0.5)

1.0920 1.0936 2.4286 0.5309

C2 1.5399 3.0752 3.5203 16.296

R2 0.9954 0.9997 0.9984 0.9851

kid,3
(mg/g h0.5) 0.2411 0.1211 0.1380 -

C3 4.5149 6.3582 11.682 -

R2 0.9972 0.9551 0.9870 -

Three distinct stages for the adsorption of CR onto the cross-linked 0.25W/1.75CRPW,
0.50W/1.50CRPW, and 0.75W/1.25CRPW composites were identified from the fitting of
Equation (4). The stages were 0–6 h, 8–12 h, and 16–24 h, representing the first, second,
and third stages, respectively. During the first stage, at the beginning of the process, the
adsorption speed was faster and the diffusion of CR molecules from the solution to the
external surface of cross-linked C/CRPW composites played an essential role, which was
related to external diffusion. In the second stage, a slower adsorption rate was observed, re-
ferring to intraparticle diffusion (internal diffusion). Subsequently, in the third stage, which
acquired a kinetic balance, the equilibrium of adsorption and desorption was observed [19].
In addition, as shown in Table 2, the diffusion rate constant values in the first and sec-
ond stages for 1.25C/0.75CRPW composites were higher than those for 1.50C/0.50CRPW
and 1.75C/0.25CRPW composites. The higher the Kid value, the easier the diffusion and
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transport into the pores of adsorbents are [38]. According to these results, the increasing
amount of CRPW in the composition of composites causes the increasing diffusion and
transportation of CR molecules into the interior of the composites.
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Figure 9. Adsorption amount of CR onto the cross-linked C/CRPW composites and CRPW vary-
ing with time (a) and linear fitting of Lagergren’s pseudo-first-order (b), pseudo-second-order (c),
and intraparticle diffusion (d). (Experimental conditions: adsorbent dosage = 2 g/L; initial dye
concentration = 60 mg/L; pH = 7; temperature = 298 K).

3.3. Effect of Initial Solution pH

The initial solution pH is a significant parameter in adsorption processes because it
influences the chemistry of both the adsorbate and the adsorbents. CR is a pH-sensitive dye,
resulting in the dye changing color from red to blue. The original pH of the CR solution
was around 7.0. The adsorption of CR on the cross-linked C/CRPW composites was
studied in the pH range of 4–9, in which range the color of CR is stable and red. Figure 10a
shows the effect of initial solution pH on the adsorption of CR by the C/CRPW composites
and CRPW. As shown in Figure 10a, there was a decrease in the adsorptive capacity of
all the composites with an increasing initial solution pH, indicating that the adsorption
of CR by the composites was pH dependent. The highest adsorptive capacity for all the
composites (1.75C/0.25CRPW 19.63 mg/g; 1.50C/0.50CRPW 20.41 mg/g; 1.25C/0.75CRPW
23.48 mg/g) was obtained at the lowest pH of 4. The reason for this result is that the surface
charge of the cross-linked C/CRPW composites becomes the highest value at pH 4. At
lower pH values than pHPZC, zeta potential is positive and indicates that the surface
charge of the adsorbents is positive, and they easily attract anionic CR dye molecules. The
electrostatic attraction between protonated C/CRPW composites and the anionic CR dye
enhances the adsorption capacity of the C/CRPW composites in low pH values. In this
study, the zeta potential value of CRPW is negative in the pH range of 4 and 9, which were
the pH values that the adsorption studies were carried out with. However, the adsorption
property of CRPW in this pH range is also effective, which indicates that there are other
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mechanisms involved besides the electrostatic attraction taking place in the adsorption
process [39].
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Figure 10. Effect of initial solution pH (a), adsorbent dosage (b), and initial dye concentration (c) on
the adsorption of CR onto the cross-linked 1.75C/0.25CRPW, 1.50C/0.50CRPW, and 1.25C/0.75CRPW
composites and CRPW. (Experimental conditions: adsorbent dosage = 2 g/L; contact time = 24 h;
initial dye concentration = 60 mg/L; temperature = 298 K).

3.4. Effect of Adsorbent Dosage

Adsorbent dosage is a crucial factor in the adsorption process due to impacts on both
the process cost and the removal percentage of contaminants. The effect of the adsorbent
dosage on the CR adsorption on the C/CRPW composites and CRPW was examined by
increasing the adsorbent dosage from 2 to 6 g/L at constant experimental conditions, and
the results are shown in Figure 10b. By increasing the adsorbent dosage, more adsorption
sites are available for CR dye molecules, resulting in the reduction of the adsorption
capacity of adsorbents. As seen in Figure 10b, as the adsorbent dosage increased from
2 to 6 g/L, the adsorption capacity decreased from 5.69 to 3.98 mg/g, 6.94 to 4.58 mg/g,
12.35 to 6.07 mg/g, and 17.35 to 8.40 mg/g for the 1.75C/0.25CRPW, 1.50C/0.50CRPW,
and 1.25C/0.75CRPW composites and CRPW, respectively. A total of 2 g/L of adsorbent
dosage was selected as an optimum dosage for further experiments due to more active sites
of the composites remaining unsaturated during the CR dye adsorption process.

3.5. Effect of Initial CR Concentration

The effect of the initial CR dye concentration on the adsorption capacities of the
cross-linked C/CRPW composites and CRPW was investigated by changing the dye con-
centration from 20 to 100 mg/L at constant experimental conditions. As shown in Figure 10c,
when the initial dye concentration was increased to 20 and 100 mg/L, the adsorption capac-
ities of 1.75C/0.25CRPW, 1.50C/0.50CRPW, and 1.25C/0.75CRPW composites and CRPW
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increased from 7.10 to 28.52 mg/g, 7.31 to 30.00 mg/g, 8.06 to 37.21 mg/g, and 7.86 to
32.42 mg/g, respectively. The adsorption capacities of all the composites were improved
by increasing the CR dye concentration in the aqueous solution due to the higher collision
probability between the active sites of the composites and the CR dye molecules [40].

3.6. Adsorption Isotherms

The nature of the adsorption process of CR onto the cross-linked C/CRPW compos-
ites and CRPW was examined with Langmuir [41], Freundlich [42,43], Temkin [44], and
Dubinin–Radushkevich [45] isotherm models. The linear forms of these isotherm models
can be expressed as follows:

Langmuir:
Ce

qe
=

Ce

qmax,L
+

1
KLqmax,L

(5)

Freundlich:
ln qe = ln KF + (1/n)ln Ce (6)

Temkin:
qe = BTln KT + BT ·ln Ce (7)

Dubinin–Radushkevich:

ln qe = ln qmax,D−R − KD−R·ε2 (8)

where KL is the Langmuir equilibrium constant (L/mg) used to calculate the equilibrium
dimensionless parameter (RL), which is defined by RL = 1/(1 + KL·Ci) and determines
the feasibility of the Langmuir model; qmax,L is the Langmuir maximum monolayer adsorp-
tion capacity (mg/g); KF is the Freundlich constant, also known as adsorption capacity
((mg/g)(mg/L)−1/n), which describes the adsorption capacity; 1/n is the Freundlich inten-
sity parameter representing surface heterogeneity; KT is the Temkin isotherm equilibrium
binding constant (L/mg); BT is the Temkin constant, i.e., heat of adsorption (J/mol); qmax,D–R
is the Dubinin–Radushkevich maximum adsorption capacity (mg/g); KD-R is a constant
related to sorption energy (mol2/kJ2); and ε is the Polanyi potential (kJ/mol).

The ε value can be calculated using Equation (9):

ε = R·T·ln
(

Ce + 1
Ce

)
(9)

where R of 8.314 J/mol·K is the universal gas constant and T is the absolute temperature
in Kelvin.

The mean free energy of adsorption (E, kJ/mol) can be calculated using Equation (10):

E =
1√

2KD−R
(10)

Free energy can determine the type of adsorption process. If E is less than 8 kJ/mol,
the adsorption process is physisorption, while if it is more than 8 kJ/mol, the process
is chemisorption.

The linear fitting for the Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich
isotherms are shown in Figure 11, and the calculated isotherm parameters are listed
in Table 3.

The values of correlation coefficient R2 were used to determine suitable isotherms,
which explain the adsorption process. In this study, the Freundlich isotherm model was
best fitted for all the cross-linked C/CRPW composites and CRPW with R2 values of
0.9889–0.9908. Hence, it can thus be concluded that the adsorption process takes place on
a heterogeneous surface of the C/CRPW composites and CRPW. Among the adsorbents,
CRPW has the highest KF value. When the KF values of the cross-linked C/CRPW compos-
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ites are compared, it was observed that KF values increased from 2.115–2.886 as the amount
of CRPW in the composite contents increased from 0.25 g to 0.75 g, which confirmed the
above kinetic and equilibrium studies where dye adsorption capacity increased as CRPW
contents in the composites were raised.
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Figure 11. Langmuir (a), Freundlich (b), Temkin (c), and Dubinin–Radushkevich (d) adsorption
isotherm models of CR on the cross-linked 1.75C/0.25CRPW, 1.50C/0.50CRPW, and 1.25C/0.75CRPW
composites and CRPW. (Experimental conditions: adsorbent dosage = 2 g/L; contact time = 24 h;
pH = 4; temperature = 298 K).

The maximum adsorption capacities of the 1.75C/0.25CRPW, 1.50C/0.50CRPW, and
1.25C/0.75CRPW composites and CRPW were calculated using the Langmuir isotherm
equation (Equation (5)) and were found to adsorb CR at 55.56 mg/g, 58.48 mg/g, 97.09 mg/g,
and 54.05 mg/g, respectively. Although the R2 values of the Langmuir isotherm model
(R2 = 0.9714–0.9895) were low, the calculated RL values (0.2034–0.6729), as shown in Table 3,
were found to be between zero and one, indicating that the adsorption was a favorable process.

The heat of adsorption (BT) of all the composites calculated from the Temkin isotherm
model was found to increase from 10.88 to 18.56 (J/mol) as the amount of CRPW was raised
in the structure of the cross-linked C/CRPW composite. The relatively high correlation
coefficient values (R2 = 0.9520–0.9844) of the Temkin model for all cross-linked C/CRPW
composites and CRPW showed the suitability of the model in interpreting the adsorption
process. The values of E (0.250–0.353 kJ/mol), calculated from the Dubinin–Radushkevich
isotherm model using Equation (10), were found to be <8 kJ/mol, indicating that ph-
ysisorption plays a dominant role in the adsorption of CR dye onto all the cross-linked
C/CRPW composites and CRPW [46]. The low correlation coefficient (R2 = 0.8631–0.9049)
of the Dubinin–Radushkevich model indicated the weakness of the model in clarifying the
adsorption process.
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Table 3. Adsorption isotherm parameters for adsorption of CR onto the cross-linked C/CRPW
composites and CRPW.

Isotherm Constants 1.75C/0.25CRPW 1.50C/0.50CRPW 1.25C/0.75CRPW CRPW

Langmuir

qmax,L (mg/g) 55.56 58.48 97.09 54.05

KL (L/mg) 0.0251 0.0260 0.0243 0.0391

RL 0.6659–0.2851 0.6581–0.2779 0.6729–0.2915 0.5608–0.2034

R2 0.9895 0.9764 0.9714 0.9774

Freundlich

n 1.4102 1.4098 1.2472 1.5248

KF
((mg/g)(mg/L)−1/n) 2.115 2.284 2.886 3.185

R2 0.9904 0.9907 0.9908 0.9889

Temkin

BT (J/mol) 10.88 11.28 18.56 11.22

KT (L/mg) 0.3003 0.3193 0.1706 0.4301

R2 0.9844 0.9771 0.9520 0.9786

Dubinin-Radushkevich

qmax,D-R (mg/g) 23.50 24.23 30.66 25.92

KD-R (mol2/J2) 8 × 10−6 7 × 10−6 4 × 10−6 5 × 10−6

E (kJ/mol) 0.250 0.267 0.353 0.316

R2 0.8736 0.8631 0.9049 0.8808

3.7. Effect of Temperature and Adsorption Thermodynamics

Thermodynamic studies for the adsorption of CR dye on the 1.75C/0.25CRPW, 1.50C/
0.50CRPW, and 1.25C/0.75CRPW composites and CRPW were carried out within temperature-
dependent adsorption in the range of 298–328 K. The temperature effect on the adsorption
capacities of all the composites and CRPW for CR dye indicated that the uptake capacity
of CR dye increases while increasing the temperature from 298 K to 328 K. The result
shows that the adsorption of CR dye onto the cross-linked C/CRPW composites and
CRPW is an endothermic reaction. The temperature of the conventional textile industry
wastewater is about 308–318 K [47]. However, the temperature of textile wastewater varies
considerably and may reach 343 K at the outlet of dye processes [48]. In this study, 318 K was
chosen as the adsorption temperature, at which the temperature of C/CRPW composites
exhibit maximum adsorption capacities due to their endothermic nature. Although the
adsorption capacity increases with a rise in temperature, higher temperatures are not
preferred considering the discharge limit temperature of textile effluent (e.g., 303 K for the
Canadian Council of Ministers of the Environment (CCME), 323 K for the Bureau of Indian
Standards) [49].

Thermodynamic parameters, including Gibbs free energy change (∆G◦), enthalpy
change (∆H◦), and entropy change (∆S◦) of the adsorption process, were calculated using
the following equations [50]:

∆G◦ = ∆H◦ − T·∆S◦ (11)

KC = qe/Ce (12)

ln KC =
∆S◦

R
− ∆H◦

R·T (13)

where R is the gas constant (8.314 J/mol·K), T is the absolute temperature (K), and KC
represents the distribution coefficient.

The values of ∆H◦ and ∆S◦ can be determined from the van’t Hoff plot, which is the
linear plot of In KC versus 1/T (Figure 12) from the slope and intercept, respectively. The
thermodynamic parameters are presented in Table 4.
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Figure 12. Van’t Hoff plot for the adsorption of CR dye onto the cross-linked 1.75C/0.25CRPW,
1.50C/0.50CRPW, and 1.25C/0.75CRPW composites and CRPW. (Experimental conditions: adsorbent
dosage = 2 g/L; contact time = 24 h; initial dye concentration = 100 mg/L; pH = 4).

Table 4. Thermodynamic parameters for the adsorption of CR onto the cross-linked C/CRPW
composites and CRPW.

Thermodynamic Parameters T (K) 1.75C/0.25CRPW 1.50C/0.50CRPW 1.25C/0.75CRPW CRPW

∆G◦ (J/mol)

298.15 1052.27 668.89 −878.22 177.40

308.15 199.92 −164.92 −1691.12 −171.24

318.15 −652.43 −998.73 −2504.01 −519.88

328.15 −1504.78 −1832.54 −3316.90 −868.51

∆H◦ (kJ/mol) 26.465 25.528 23.358 10.572

∆S◦ (J/mol·K) 85.235 83.38 81.29 34.86

The negative values of ∆G◦ suggest the spontaneity of the adsorption processes. As
shown in Table 4, the higher absolute values of ∆G◦ were observed at higher temperatures
for all the cross-linked C/CRPW composites and CRPW. Thus, the adsorption of CR dye
onto the cross-linked C/CRPW composites and CRPW is more spontaneous and favorable
at higher temperatures. However, at lower temperatures, the positive values of ∆G◦ for the
adsorption of CR dye onto the 1.75C/0.25CRPW and 1.50C/0.50CRPW composites and
CRPW indicate the nonspontaneous and unfavorable adsorption process.

The adsorption of CR dye onto the 1.75C/0.25CRPW, 1.50C/0.50CRPW, and 1.25C/
0.75CRPW composites and CRPW had enthalpy changes of 26.465, 25.528, 23.358, and
10.572 kJ/mol, respectively. The positive and lower than 40 kJ/mol of ∆H◦ values confirm
that it is an endothermic process in physical interaction between CR molecules and all the
cross-linked C/CRPW composites and established CRPW. In addition, the positive values
of ∆S◦ suggest increased randomness at the solid–solution interface during the adsorption
of CR dye onto all the cross-linked C/CRPW composites and CRPW [51].
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3.8. Reusability Studies

The reusability of 1.75C/0.25CRPW, 1.50C/0.50CRPW, and 1.25C/0.75CRPW com-
posites and CRPW was investigated by six cycles of adsorption–desorption process, and
the results are shown in Figure 13. NaOH solution was used in desorption studies to facili-
tate the diffusion of CR molecules from the active sites of the composites. The recovered
composites were washed with deionized water several times and dried for the next adsorp-
tion test. As shown in Figure 13, the adsorption capacities of the cross-linked C/CRPW
composites and CRPW for CR gradually decreased with the increasing number of cycles.
However, after six adsorption–desorption cycles, the 1.75C/0.25CRPW, 1.50C/0.50CRPW,
and 1.25C/0.75CRPW composites and CRPW remained 90.0, 88.7, 87.7, and 70.9% of its
initial CR adsorption capabilities, respectively. The high qe values of the cross-linked
C/CRPW composites are due to the improved mechanical stability of the composites by
the cross-linking of chitosan containing CRPW with glutaraldehyde [24]. The recyclability
studies reveal that the cross-linked C/CRPW composites, as bio-adsorbents, show high
performance and sustainability in practical applications.

3.9. Adsorption Mechanism of CR by the CRPW and Cross-Linked C/CRPW Composites

The schematic representation of CR molecules’ possible interaction with the crosslinked
C/CRPW composites is shown in Figure 14. It illustrates that the adsorption mechanism of
C/CRPW composites with CR dye macromolecules fundamentally depends on the π–π
bond, hydrogen bond, and electrostatic interaction. In an aqueous solution, CR dye can
dissolve, giving the dye anions (CR-SO3

−). Chitosan has polar functional groups (-NH2
and -OH) on its surface. At lower pH values, strong electrostatic interactions between the
negatively charged sulfonated groups (-SO3

−) of the CR dye molecules and the positively
charged amine group (-NH3

+) of the chitosan enhance the adsorption capacity of the adsor-
bents. The electrostatic interaction might be the main mechanism for the adsorption of CR
on the C/CRPW composites. The other interactions are hydrogen bonding, which occurs
between the hydroxyl group of chitosan and electronegative residues in the dye molecule,
and the Yoshida H-bonding, which can also occur between the hydroxyl group of chitosan
and the aromatic ring in dye [52].

According to the FTIR results of CRPW, -OH, COC and -COOH groups are present on
the surface of CRPW. The carboxylic and hydroxylic groups consume H+ and are protonated
in acidic solutions. Then, the positively charged -OH2

+ and -COOH2
+ molecules in an

aqueous solution can exist as cationic hydroxides interact with CR through electrostatic
interaction. In addition, CR adsorption by the CRPW can occur by the π–π bond and
hydrogen bond due to the presence of heteroatoms comprising oxygen and nitrogen on the
surface of CRPW besides electrostatic interaction [29,53].

3.10. Comparative Study

The maximum adsorption capacities of 1.75C/0.25CRPW, 1.50C/0.50CRPW, and
1.25C/0.75CRPW composites and CRPW are found to be 38.92 mg/g, 39.66 mg/g, 43.57 mg/g,
and 36.50 mg/g, respectively. Table 5 shows the maximum adsorption capacities of different
adsorbents obtained by agricultural waste and chitosan-based composites for CR dye.
CRPW, which was used as an adsorbent in this study, has a relatively high adsorption
capacity compared to other agricultural waste. In this study, the highest adsorption capacity
(43.57 mg/g) was obtained for the 1.25C/0.75CRPW composites. The adsorption capacity
of C/CRPW composites was enhanced with an increasing CRPW content. As shown in
Table 5, some chitosan-based composites reported in the literature show relatively higher
adsorption capacities. However, most of them are costly due to the use of commercially
valuable polymers in their production. Therefore, the C/CRPW composites are preferred
for use as an adsorbent for removing CR due to their excellent properties, such as being
readily available, environment-friendly, and cost-effective.
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Figure 14. Schematic diagram depicting the interaction of CR molecules with the CRPW and cross-
linked C/CRPW composites.
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Table 5. Comparison of maximum adsorption capacities of different adsorbents obtained by different
agricultural waste and chitosan-based composites for CR dye.

Adsorbent Adsorption
Capacity (mg/g) Reference

Agricultural Waste

Cabbage waste powder 2.313 [54]

Activated carbon prepared from coir pith 6.72 [55]

Bengal gram fruit shell 22.22 [56]

Coconut-based activated carbon fibers 22.1 [57]

Chinese yam peel–polypyrrole composites 86.66 [58]

Tunics of the corm of the saffron 6.2 [59]

CRPW 36.50 Present work

Chitosan-based
Composites

Cellulose/chitosan 40.00 [60]

DNA-chitosan 12.60 [61]

Chitosan/Moringa oleifera gum 50.25 [62]

Lignin/chitosan 173.0 [63]

1.75C/0.25CRPW 38.92 Present work

1.50C/0.50CRPW 39.66 Present work

1.25C/0.75CRPW 43.57 Present work

4. Conclusions

In the present research work, three cross-linked chitosan-based composites contain-
ing mandarin (Citrus reticulata Seferihisar cv.) peel waste, namely 1.75C/0.25CRPW,
1.50C/0.50CRPW, and 1.25C/0.75CRPW, as new low-cost and green adsorbents have
been successfully synthesized for the removal of the toxic anionic dye, CR, from aque-
ous solutions. 1.25C/0.75CRPW composites performed the best adsorption capacity
(43.57 mg/g) for CR removal from aqueous solutions, followed by 1.50C/0.50CRPW com-
posites (39.66 mg/g) and 1.75C/0.25CRPW composites (38.92 mg/g). The results showed
that the increase in CRPW content of the cross-linked C/CRPW composites increased
adsorption capacity because of the enhancement of the porosity of the composite surface.
The influence of various operating parameters, such as contact time, pH, adsorbent dosage,
initial dye concentration, and temperature on the adsorption capacities of all the compos-
ites, was investigated. Compared with the effect of factors on the adsorption capacities of
the composites, all parameters influenced the adsorption capacities; however, the effect
of pH change on the adsorption capacities was more obvious. The highest adsorption
capacity values were obtained in adsorption conditions with a pH of 4, adsorbent dosage of
2 g/L, initial CR dye concentration of 100 mg/L, and adsorption temperature of 328 K. The
adsorption kinetics for all the composites investigated in this work followed the pseudo-
second-order equation. The adsorption equilibrium data could also be well described by
the Freundlich isotherm model. The high adsorption ability of the cross-linked C/CRPW
composites and the abundant availability of CRPW as waste material revealed that these
composites can be used as low-cost and green bio-adsorbents for the removal of CR dye in
industrial wastewater.
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