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In this work, we present new data on the 182,183,184W(γ, n) cross sections, utilizing a quasi-
monochromatic photon beam produced at the NewSUBARU synchrotron radiation facility. Further,
we have extracted the nuclear level density and γ-ray strength function of 186W from data on
the 186W(α, α′γ)186W reaction measured at the Oslo Cyclotron Laboratory. Combining previous
measurements on the 186W(γ, n) cross section with our new 182,183,184W(γ, n) and (α, α′γ)186W
data sets, we have deduced the 186W γ-ray strength function in the range of 1 < Eγ < 6 MeV and
7 < Eγ < 14 MeV.

Our data are used to extract the level density and γ-ray strength functions needed as input to the
nuclear-reaction code TALYS, providing an indirect, experimental constraint for the 185W(n, γ)186W
cross section and reaction rate. Compared to the recommended Maxwellian-averaged cross section
(MACS) in the KADoNiS-1.0 data base, our results are on average lower for the relevant energy
range kBT ∈ [5, 100] keV, and we provide a smaller uncertainty for the MACS. The theoretical
values of Bao et al. and the cross section experimentally constrained on photoneutron data of
Sonnabend et al. are significantly higher than our result. The lower value by Mohr et al. is in very
good agreement with our deduced MACS. Our new results could have implications for the s-process
and in particular the predicted s-process production of 186,187Os nuclei.

I. INTRODUCTION

Neutron-capture reactions are known to be the main
producers of elements heavier than iron in our Uni-
verse [1, 2]. The rapid (r) and the slow (s) neutron-
capture processes are traditionally believed to account
for almost 100% of the Solar-system heavy-element abun-
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dances [3, 4]. The r process takes place in an environment
with an extremely high neutron density typicallly larger
than 1024 neutrons/cm3, which produces very neutron-
rich nuclei within a short time window (≈1s). In contrast,
the s process is, as the name implies, a slow process;
the neutron density is comparatively low (∼ 106 − 108

neutrons/cm3 in asymptotic giant branch stars [5]) and
it can take from days to thousands of years between each
neutron-capture reaction. Consequently, the s-process
“path” in the nuclear chart remains close to the valley of
stability, as the β-decay rates are typically much faster
than the (n, γ) rates when an unstable nucleus is reached.
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FIG. 1. (Color online) Schematic illustration of the nuclear chart in the W-Re-Os region. The black arrows indicate (n, γ)
reactions on stable or near-stable isotopes, the blue dashed arrows show the possible (n, γ) branch on the long-lived W, Re and
Os isotopes, while the pink arrows display the β− decay branch.

However, this is not true for some particular nuclei
along the s-process path. At the branch points [6] the
β-decay rate is comparable to the (n, γ) rate, so that
there is a non-negligible possibility for the nucleus to ei-
ther undergo β-decay or capture another neutron. On
the one hand, such branch points could complicate the
s-process nucleosynthesis calculation significantly; on the
other hand, they may provide valuable information about
the neutron density and/or temperature at the astro-
physical site for which the s process operates [7–9].

In this work, we focus on the branch-point nucleus
185W, with a laboratory half-life of 75.1(3) days [10].
This nucleus is of interest for the Re/Os cosmochronol-
ogy first discussed by Clayton [11]. The main idea behind
the Re/Os cosmochronology is the following: the mat-
ter from which the Solar system was formed, contained
a given amount of 187Re and 187Os. Further, 187Re is
usually assigned a pure r-process origin, while 187Os is
produced only in the s process. As 187Re has a very long
half-life of more than 4·1010 years [12], Clayton suggested
to use the solar-system amount of 187Re and 187Os as a
“clock”, which would display the time span for which
nucleosynthesis events produced various elements up to
the time of the formation of our Solar system. Provided
that the 187Os amount stemming from the s process can
be reliably calculated, the extra amount of 187Os origi-
nates from the 187Re decay. Thus, at least in principle,
the abundances of the parent/child pair 187Re/187Os can
be used as a cosmochronometer, although not without
complications [13–15]. As discussed in Refs. [7, 14–16],
the branchings at 185W and 186Re (see Fig. 1) could well
have a non-negligible impact on this cosmochronometer.
Moreover, several authors [7–9, 17] have discussed the

185W and 186Re branchings as a “neutron dosimeter” for
the effective s-process neutron density; this application
again depends on the radiative neutron-capture cross sec-
tions of 185W and 186Re. No direct measurement of the
neutron-capture cross section is possible on these target
nuclei, and only constraints on the electromagnetic de-
cay of the compound system have been obtained through
photoneutron experiments at relatively high photon en-
ergies [8, 9].

Here we present new photoneutron data on
182,183,184W that complete the (γ, n) measurements
on the W isotopes (Sec. II). Moreover, in Sec. III,
we present the 186W(α, α′γ) data taken at the Oslo
Cyclotron Laboratory, and the data analysis with the
resulting level density and γ strength function of 186W.
Using our new data to constrain the input to the
nuclear reaction code TALYS-1.9 [18] we estimate the
185W(n, γ)186W Maxwellian-averaged cross section and
reaction rate, and compare to previous measurements
and evaluations in Sec. IV B. Finally, we give a summary
and outlook in Sec. V.

II. THE (γ, n) EXPERIMENTS

A. Experimental details

The photo-neutron measurements on 182,183,184W took
place at the NewSUBARU synchrotron radiation facil-
ity. Figure 2 shows a schematic illustration of the γ-
ray beam line and experimental setup. Beams of γ rays
were produced through laser Compton scattering (LCS)
of 1064 nm photons in head-on collisions with relativistic
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FIG. 2. (Color online) A schematic illustration of the experimental set up at NewSUBARU used in the (γ, n) cross-section
measurements.

electrons at the most-efficient collision point P1. The γ
beams were collimated using the Pb collimators C1 and
C2, each 10 cm long, with 3 mm and 2 mm apertures,
respectively. The beam profile on target nearly follows
the geometrical aperture of the collimator C2 with re-
spect to the collision point P1, thus avoiding any interac-
tion between beam and other materials than the target.
Throughout the experiment, the laser was periodically
on for 80 ms and off for 20 ms, in order to measure
background neutrons and γ-rays. In this experiment,
the beams produced had an energy resolution ranging
from 0.6 MeV to 0.9 MeV (full-width at half maximum,
FWHM).

The electrons were injected from a linear accelerator
into the NewSUBARU storage ring with an initial energy
of 974 MeV, then subsequently decelerated to nominal
energies ranging from 608 MeV to 849 MeV, providing
LCS γ-ray beams of energies up to 13 MeV and down to
the neutron separation energies of the W isotopes (thus
varied for each individual case). The maximum γ-ray
energy of the beams was increased in steps of 0.25 MeV.
The electron beam energy has been calibrated with the
accuracy on the order of 10−5 [19]. The energy is re-
produced in every injection of an electron beam from a
linear accelerator to the storage ring. The reproducibil-
ity of the electron energy is assured in the deceleration
down to 0.5 GeV by an automated control of the electron
beam-optics parameters.

The energy profiles of the produced γ-ray beams were
measured with a 3.5in.×4.0in. LaBr3(Ce) (LaBr3) de-
tector. The measured LaBr3 spectra were reproduced by
a Geant4 code [20–23] that incorporated the kinematics
of the LCS process, including the beam emittance and
the interactions between the LCS beam and the LaBr3
detector. In this way we were routinely able to sim-
ulate the energy profile of the incoming γ beams with
the maximum energies accurately determined by the cal-
ibrated electron beam energy by best reproducing the
LaBr3 spectra [24, 25].

The W targets were made from isotopically enriched
tungsten as metallic powder. The material was pressed
together and enclosed in an aluminium cylinder with a
thin cap. The targets had areal densities of 0.7421 g/cm2

(182W), 0.754 g/cm2 (183W), and 1.7925 g/cm2 (184W).
Due to the presence of the Al cap, we limited the γ-ray
beam energy maximum 13 MeV to avoid getting contam-
inant neutrons from 27Al (Sn=13.056 MeV).

To measure the emitted neutrons, a high-efficiency
4π detector was used, consisting of 20 3He proportional
counters, arranged in three concentric rings and embed-
ded in a 36 × 36 × 50 cm3 polyethylene neutron modera-
tor [26]. The ring ratio technique, originally developed by
Berman and Fultz [27], was used to determine the aver-
age energy of the neutrons from the (γ, n) reactions. The
efficiency of the neutron detector varies with the average
neutron energy. The efficiency was measured with a cal-
ibrated 252Cf source with the emission rate of 2.27 · 104

s−1 with 2.2% uncertainty, and the energy dependence
was determined by Monte Carlo simulations [28]. The
efficiency of the neutron detector was simulated using
isotropically distributed, mono-energetic neutrons. Once
the neutron detection efficiency for a given beam energy
has been determined, we were able to deduce the number
of (γ, n) reactions that took place during each run.

The LCS γ-ray flux was monitored by a 8in.×12in.
NaI(Tl) (NaI) detector during neutron measurement runs
with 100% detection efficiency for the beam energies used
in this experiment. The number of incoming γ rays
per measurement was determined using the pile-up and
Poisson-fitting technique described in Refs. [29, 30].

B. Analysis

The measured photo-neutron cross section for an in-
coming beam with maximum γ energy Emax is given by
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FIG. 3. (Color online) The simulated energy profiles for the
γ beams used. The distributions (integrated over all Eγ) are
normalized to unity.

the convoluted cross section,

σEmax
exp =

∫ Emax

Sn

DEmax(Eγ)σ(Eγ)dEγ =
Nn

NtNγξεng
.

(1)
Here, DEmax is the normalized energy distribution

(
∫ Emax

Sn
DEmaxdEγ = 1) of the γ-ray beam obtained from

Geant4 simulations. Examples of the simulated γ-beam
profiles, DEmax , are shown in Fig. 3. Furthermore, σ(Eγ)
is the true photo-neutron cross section as a function of
energy. The quantity Nn represents the number of neu-
trons detected, Nt gives the number of target nuclei per
unit area, Nγ is the number of γ rays incident on tar-
get, εn represents the neutron detection efficiency, and
finally ξ = (1 − e−µt)/(µt) gives a correction factor for
self-attenuation in the target. The factor g represents the
fraction of the γ flux above Sn.

We have determined the convoluted cross sections
σEmax
exp given by Eq. (1) for γ beams with maximum en-

ergies in the range Sn ≤ Emax ≤ 13 MeV. The convo-
luted cross sections σEmax

exp are not connected to a specific
Eγ , and we choose to plot them as a function of Emax.
The convoluted cross sections of the three W isotopes,
which are often called monochromatic cross sections, are
shown in Fig. 4. The error bars in Fig. 4 represent the
total uncertainty in the quantities comprising Eq. (1),
and consists of ∼ 3.2% from the efficiency determination
of the neutron detector, ∼ 1% from the pile-up method
that gives the number of γ rays, and the statistical un-
certainty in the number of detected neutrons [30]. The
statistical uncertainty ranges between ∼ 5.0 % close to
neutron threshold and 4.4 % for the highest maximum
γ-ray beam energies. The systematic error is dominated
by the uncertainty from the pile-up method and from the
simulated efficiency of the neutron detector. For the to-
tal uncertainty, we have added these uncorrelated errors
in quadrature.

By approximating the integral in Eq. (1) with a sum for

FIG. 4. (Color online) Monochromatic cross sections of
182,183,184W. The error bars contain statistical uncertainties
from the number of detected neutrons, the uncertainty in the
efficiency of the neutron detector and the uncertainly in the
pile-up method used to determine the integrated γ-flux on
target.

each γ-beam profile, we are able to express the unfolding
problem as a set of linear equations

σf = Dσ, (2)

where σf is the cross section folded with the beam pro-
file D. The indexes i and j of the matrix element Dij

corresponds to Emax and Eγ , respectively. The set of
equations is given by


σ1
σ2
...
σN


f

=


D11 D12 · · · · · · D1M

D21 D22 · · · · · · D2M

...
...

...
...

...
DN1 DN2 · · · · · · DNM



σ1
σ2
...
...
σM

 . (3)

Each row of D corresponds to a Geant4 simulated γ beam
profile belonging to a specific measurement characterized
by Emax (see Fig. 3 for a visual representation of some of
the rows in the response matrix D). It is clear that D is
highly asymmetrical.

The number of γ-ray beam energies used to study the
cross section is much lower than the bin size (10 keV)
of the simulated beam profiles above Sn. As the system
of linear equations in Eq. (3) is under-determined, the
true σ vector cannot be extracted by matrix inversion.
In order to find σ, we utilize a folding iteration method.
The main features of this method are as follows [31]:

1) As a starting point, we choose for the 0th iteration,
a constant trial function σ0. This initial vector is
multiplied with D, and we get the 0th folded vector
σ0
f = Dσ0.

2) The next trial input function, σ1, can be estab-
lished by adding the difference of the experimen-
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tally measured spectrum, σexp, and the folded spec-
trum, σ0

f , to σ0. In order to be able to add the
folded and the input vector together, we first per-
form a Piecewise Cubic Hermite Interpolating Poly-
nomial (pchip) interpolation on the folded vector so
that the two vectors have equal dimensions. Our
new input vector is:

σ1 = σ0 + (σexp − σ0
f ). (4)

3) The steps 1) and 2) are iterated i times giving

σif = Dσi (5)

σi+1 = σi + (σexp − σif ) (6)

until convergence is achieved. This means that
σi+1
f ≈ σexp within the statistical errors. In order

to quantitatively check convergence, we calculate
the reduced χ2 of σi+1

f and σexp after each iter-
ation. Approximately four iterations are usually
enough for convergence, which is defined when the
reduced χ2 value approaches ≈ 1.

We stopped iterating when the χ2 became lower than
unity. In principle, the iteration could continue until the
reduced χ2 approaches zero, but that results in large un-
realistic fluctuations in σi due to over-fitting to the mea-
sured points σexp.

We estimate the total uncertainty in the unfolded cross
sections by calculating an upper limit of the monochro-
matic cross sections from Fig. 4 by adding and subtract-
ing the errors to the measured cross section values. These
upper and lower limits are then unfolded separately, re-
sulting in the unfolded cross sections shown in Fig. 5.

In Fig. 5, the unfolded cross sections for 182,183,184W
are evaluated at the maximum energies of the incom-
ing γ beams. The error bars represent the statistical
errors and the systematic error due to the uncertainty in
the absolute efficiency calibration of the neutron detec-
tor. The results are compared to data on 182,184W from
Goryachev et al. [32], and the agreement is overall quite
reasonable although some local discrepancies can be ob-
served. These discrepancies are sometimes not within
the given uncertainties, and could be due to unknown
systematic errors.

III. THE OSLO EXPERIMENT

A. Experimental details

The 186W(α, α′γ) inelastic-scattering experiment was
performed at the Oslo Cyclotron Laboratory. A fully-
ionized 30-MeV α beam was delivered by the MC-35
Scanditronix cyclotron and directed to the 186W target.
The radio frequency was set to 23.76 MHz, giving a beam
burst every 42.09 ns. The experiment was run for about

FIG. 5. (Color online) Cross sections of 182,183,184W obtained
after deconvolution. Also shown are cross sections of 182,184W
from Goryachev et al. [32].

eight days with typical beam intensities of 1.5− 2.2 enA.
The target was mounted on a 24-µm carbon backing, and
the target thickness was 0.31 mg/cm2 with enrichment
> 98% in 186W.

To detect the outgoing charged particles, we used the
Silicon Ring (SiRi) [33] placed in backward angles with
respect to the beam direction. SiRi is a ∆E-E telescope
array consisting of eight 1550-µm thick back (E) detec-
tors, each of which has a 130-µm thick front (∆E) de-
tector divided in eight strips. A 10.5-µm thick Al foil
was placed in front of SiRi to reduce the amount δ elec-
trons from the target. SiRi covers about 6% of 4π and
the strips have an angular resolution of about 2◦, where
the center of the strip is at 126 − 140◦ (in steps of 2◦);
measured from the center of the front detector (at 133◦),
the distance of SiRi from the center of the target was 5
cm.

The ∆E-E telescopes allow for separating different
charged-particle species. Figure 6a shows the measured
protons, deuterons, tritons, and α particles for a strip at
130◦. To select the 186W(α, α′) events, a gate was set on
the “banana” corresponding to the α particles. To cal-
ibrate the SiRi front and back detectors, we used range
calculations for our setup with the Qkinz code [34], see
Fig. 6b.

The resolution of the α particles was measured to
be 330–360 keV FWHM for the peak of the elastically-
scattered α particles. The relatively poor resolution is
mainly due to a rather elongated beam spot on the tar-
get (≈ 3–4 mm in diameter in the vertical direction, and
≈ 1 mm in the horizontal direction). The master-gate
signal for the data acquisition system was a logical signal
of 2µs generated when an E detector gave a signal above
threshold, which was set to ≈ 200 mV.

Using the CACTUS array [35], we measured γ rays
in coincidence with the inelastic scattered α particles.
In the configuration used for this experiment, CAC-
TUS consisted of 26 NaI(Tl) crystals of cylindrical shape
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FIG. 6. (Color online) (a) Particle-identification spectrum for one of the front strips at 130◦ with its corresponding back
detector (∆E–E banana plot); (b) a zoom on the α-particle banana with the Qkinz calculations used for calibration (crosses).

(5in.× 5in.). All crystals were collimated with lead col-
limators and had 2-mm thick Cu shields in front to at-
tenuate X-rays. The NaI(Tl) detectors were mounted on
the spherical CACTUS frame, so that the front end of
each crystal was positioned 22 cm from the center of the
target. The efficiency of CACTUS (for 26 NaI(Tl) detec-
tors) is 14.1(2)% as measured with a 60Co source, and
with a resolution of ≈ 6.8% FWHM for Eγ = 1.33 MeV.
Using analog electronics, we obtained a lower threshold
of about 350 keV for the NaI(Tl) detectors.

The CACTUS detectors were calibrated in energy by
gating on the protons in SiRi. As the target had a
significant contamination of carbon (from the backing)
and oxygen, we used peaks in the proton spectrum from
the 12C(α, pγ)15N and 16O(α, pγ)19F reactions to further
identify γ rays for calibration. In particular, we used the
5.269-MeV transition from the 5/2+ first-excited level
in 15N together with the 1.868-MeV transition from the
13/2+ level at Ex = 4.648 MeV in 19F. Then we cross-
checked the obtained calibration with the 1235-keV and
2583-keV lines of 19F, in addition to the 511-keV γ ray
from positron annihilation.

To obtain α–γ coincident events, we applied a gate
on the time-to-digital converter (TDC) spectra for
the prompt peak, and subtracting randomly correlated
events. The start of the TDCs is given by the master
gate, and the stop signal is generated from the NaI(Tl)
detectors (each NaI(Tl) has an individual TDC), with a
built-in delay from the Mesytec shapers of ≈ 400 ns. The
range of the TDCs was 1.2 µs. The gate on the prompt
peak was set to ∆t = 0 ± 20 ns, while the gate for the
background subtraction was set to ∆t = 135± 20 ns.

Using the reaction kinematics, we determined the ini-
tial excitation energy of the residual nucleus from the
deposited energy of the α particles in SiRi. Applying the
time gates for the γ rays, we obtained excitation-energy

tagged, background-subtracted γ-ray spectra as shown in
Fig. 7a.

The γ-ray spectra needed to be corrected for the CAC-
TUS detector response. For this purpose, we applied the
iterative unfolding method of Ref. [36] available in the
Oslo-method software package [37]. This method takes
the raw γ-ray spectrum as a starting point for the un-
folded (“true”) spectrum. This trial spectrum is folded
with the known detector response, and then compared
with the raw spectrum. By taking the difference between
the folded spectrum and the raw spectrum, a new, im-
proved trial spectrum is made. This process is repeated
until the folded spectrum is approximately equal to the
raw spectrum, within the experimental uncertainties. To
preserve the experimental statistical fluctuations, and
not introduce artificial, spurious ones, the Compton sub-
traction method is also applied. This takes advantage of
the fact that the Compton distribution is very smooth.
For more details, see Ref. [36]. The unfolded γ-ray spec-
tra for each Ex bin are shown in Fig. 7b.

After unfolding, the first-generation γ rays were ex-
tracted from the data by applying an iterative subtrac-
tion method [38]. The first-generation γ rays are the ones
that are emitted first in the decay cascades, and their dis-
tribution represents the branching ratios for the various
γ transitions at a given Ex bin. The principle behind
the subtraction method is as follows. For a given Ex bin,
say, at Ex = 4 MeV, the unfolded spectrum contains all
the γ rays from all the possible decay cascades originat-
ing from the levels populated in that Ex bin. If we now
consider the Ex bins below Ex = 4 MeV, they will con-
tain all the same γ rays as the Ex = 4 MeV bin, except
the first-generation γs at Ex = 4 MeV. This is true if
the Ex bins have the same decay cascades whether the
levels in the bin were populated directly through the nu-
clear reaction, or if they were populated from γ decay of
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FIG. 7. (Color online) Excitation-energy vs. γ-ray energy matrices of 186W. (a) Background-subtracted data; (b) unfolded
γ-ray spectra; (c) first-generation γ-ray spectra. The lines indicate the limits set for the further analysis.

above-lying levels. We refer the reader to Ref. [39] for a
more in-depth discussion on the assumptions behind the
first-generation method. The first-generation γ spectra
are displayed in Fig. 7c.

B. Extraction of level density and γ-ray
transmission coefficient

We now exploit the fact that the first-generation γ
spectra represent the (relative) branching ratios for a
given initial excitation-energy bin, and that we have
many such branching ratios available for a large Ex re-
gion. In the spirit of Fermi’s Golden Rule [40, 41], where
the decay rate is proportional to the level density at the
final excitation energy and the reduced transition proba-
bility for decay between a given initial and final level, we
use the following ansatz [42]:

P (Eγ , Ex) ∝ ρ(Ex − Eγ) · T (Eγ), (7)

where P (Eγ , Ex) is the matrix of first-generation γ rays
(Fig. 7c), ρ(Ex − Eγ) is the level density at the excita-
tion energy where the γ transition “lands” and T (Eγ) is
the γ-ray transmission coefficient. Note that T (Eγ) is
only a function of Eγ , which means that the Brink-Axel
hypothesis [43, 44] is invoked. Brink stated that

“...we assume that the energy dependence of
the photo effect is independent of the detailed
structure of the initial state so that, if it were
possible to perform the photo effect on an ex-
cited state, the cross section for absorption
of a photon of energy E would still have an
energy dependence given by (15).”

where “(15)” is referring to the equation describing
the Giant Dipole Resonance (GDR) with a Lorentzian

function that only depends on the γ-transition energy.
Brink’s original formulation (as well as Axel’s application
of Brink’s hypothesis) concerned only E1 transitions, and
there is a wealth of recent works in the literature dis-
cussing the validity and/or violation of the hypothesis;
see, e.g., Refs. [45–53].

A necessary condition for the Oslo method is that the
Brink hypothesis is at least approximately true for the
specific excitation-energy region used for extracting the
level density and γ-ray transmission coefficient. We have
performed tests of this assumption for the application in
the Oslo method in Ref. [39]. When the Brink hypothesis
is applicable, we can fit the data of the first-generation γ
rays to obtain a reliable estimate of the level density and
the γ-ray transmission coefficient through an iterative
optimization using a least-squares fit:

χ2
red =

1

Nfree

Emax
x∑

Ei=Emin
x

Ei∑
Eγ=Emin

γ

[P (Eγ , Ei)− Pth(Eγ , Ei)]
2

[∆P (Eγ , Ei)]
2 .

(8)
Here, P (Eγ , Ei) is the experimental matrix of first-
generation γ rays where each row is normalized to unity:

Ei∑
Ei=Emin

γ

P (Eγ , Ei) = 1, (9)

and ∆P (Eγ , Ei) is the uncertainties in the first-
generation matrix (including statistical errors and an es-
timate for systematic uncertainties due to unfolding and
the first-generation method, see Ref. [42]). Moreover,
Nfree is the number of degrees of freedom and Pth(Eγ , Ei)
is the approximation for the theoretical first-generation
matrix [42]:

Pth(Eγ , Ei) =
ρ(Ei − Eγ)T (Eγ)∑Ei

Eγ=Emin
γ

ρ(Ei − Eγ)T (Eγ)
. (10)



8

0 1 2 3 4 5 6 7

0.02

0.04

0.06

0.08

0.1

0.12

0.14
P

ro
ba

bi
lit

y 
di

st
rib

ut
io

n  = 4.14 MeVxE(a) 

 first-gen. data 
 T x ρ 

0 1 2 3 4 5 6 7

0.02

0.04

0.06

0.08

0.1

0.12

0.14

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n  = 5.26 MeVxE(d) 

0 1 2 3 4 5 6 7

 = 4.59 MeVxE(b) 

0 1 2 3 4 5 6 7
 [MeV]

γ
E energy γ

P
ro

ba
bi

lit
y 

di
st

rib
ut

io
n  = 5.70 MeVxE(e) 

0 1 2 3 4 5 6 7

 = 4.81 MeVxE(c) 

0 1 2 3 4 5 6 7

 = 6.16 MeVxE(f) 

FIG. 8. (Color online) Experimental first-generation spectra (black crosses) compared to the predicted ones using the extracted
level density and γ-transmission coefficient (blue line) for various excitation-energy bins (224-keV wide).

The number of degrees of freedom, Nfree, is given by
Nfree = Nch(P )−Nch(ρ)−Nch(T ). For the present data
set, we have used Emin

γ = 0.90 MeV, Emin
x = 4.0 MeV,

and Emax
x = 7.2 MeV as shown in Fig. 7c. Note that

the neutron separation energy Sn of 186W is 7.1920(12)
MeV [54], and as we have no way of discriminating
against neutrons, the Oslo method is usually limited to a
maximum excitation energy (close to) Sn. With bin size
of 224 keV, and the limits applied as shown in Fig. 7c,
we have the number of pixels in the first-generation ma-
trix Nch(P ) = 330, while the number of elements in the
vectors of ρ and T is Nch(ρ) = Nch(T ) = 39, giving
Nfree = 252. It is important to note that the number
of data points in the first-generation matrix, Nch(P ), is
much bigger than the number of points to be estimated,
which is 2 × 39 points; this is why the method usually
converges very well. When convergence is reached, the
extracted ρ(Ex − Eγ) and T (Eγ) are the ones that best
describe the experimental P (Eγ , Ei) matrix. For this
case, we obtain χ2

red = 0.85 after 20 iterations.

As a visual illustration of the fit, Fig. 8 shows some of
the experimental first-generation spectra together with
the spectra obtained for Pth. Overall, the agreement is
quite good, although we remark that the experimental
errors are rather large. Note that the fit is performed on
all the first-generation spectra (for 15 excitation-energy
bins), and so the fit is still well constrained.

Schiller et al. showed [42] that the χ2 minimization
obtains a unique solution for the relative variation of
neighboring points in the functions ρ and T ; however,
an equally good fit to the experimental P matrix is given

by the transformation

ρ̃(Ei − Eγ) = A exp[α(Ei − Eγ)] ρ(Ei − Eγ), (11)

T̃ (Eγ) = B exp(αEγ)T (Eγ). (12)

Here, α is the common slope adjustment of ρ and T ,
while A and B gives the absolute scaling of ρ and T ,
respectively. These parameters must be determined from
external data, as described in the following sections.

C. Normalization of level density

To normalize the level density by determining the α
and A parameters, we make use of discrete levels [54]
at low Ex and data on s-wave neutron resonance spac-
ings [55] at the neutron separation energy Sn. The av-
erage s-wave neutron resonance spacing D0 = 9.3(16)
eV [55] represents the spacing of levels with Jπ = 1−, 2−

as the target nucleus 185W has ground-state spin/parity

Iπt = 3
2

−
. To obtain the total level density at Sn, we

need to apply a model for the spin distribution, in par-
ticular the spin cutoff parameter σJ(Ex). Here, we use
as a starting point the model of von Egidy and Bu-
curescu [56, 57] employing the rigid-body moment of in-
ertia. However, as shown by Uhrenholt et al. [58], at
excitation energies around 7−8 MeV for heavy nuclei, a
full rigid-body moment of inertia might not be reached
yet: in Fig. 10 of Ref. [58], the effective moment of inertia
is ≈ 85% of the rigid-body moment of inertia at Ex ≈ 8
MeV. We take this as the reference value for which we
will vary the spin cutoff parameter to obtain an estimate
for the systematic uncertainty connected to the spin dis-
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tribution, with the effective moment of inertia ranging
from 70%−100% of the rigid-body moment of inertia:

σ2
J(Sn) = η 0.0146A5/3 1 +

√
1 + 4a(Sn − E1)

2a
, (13)

where η is the reduction factor set to 0.85(15), A is the
mass number of the nucleus (here 186), a is the level-
density parameter and E1 is an excitation-energy shift
taken from the global systematics of von Egidy and Bu-
curescu [56, 57] calculated with the robin.c code in the
Oslo-method software package (see Table I). This gives
us a range of values for the estimated ρ(Sn), which is
then calculated as [39, 42]

ρ(Sn) =
2σ2

J

D0

[
(It + 1)e−(It+1)2/2σ2

J + Ite−I
2
t /2σ

2
J

] , (14)

assuming an equal parity distribution for all spins at
the neutron separation energy. Uncertainties in the D0

value and the spin cutoff parameter are propagated (for a
derivation, see Appendix A). All the applied parameters
are given in Table I.

Moreover, due to the argument in the level density
function being Ei − Eγ , we get an upper limit for the
extracted level density given by Emax

x −Emin
γ . Therefore,

we need to make an extrapolation from our data points
up to ρ(Sn). Here, we use the constant-temperature (CT)
model of Ericson [59]:

ρCT(Ex) =
1

T
exp

Ex − E0

T
, (15)

where T denotes the nuclear “temperature” and E0 is a
shift; both parameters are usually obtained from fits to
discrete data and to neutron resonance spacings. The
parameters used for 186W are shown in Table I.

From the Oslo-method software, statistical uncertain-
ties and an estimate of systematic errors due to the un-
folding procedure and the first-generation method are
calculated as described in Ref. [42]. We also include
systematic errors from the normalization procedure, ac-
counting for the uncertainty in the experimental D0 value
as well as the uncertainty in the moment of inertia and
thus the spin cutoff parameter as described above. We es-
timate the uncertainty (approximately one standard de-
viation) including all these factors as

δρ = ρrec

√(
δD0

D0

)2

+

(
δσJ
σJ

)2

+

(
∆ρrec
ρrec

)2

, (16)

where ρrec is the central value (“recommended” nor-
malization), and ∆ρrec represents statistical uncertain-
ties and systematic errors from unfolding and the first-
generation method. The resulting normalized level den-
sity is shown in Fig. 9.

D. Normalization of γ-ray strength

Having the normalized level density at hand, we
proceed to normalizing the γ-ray transmission coeffi-
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FIG. 9. (Color online) Normalized level density of 186W. The
discrete levels [54] are binned with the same bin size as our
data (224 keV/channel). The dashed line shows the CT-model
interpolation between our data and ρ(Sn). The black error
bars represent statistical uncertainties from the experiment
and systematic errors connected to the unfolding procedure
and the first-generation method. The blue band includes also
systematic errors from the normalization procedure (see text).
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FIG. 10. Gamma-ray transmission coefficient of 186W before
normalization. The arrows indicate the fit regions used for de-
termining the extrapolations (see text). The gray data points
are not considered further in the analysis due to very low
statistics in the first-generation matrix for these γ energies.

cient T (Eγ) by determining the scaling parameter B in
Eq. (12). Here we make use of the relation between the
average, total radiative width 〈Γγ0〉 deduced from s-wave
neutron resonances, the level density and the transmis-
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TABLE I. Parameters used for the normalization of the level density and γ-ray transmission coefficient. Note that the E0

parameter is adjusted to make ρCT(Sn) match with ρ(Sn) = 26.5 ·105 MeV−1. The uncertainty in 〈Γγ0〉 from Mughabghab [55]
is given as 5 meV; however, this uncertainty seems too small based on the experimental errors in the radiative width for other
W isotopes, and we have chosen a more conservative uncertainty in line with the experimental errors of 182,183,184,186W.

Sn Iπt D0 σ2
J(Sn) a E1 ρ(Sn) T E0 〈Γγ0〉 σ2

d Ed
(MeV) (eV) (MeV−1) (MeV) 105 (MeV−1) (MeV) (MeV) (meV) (MeV)

7.192 3/2− 9.3(16) 47(8) 19.38 0.28 26.5(64) 0.51(1) -0.0077 60+13
−9 7.3(13) 0.86(19)

sion coefficient [39, 60]:

〈Γγ0〉 =
BD0

4π

∫ Sn

Eγ=0

dEγT (Eγ)ρ(Sn − Eγ)×

1∑
J=−1

[g(Sn − Eγ , It − 1/2 + J) + g(Sn − Eγ , It + 1/2 + J)] ,

(17)

where g is the spin distribution [61, 62]:

g(Ex, J) ' 2J + 1

2σ2
J

exp
[
−(J + 1/2)2/2σ2

J

]
. (18)

As we need the spin distribution for the excitation-energy
range Ex ∈ [0, Sn], we make use of the spin cutoff param-
eter in the general form [63]

σ2
J(Ex) = σ2

d +
Ex − Ed
Sn − Ed

(
σ2
J(Sn)− σ2

d

)
, (19)

which is motivated also from microscopic calculations
(e.g., shell-model calculations [64] and the work of Uhren-
holt et al. [58]). Here, σ2

d represents the spin cutoff pa-
rameter at the low excitation energy Ed, where the lev-
els are still resolved and with firm spin/parity assign-
ments [54], see Table I.

We need to estimate the γ-ray transmission coefficient
for Eγ < Emin

γ , i.e., where we do not have experimen-
tal data, in order to calculate the integral in Eq. (17).
Therefore, we extrapolate with a fit to the low-energy
data points using the functional form E3

γ exp(p1Eγ +p2),

where p1 and p2 are free parameters1. Moreover, the
statistics is very low at high γ-ray energies, and so we
make use of an extrapolation here as well, here using a
simple exponential, exp(p3Eγ + p4), where p3 and p4 are
again free parameters. The fit regions and the extrapo-
lation functions are shown in Fig. 10. The data points in
gray color (Eγ > 6 MeV) are from a region in the first-
generation matrix with very low statistics (see Fig. 7c),
and we therefore choose to exclude those data points from
the further analysis.

To obtain the γ-ray strength function, we use the fact
that γ decay at high excitation energies is largely domi-
nated by dipole transitions (see, e.g., Refs. [67–69]). As

1 This functional form is motivated by shell-model calculations of
the low-energy γ strength, e.g. Refs. [65, 66].
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FIG. 11. (Color online) Gamma-ray strength function of
186W. The black error bars represent statistical uncertain-
ties from the experiment and systematic errors connected to
the unfolding procedure and the first-generation method. The
blue band includes also systematic errors from the normaliza-
tion procedure (see text).

our experimental data in principle contain transitions of
both electric and magnetic character, we get the total
dipole strength function f(Eγ) through

f(Eγ) =
T (Eγ)

2πE3
γ

. (20)

In accordance with the approach for the level density, we
estimate the uncertainty in the γ-ray strength function
through

δf = frec

√(
δD0

D0

)2

+

(
δσJ
σJ

)2

+

(
δΓγ0
Γγ0

)2

+

(
∆frec
frec

)2

,

(21)
where ∆frec is again the central value (“recommended”
normalization), and ∆frec represents statistical uncer-
tainties and systematic errors from unfolding and the
first-generation method. The resulting, normalized γ-ray
strength function is shown in Fig. 11.
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IV. RESULTS AND DISCUSSION

A. Comparison to other data and models

The level-density data are compared to various mod-
els available in the TALYS-1.9 code [18], see Fig. 12.
The models are: ldmodel 1, the composite formula of
Gilbert and Cameron [70]; ldmodel 2, the back-shifted
Fermi gas model [71]; ldmodel 3, the generalized super-
fluid model [72]; ldmodel 4, calculated within the Hartree-
Fock-BCS approach [73]; ldmodel 5, the combinatorial-
plus-Hartree-Fock-Bogoliubov approach [74]; and ld-
model 6, the combinatorial model combined with a
temperature-dependent Hartree-Fock-Bogoliubov calcu-
lation [75].
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FIG. 12. (Color online) Comparison of the level-density data
from this work with models included in the TALYS code (see
text).

From a first look, none of the models seem to be in good
agreement with the data, and we remark that the TALYS
level densities have not been normalized to the D0 value
from Ref. [55]. In adition, we take notice of two impor-
tant issues: (i) the spin cutoff parameter we have used in
our normalization procedure might not be representative
of the corresponding spin distribution in the TALYS mod-
els; (ii) our data can be re-normalized more coherently
for each model by adopting its energy-dependence to ex-
trapolate between the highest energy point and ρ(Sn), as
was done e.g. in Ref. [76]. Nevertheless, it is clear that
the overall shape of our data points are significantly dif-
ferent from several of the level-density models. We also
remark that the slope of our level-density data points is
directly linked to the slope of the γ-strength function as
given in Eq. (12). If we were to renormalize our level
density to the TALYS models, this would inevitably lead
to a change in slope in the γ-strength function as well.

We now compare our γ-strength data from the (γ, n)

measurements and the OCL experiment to external data
found in the literature, as shown in Fig. 13a. We observe
a good agreement with the E1 strength extracted from
primary γ rays following neutron capture by Kopecky et
al [78], which brings further support to the absolute nor-
malization procedure. Moreover, we compare our new
photoneutron data to several data sets found in the liter-
ature, where the photoneutron cross section σγn is con-
verted into dipole strength using the relation of Axel [79]:

fγn(Eγ) =
1

3π2~2c2
σγn(Eγ)

Eγ
, (22)

where σγn is in units of mb, Eγ in MeV, and the factor
1/(3π2~2c2) = 8.674 · 10−8 mb−1MeV−2. Overall, there
is good agreement between the various data sets for the
W isotopes.

In Fig. 13a, we also compare the data with avail-
able models in TALYS: strength 1, the Generalized
Lorentzian [67]; strength 2, the Standard Lorentzian
(Brink-Axel model) [43, 44]; strength 3, the Quasi-
Particle Random Phase Approximation (QRPA) on top
of a Hartree-Fock-plus-BCS calculation [80]; strength 4,
the QRPA on top of a Hartree-Fock-Bogoliubov (HFB)
calculations [81]; strength 5, the Hybrid model [82]
with parameters from global systematics [18]; strength
6, QRPA as in Ref. [81] but on top of a temperature-
dependent HFB calculation [75]; and finally strength 7,
a relativistic mean-field calculation plus a continuum
QRPA calculation [83]. Out of these models, strength
4 and strength 6 match reasonably well the present Oslo
data, but not the (γ, n) data. In general, the models are
deviating significantly from each other and from either
the Oslo data or the (γ, n) data.

To obtain a model description that can reproduce our
data reasonably well over the entire energy range, we
take a pragmatic approach and exploit phenomenologi-
cal models for the dipole strength. For the main part
of the E1 strength which is dominated by the Giant
Dipole Resonance (GDR), we apply the Hybrid model
of Goriely [82]:

fHyb
E1 (Eγ , Tf ) =

1

3π2~2c2
EγσrΓrΓ(Eγ , Tf )

(E2
γ − E2

r )2 + E2
γΓrΓ(Eγ , Tf )

,

(23)
where σr is the peak cross section, Er the centroid, and
Γr the width of the GDR. Further, the γ-energy and
temperature dependent width Γ(Eγ , Tf ) is given by

Γ(Eγ , Tf ) = 0.7 · Γr
E2
γ + 4π2T 2

f

EγEr
. (24)

The temperature of the final levels, Tf , is here considered
as a constant, in line with the Brink-Axel hypothesis. We
also include extra E1 strength (labeled “E1 pygmy” in
Fig. 13b) to make a smooth connection between our data
and the (γ, n) data. Finally, we also add a magnetic-
dipole component (marked “M1 spin-flip” in Fig. 13b).
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FIG. 13. (Color online) (a) Comparison of γ-strength data from this work with data from the literature (Berman et al. [77],
Mohr et al. [9], and Kopecky et al. [78]), and to models included in the TALYS code (see text); (b) Fit to the γ-ray strength
function data of 186W and the 184W data of Kopecky et al. [78]) (see text).

TABLE II. Parameters found from the model fits of ftot to the γ-strength data (see text). The uncertainties given are from
the fit only. Note that EM1 and ΓM1 are fixed.

Norm. Er Γr σr EPyg ΓPyg σPyg Tf EM1 ΓM1 σM1

(MeV) (MeV) (mb) (MeV) (MeV) (mb) (MeV) (MeV) (MeV) (mb)
Rec. 12.9(1) 4.1(1) 382(2) 6.3(1) 2.6(2) 7.2(3) 0.43(3) 7.2 2.5 4.4(4)

For both the E1 pygmy and the M1 spin-flip contribu-
tions, we apply a resonance-like form using a Standard
Lorentzian:

fPyg,M1(Eγ) =
1

3π2~2c2
σPyg,M1Γ2

Pyg,M1Eγ

(E2
γ − E2

Pyg,M1)2 + Γ2
Pyg,M1E

2
γ

(25)
where σPyg,M1, ΓPyg,M1, and EPyg,M1 are the peak cross
section, width, and centroid for the pygmy (Pyg) and
the spin-flip (M1) resonance, respectively. The total fit
function is then given by

ftot(Eγ) = fHyb
E1 (Eγ , Tf = const.) + fPyg(Eγ) + fM1(Eγ).

(26)
For the fit, we first constrain the Hybrid component by

fitting only the Hybrid model to the GDR data (Mohr et
al. [9] and Berman et al. [77]) in the range Eγ = 7.7−14.5
MeV. We choose to fix the Tf parameter to the one used
for the extrapolation of the level density (see Sec. III C)
to ease the fit, as Tf is largely determined from the γ-
strength function below neutron threshold. From this fit,
we determine the GDR parameters σr, Er, and Γr, to be
used as start values for the next fit including the data for
γ energies below neutron threshold as well.

For the spin-flip part, we use a fixed centroid EM1

taken from systematics [63], and a fixed width of ΓM1 of
2.5 MeV. The peak cross section σM1 is then found from a
fit to theM1 data of 184W from Kopecky et al. [78]. Then
we make a fit using the full energy range Eγ = 1.0− 14.5
MeV, with only the spin-flip parameters fixed, and with
the first fit of the GDR data as starting values. In the fit,
we include the present OCL data of 186W, the E1 data
from Kopecky et al. [78] on 184W, and the GDR data
from Mohr et al. [9] and Berman et al. [77]. The result-
ing fit is shown in Fig. 13b, and the parameters are listed
in Table II. As this model fit will be used to calculate the
(n, γ) cross section and reactivity in the following sec-
tion, we repeat the fit for all the different normalizations
(varying D0, Γγ0, σJ and taking into account ∆f). All
fits are performed within the ROOT software tool [84]
using the Minuit package.

The resulting fit function gives a reasonable description
of the strength function data, although we note a poten-
tial issue in that the region between Eγ = 6 − 8 MeV
contains practically no data points for 186W. Moreover,
the 184W data points from primary transitions following
neutron capture typically have large fluctuations. Hence,
it is very difficult to assess the actual parameters for the
E1 pygmy, and the deduced parameters given in Table II
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should be used with caution.
We also remark that the data points at the lowest γ

energies, Eγ < 1.5 MeV, might indicate some low-energy
increase in the γ-strength function, as first observed in
iron isotopes [85]. However, in contrast to clear cases
like 56Fe [68, 69, 85], it is hard to conclude here as there
are only a few data points that might show an increas-
ing trend. We therefore choose not to include an extra
“upbend” component in the fit.

B. Maxwellian-averaged cross section and reaction
rate

Using our level-density data and γ-strength function
data, we now calculate the Maxwellian-averaged cross
section (MACS) with the TALYS code, which is based on
the statistical model of Wolfenstein [86] and Hauser and
Feshbach [87]. The resulting MACS is shown in Fig. 14,
where we also show the TALYS MACS with default in-
puts (strength 1, ldmodel 1, a global optical-model po-
tential, and no upbend), and the variation of the MACS
as the different level-density and γ-strength models are
used. We have tested using the semi-microscopic optical-
model potential of Bauge et al. [88] for comparison with
the one of Koning and Delaroche [89]. As seen from
Fig. 14 (dashed line versus dashed-dotted line), there
is only a minor difference between the two for neutron
energies around kBT = 30 keV, and overall the semi-
microscopic potential gives a lower MACS. Nevertheless,
the presented uncertainty band on our experimentally-
constrained MACS includes the variation between the
two different optical models in the lower uncertainty, in
addition to uncertainties from D0, Γγ0, and σJ .

In Fig. 14, we compare our result with the KADoNiS
database [90], and find agreement within the error bars,
although the KADoNiS values are overall larger than our
central values. We remark that the KADoNiS values are
from a weighted average of MACS constrained by pho-
tonuclear data above Sn, while our results include infor-
mation on both the level density as well as the γ-strength
function below Sn. We have multiplied the KADoNiS
MACS values with their corresponding stellar enhance-
ment factor (SEF) as given in Ref. [90] for 185W(n, γ).
Furthermore, our estimated uncertainty band is smaller
than the KADoNiS uncertainties, Our result at kBT = 30
keV, 508+76

−106 mb, agrees well within error bars with the
MACS from Mohr et al. [9], 553(60) mb. On the other
hand, the evaluation of Bao et al. [91] of 703(113) mb,
and the measurement of Sonnabend et al. [8], 687(110)
mb, are both larger than our estimate, although still
within the estimated uncertainties. We note that none
of these values are directly measured, as Bao et al. gives
a purely theoretical prediction, while the MACS value
from Sonnabend et al. is constrained on (γ, n) data above
Sn. In comparison with the TALYS estimates using the
default input as well as the resulting MACS when vary-
ing the level-density and γ-strength models, our deduced
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FIG. 14. (Color online) Maxwellian-averaged cross section
for the 185W(n, γ) reaction. The shaded band indicates the
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FIG. 15. (Color online) Reaction rate for the 185W(n, γ) reac-
tion. The shaded band indicates the present data-constrained
result. See also the caption of Fig. 14.

MACS is in between the extremes.
In Fig. 15, we show the corresponding reaction rate

(stellar reactivity) deduced from our data compared to
the KADoNiS rate, the TALYS default and the variations
using different model inputs. Again we find that the
KADoNiS values are overall higher than our estimated
rate, in particular for temperatures below 0.3 GK.
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To address possible implications for the s process
and the Re/Os cosmochronometer in a reliable way, the
branch points at 186Re and 191Os should also be consid-
ered in realistic stellar models for thermally-pulsing AGB
stars. The 191Os MACS has been estimated by a similar
procedure as in this work by Kullmann et al. [92]. The
186Re MACS remains to be experimentally constrained
in the same way; the 186W(α, dγ)187Re data from this
same experiment is currently being analyzed. With this
experimentally-constrained MACS also at hand, we in-
tend to perform a consistent study of the s process in
this mass region.

V. SUMMARY AND OUTLOOK

In this work, we have performed photoneutron cross
section measurements on the 182,183,184W isotopes. This
completes the photoneutron measurements on the stable
W isotopic chain. Furthermore, we have presented data
on the 186W(α, α′γ) reaction, and used the extracted
level density and γ-ray strength function to provide an
experimentally constrained (n, γ) cross section for the
branch-point nucleus 185W.

In comparison with other data and the recommended
MACS from the KADoNiS data base, we find that our
estimated MACS and reaction rate are lower than most
of the other available values, except for the result of Mohr
et al. Our reaction rate could possibly impact the s pro-
cess in this mass region, in particular the deduced neu-
tron density and the calculation of the 186Os abundance.
When the 186Re MACS also becomes available, we intend
to perform a systematic study of the s-process conditions
in the W-Re-Os region in the near future.
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Appendix A: Uncertainty in ρ(Sn)

To estimate the total NLD at the neutron separation
energy using Eq. (14), we propagate errors from the D0

value and the spin cutoff parameter σJ(Sn) assuming
that they are independent variables, which is a justified
assumption. Thus, we get that(

δρ(Sn)

ρ(Sn)

)2

=

(
δD0

D0

)2

+

(
δξ(σJ(Sn))

ξ(σJ(Sn))

)2

, (A1)

where ξ represents the function containing the depen-
dency on the spin cutoff parameter σJ at the neutron
separation energy Sn:

ξ(σJ) =
2σ2

J

Ite−I
2
t /2σ

2
J + (It + 1)e−(It+1)2/2σ2

J

. (A2)

Now we take the derivative of ξ with respect to σJ and
obtain:

δξ

δσJ
=

4σJ

(
Ite
−I2t /2σ

2
J + (It + 1)e−(It+1)2/2σ2

J

)
− 2

σJ

(
I3t e
−I2t /2σ

2
J + (It + 1)3e−(It+1)2/2σ2

J

)
[
Ite−I

2
t /2σ

2
J + (It + 1)e−(It+1)2/2σ2

J

]2
.

(A3)

For convenience, we now define the auxilliary functions

z1 ≡ I3t e−I
2
t /2σ

2
J + (It + 1)3e−(It+1)2/2σ2

J ,

z2 ≡ Ite−I
2
t /2σ

2
J + (It + 1)e−(It+1)2/2σ2

J .

Using these and dividing Eq. (A3) on the function ξ(σJ),

we get

δξ

ξδσJ
=

2

σJ
− z1
σ3
Jz2

=
2

σJ

(
1− 1

2σ2
J

z1
z2

)
. (A4)

Finally, we obtain(
δξ

ξ

)2

=

(
2δσJ
σJ

)2(
1− 1

2σ2
J

z1
z2

)2

. (A5)



15

This is what is implemented in the code d2rho in the Oslo software package [37].
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T. Ichikawa, and P. Möller, Nuclear Physics A 913, 127
(2013).

[59] T. Ericson, Nuclear Physics 11, 481 (1959).
[60] A. Voinov, M. Guttormsen, E. Melby, J. Rekstad,

A. Schiller, and S. Siem, Phys. Rev. C 63, 044313 (2001).
[61] H. A. Bethe, Phys. Rev. 50, 332 (1936).
[62] T. Ericson and V. Strutinski, Nuclear Physics 8, 284

(1958).
[63] R. Capote, M. Herman, P. Obložinský, P. Young,
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