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Research Article 

Abstract − In this study, Chebyshev polynomials have been applied to construct an approximation 

method to attain the solutions of the linear fractional Fredholm integro-differential equations (IDEs). By 

this approximation method, the fractional IDE has been transformed into a linear algebraic equations 

system with the aid of the collocation points. In the method, the conformable fractional derivatives of the 

Chebyshev polynomials have been calculated in terms of the Chebyshev polynomials. Using the results of 

these calculations, the matrix relation for the conformable fractional derivatives of Chebyshev polynomials 

was attained for the first time in the literature. After that, the matrix forms have been replaced with the 

corresponding terms in the given fractional integro-differential equation, and the collocation points have 

been used to have a linear algebraic system. Furthermore, some numerical examples have been presented 

to demonstrate the preciseness of the method. It is inferable from these examples that the solutions have 

been obtained as the exact solutions or approximate solutions with minimum errors. 

Keywords Conformable fractional derivative, Chebyshev polynomials, numerical solutions 

Mathematics Subject Classification (2020) 26A33, 33C45 

1. Introduction 

The theory of fractional derivatives plays an impressive role in the field of the study of applied mathematics 

to analyze innumerable problems through the diverse areas of engineering and science, such as bioengineering, 

mathematical physics, astrophysics, hydrology, control theory, biophysics, statistical mechanics, 

thermodynamics, cosmology, and finance [1]. As much as the theory of fractional derivatives has drawn 

considerable attention among scientists, especially mathematicians, investigating the solution methods for the 

fractional linear and nonlinear IDEs has been the focus point continually in the last decades [2, 3]. The methods 

utilized to obtain the solutions of the Fredholm IDEs, fractional in the Caputo sense with the aid of the 

Chebyshev polynomials are given as the Chebyshev wavelet method of the second kind [4, 5] and least squares 

method [6, 7]. Besides, Chebyshev wavelet methods of the second kind [8-10] and the fourth kind [11] have 

been applied to attain the solutions of the fractional integro-differential equations of the Fredholm-Volterra 

type in the sense of the Caputo differentiation operator. 

Moreover, investigating the exact and numerical solutions of the fractional integro-differential equations in the 

conformable sense is a fresh and strange field of investigation among applied mathematicians. Preliminarily, 

Bayram et al. [12] have applied the Sinc-collocation method, and Daşcıoğlu et al. [13] have used a collocation 

method based upon the Laguerre polynomials to attain the solutions of the linear fractional IDEs in the 

conformable sense. This method mentioned in [13] is an improvement of the method that had been used for 
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the solutions of the linear Caputo fractional IDEs of the Volterra type [14] and Caputo fractional linear IDEs 

of the Fredholm type [15]. However, for the conformable fractional Fredholm IDEs, there has not been a 

method in the literature in the sense of Chebyshev polynomials. To this respect, in that study, a method 

predicated on the Chebyshev polynomials of the first kind is announced to obtain the numerical (in some cases 

exact) solutions of the linear conformable fractional integro-differential equation of the Fredholm type having 

the fractionality in the differential part as  

∑𝑝𝑖(𝑥)𝐷
𝛼𝑖𝑦(𝑥)

𝑚

𝑖=0

= 𝑔(𝑥) + 𝜆 ∫𝐾(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡

1

−1

,    − 1 ≤ 𝑥 ≤ 1 (1) 

with the initial conditions 

𝑦(0) = 𝑐0 (2) 

where 𝑙 ∈ 𝑁, 𝜆 ∈ 𝑅, 0 < 𝛼𝑖 ≤ 1, 𝐾(𝑥, 𝑡), 𝑝𝑖, and 𝑔 are given (known) functions, 𝑦(𝑥) stands for the unknown 

function to be found, and 𝐷𝛼𝑖𝑦(𝑥) represents the fractional derivative in the conformable sense of the unknown 

function 𝑦(𝑥).  

In the present paper, Section 2 provides the basic definitions and their properties. Section 3 constitutes the 

fundamental matrix relations for each term in the fractional integro-differential equation provided in Equation 

1. Section 4 presents a well-functional collocation method based on the Chebyshev polynomials. Section 5 

resolves some numerical examples and exhibits their results to affirm the preciseness and effectiveness of the 

introduced method. Finally, the last section discusses the need for further research.  

2. Preliminaries 

This section provides some basic notions to be needed in the following sections. 

Definition 2.1. [16] The conformable fractional derivative of a function 𝑓 of the 𝛼-th order is described as 

𝐷𝛼(𝑓)(𝑡) = lim
𝜀→0

𝑓(𝑡 + 𝜀𝑡1−𝛼) − 𝑓(𝑡)

𝜀
,       𝑡 > 0,    𝛼 ∈ (0,1) 

where 𝑓: [0,∞) → ℝ. Here, if the function 𝑓 is differentiable of the order 𝛼 in the conformable sense in some 

open interval (0, 𝛼) and lim
𝑡→0+

𝑓(𝛼)(𝑡) exists, then lim
𝑡→0+

𝑓(𝛼)(𝑡) = 𝑓(𝛼)(0). 

Since we have become familiar with the definition of the conformable fractional derivative, it is obvious that 

the notion of the conformable fractional derivative is the most analogous to the classical definition of the usual 

derivative. By the theorem below, we recognize the similarity between the conformable fractional derivative 

and the ordinary derivative: 

Theorem 2.2. [16] Suppose that 𝛼 ∈ (0,1] and the functions 𝑓 and 𝑔 are differentiable of the order 𝛼 in the 

conformable sense at the point 𝑡 > 0. Therefore, the following statements are satisfied. 

i. 𝐷𝛼(𝑎𝑓 + 𝑏𝑔) = 𝑎𝐷𝛼(𝑓) + 𝑏𝐷𝛼(𝑔), for all 𝑎, 𝑏 ∈ ℝ 

ii. 𝐷𝛼(𝑡𝑝) = 𝑝𝑡𝑝−𝛼, for all 𝑝 ∈ ℝ 

iii. 𝐷𝛼(𝜆) = 0 for all constant functions 𝑓(𝑡) = 𝜆 

iv. 𝐷𝛼(𝑓𝑔) = 𝑓𝐷𝛼(𝑔) + 𝑔𝐷𝛼(𝑓) 

v. 𝐷𝛼 (
𝑓

𝑔
) =

𝑔𝐷𝛼(𝑓)−𝑓𝐷𝛼(𝑔)

𝑔2
 

vi. If 𝑓 is differentiable, then 𝐷𝛼(𝑓)(𝑡) = 𝑡1−𝛼
𝑑𝑓

𝑑𝑡
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Proposition 2.3. [16] The obtained expression for the fractional derivative of the power function 𝑥𝑘 in the 

conformable sense for 𝑘 ∈ {0,1,2,⋯ } 

𝐷𝛼𝑥𝑘 = {
0,               𝑘 < 1

𝑘𝑥𝑘−𝛼 ,      𝑘 ≥ 1
  

The following theorem introduces the chain rule for the conformable fractional derivative: 

Theorem 2.4. [17] Assume 𝑓, 𝑔 ∶ (0,∞) → ℝ be the differentiable functions of the order 𝛼 in the conformable 

sense where 0 < 𝛼 ≤ 1. Suppose ℎ(𝑡) = 𝑓(𝑔(𝑡)). Then, the composite function ℎ(𝑡) is differentiable of the 

order 𝛼 in the conformable sense and, for all 𝑡 with 𝑡 ≠ 0 and 𝑔(𝑡) ≠ 0, 

𝐷𝛼(ℎ)(𝑡) = 𝐷𝛼(𝑓)(𝑔(𝑡)). 𝐷𝛼(𝑔)(𝑡). 𝑔(𝑡)𝛼−1 

For 𝑡 = 0, we can use the following limit 

𝐷𝛼(ℎ)(0) = lim
𝑡→0

𝐷𝛼(𝑓)(𝑔(𝑡)). 𝐷𝛼(𝑔)(𝑡). 𝑔(𝑡)𝛼−1 

The fundamental goal of this research is to introduce a useful approximation method that will provide an 

approximate solution (in some cases an exact solution) of the fractional Fredholm integro-differential equation 

in Problem 1 under the Condition 2 in the type 

𝑦(𝑥) ≅ 𝑦𝑁(𝑥) =∑𝑎𝑖𝑇𝑖(𝑥)

𝑁

𝑖=0

 (3) 

where the upper limit of the sum 𝑁 ≥ 1 is any selected positive integer, the term 𝑇𝑖 stand for the Chebyshev 

polynomials of the first kind of the order 𝑖, and the coefficients 𝑎𝑖 are unknown and to be determined. 

Afterward, we provide the definition of the Chebyshev polynomials: 

Definition 2.5. [18] The Chebyshev polynomial of degree 𝑛 of the first kind is a polynomial in variable 𝑥 is 

denoted by 𝑇𝑛(𝑥) and defined as  

𝑇𝑛(𝑥) = cos 𝑛𝜃,   cos𝜃 = 𝑥,   −1 ≤ 𝑥 ≤ 1 

Moreover, these well-known Chebyshev polynomials satisfy the following recurrence relation 

𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥),   𝑛 ∈ {2,3,⋯ } 

together with the initial conditions 𝑇0(𝑥) = 1 and 𝑇1(𝑥) = 𝑥 recursively generates all the polynomials {𝑇𝑛(𝑥)} 

efficiently.  

Furthermore, the following properties present the relation between the Chebyshev polynomials and the power 

function: 

Proposition 2.6. [18] The Chebyshev polynomials are provided in terms of the powers of 𝑥 as 

𝑇𝑛(𝑥) = ∑

[
 
 
 
(−1)𝑘∑(

𝑛
2𝑗) (

𝑗
𝑘
)

⌊
𝑛
2
⌋

𝑗=𝑘
]
 
 
 

⌊
𝑛
2
⌋

𝑘=0

𝑥𝑛−2𝑘 

or 

𝑇𝑛(𝑥) = ∑(−1)𝑘2𝑛−2𝑘−1
𝑛

𝑛 − 𝑘
(
𝑛 − 𝑘
𝑘

)

⌊
𝑛
2
⌋

𝑘=0

𝑥𝑛−2𝑘 

where ⌊
𝑛

2
⌋ denotes the integer part of 

𝑛

2
. 
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Proposition 2.7. [18] The famous Chebyshev series in the Chebyshev polynomials of the first kind of the 

power function 𝑥𝑛 has been stated as 

𝑥𝑛 = 21−𝑛∑(
𝑛
𝑖
)𝑇𝑛−2𝑖(𝑥)

⌊
𝑛
2
⌋

𝑖=0′

,    𝑛 ∈ {0,1,2,⋯ } 

where the dashed sigma stands for that the 𝑖th term in the sum is to be halved if 𝑛 is even and 𝑖 =
𝑛

2
; in other 

words, the term in 𝑇0(𝑥), if there is one, is to be halved. 

3. Elementary Matrix Formulas 

In this part of the paper, we transform Equation 1 by formulating the matrix forms of the unknown function 

and the fractional derivative of that function in a conformable sense. First, we can formulate the approximate 

solution in Equation 3 as the product of the Chebyshev matrix T(𝑥) and the coefficient matrix A by 

𝑦𝑁(𝑥) = T(𝑥)A (4) 

where the matrices are as follows: 

T(𝑥) = [𝑇0(𝑥) 𝑇1(𝑥) ⋯ 𝑇𝑁(𝑥)]  and  A = [𝑎0 𝑎1 ⋯ 𝑎𝑁]𝑇 

For that purpose, we prove a theorem that states the relation between the conformable fractional derivative of 

the Chebyshev polynomials and the Chebyshev polynomials of the first kind: 

Theorem 3.1. Suppose that 𝑇𝑖(𝑥) denotes the 𝑖th order Chebyshev polynomial of the first kind. Then, the 

fractional derivative of the Chebyshev polynomial 𝑇𝑖(𝑥) in the conformable sense in terms of the Chebyshev 

polynomials of the first kind are constructed as:   

𝐷𝛼𝑇0(𝑥) = 0 (5) 

and otherwise 

𝐷𝛼𝑇𝑛(𝑥) = 𝑥
1−𝛼∑∑(−1)𝑘 (

𝑗
𝑘
) (
𝑛
2𝑗) (𝑛 − 2𝑘)2

2𝑘−𝑛+2

⌊
𝑛
2
⌋

𝑗=𝑘

∑ (
𝑛 − 2𝑘 − 1

𝑖
) 𝑇𝑛−2𝑘−2𝑖−1(𝑥)

⌊
𝑛−2𝑘−1

2
⌋

𝑖=0′

⌊
𝑛
2
⌋

𝑘=0

 (6) 

where ⌊𝑛⌋ denotes the integer part of 𝑛 and the dashed sigma (Σ′) stands for that the 𝑖th term in the sum is to 

be halved if 𝑛 − 2𝑘 − 1 is even and 𝑖 =
𝑛−2𝑘−1

2
. 

PROOF. We will originate with the expression of the Chebyshev polynomials in terms of the powers of 𝑥, and 

𝛼-differentiate these polynomials as 

𝐷𝛼𝑇𝑛(𝑥) = 𝐷
𝛼

{
 

 
∑

[
 
 
 
(−1)𝑘∑(

𝑛
2𝑗) (

𝑗
𝑘
)

⌊
𝑛
2
⌋

𝑗=𝑘
]
 
 
 

⌊
𝑛
2
⌋

𝑘=0

𝑥𝑛−2𝑘

}
 

 
 

Since the conformable fractional derivative is linear, we have the equality 

𝐷𝛼𝑇𝑛(𝑥) = ∑

[
 
 
 
(−1)𝑘∑(

𝑛
2𝑗) (

𝑗
𝑘
)

⌊
𝑛
2
⌋

𝑗=𝑘
]
 
 
 

⌊
𝑛
2
⌋

𝑘=0

𝐷𝛼(𝑥𝑛−2𝑘) 
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Utilizing the conformable fractional derivative of the power function 𝑥𝑘, for 𝑘 ∈ {0,1,2,⋯ }, 

𝐷𝛼𝑥𝑘 = {
0,               𝑘 < 1

𝑘𝑥𝑘−𝛼 ,      𝑘 ≥ 1
  

we obtain 𝐷𝛼𝑇0(𝑥) = 0 and  

𝐷𝛼𝑇𝑛(𝑥) = ∑(−1)𝑘∑(
𝑛
2𝑗) (

𝑗
𝑘
)

⌊
𝑛
2
⌋

𝑗=𝑘

(𝑛 − 2𝑘)𝑥𝑛−2𝑘−𝛼

⌊
𝑛
2
⌋

𝑘=0

,     𝑛 ∈ {1,2,⋯ } 

At that point, we will take the term 𝑥1−𝛼 out of the series since it is independent of the indices of the sums 

𝐷𝛼𝑇𝑛(𝑥) = 𝑥
1−𝛼∑(−1)𝑘∑(

𝑛
2𝑗) (

𝑗
𝑘
)

⌊
𝑛
2
⌋

𝑗=𝑘

(𝑛 − 2𝑘)𝑥𝑛−2𝑘−1

⌊
𝑛
2
⌋

𝑘=0

,     𝑛 ∈ {1,2,⋯ } 

and utilizing the Chebyshev series of 𝑥𝑛 mentioned with Property 2 

𝑥𝑛 = 21−𝑛∑(
𝑛
𝑖
)𝑇𝑛−2𝑖(𝑥)

⌊
𝑛
2
⌋

𝑖=0′

,    𝑛 ∈ {0,1,2,⋯ } 

where the dashed sigma stands for that the 𝑖th term in the sum is to be halved if 𝑛 is even and 𝑖 =
𝑛

2
; in other 

words, the term in 𝑇0(𝑥), if there is one, is to be halved; we get the statement of the formulas given by 

Equations 5 and 6, and the proof of Theorem 3.1 is accomplished. ◻ 

Theorem 3.2. Suppose that T(𝑥) is a row matrix with (𝑁 + 1) columns and is called as Chebyshev matrix, 

and 𝐷𝛼T(𝑥) stands for the conformable fractional derivative of 𝛼-th order of the Chebyshev matrix T(𝑥). 

Then, the matrix relation for the conformable fractional derivative of T(𝑥) is attained as 

𝐷𝛼T(𝑥) = 2𝑥1−𝛼T(𝑥)M  (7) 

where the (𝑁 + 1) dimensional square matrix M is characterized by odd 𝑁 as 

M =

[
 
 
 
 
 
 
 
 
 0

1

2
0

3

2
0

5

2
⋯

𝑁

2
0 0 2 0 4 0 ⋯ 0

0 0 0 3 0 5 ⋯ 𝑁

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 0 ⋯ 𝑁

0 0 0 0 0 0 ⋯ 0]
 
 
 
 
 
 
 
 
 

 

and for even 𝑁 

M =

[
 
 
 
 
 
 
 
 
 0

1

2
0

3

2
0

5

2
⋯ 0

0 0 2 0 4 0 ⋯ 𝑁

0 0 0 3 0 5 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 0 0 0 0 0 ⋯ 𝑁

0 0 0 0 0 0 ⋯ 0]
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PROOF.  

The explicit forms of the Chebyshev matrix T(𝑥) and 𝐷𝛼T(𝑥) are  

T(𝑥) = [𝑇0(𝑥) 𝑇1(𝑥) ⋯ 𝑇𝑁(𝑥)] 

and 

𝐷𝛼T(𝑥) = [𝐷𝛼𝑇0(𝑥) 𝐷𝛼𝑇1(𝑥) ⋯ 𝐷𝛼𝑇𝑁(𝑥)] 

The statement of Theorem 3.1. is utilized to obtain the relation between the matrices above. Using Equations 

5 and 6, the terms in 𝐷𝛼T(𝑥) can be expressed explicitly, for 𝑛 ∈ {0,1,… ,𝑁}, as formulated below: 

For 𝑛 = 0, 

𝐷𝛼𝑇0(𝑥) = 0 

For 𝑛 = 1, 

𝐷𝛼𝑇1(𝑥) = 𝑥1−𝛼∑∑(−1)𝑘 (
1
2𝑗
) (
𝑗
𝑘
) (1 − 2𝑘)22𝑘−1+2

⌊
1
2
⌋

𝑗=𝑘

∑ (
1 − 2𝑘 − 1

𝑖
) 𝑇1−2𝑘−2𝑖−1(𝑥)

⌊
1−2𝑘−1

2
⌋

𝑖=0′

⌊
1
2
⌋

𝑘=0

 

 = 𝑥1−𝛼𝑇0(𝑥) 

 = 2𝑥1−𝛼 [
1

2
𝑇0(𝑥)] 

For 𝑛 = 2,  

𝐷𝛼𝑇2(𝑥) = 𝑥1−𝛼∑∑(−1)𝑘 (
2
2𝑗
) (
𝑗
𝑘
) (2 − 2𝑘)22𝑘−2+2

⌊1⌋

𝑗=𝑘

∑ (
2 − 2𝑘 − 1

𝑖
) 𝑇2−2𝑘−2𝑖−1(𝑥)

⌊
2−2𝑘−1

2
⌋

𝑖=0′

⌊1⌋

𝑘=0

 

 = 4𝑥1−𝛼𝑇1(𝑥) 

 = 2𝑥1−𝛼[2𝑇1(𝑥)] 

For 𝑗 = 𝑁 and odd 𝑁, 

𝐷𝛼𝑇𝑁(𝑥) = 𝑥1−𝛼∑∑(−1)𝑘 (
𝑁
2𝑗
) (
𝑗
𝑘
) (𝑁 − 2𝑘)22𝑘−𝑁+2

⌊
𝑁
2
⌋

𝑗=𝑘

∑ (
𝑁 − 2𝑘 − 1

𝑖
) 𝑇𝑁−2𝑘−2𝑖−1(𝑥)

⌊
𝑁−2𝑘−1

2
⌋

𝑖=0′

⌊
𝑁
2
⌋

𝑘=0

 

 = 2𝑥1−𝛼 [
𝑁

2
𝑇0(𝑥) + 𝑁𝑇2(𝑥)+. . . +𝑁𝑇𝑁−1(𝑥)] 

and for even 𝑁 

𝐷𝛼𝑇𝑁(𝑥) = 𝑥1−𝛼∑∑(−1)𝑘 (
𝑁
2𝑗
) (
𝑗
𝑘
) (𝑁 − 2𝑘)22𝑘−𝑁+2

⌊
𝑁
2
⌋

𝑗=𝑘

∑ (
𝑁 − 2𝑘 − 1

𝑖
) 𝑇𝑁−2𝑘−2𝑖−1(𝑥)

⌊
𝑁−2𝑘−1

2
⌋

𝑖=0′

⌊
𝑁
2
⌋

𝑘=0

 

 = 2𝑥1−𝛼[𝑁𝑇1(𝑥) + 𝑁𝑇3(𝑥)+. . . +𝑁𝑇𝑁(𝑥)] 
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It can be observed that the relation between the fractional derivative of the Chebyshev matrix in the 

conformable sense 𝐷𝛼T(𝑥) and the Chebyshev matrix T(𝑥) is in the form as stated in Equation 7. This proves 

the theorem. ◻ 

After that, by applying Equations 4 and 7, the left-hand side of Equation 1 could be expressed as 

𝐷𝛼𝑦(𝑥) ≅ 𝐷𝛼T(𝑥)A = 𝑥1−𝛼T(𝑥)MA (8) 

It is remarked that this matrix is the same as the matrix provided by Sezer et al. [19] and Akyüz [20] for the 

usual first-order derivative. Thus, it is obvious that there is a correlation between the methods for the 

conformable fractional derivative and the usual derivative.  

Finally, the corresponding matrix relation of the conditions in Equation 2 is formulated as  

𝑦(0) = T(0)A = 𝑐0 (9) 

At this stage, the condition matrix T(0) is referred to as U where the matrix U is a row matrix with (𝑁 + 1) 

columns. Thus, Equation 9 transforms into UA = 𝑐0. 

4. Solution Method 

In this section, we maintain the approximate solution method, which can be specified as a collocation method 

since we use the collocation points at the end to solve the matrix equation. In other words, we determine the 

unknown coefficients 𝑎𝑖 in Equation 3 to attain the solution of Equations 1 and 2 by a collocation method.  

Before all, we interchange the formulated matrix forms given with Equations 4 and 8 into Equation 1, and thus 

we attain the matrix equation of the fractional integro-differential equation 

∑𝑝𝑖(𝑥)𝑥
1−𝛼𝑖2T(𝑥)MA

𝑙

𝑖=0

= 𝑔(𝑥) + 𝜆 ∫𝐾(𝑥, 𝑡)T(𝑡)A𝑑𝑡

1

−1

 (10) 

Secondly, we substitute the chosen collocation points 𝑥𝑠 > 0, for 𝑠 ∈ {0,1,… ,𝑁}, into the matrix Equation 10, 

we get a linear system of the 𝑁 + 1 equations 

{∑𝑝𝑖(𝑥𝑠)𝑥𝑠
1−𝛼𝑖2T(𝑥𝑠)MA

𝑙

𝑖=0

− 𝜆𝑓(𝑥𝑠)} A = 𝑔(𝑥𝑠) (11) 

where 𝑓(𝑥𝑠) = ∫ 𝐾(𝑥𝑠, 𝑡)T(𝑡)𝑑𝑡
1

−1
. This linear system can be expressed in compact forms: 

{∑2P𝑖X𝛼𝑖LTM

𝑙

𝑖=0

− 𝜆F} A = G (12) 

where 

X𝛼𝑖 =

[
 
 
 
 
 𝑥0
1−𝛼𝑖 0 ⋯ 0

0 𝑥1
1−𝛼𝑖 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑥𝑁
1−𝛼𝑖]

 
 
 
 
 

,    T = [

T(𝑥0)

T(𝑥1)
⋮

T(𝑥𝑁)

],    G = [

𝑔(𝑥0)

𝑔(𝑥1)
⋮

𝑔(𝑥𝑁)

] 
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P𝑖 =

[
 
 
 
 
 
𝑝𝑖(𝑥0) 0 ⋯ 0

0 𝑝𝑖(𝑥1) ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 𝑝𝑖(𝑥𝑁)]
 
 
 
 
 

,    and    F = [

𝑓(𝑥0)

𝑓(𝑥1)
⋮

𝑓(𝑥𝑁)

] 

After that, when we denote the formulation in parenthesis of Equation 12 by W, the main matrix equation for 

Equation 1 is abbreviated into the equation WA = G representing a system of 𝑁 + 1 linear algebraic equations 

with 𝑁 + 1 undetermined Chebyshev coefficients 𝑎𝑖’s, for 𝑖 ∈ {0,1,… ,𝑁}.  

Eventually, we solve the obtained linear algebraic system to calculate the unknown coefficients. For that 

purpose, there are several ways to solve this system, but we primarily use it to replace or to stack up the 𝑛 rows 

of the augmented matrix [W; G] with the rows of the augmented matrix [U; 𝑐0]. We choose the best way to get 

the most accurate solutions for each problem. Therefore, since the unknown Chebyshev coefficients are 

discovered by resolving this system, we end up with the solution of Equation 1 under Condition 2. 

5. Numerical Examples 

In that part of the paper, we use the presented method in the previous section for two different examples. The 

collocation points that are used to transform the equations have been formalized as 

𝑥𝑠 =
[1 − cos (

(𝑠 + 1)𝜋
𝑁 + 1 )]

2
,    𝑠 ∈ {0,1,…𝑁} 

for these two examples. All the numerical calculations have been executed with the program Mathcad 15. 

Example 5.1. The fractional Fredholm IDE in the form of Equation 1 

𝐷
1
2𝑦(𝑥) = 𝑦(𝑥) + 2𝑥1.5 − 𝑥2 −

2

3
+ ∫𝑦(𝑡)𝑑𝑡

1

−1

 

subject to initial condition 𝑦(0) = 0 in the form of Equation 2.  

It can easily be confirmed that the exact solution to the above problem is the polynomial solution of degree 

two, 𝑦(𝑥) = 𝑥2. Implementing the methodology explained in Section 4, the expected fundamental matrix 

equation of the problem and its conditions can be presented as P0 = I, I is the identity matrix, 𝜆 = 1, 

{2X1
2

TM− T − F}A = G, and UA = 0 

When we select 𝑁 = 2, the formula gives us the points 𝑥0 = 0.25, 𝑥1 = 0.75, and 𝑥2 = 1 as the collocation 

points. Then, the matrices mentioned above are 

X1
2

= [

1

2
0 0

0
√3

2
0

0 0 1

],    T = [

1
1

4
−
7

8

1
3

4

1

8

1 1 1

],    F =

[
 
 
 
 2 0 −

2

3

2 0 −
2

3

2 0 −
2

3]
 
 
 
 

, 

G =

[
 
 
 
 
 −

23

48

3√3

4
−
59

48

1

3 ]
 
 
 
 
 

,    and    U = [1 0 −1] 
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As a result of the solution of the above system, the unknown coefficients in Equation 3, for 𝑁 = 2, can be 

calculated as 𝑎0 =
1

2
, 𝑎1 = 0, and 𝑎2 =

1

2
. In the final step, we substitute these coefficients into approximate 

Equation 3. Then, we obtain the exact solution. 

Example 5.2. The Fredholm fractional IDE in the form of Equation 1 

𝐷
1
3𝑦(𝑥) = 𝑥

2
3𝑦(𝑥) − 2𝑒𝑥 + ∫𝑒𝑥−𝑡𝑦(𝑡)𝑑𝑡

1

−1

, 0 ≤ 𝑥 ≤ 1 

subject to 𝑦(0) = 1 having the exponential function 𝑒𝑥 as the exact solution.  

The exact solution could not be attained by the introduced method in Section 4 since this problem does not 

have a polynomial solution. Therefore, we attain the approximate solutions with some insignificant errors. The 

absolute maximum errors between the approximate solution obtained by the proposed method and the 

exponential function 𝑒𝑥, the exact solution to the given problem is stated in Table 1. In Table 1, the maximum 

absolute errors are calculated by interchanging the row in the last place of the evaluated augmented matrix 

[W; G] with the augmented matrix [U; 1], for the values 𝑁 ∈ {2, 4, 6, 8, 10} and the values 𝑁 ∈ {14, 16}; by 

stacking up the rows of the computed augmented matrices for this problem. 

Table 1. The maximum errors of Example 2 for different 𝑁 values 

𝑁 = 2 𝑁 = 4 𝑁 = 6 𝑁 = 8 𝑁 = 10 𝑁 = 14 𝑁 = 16 

0.36 1.9 × 10−2 6.0 × 10−5 1.2 × 10−7 1.3 × 10−10 6.4 × 10−14 5.4 × 10−14 

6. Conclusion 

This paper uses Chebyshev polynomials to construct an approximation method to attain the solutions of the 

linear fractional Fredholm integro-differential equations (IDEs). By this approximation method, the fractional 

IDE has been transformed into a linear algebraic equations system with the aid of the collocation points. There 

are numerous methods for obtaining the solutions of the fractional IDEs in the Caputo differential operator 

sense. However, investigating the solutions of the fractional IDEs in the conformable differential operator 

sense is a new field of study among mathematicians. Therefore, the relation for the matrix of the conformable 

fractional derivative of the Chebyshev polynomials is attained for the first time in fractional calculus literature. 

The fractional IDE has been turned into an algebraic equations system using suitable collocation points and 

the obtained matrix relations. The proposed approximation method's simplicity and efficiency have been 

strengthened by the results of the numerical examples provided in the previous section. For future research, 

the fractional derivatives of the Chebyshev polynomials and the related matrix relations can be obtained for 

the different types of fractional derivatives, such as the Caputo fractional derivative and fractional beta 

derivative. 
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