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ON THE TANGENT SPHERE BUNDLE OF THE PSEUDO HYPERBOLIC TWO

SPACE
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ABSTRACT. In this study, the Sasaki semi Riemann metric gS on the tangent sphere bun-

dle with radius ε Tε H2
1 of the pseudo hyperbolic two space H2

1 in semi Euclidean space

E3
1 is obtained. Moreover, the connection coefficients of the Levi Civita connection on

the Sasaki semi Riemann manifold (Tε H2
1 , gS) are found and then the non linear geodesic

equations of (Tε H2
1 , gS) are obtained. Moreover, the relations between geodesics of H2

1

and Tε H2
1 are examined. Finally, the components of the Riemann curvature tensor of

(Tε H2
1 , gS) are calculated.
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1. INTRODUCTION

The geometry of the tangent sphere bundle of a manifold is a well known subject for
the scientists related to bundle geometry. But the geometry of the tangent sphere bundle
with a semi Riemann metric is a new subject.
The tangent sphere bundle of n dimensional manifold is defined as the disjoint union
of the tangent vector space created by the unit tangent vectors at all points of this man-
ifold. The first time was considered that the disjoint union of the tangent vector space
created by the unit tangent vectors at all points of a geodesic circle of the unit 2-sphere
gave a sphere and by moving this sphere along the geodesic circle was produced a torus
by Klingenberg and Sasaki in [4]. Moreover, the authors studied on the torus family
which contains produced all torus along each geodesic circle of the unit 2-sphere. The
authors in their study proved that T1S2 was a Riemann manifold with constant sectional
curvature. Nagy [5] calculated the components of the Riemann sectional curvature of
tangent sphere bundle T1M of a 2-dimensional Riemann manifold M. Moreover, he ob-
tained that a curve (x(t), y(t)) in the tangent sphere bundle had the geodesic curve if
and only if the geodesic curvature of x(t) with Gaussian curvature of M must have been
a constant rate or the parallel displacement of the vector component y(t) along the curve
x(t) must have drawn a helical curve. Sasaki [8] classified the geodesics on the tangent
sphere bundle of the unit n-sphere Sn and the hyperbolic n-space Hn by using the gen-
eral formula of the Sasaki Riemann metric on T1Sn and T1Hn and taking regard of this
classification, he obtained three different types geodesics on T1S3 and T1H2. Ayhan [1]
obtained Sasaki Riemann metric of the tangent sphere bundle of the unit 3-sphere by
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using the geodesic polar coordinate of the unit 3-sphere. Furthermore, he calculated the
general geodesic equations of the tangent sphere bundle of the unit 3-sphere. Ayhan [2]
obtained the Sasaki semi Riemann metric gS on the tangent sphere bundle with radius ε,
TεS

2
1 by using the parametric representation of the unit 2-sphere, S2

1 in three dimensional
semi Euclidean space with index one. Then, he calculated the connection coefficients
of the Levi Civita connection and the coefficients of the Riemann curvature tensor of
(TεS

2
1, gS) and then found out a non-linear differential equation’s system which gives

geodesics of TεS
2
1.

The aim of this study is to examine the geometry of the tangent sphere bundle with
radius ε of a hyperboloid with one sheet in 3-dimensional semi Euclidean space with
index one called pseudo hyperbolic 2-space. Firstly, the Sasaki semi Riemann metric gS

on the tangent sphere bundle with radius ε TεH2
1 of a pseudo hyperbolic two space H2

1 is

obtained. Then, the connection coefficients of the Levi Civita connection of
(

TεH2
1 , gS

)

have been calculated and then a differential equation’s system which gives geodesics of
TεH2

1 has been obtained. Moreover, the components of the Riemann curvature tensor of

TεH2
1 are calculated. Finally, the condition providing the surface H2

1 is totally geodesic

submanifold of TεH2
1 is examined and the lifting operation preserved the causal charac-

ters of geodesics from the surface H2
1 to TεH2

1 is considered.

2. THE PSEUDO HYPERBOLIC 2−SPACE

In this section, the parametric representation of the hyperboloid of one sheet in semi
Euclidean space, the induced semi Riemann metric on H2

1 , the orthonormal base vectors

of the tangent vector space at any point of H2
1 , the Christoffel symbols of H2

1 , a differential

equation’s system, which gives geodesics of H2
1 are considered.

Definition 2.1. Let <,> be non degenerate, symmetric, bilinear form in semi Euclidean space
E3

1 defined by

< u, v >= −u1v1 + u2v2 + u3v3, (1)

for any vectors u, v ∈ E3
1. H2

1 is a surface in E3
1 given by

H2
1 =

{

u = (x1, x2, x3) :< u, u >= −1, u ∈ E3
1

}

. (2)

H2
1 is called as the hyperboloid of one sheet in semi Euclidean space or the pseudo hyperbolic 2-

space. H2
1 is represented by hyperboloid of two sheet in Euclidean space given by the following

equation:

− x2
1 + x2

2 + x2
3 = −1, (3)

with respect to rectangular coordinate system. The parametric representation of H2
1 are given by

x1 = cosh a,

x2 = sinh a cos θ, (4)

x3 = sinh a sin θ,

and a curve on the surface H2
1 is described by

c : t → c(t) = (a(t), θ(t)) , (5)

where (a, θ) is called as the generalized coordinates of H2
1 .
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In order to find the arc length parameter of any curve on pseudo hyperbolic 2-space for
t0 ≤ t ≤ t1, the covariant derivations of x1, x2, x3 are used as follow:

dx1 = sinh ada,

dx2 = cosh a cos θda − sinh a sin θdθ, (6)

dx3 = cosh a sin θda + sinh a cos θdθ.

Definition 2.2. In semi Euclidean space E3
1, the arc length parameter between different two point

with infinitesimal distance on the surface H2
1 (i.e. (x1, x2, x3) and (x1 + dx1, x2 + dx2, x3 + dx3))

is calculated by

ds2 =< (dx1, dx2, dx3), (dx1, dx2, dx3 >

= − (dx1)
2 + (dx2)

2 + (dx3)
2 .

(7)

By using the (6), we get

ds2 = (da)2 + sinh2 a (dθ)2 (8)

and also the matrix representation of this equation has the following components:

gik :

(

1 0

0 sinh2 a

)

, for i, k ∈ {1, 2}, (9)

where gik is called as the induced metric on H2
1 from E3

1. The inverse of gik has the following
matrix representation:

gkj :

(

1 0
0 1

sinh2 a

)

. (10)

Assuming that e1(a, θ) is any point on H2
1 given by

e1(a, θ) = (cosh a, sinh a cos θ, sinh a sin θ) (11)

with respect to standard orthonormal base of E3
1. Since a curve on the surface H2

1 is de-
scribed by c : t → c(t) = (a(t), θ(t)), the unit tangent vector of a−curves and θ−curves
passing through the point e1(a, θ) must be expressed by

f2 =
∂

∂a
and f3 =

1

sinh a

∂

∂θ
. (12)

In addition, the unit tangent vectors f2 and f3 has the following local expression:

f2(a, θ) = (sinh a, cosh a cos θ, cosh a sin θ),

f3(a, θ) = (0,− sin θ, cos θ), (13)

with respect to standard orthonormal base of E3
1. Thus {e1, f2, f3} is another orthonormal

base of E3
1.

Theorem 2.1. Let H2
1 be pseudo hyperbolic 2-space. If Te1

H2
1 is a tangent vector space at any

point e1(a, θ) on H2
1 , g is semi Riemann metric on H2

1 defined by

g : Te1
H2

1 × Te1
H2

1 → IR.
(X, Y) → g (X, Y)

(14)
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Proof. Let X = a f2 + b f3, Y = c f2 + d f3 and Z = p f2 + q f3 be the tangent vectors at any
point on H2

1 where { f2, f3} is orthonormal base of Te1
H2

1 . For all X, Y, Z ∈ Te1
S2

1 and α,
β ∈ IR, we get

g(αX + βY, Z) = g(α [a f2 + b f3] + β [c f2 + d f3] , [p f2 + q f3])
= αg(X, Z) + βg(Y, Z).

Similarly we get g(X, αY + βZ) = αg(X, Y) + βg(X, Z). Thus g is bilinear transforma-
tion. Furthermore g must be symmetric map because the following equation is hold:

g(X, Y) = g(a f2 + b f3, c f2 + d f3)
= g(Y, X).

Finally, g is a non degenerate map such that

g(X, Y) = 0 ⇐⇒ Y = 0 for all X ∈ Te1
H2

1 .

Since g is non degenerate, symmetric, bilinear form, g must be a semi Riemann metric
on the surface H2

1 .

Theorem 2.2. Let H2
1 be pseudo hyperbolic 2-space. Let {e1, f2, f3} be an another orthonormal

base in E3
1 and f2, f3 be the base vectors of the tangent space Te1

H2
1 at a point e1 of H2

1 given by
the equations (11), (12) and (13). e1 is the time like and f2 and f3 the space like unit vectors of
E3

1.

Proof. Since the value of the unit vectors e1, f2 and f3 given by (11) and (13) under the
semi Euclidean metric <,> in E3

1 have the following expression:

< e1, e1 >= − cosh2 a + sinh2 a cos2 θ + sinh2 a sin2 θ = −1,

< f2, f2 >= − sinh2 a + cosh2 a cos2 θ + cosh2 a sin2 θ = 1,

< f3, f3 >= sin2 θ + cos2 θ = 1,

e1 must be the time like unit vector and f2, f3 must be the space like unit vectors, respec-
tively. If we consider the unit tangent vectors f2 and f3 given by (12), we must use the
induced metric on H2

1 from E3
1 given by (9). As a consequence of this fact, we get

g( f2, f2) =
(

1 0
)

(

1 0

0 sinh2 a

)(

1
0

)

= 1,

g( f3, f3) =
(

0 1
sinh a

)

(

1 0

0 sinh2 a

)(

0
1

sinh a

)

= 1.

Thus, f2 and f3 are the space like unit vectors.

Theorem 2.3. Let H2
1 be pseudo hyperbolic 2-space and {e1, f2, f3} be an another orthonormal

base of E3
1. The covariant derivations of these unit-orthogonal vectors are given by

de1 = da f2 + sinh adθ f3,
d f2 = dae1 + cosh adθ f3,
d f3 = sinh adθe1 − cosh adθ f2.

Proof. We use the covariant derivations of orthonormal vectors e1, f2, f3 in order to exam-
ine the change of the base vectors on different two points with infinitesimal distance on
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H2
1 (i.e. (e1, f2, f3) and (e1 + de1, f2 + d f2, f3 + d f3)). The covariant derivatives of these

vectors are calculated by using the partial derivation as follow:

de1 =
∂e1

∂a
da +

∂e1

∂θ
dθ = da f2 + sinh adθ f3,

d f2 =
∂ f2

∂a
da +

∂ f2

∂θ
dθ = dae1 + cosh adθ f3,

d f3 =
∂ f3

∂a
da +

∂ f3

∂θ
dθ = sinh adθe1 − cosh adθ f2.

Theorem 2.4. Let
(

H2
1 , g

)

be a semi Riemann manifold. Let D be Levi Civita connection of
(

H2
1 , g

)

and φk
ij; i, j, k ∈ {1, 2} be Christoffel symbols with respect to the semi Riemann metric

g. Then the non-zero the Christoffel symbols of
(

H2
1 , g

)

have the following components:

φ1
22 = − sinh a cosh a, φ2

12 = coth a,

where φk
ij = φk

ji for all i, j, k ∈ {1, 2}.

Proof. On the semi Riemann manifold
(

H2
1 , g

)

, there is a unique connection D such that
D is torsion free and compatible with semi Riemann metric g. This connection is called
as Levi Civita connection and characterized by the Kozsul formula:

2g (D∂a
∂θ , ∂θ) = ∂ag (∂θ , ∂θ) + ∂θ g (∂θ , ∂a)− ∂θ g (∂a, ∂θ) +

− g ([∂a, ∂θ ] , ∂θ) + g ([∂θ , ∂θ ] , ∂a) + g ([∂θ , ∂a] , ∂θ) ,

where ∂a =
∂
∂a = ∂1, and ∂θ = ∂

∂θ = ∂2. Since D is symmetric, [∂a, ∂θ ] must be zero. If we

get D∂a
∂θ = φ1

12∂a + φ2
12∂θ , from Kozsul formula, it is obtained by

φ1
12 =

1

2
g1m (∂1gm2 + ∂2g2m − ∂mg12) = 0,

φ2
12 =

1

2
g2m (∂1gm2 + ∂2g2m − ∂mg12) = coth a,

where m ∈ {1, 2}. The other Christoffel symbols can be obtained by using the similar
method.

Theorem 2.5. Let
(

H2
1 , g

)

be semi Riemann manifold and c : t ∈ R → c(t) = (a(t), θ(t)) ∈
H2

1 be a curve on the pseudo Hyperbolic 2-space H2
1 . c is a geodesic if and only if the following

differential equation’s system has been provided:

··
a − sinh a cosh aθ̇2 = 0, (15)

··
θ + 2 coth aȧθ̇ = 0. (16)

Proof. c(t) = (a(t), θ(t)) is geodesic if and only if Dċ ċ must be zero. Since ċ is equal to
ȧ∂a + θ̇∂θ , Dċ ċ is equal to Dȧ∂a

(

ȧ∂a + θ̇∂θ

)

+ Dθ̇∂θ

(

ȧ∂a + θ̇∂θ

)

. For Dċ ċ = 0,

Dċ ċ =
(··

a − sinh a cosh aθ̇2
)

∂a +

(··
θ + 2 coth aȧθ̇

)

∂θ

it is seen that the claim of the theorem is correct, easily.
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Definition 2.3. Let the line element of H2
1 be

ds2 = ȧ2 + sinh2 aθ̇2 = ε. (17)

The curve c : t ∈ R → c(t) = (a(t), θ(t)) ∈ H2
1 providing the equations in (2.17) is called

as the time like, the light like or the space like curve providing that ε = −1, ε = 0 or ε = 1,
respectively.

In the rest of the paper, the curve c will be assumed as a geodesic of H2
1 . To find a general

equation characterizing the time like, the light like or the space like geodesics on H2
1 , we

get
(

da

dθ
θ̇

)2

+ sinh2 aθ̇2 = ε. (18)

from (2.17). If we solve the differential equation in (2.16), we get
{

d

da

(

θ̇
)

+ 2 coth aθ̇

}

ȧ = 0 ⇒ θ̇ = k csc h2a ∨ ȧ = 0, (19)

and the value θ̇ = k csc h2a put in the equation (2.18) , the general equation characteriz-
ing the time like, the light like and the space like geodesics on H2

1 are obtained as follows:

da

dθ
=

√

ε sinh4 a − k2 sinh2 a

k
. (20)

Theorem 2.6. The time like geodesics of pseudo hyperbolic 2-space H2
1 are given by the following

generalized and rectangular coordinates of H2
1 :

√

1 + k2 csc h2a + k coth a = cos θ − i sin θ ,

and
(

x2 −
√

x2
2 + x2

3 + k2 − kx1

)2

+ x2
3 = 0.

Proof. The one parameter curve family obtained by putting ε = −1 in (20) defines a
lot of planes. The time like geodesics of pseudo hyperbolic 2-space H2

1 are cross-section

curves between the planes and the surface H2
1 . The following curve on H2

1 is given by an
example to the time like geodesic:

c(t) = (t,
5t2 − 1

4t
,

3t2 + 1

4t
i),

for k = 1.

Theorem 2.7. The light like geodesics on pseudo hyperbolic space H2
1 are given by the following

generalized or rectangular coordinates of H2
1 :

csc ha − coth a = cos θ + i sin θ, (x1 − x2 − 1)2 + x2
3 = 0.

Proof. The one parameter curve family obtained by putting ε = 0 in (20) defines two
planes. The light like geodesics of pseudo hyperbolic 2-space H2

1 are cross-section curves

between the planes and the surface H2
1 . The following curve on H2

1 is given by an exam-
ple to the light like geodesic:

c(t) = (t, t, i).

81



Ismet Ayhan

Theorem 2.8. The space like geodesics on pseudo hyperbolic 2- space H2
1 are given by the follow-

ing generalized or rectangular coordinates of H2
1 :

√
1 − k2 csc h2a√

1 + k2
= sin θ, x2

2 = k2(x2
3 + 1).

Proof. The one parameter curve family obtained by putting ε = 1 in (20) defines sur-
faces. The space like geodesics of pseudo hyperbolic 2-space H2

1 are cross-section curves

between these surfaces and the surface H2
1 . The following curve on H2

1 is given by an
example to the space like geodesic:

c(t) = (
√

2
√

t2 + 1,
√

t2 + 1, t)

for k = 1.

3. THE TANGENT SPHERE BUNDLE WITH RADIUS ε OF PSEUDO HYPERBOLIC TWO

SPACE

This section consists of some subjects as the representation by the local coordinate func-
tion of any point on TεH2

1 , the orthonormal base at any point of TεH2
1 , the covariant

derivations of this orthonormal base elements, Sasaki semi Riemann metric gS on TεH2
1 ,

the adapted base and adapted dual base on TεH2
1 with respect to gS. Furthermore, in

this section contains the subjects as the connection coefficients of the Levi Civita connec-
tion of Sasaki semi Riemann manifold

(

TεH2
1 , gS

)

, a differential equation’s system, which

give geodesics on
(

TεH2
1 , gS

)

. Finally, the coefficients of the Riemann curvature tensor of
(

TεH2
1 , gS

)

are calculated.

Definition 3.1. TεH2
1 = ∪

∀e1(a,θ)∈H2
1

(u ∈ Te1
H2

1 : g(u, u) = ε) is the disjoint union of the

tangent vector spaces including all unit tangent vectors at every point of H2
1 . Thus, TεH2

1 is the
total space of time like, light like and space like vectors with respect to the induced metric g from
standart semi Euclidean metric in E3

1 and TεH2
1 is called as the tangent sphere bundle with radius

ε of H2
1 .

Since H2
1 has 2 dimensional manifold structure, TεH2

1 should be 3 dimensional manifold

structure. Let π : TεH2
1 → H2

1 be a canonical projection map and e2 be an element of TεH2
1

at the point e1(a, θ) of H2
1 . If we denote the angle between f2 and e2 by ω, then (a, θ, ω)

can be considered as local coordinates for e2 in π−1(H2
1). Therefore, e2 and e3 have the

following local expression:

e2(a, θ, ω) = cos ω f2 + sin ω f3,
e3(a, θ, ω) = − sin ω f2 + cos ω f3,

(21)

where e3 is an element of TεH2
1 at the point e1(a, θ) of H2

1 .

Theorem 3.1. Let TεH2
1 be the tangent sphere bundle with radius ε of pseudo hyperbolic 2-space

H2
1 . If e2, e3 have been considered as the tangent vectors at a point e1(a, θ) on H2

1 given by the
equations (3.1) then e2 and e3 are the space like unit vectors.
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Proof. The value of the unit tangent vectors e2 and e3 given by (3.1) under the semi
Euclidean metric in E3

1 are obtained as follows:

< e2, e2 >= cos2 ω < f2, f2 > + sin2 ω < f3, f3 >= 1,

< e3, e3 >= sin2 ω < f2, f2 > + cos2 ω < f3, f3 >= 1.

Thus, e2 and e3 are the space like unit vectors.

Theorem 3.2. Let TεH2
1 be the tangent sphere bundle with radius ε of pseudo hyperbolic 2-space

and e1, e2, e3 be unit-orthogonal elements of TεH2
1 . The covariant derivations of these elements

are given by

de1 = (cos ωda + sinh a sin ωdθ) e2 + (− sin ωda + sinh a cos ωdθ) e3,

de2 = (cos ωda + sinh a sin ωdθ) e1 + (dω + cosh adθ) e3,

de3 = (− sin ωda + sinh a cos ωdθ) e1 − (dω + cosh adθ) e2.

Proof. We use the covariant derivations of e1, e2, e3 in order to examine the change of the
base vectors on different two points with infinitesimal distance on TεH2

1 (i.e. (e1, e2, e3)
and (e1 + de1, e2 + de2, e3 + de3)). The covariant derivatives of e1, e2, e3 are obtained by
helping the partial derivation, easily.

Definition 3.2. The 1-forms providing the equation wij =< dei, ej >, for
i, j ∈ {1, 2, 3} are called as the connection 1-forms on the cotangent space
T∗
(e1,e2)

TεH2
1 where wij is given by

η1 = w12 = −w21 = cos ωda + sinh a sin ωdθ,

η2 = w13 = −w31 = − sin ωda + sinh a cos ωdθ, (22)

η3 = w23 = −w32 = dω + cosh adθ.

Theorem 3.3. In semi Euclidean space E3
1, the line element between infinitely close two point on

TεH2
1 is given by

dσ2 = (da)2 − (dθ)2 − 2 cosh adθdω − (dω)2 . (23)

Proof. In semi Euclidean space E3
1, let {e1, e2, e3} be the orthonormal base at any point

e2 ∈ π−1 ({e1}) on T1H2
1 and {e1 + de1, e2 + de2, e3 + de3} be the orthonormal base at

another point to be infinitely close point to e2. The infinitesimal length between this two
point is obtained as follows:

dσ2 =< de1, de1 > − < de2, e3 >
2

= η1 ∧ η1 + η2 ∧ η2 − η3 ∧ η3

= (da)2 − (dθ)2 − 2 cosh adθdω − (dω)2 .

Definition 3.3. dσ2 : (gS) is called as a metric structure on the manifold TεH2
1 . Moreover,

{

η1, η2, η3
}

is called as an adapted dual base on the cotangent space T∗
(e1,e2)

TεH2
1 with respect to

gS. If the tangent vectors ξi; i ∈ {1, 2, 3} providing the following equation:

ηi(ξi) = gS (ξi, ξi) = ε i, ε i =

{

1 f or i = 1, 2
−1 f or i = 3

, (24)
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{ξ1, ξ2, ξ3} is called as adapted base of the tangent space T(e1,e2)TεH2
1 with respect to the metric

structure gS where ξi i ∈ {1, 2, 3} is defined by

ξ1 = cos ω
∂

∂a
+

sin ω

sinh a

∂

∂θ
− coth a sin ω

∂

∂ω
,

ξ2 = − sin ω
∂

∂a
+

cos ω

sinh a

∂

∂θ
− coth a cos ω

∂

∂ω
, (25)

ξ3 =
∂

∂ω
.

Theorem 3.4. Let TεH2
1 be the tangent sphere bundle with radius ε of pseudo hyperbolic 2-space.

If T(e1,e2)TεH2
1 is a tangent vector space at any point on TεH2

1 , gS is semi Riemann metric on

TεH2
1 where gS is defined by

gS : T(e1,e2)TεH2
1 × T(e1,e2)TεH2

1 → IR.
(∼

X,
∼
Y

)

→ gS

(∼
X,

∼
Y

)

(26)

Proof. Let
∼
X = xiξi,

∼
Y = yjξ j and

∼
Z = zkξk for i, j, k ∈ {1, 2, 3} be the tangent vectors at

any point (e1, e2) of TεH2
1 where {ξ1, ξ2, ξ3} is a orthonormal base of T(e1,e2)TεH2

1 . For all
∼
X,

∼
Y,

∼
Z ∈ T(e1,e2)TεH2

1 and any α, β ∈ IR, we get

gS(α
∼
X + β

∼
Y,

∼
Z) = gS(

{

α
[

xiξi

]

+ β
[

yiξi

]}

, zjξ j)

= αgS(
∼
X,

∼
Z) + βgS(

∼
Y,

∼
Z).

Similarly we get gS(
∼
X, α

∼
Y + β

∼
Z) = αgS(

∼
X,

∼
Y) + βgS(

∼
X,

∼
Z). Thus gS is bilinear transfor-

mation. Since the follow equality is hold

gS(
∼
X,

∼
Y) = gS(xiξi, yjξ j) = yixiε i = gS(

∼
Y,

∼
X).

gS must be symmetric map. Finally, gS is a non degenerate map because gS provides

gS(
∼
X,

∼
Y) = 0 ⇐⇒

∼
Y = 0 for all

∼
X ∈ Te1

H2
1 .

Since gS is non degenerate, symmetric, bilinear form, gS is a semi Riemann metric on the
tangent sphere bundle with radius ε TεH2

1 . gS is called as the Sasaki semi Riemann metric

on TεH2
1 . Moreover

(

TεH2
1 , gS

)

is also called as the Sasaki semi Riemann manifold.

Theorem 3.5. Let TεH2
1 be the tangent sphere bundle with radius ε of pseudo hyperbolic 2-space

and {ξ1, ξ2, ξ3} be a orthonormal base of T(e1,e2)TεH2
1 with respect to Sasaki semi Riemann metric

gS. Then ξ1, ξ2 are the space like unit vectors, ξ3 is a the time like unit vector and 1√
2
{ξ1 + ξ3},

1√
2
{ξ2 + ξ3}, 1√

2
{ξ1 − ξ2} are the light like vectors.
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Proof. The image of the unit tangent vectors ξ1 and ξ2, ξ3 given by (3.5) under the Sasaki
semi Riemann metric gS are

gS(ξ1, ξ1) = cos2 ωgS(
∂

∂a
,

∂

∂a
)− sin2 ω

sinh2 a
gS(

∂

∂θ
,

∂

∂θ
)+

− sin2 ω

sinh2 a
cosh agS(

∂

∂θ
,

∂

∂ω
) + coth2 a sin2 ωgS(

∂

∂ω
,

∂

∂ω
)

= 1,

and

gS(ξ2, ξ2) = sin2 ωgS(
∂

∂a
,

∂

∂a
)− cos2 ω

sinh2 a
gS(

∂

∂θ
,

∂

∂θ
)

− cos2 ω

sinh2 a
cosh agS(

∂

∂θ
,

∂

∂ω
) + coth2 a cos2 ωgS(

∂

∂ω
,

∂

∂ω
)

= 1,

gS(ξ3, ξ3) = gS(
∂

∂ω
,

∂

∂ω
) = −1.

As a consequence gS(ξ3, ξ3) = −1 and gS(ξ1, ξ1) = gS(ξ2, ξ2) = 1, ξ3 is a the time like
unit vectors and ξ1, ξ2 are the space like unit vectors with respect to gS. Furthermore, it is

seen that 1√
2
{ξ1 + ξ3}, 1√

2
{ξ2 + ξ3}, 1√

2
{ξ1 − ξ2} are the light like vectors with respect

to gS, easily.
Sasaki semi Riemann metric gS on the tangent sphere bundle with radius ε of pseudo
hyperbolic 2-space has the following matrix representation:

gαβ :





1 0 0
0 −1 − cosh a
0 − cosh a −1



 for α, β ∈ {1, 2, 3}. (27)

The inverse matrix of gαβ is given by

gβα :





1 0 0
0 csc h2a − csc ha coth a
0 − csc ha coth a csc h2a



 . (28)

Theorem 3.6. Let
(

TεH2
1 , gS

)

be Sasaki semi Riemann manifold. Let ∇ be Levi Civita con-

nection of
(

TεH2
1 , gS

)

and Γ
γ
αβ; α, β, γ ∈ {1, 2, 3} be coefficients of the Christoffel symbols with

related to ∇. Then the non-zero the Christoffel symbols of
(

TεH2
1 , gS

)

are given by

Γ
1
23 = 1

2 sinh a,
Γ

2
12 = 1

2 coth a, Γ
2
13 = − 1

2 csc ha,
Γ

3
12 = − 1

2 csc ha, Γ
3
13 = 1

2 coth a,

(29)

where Γ
γ
αβ = Γ

γ
βα for all α, β, γ ∈ {1, 2, 3}.

Proof. On the Sasaki semi Riemann manifold
(

TεH2
1 , gS

)

there is a unique connection ∇
such that ∇ is torsion free and compatible with semi Riemann metric gS. This connection
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is called as Levi Civita connection and characterized by the Kozsul formula:

2gS (∇∂a
∂θ , ∂ω) = ∂agS (∂θ , ∂ω) + ∂θ gS (∂ω, ∂a)− ∂ωgS (∂a, ∂θ) +

− gS ([∂a, ∂θ ] , ∂ω) + gS ([∂θ , ∂ω] , ∂a) + gS ([∂ω, ∂a] , ∂θ) ,

where ∂a = ∂
∂a = ∂1, ∂θ = ∂

∂θ = ∂2 and ∂ω = ∂
∂ω = ∂3. Since ∇ is symmetric,

[∂a, ∂θ ] , [∂θ , ∂ω] , [∂ω, ∂a] must be zero. If we get ∇∂1
∂2 = Γ

1
12∂1 + Γ

2
12∂2 + Γ

3
12∂3, from

Kozsul formula, Christoffel symbols are obtained as follows:

Γ
1
12 =

1

2
g1k (∂1gk2 + ∂2g1k − ∂kg12) = 0,

Γ
2
12 =

1

2
g2k (∂1gk2 + ∂2g1k − ∂kg12) =

1

2
coth a,

Γ
3
12 =

1

2
g3k (∂1gk2 + ∂2g1k − ∂kg12) = −1

2
csc ha,

where k ∈ {1, 2, 3}. Other Christoffel symbols can be obtained by using the similar
method.

Theorem 3.7. Let
(

TεH2
1 , gS

)

be Sasaki semi Riemann manifold and
c : t ∈ R → c(t) = (a(t), θ(t), ω(t)) be a curve on the tangent sphere bundle with radius
ε TεH2

1 . c is geodesic if and only if the following second order differential equation’s system must
be provided:

··
a + sinh aθ̇ω̇ = 0,

..
θ + coth a

.
a

.
θ − csc ha

.
a

.
ω = 0, (30)

..
ω − csc ha

.
a

.
θ + cot ha

.
a

.
ω = 0.

Proof. c(t) = (a(t), θ(t), ω(t)) is geodesic if and only if ∇ċ ċ must be zero. Since ċ is equal
to ȧ∂a + θ̇∂θ + ω̇∂ω, ∇ċ ċ is equal to

∇ċ ċ =∇ȧ∂a

(

ȧ∂a + θ̇∂θ + ω̇∂ω

)

+∇θ̇∂θ

(

ȧ∂a + θ̇∂θ + ω̇∂ω

)

+

+∇ω̇∂ω

(

ȧ∂a + θ̇∂θ + ω̇∂ω

)

.

Therefore we get

∇ċ ċ =
··
a∂a + ȧθ̇

(

1

2
coth a∂θ −

1

2
csc ha∂ω

)

+ ȧω̇

(

−1

2
csc ha∂θ +

1

2
coth a∂ω

)

+
··
θ∂θ+

+ ȧθ̇

(

1

2
coth a∂θ −

1

2
csc ha

)

∂ω + θ̇ω̇ sinh a∂a+

+ ȧω̇

(

−1

2
csc ha∂θ +

1

2
coth a∂ω

)

+
··
ω∂ω.

If we organize ∇ċ ċ,

∇ċ ċ =
(··

a + sinh aθ̇ω̇
)

∂a +
( ..

θ + coth a
.
a

.
θ − csc ha

.
a

.
ω
)

∂θ

+
(

..
ω − csc ha

.
a

.
θ + cot ha

.
a

.
ω
)

∂ω.
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it can be seen that the claim of the theorem is true.

Theorem 3.8. The non-zero components of the Riemann curvature tensor of the semi Riemann
manifold

(

TεH2
1 , gS

)

are given by

R1
321 = − 1

4 cosh a R1
231 = − 1

4 cosh a, R1
331 = − 1

4 , R1
212 = 1

4 ,

R2
232 = − 1

4 cosh a, R2
332 = − 1

4 , R2
112 = 1

4 , R2
323 = 1

4 , R2
332 = − 1

4 ,

R3
232 = 1

4 R3
323 = − 1

4 cosh a, R3
113 = 1

4 , R3
223 = − 1

4 , R3
121 = 0,

where R
µ
αβγ = −R

µ
αγβ for α, β, γ ∈ {1, 2, 3}.

Proof. Let Γ
γ
αβ, α, β, γ ∈ {1, 2, 3} be the Christoffel symbols of the semi Riemann mani-

fold
(

TεH2
1 , gS

)

and R
µ
αβγ, α, β, γ ∈ {1, 2, 3} be the components of the Riemann curvature

tensor. By using the known formula of the Riemann curvature tensor

R
µ
αβγ = ∂βΓ

µ
αγ − ∂γΓ

µ
αβ + Γ

µ
δβΓ

δ
αγ − Γ

µ
δγΓ

δ
αβ,

and the Christoffel symbols of
(

TεH2
1 , gS

)

in (3.9), it is seen that the claim of the theorem
is correct, easily.

4. MAIN RESULT

In this section, the obtained data in second and third section are summarized. Further-
more, two theorem with related to the relations between geodesics of H2

1 and TεH2
1 are

given. Finaly, the particular examples of the time like, the light like and the space like
geodesics on the surface H2

1 are given and the relation between these geodesics and

geodesics of TεH2
1 are given.

In the second section, we obtained a differential equation’s system which gives geodesic
of the surface H2

1 as follows:

··
a − sinh a cosh aθ̇2 = 0,

··
θ + 2 coth aȧθ̇ = 0,

and the general equation characterizing the time like, the light like and the space like
geodesics on H2

1 are obtained as follows:

da

dθ
=

√

ε sinh4 a − k2 sinh2 a

k
.

Furthermore, the time like geodesic equations are cross-section curves of the pseudo
hyperbolic space H2

1 with the following surfaces given by generalized coordinates (a, θ)
and cartesian coordinates (x1, x2, x3), respectively as follows:

√

1 + k2 csc h2a + k coth a = cos θ − i sin θ ,

and
(

x2 −
√

x2
2 + x2

3 + k2 − kx1

)2

+ x2
3 = 0.
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The following curve on H2
1 can be given by an example to the time like geodesic:

c(t) = (t,
5t2 − 1

4t
,

3t2 + 1

4t
i),

for k = 1.
The light like geodesic equations are cross-section curves of the pseudo hyperbolic space
H2

1 with the following surfaces given by generalized coordinates (a, θ) and cartesian
coordinates (x1, x2, x3), respectively as follows:

csc ha − coth a = cos θ + i sin θ, (x1 − x2 − 1)2 + x2
3 = 0.

The following curve on H2
1 can be given by an example to the light like geodesic:

c(t) = (t, t, i).

The space like geodesic equations are found with respect to generalized coordinates
(a, θ) and cartesian coordinates (x1, x2, x3), respectively as follows:

√
1 − k2 csc h2a√

1 + k2
= sin θ, x2

2 = k2(x2
3 + 1).

The following curve on H2
1 can be given by an example to the space like geodesic:

c(t) = (
√

2
√

t2 + 1,
√

t2 + 1, t),

for k = 1.
In the third section, we calculated the line element on the tangent sphere bundle with ra-
dius ε TεH2

1 of the pseudo hyperbolic 2-space H2
1 with respect to the induced coordinates

(a, θ, ω) as follows:

dσ2 = (da)2 − (dθ)2 − 2 cosh adθdω − (dω)2 ,

and we found out the connection coefficients of the Levi Civita connection of the semi
Riemann manifold

(

TεH2
1 , gS

)

as follows:

Γ
1
23 = 1

2 sinh a,
Γ

2
12 = 1

2 coth a, Γ
2
13 = − 1

2 csc ha,
Γ

3
12 = − 1

2 csc ha, Γ
3
13 = 1

2 coth a.

Furthermore, we calculated the general geodesic equations of the semi Riemann mani-
fold

(

TεH2
1 , gS

)

as follows:

··
a + sinh aθ̇ω̇ = 0,

..
θ + coth a

.
a

.
θ − csc ha

.
a

.
ω = 0,

..
ω − csc ha

.
a

.
θ + cot ha

.
a

.
ω = 0.

If we consider with together two differential equation’s systems which give geodesics
on the surface H2

1 and its tangent sphere bundle with radius ε TεH2
1 we can obtain the

following two theorem:

Theorem 4.1. Let (a, θ) is generalized coordinates of H2
1 and (a, θ, ω) is the local coordinates of

TεH2
1 . The surface H2

1 is totally geodesic sub-manifold of the tangent sphere bundle with radius ε

TεH2
1 if and only if ω̇ is equal to − cosh aθ̇.
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Proof. If we put − cosh aθ̇ instead of ω̇ in the differential equations system given by
(29) we can get the following the differential equations system:

··
a − sinh a cosh a

(

θ̇
)2

= 0,
··
θ + 2 coth aȧθ̇ = 0.

ω̇ + cosh aθ̇ = 0

The solution curves of the above differential equations system give the horizontal geodesics
of TεH2

1 , which are obtained by parallel translations of the unit vectors passing through

geodesics given by (15) and (16) on the surface H2
1 . Since lifted curves with parallel

vector field of each geodesic of the surface H2
1 are also a geodesics of TεH2

1 . If we put

−coshaθ̇ the instead of ω̇ in the Sasaki Riemann metric on TεH2
1 , we obtain the following

equation:

dσ2 = (da)2 − (dθ)2 + 2 cosh a (dθ)2 − cosh2 a (dθ)2

= (da)2 + sinh2 a (dθ)2

Thus, we see that the time like, the light like, and the space like geodesics of the pseudo
hyperbolic 2-space H2

1 is the time like, the light like, and the space like geodesics of the

tangent sphere bundle TεH2
1 . The surface H2

1 is also submanifold of TεH2
1 (see [7]), the

surface H2
1 is totally geodesic submanifold of TεH2

1 .

Theorem 4.2. The horizontal lifting operation from the surface H2
1 to TεH2

1 preserves the causal
characters of geodesics.

Proof. Assuming that C : t → C(t) = (a(t), θ(t), ω(t)) is a horizontal geodesic curve and
c : t → c(t) = (a(t), θ(t)) is natural projection to the surface H2

1 with π ◦ C = c where

π : TεH2
1 → H2

1 is a canonical projection. Since gS(XH, XH) = g(X, X) for XH = Ċ(t)
and X = ċ(t) When a geodesic on the surface H2

1 is the time like or the space like or the

light like geodesic, the horizontal lifted to TεH2
1 of this geodesic must be respectively the

time like or the space like or the light like geodesic. Thus, horizontal lifting operation
from the surface H2

1 to TεH2
1 preserves the causal characters of geodesics.

In the third section, we get the non-zero components of the Riemann curvature tensor of
the semi Riemann manifold

(

TεH2
1 , gS

)

as follows:

R1
321 = − 1

4 cosh a R1
231 = − 1

4 cosh a, R1
331 = − 1

4 , R1
212 = 1

4 ,

R2
232 = − 1

4 cosh a, R2
332 = − 1

4 , R2
112 = 1

4 , R2
323 = 1

4 , R2
332 = − 1

4 ,

R3
232 = 1

4 R3
323 = − 1

4 cosh a, R3
113 = 1

4 , R3
223 = − 1

4 , R3
121 = 0.
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