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Abstract 
 

 In this paper, it is examined relations between the causal character of lifted 
tangent vector on the tangent bundle with Hg  semi-Riemann metric of a semi-
Riemann manifold and the causal character of the tangent vector on the semi-
Riemann manifold with g  semi-Riemann metric. Moreover, it is proved that  ,Hg  
which is obtained in term of the  horizontal lift of a semi-Riemann metric with ν -
index on a differentiable manifold, is a semi-Riemannian metric with n -index  
 
Mathematics Subject Classification: 53C50, 53C07 
 
Keywords: the semi-Riemann metric and special metric on tangent bundle 
 
 
1. Introduction 
 
The study about metrics on tangent bundle of a Riemannn manifold was 
introduced at the end of the 1950’s. [Yano and Ishihara, 1970], The metrics on M 
were lifted TM by vertical, complete and horizontal lifts. [Yano and Ishihara, 
1970], [Oproiu and Papaghiuc, 1998]  examined the differential geometry of TM 
by this metric. Moreover, they defined that obtained metric on TM by the 
horizontal lift of Riemann or semi-Riemann metric on M is semi-Riemann metric 
without proof. In addition, They also defined that lifted metric on TM by 
horizontal lift is a semi-Riemann metric with n positive and n negative signs 
without proof. 
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In this paper, it is proved that (TM, Hg  ) is a semi-Riemann manifold. Then it is 
showed that the tangent vector in (M,g) can respectively spacelike, null and 
timelike if the tangent vector in (TM, Hg  ), which has been lifted a tangent vector 
in (M,g),   is spacelike, null and timelike.   
Finally, it is obtained that obtained metric on TM by the horizontal lift of a 
Riemann or a semi-Riemann metric on M is semi-Riemann metric with n positive 
and n negative signs. 
 
 
2. A differentiable manifold and its tangent bundle 
 
Let M be a differentiable n-dimensional manifold and TM be its tangent bundle. 
Suppose that },...,{)( 1 nxxx = is a system of local coordinates defined in the 
neighborhood MUp ⊂∈ . Since the canonical projection MTM →:π obtains 
the equality pZ p =)(π , /1 )( UU =−π is open neighborhood of the point })({1 p−π  
in TM.  

            ])[],...,[),(),...,(())(,( 11 n
pp

n
p xZxZpxpxZyx =                   (1)   

Therefore, the map (x,y) which is defined with the equality (1) is a local map in 
TMU ⊂/  and  the system of  )1;,( niyx ii ≤≤  is induced local coordinate system 

in TM.  
TTM, the tangent bundle of TM, has subvector bundle  ( )*)( MÇekVTM τ= which 
is called vertical distribution on TM and HTM which is called horizontal 
distribution on TM. In addition, it can be expressed TTM as direct sum of 
subvector bundles VTM and HTM 
                   HTMVTMTTM ⊕=                                         (2) 

}1;,{ niii ≤≤∂δ is adapted local frame in TM where iδ  is local frame in HTM 

             j
ki

kj
ij

j
iii
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N
xxx

Γ=
∂
∂

−
∂
∂

==⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= ,
δ
δδ                   (3) 

and i∂  is local frame in VTM 

.i

V

ii yx ∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=∂                                                (4) 

Furthermore,  }1;,{ nidxy ii ≤≤δ is adapted local dual frame in TM where  
    i

kj
k

j
ij

j
iii yNdxNdyy Γ=+= ,δ                             (5) 

(Oproiu ve Papaghiuc, 1998). 
Hg  is defined vector fields on TM as bellow 

                             

( )
( )
0),(

,0),(),(

,),(),(),(

=

==

==

VVH

HHHH

VVHHHVH

YXg
YXgYXg

YXgYXgYXg

                      (6) 

for any )(, MYX χ∈  and )(,,, TMYYXX HVHV χ∈ . 
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,Hg  the horizontal lift of the metric tensor g with  components ijg  on M, has 
components 

                                    ji
ij

ji
ij

H dxygydxgg δδ +=                                          (7)   
with respect to adapted local frame in TM or 

                 ji
ji

ji
ij

jijk
ijik

ik
jikj

H dxdygdydxgdxdxygygg ++Γ+Γ= )(            (8) 
with respect to induced local coordinates in TM. 
Moreover, the matrix representation of Hg  is 

                                 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Γ+Γ
=

0ji

ij
jk

ijik
ik

jikjH

g
gygyg

g                                    (9) 

(Yano and Ishihara, 1970). 
 
 
3. Semi-Riemann manifold 
 
Semi-Riemann geometry involves a particular kind of (0,2) tensor on tangent 
spaces. To study these in general, let V be a finite dimensional real vector space. 
A bilinear form on V is an R-bilinear function RVVb →×: , and let b be a 
symmetric. 
 
Definition 3.1 A symmetric bilinear form b on V is called  positive [negative] 
definite provided 0≠v implies ]0[0),( <>vvb and  is called nondegenerate 
provided 0),( =wvb  for all Vw∈  implies 0=v . 
If b is a symmetric bilinear form on V then for any subspace W of V the 
restriction )( WWb × , denoted merely by Wb , is again symmetric and bilinear. 
 
Definition 3.2 The index ν  of a symmetric bilinear form b on V is the largest 
integer that is the dimension of a subspace VW ⊂ on which Wb is negative 
definite. 
 
Definition 3.3 A scalar product g  on a vector space V is nondegenerate 
symmetric bilinear form on V. 
 
Definition 3.4 If g smoothly assigns to each point p of M a scalar product g  on 
the tangent space MTp , and the index of g  is the same for all p, a smooth 
manifold M furnished with a metric tensor g  is called a semi-Riemann manifold. 
A semi-Riemann manifold is denoted an ordered pair (M, g ). 
 
Definition 3.5 A tangent vector v  in a semi-Riemann manifold (M, g ) is 
i)   spacelike vector if 0),( >vvg  or 0=v , 
ii)  null vector if 0),( =vvg  and 0≠v , 
iii) timelike vector  if 0),( <vvg .  



 

136                                                                                         I. Ayhan and E. Yasar 
 
 
The category into which a given tangent vector falls is called its causal character. 
 
To prevention clumsy and to make computation easier, we will use normal 
coordinate system while computing the index of a semi-Riemann manifold.  
 
Theorem 3.1 Let (M, g ) be a semi-Riemann manifold with index ν . If  

),...,( 1 nxx  is a normal coordinate system at Mp∈ , it is  

i) 
⎩
⎨
⎧

≤≤+
≤≤−

==
nj

j
pg jjijij 11

11
,)(

ν
ν

εεδ ,                                                (10) 

ii) 0)( =Γ pk
ij   for ( nkji ≤≤ ,,1 )                                                                (11) 

(O’Neill 1983). 
 
4. The metric Hg  in TM 
 
Theorem 4.1 Let M be a differentiable manifold and g  be a Riemann or semi- 
Riemann metric on M. If  )(TMχ  is a set of vector fields in TM and ),( RTMC ∞  
is a ring of differentiable function whose range set  is real number, Hg  is semi-
Riemann metric in TM where Hg  is  

( ) ( )YXgYX
RTMCTMTMg

H

H

~,~~,~
),()()(:

→
→× ∞χχ

.                              (12) 

Proof: Let X  be a vector field in M and X~  be a vector field in TM. All X~  vector 
fields in TM are expressed with direct sum of vector fields VX and HX  due to 
property (2) as below 

                                           .~ HV XXX +=                                                   (13) 
We get 

( )
)~,~()~,~(                                

 ,)()()~,~~(

ZYgZXg

ZZYXYXgZYXg
HH

HVHVHH

βα

βαβαβα

+=

++++=+
 

and  
( )

)~,~()~,~(                                

 )()(,()~~,~(

ZXgYXg

ZYZYXXgZYXg
HH

HVHVHH

βα

βαβαβα

+=

++++=+
 

for any )(,, MZYX χ∈ ,  )(~,~,~ TMZYX χ∈ and R∈βα , . 
Thus, we obtain that Hg   is bilinear. By the equality (13), we get 

)~,~()~,~( XYgYXg HH = . 
Thus, we obtain that Hg   is symmetric. By the definite nondegeneracy of a 
metric, we get 

( ) 0),(),( ),(),~( ===+= VVHHVHVHVH YXgYXgYXXgYXg  
for VYY~  and  )(~ =∈∀ TMX χ . We find that 0=VY  and by similary operation, 
we get 

( ) 0),(),~( == VHH YXgYXg . 
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We also find that 0=HY . Thus, we get  

  0~0)~,~( =⇔= YYXg H for  ).(~ TMX χ∈∀  
Namely, Hg  is nondegenerate. In conclusion,  since it is provided non degenerate, 
symmetric and bilinear properties of Hg , Hg  is a semi-Riemann metric in TM. 
 
Theorem 4.2 Let  (M,g) be a semi-Riemann manifold and  Hg  semi-Riemann 
metric in TM. Let MTp  be the tangent space at a point p in M and TMTZ be the 
tangent space at a point Z in TM which provide equality pZ =)(π . If  ZX ,  are 
spacelike or timelike vectors in MTp , both ( )ZVX  and ( )ZHX  are null vectors in  

TMTZ . 
  
Proof: By the equation (6) and definition 3.5, it can be seen proof of the claim 
straightforward. 
 
Theorem 4.3 Any vector which is defined in a semi-Riemann manifold 

),( HgTM   is null vector if and only if  
i) the vector which is defined on TM lies vertical or horizontal vector subspace in 
tangent space of TM or 
ii) projected vector in MTp  of  the vector which is defined in TMTZ  is null 
vector. 
Proof:  
i) By the equation (6), it is clear. 
ii) By the equality (13), it is writen 

( ) ( )ZH
Z

V
Z XXX +=

~  

where TMTX ZZ ∈
~ and MTZX p∈, . We get  

.0),(2)~,~( == ppZZ
H XXgXXg  

In addition, we get  
.00~ ≠⇒≠ pZ XX  

Thus, pX  is also null vector. 
 
Theorem 4.4 If any vector which is defined on semi-Riemann manifold (TM, Hg  
) is spacelike vector, the vector which is projected on semi-Riemann manifold 
(M, g ) is spacelike vector. 
 
Proof: By the part (ii) of  preceding theorem, it is writen 

( ) ( )ZH
Z

V
Z XXX +=

~  

where TMTX ZZ ∈
~ and MTZX p∈, . By the definition 3.5, we get  

0),(2)~,~( >= ppZZ
H XXgXXg  

or 
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.00~ =⇒= pZ XX  
Thus, pX  is spacelike vector. 
 
 
Theorem 4.5  If any vector which is defined on semi-Riemann manifold  
(TM, Hg  ) is timelike vector, the vector which is projected on semi-Riemann 
manifold (M, g ) is timelike vector. 
 
Proof: By the part (ii) of  theorem 4.3, it is writen 

( ) ( )ZH
Z

V
Z XXX +=~  

where TMTX ZZ ∈
~ and MTZX p∈, . By the definition 3.5, we get  

.0),(2)~,~( <= ppZZ
H XXgXXg  

Thus, if ZX~ is timelike vector, pX  is timelike vector. 
 
 
5. The index of the metric Hg   
 
Theorem 5.1 If  ( gM ,  ) is a Riemann manifold, ( HgTM ,  ) is a semi-Riemann 
manifold with n-index. 
 
Proof: Let g be a Riemann metric on M. We take a normal coordinate system in 
M. In terms of the equalities (10), (11),  it is  obtained that  

 0)(,
0
1

)( =Γ
⎭
⎬
⎫

⎩
⎨
⎧

≠
=

== p
ji
ji

pg k
ijijij δ                                             (14) 

for 0=ν  
The equalities in (14) taking into account (9), the matrix representation of Hg  is  

⎥
⎦

⎤
⎢
⎣

⎡
=

0
0

nxn

nxnH

I
I

g . 

 The eigenvalue of this obtained metric Hg   can be seen by the equality 

                                      n

nxnnxn

nxnnxnH
nnx II

II
gI )1( 2

22 −=
−

−
=− λ

λ
λ

λ .                 (15)                                 

The equality (15) can be proved by the methot of induction as below. 
It is true that  

12
22 )1(

1
1

−=
−

−
=− λ

λ
λ

λ H
x gI   for 1=n  

We suppose that following equality is true kn =   

.)1( 2
22

k

kxkkxk

kxkkxkH
kkx II

II
gI −=

−
−

=− λ
λ

λ
λ  
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The equality can be proved as follow for 1+= kn   
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Since the index of  Hg   is independent chose of map on TM [see the definition 
3.4], Hg  has n positive and n negative eigen value whose equal to +1 and -1. The 
eigen vectors which is corresponded the eigen value +1 are 
  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
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⎢

⎣
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1
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0

,...,

0
...
1
0
...
1

1 nXX , 

and the eigen vectors which is corresponded the eigen value -1 are 

⎥
⎥
⎥
⎥
⎥
⎥
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0
...
1
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1

21 nn XX . 

The matrix which are obtained in terms of  eigenvectors nXX 21 ,...,  and its inverse  
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are  

⎥
⎦

⎤
⎢
⎣

⎡
−

=
nxnnxn

nxnnxn
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and  

⎥
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II
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Thus,  PgPg HH 1~ −=  , the diagonal matrix of Hg , is expressed as follow 

.
0

0~
⎥
⎦

⎤
⎢
⎣

⎡
−

=
nxn

nxnH

I
I

g  

Finally, in terms of the matrix representation of Hg~ ,  we can see that Hg   is a 
semi-Riemann metric with n positif and n negatif sign, straightforward. 

 
Theorem 5.2 If ( gM ,  ) is a Riemann manifold with ν - index, ( HgTM ,  ) is a 
semi-Riemann manifold with n-index. 

Proof: Let M   be a semi-Riemann manifold with ν - index. If we take normal 
coordinate system in M, it is  

νν
ν

nij I
ij
nij

ij
pg =

⎪
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⎪
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⎪
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where  ν
nI  is diagonal square matrix. The first ν    elements which are on the 

diagonal of the this matrix are -1 and rest ν−n  elements are +1. Moreover, it is 
.0)( =Γ pk

ij Thus, the representation of Hg  is that  

⎥
⎦

⎤
⎢
⎣

⎡
=

0
0
ν
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The eigenvalue of this obtained metric Hg   can be seen by the equality  

.)1( 2
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n
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−
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λ

λ
λ ν

ν

                           (16) 

The equality (16) can be proved that it is cosidered two cases as follow. 
 
Case 1: Suppose that n-changeable and −ν non changeable 
 we will the methot of induction so that we prove case 1. It is true that  
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We suppose that following equality is true for  kn =  
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Case 2: it is n-non changeable and ν  changeable 

It is true that 
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We suppose that following equality is true for kn =   and  ην =   
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We can prove that the true of the equality (20) for kn =   and  1+=ην  as follow 
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Thus, the value of the deteminant H

nnx gI −22λ  is independent the choose of both 

n  and ν . Furthermore, Hg  has n positive and n negative eigenvalue which equal 
to +1 and -1.  
The eigen vector which is corresponded the eigen value +1 
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 and the eigenvector which is corresponded the eigenvalue -1 
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 The matrix which are obtained in terms of eigenvectors nXX 21 ,...,  and its inverse 
are  
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and  
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Thus,  PgPg HH 1~ −=  , the diagonal matrix of Hg , is expressed as follow 
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Finally, in terms of the matrix representation of Hg~ ,  we can see that Hg   is a 
semi-Riemann metric with n positive and n negative sign, straightforward 
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