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Abstract

In the present paper, by estimating operator norms, we give some characterizations of infinite

matrix classes
(∣∣∣Er

µ

∣∣∣
q
,Λ

)
and

(∣∣∣Er
µ

∣∣∣
∞
,Λ
)

, where the absolute spaces
∣∣∣Er

µ

∣∣∣
q
,
∣∣∣Er

µ

∣∣∣
∞

have

been recently studied by Gökçe and Sarıgöl [1] and Λ is one of the well-known spaces
c0,c, l∞, lq(q ≥ 1). Also, we obtain necessary and sufficient conditions for each matrix
in these classes to be compact establishing their identities or estimates for the Hausdorff
measures of noncompactness.

1. Introduction

The summability theory is one of the most important field in mathematics specially analysis, applied mathematics, engineering sciences,
quantum mechanics and probability theory, therefore, it has been chosen as the subject of study by many authors. The theory of sequence
space, which is one of the main topics of the summability theory, is mainly about generalizing the concepts of convergence-divergence
for sequences and series. In this context, the primary aim is to assign a limit value for non-convergent sequences or series by using a
transformation given by the most general linear mappings of infinite matrices. So, several studies can be traced in the literature dealing with
characterization of matrix transformation between special sequence spaces. To mention few of them are [2–6]. On the one hand, from a
different perspective, using the notion of absolute summability, a lot of new spaces of series summable by the absolute summability methods

have studied and introduced by authors (see [1, 7–14]). In recent paper [1], the infinite matrix classes
(∣∣∣Er

µ

∣∣∣ , ∣∣∣Er
µ

∣∣∣
q

)
and

(∣∣∣Er
µ

∣∣∣
q
,
∣∣∣Er

µ

∣∣∣)
have been investigated. In the present paper, the matrix classes

(∣∣∣Er
µ

∣∣∣
q
,Λ

)
and

(∣∣∣Er
µ

∣∣∣
∞
,Λ
)

have been characterized with operator norms,

where 1≤ q < ∞ and Λ ∈
{

c,c0, l∞, lq
}

. Besides, establishing their identities or estimates for the Hausdorff measures of noncompactness,
the necessary and sufficient conditions for each matrix in these classes to be compact have been investigated .

A linear subspaces of ω , the set of all sequences of complex numbers, is called a sequence space. Let ∆,Γ be any subspaces of ω and
U = (unv) be any infinite matrix of complex components. The transform of a sequence δ = (δv) ∈ ω is the sequence U(δ ) deduced by the
usual matrix product and its terms are written as

Un(δ ) =
∞

∑
j=0

un jδ j,

provided that the series converges for all n ≥ 0. Then, U is called a matrix mapping from the space ∆ into the another spaces Γ, if the
sequence U(δ ) exists and U(δ ) ∈ Γ for all δ ∈ ∆. The collection, containing all such infinite matrices, is denoted by (∆,Γ).
A triangle matrix U is given as unn 6= 0 for all n and un j = 0 for n > j.
The concept of domain of an infinite matrix U in the ∆ is described by

ΛU = {δ = (δn) ∈ ω : U(δ ) ∈ ∆} (1.1)
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and also the β -dual of the sequence space Λ is given by the set

∆
β =

{
y :

∞

∑
v=0

yvδv converges for all δ ∈ ∆

}
.

If ∆ ⊂ ω is a Frechet space that is a complete locally convex linear metric space, on which all coordinate functionals rn(δ ) = δn are
continuous for all n, then it is said to be an FK space; an FK space whose metric is given by a norm is called a BK space.
BK-spaces have a significant role in summability theory. For instance, the matrix operators between BK-spaces are continuous and when ∆ is
a BK-space, the matrix domain ∆U is also a BK-space, and also its norm is given by

‖δ‖
∆U

= ‖U(δ )‖
∆
.

A BK-space Λ⊃ φ is said to have AK property if, for all sequence δ = (δv) ∈ ∆, there is a unique representation δ =
∞

∑
v=0

δve(v) where (e(v))

is the sequence whose only nonzero term is 1 in v-th place for v≥ 0 and φ is the set of all finite sequences. For example, while the space l∞
does not have AK property, the sequence space lq has AK property in respect to its natural norm where q≥ 1.

Let ∆ and Γ be two Banach spaces. The set of all continuous linear operators from ∆ into Γ is represented by B(∆,Γ) and, for U ∈B(∆,Γ),
the norm of U is stated by

‖U‖= sup
δ∈S∆

‖U(δ )‖
Γ
.

If y ∈ ω and ∆⊃ φ is a BK-space, then

‖y‖∗
∆
= sup

δ∈S∆

∣∣∣∣∣ ∞

∑
k=0

ykδk

∣∣∣∣∣ ,
and it is finite for y ∈ ∆β . Here, S′

∆
is the unit sphere in ∆.

Throughout this study, µ = (µn) is any sequence of positive real numbers, U = (un j) be an infinite matrix of complex components for all
n, j ≥ 0 and q∗ is the conjugate of q, that is 1/q+1/q∗ = 1 for q > 1, and 1/q∗ = 0 for q = 1.
Let ∑δk be an infinite series with partial sums sn, and (µn) be a sequence of positive terms. The series ∑δv is said to be summable |U,µn|q,
1≤ q < ∞, if (see [15])

∞

∑
n=0

µ
q−1
n |Un(s)−Un−1(s)|q < ∞, (1.2)

where U−1(s) = 0.
Point out that the method includes certain well known methods. For instance, for Cesàro matrix with µn = n and the weighted mean matrix,
it reduces to the absolute Cesàro summability due to Flett [7] and the absolute weighted summability given by Sulaiman [6], respectively.
For more applications, we refer readers to ( [1, 8–10, 12]).
Also, if we choose the Euler matrix Er = (er

ni) instead of U , the summability |U,µn|q is reduced to the absolute Euler summability |Er,µn|q
of order r. Here the terms of the matrix Er = (er

ni) is given by

er
ni =

{ (n
i
)
(1− r)n−iri, 0≤ i≤ n

0, i > n

for all n, i≥ 0 and 0 < r ≤ 1, [1].
The spaces of all series summable by the methods |Er,µn|q , 1≤ q < ∞, and |Er,µn|∞ have recently been introduced by Gökçe and Sarıgöl [1]
as follows:∣∣∣Er

µ

∣∣∣
q
=

{
δ = (δv) :

∞

∑
n=1
|T r

n (q)(δ )|
q < ∞

}
∣∣∣Er

µ,q

∣∣∣
∞
=

{
δ = (δv) : sup

n
|T r

n (q)(δ )|< ∞

}
where T r

0 (q)(δ ) = δ0 and

T r
n (q)(δ ) = µ

1/q∗
n

n
∑

i=1

(n−1
i−1
)
(1− r)n−iriδi. (1.3)

Also, with the notation of domain, we can state
∣∣∣Er

µ

∣∣∣
q
= (lq)T r(q) and

∣∣∣Er
µ,q

∣∣∣
∞
= (l∞)T r(q), if we define the matrix T r(q) = (tr

n j(q)) by

tr
ni(q) =

{
µ

1/q∗
n

(n−1
i−1
)
(1− r)n−iri, 1≤ i≤ n

0, i > n.

The inverse transformation of T r
n (q) can be written as

δn =
n

∑
i=1

µ
−1/q∗
i

(
n−1
i−1

)
(r−1)n−ir−nT r

i (q)(δ ), (1.4)

[1].
Now, we list some known lemmas:
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Lemma 1.1 ( [1]). Let 1≤ q < ∞. The spaces
∣∣∣Er

µ

∣∣∣
q

and
∣∣∣Er

µ,q

∣∣∣
∞

are BK-spaces with the norms ‖δ‖|Er
µ |q

= ‖T r(q)(δ )‖lq and ‖δ‖|Er
µ,q|∞

=

‖T r(q)(δ )‖
∞

. Also, these are linearly isomorphic to the space lq and l∞, respectively.

Lemma 1.2 ( [16]). The following statements hold:

1. U ∈ (l,c) iff (i) lim
n

un j exists for all j ≥ 0, (ii) sup
n, j
|un j|< ∞,

U ∈ (l, l∞) iff (ii) holds.

2. If 1 < q < ∞, then,U ∈ (lq,c)if and only if (i)holds,(iii)sup
n

∞

∑
j=0
|un j|q

∗
< ∞,

U ∈ (lq, l∞)iff (iii) holds.
3. U ∈ (l,c0) iff (iv) lim

n
un j = 0 for all j ≥ 0, (ii) hold.

4. If 1 < q < ∞, then,U ∈ (lq,c0) iff (iii) and (iv) hold.

5. U ∈ (l∞,c) iff (i) holds, (v)
∞

∑
j=0
|un j|< ∞ uniformly in n,

U ∈ (l∞, l∞) iff (vi) sup
n

∞

∑
j=0
|un j|< ∞.

6. U ∈ (l∞,c0) iff (vii) lim
n

∞

∑
j=0
|un j|= 0.

7. If 1≤ p < ∞, then U ∈ (l∞, lq) iff (viii) sup
K

∞

∑
n=0

∣∣∣∣ ∞

∑
k∈K

un j

∣∣∣∣q < ∞.

Lemma 1.3 ( [17]). Let 1≤ q < ∞. Then, U ∈ (l, lq) iff

‖U‖(l,lq) = sup
j

{
∞

∑
n=0

∣∣un j
∣∣q}1/p

< ∞.

Lemma 1.4 ( [16]). Let 1 < q < ∞. Then, U ∈ (lq, l) iff

‖U‖(lq,l) = sup
N∈T

 ∞

∑
j=0

∣∣∣∣∣ ∞

∑
n∈N

un j

∣∣∣∣∣
q∗


1/q∗

< ∞

where T stands for the collection of all finite subsets of N.

It is difficult to apply Lemma 1.4 in applications. The following lemma presents to us an equivalent applicable norm.

Lemma 1.5 ( [18]). Let 1 < q < ∞. Then, U ∈ (lq, l) iff

‖U‖
′

(lq,l) =

 ∞

∑
j=0

(
∞

∑
n=0

∣∣un j
∣∣)q∗


1/q∗

< ∞.

Since ‖U‖(lq,l) ≤ ‖U‖
′

(lq,l) ≤ 4‖U‖(lq,l) , there exists ζ ∈ [1,4] such that ‖U‖
′

(lq,l) = ζ ‖U‖(lq,l).

Using the Hausdorff measure of noncompactness χ introduced in [19], characterizations of compact operators on great number of sequence
spaces are investigated by many researchers. For instance, to characterize the class of compact operators on several spaces, the Hausdorff
measure of noncompactness method have been used by Malkowsky and Rakocevic in [20], Mursaleen and Noman in [21, 22], (see
also [1, 23–26]).
Let (∆,d) be a metric space and Q be a bounded subset of ∆. Then, χ and the number

χ (Q) = inf{ε > 0 : Q has a finite ε−net in ∆}

are called the Hausdorff measure of noncompactness and the Hausdorff measure of noncompactness of Q, respectively.
Suppose that S is a linear operator between the Banach spaces ∆ and Γ such that S : ∆→ Γ. Then, it is said that S is compact if its domain is
all of ∆ and, for every bounded sequence (δn) in ∆, the sequence (S(δn)) has a convergent subsequence in Γ.

Lemma 1.6 ( [27]). Let Q⊂ ∆ be a bounded set where ∆ is one of the normed spaces c0 or lq for 1≤ q < ∞. If Rr : ∆→ ∆ is the operator
defined by Rr(y) = (y0,y1, ...yr,0,0, ...) for all y ∈ ∆, then

χ (Q) = lim
r→∞

(
sup
δ∈Q
‖(I−Rr)(y)‖

)
.

Let χ1,χ2 be Hausdorff measures on ∆ and Γ. If S(Q) is a bounded subset of Γ and there exists M > 0 such that χ2 (S(Q))≤Mχ1 (Q) for
each bounded subset Q of ∆, then the linear operator S : ∆→ Γ is called (χ1,χ2)- bounded. If an operator S is (χ1,χ2)- bounded, then the
number

‖S‖(χ1,χ2)
= inf{M > 0 : χ2 (S(Q))≤Mχ1 (Q) for all bounded sets Q⊂ ∆}

is called the (χ1,χ2)-measure noncompactness of L. Also, in case of χ1 = χ2 = χ, it is written by ‖S‖(χ,χ) = ‖S‖χ .
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Lemma 1.7 ( [28]). L ∈B(∆,Γ) and S′
δ
= {δ ∈ ∆ : ‖δ‖ ≤ 1} be the unit ball in ∆. Then,

‖S‖χ = χ
(
S
(
S′

δ

))
and

S is compact ⇔‖S‖χ = 0.

Lemma 1.8 ( [29]). Let T = (tnv) be an infinite triangle matrix, ∆ be a normed sequence space and χT and χ stand for the Hausdorff
measures of noncompactness on M∆T and M∆, the collections of all bounded sets in ∆T and ∆, respectively. Then, χT (Q) = χ(T (Q)) for
each Q ∈M∆T .

Lemma 1.9 ( [22]). Let ∆ = l∞ or ∆⊃ φ be any BK-space with AK property. If U ∈ (∆,c), then

lim
n→∞

unk = λk exists for all k,

λ = (λk) ∈ ∆
β ,

sup
n
‖Un−λ‖∗X < ∞,

lim
n→∞

Un(δ ) =
∞

∑
k=0

λkδk for each δ = (δk) ∈ ∆.

Lemma 1.10 ( [22]). Let ∆⊃ φ be a BK-space. Then,
(a) If U ∈ (∆,c0), then

‖LU‖χ = lim
r→∞

(
sup
n>i
‖Un‖∗∆

)
.

(b) If the space ∆ has AK or ∆ = l∞ and U ∈ (∆,c), then

1
2

lim
i→∞

(
sup
n≥i
‖Un−λ‖∗

∆

)
≤ ‖SU‖χ ≤ lim

i→∞

(
sup
n≥i
‖Un−λ‖∗

∆

)

where λ = (λk) defined by λk = lim
n→∞

unk, for all n ∈ N.

(c) If U ∈ (∆, l∞), then

0≤ ‖SU‖χ ≤ lim
i→∞

(
sup
n>i
‖Un‖∗∆

)
.

2. Matrix and Compact Operators on the Spaces
∣∣Er

µ

∣∣
q

and
∣∣Er

µ,q
∣∣
∞

In this part of the study, firstly, by computing operator norms we obtain some characterizations of infinite matrix classes
(∣∣∣Er

µ

∣∣∣
q
,Λ

)
and(∣∣∣Er

µ

∣∣∣
∞
,Λ
)

, where Λ is one of the spaces c,c0, l∞, lq and 1≤ q < ∞. Moreover, we search the necessary and sufficient conditions for each
matrix in these classes to be compact establishing their estimates or identities for the Hausdorff measures of noncompactness.

Lemma 2.1. Let 1≤ q < ∞. Then,

(i) If u = (uv) ∈
{∣∣∣Er

µ

∣∣∣
q

}β

, then, ũ(q) = (ũ(q)v ) ∈ lq∗ for all δ ∈
∣∣∣Er

µ

∣∣∣
q

(ii) If u = (uv) ∈
{∣∣∣Er

µ

∣∣∣}β

, then, ũ(1) = (ũ(1)v ) ∈ l∞ for all δ ∈
∣∣∣Er

µ

∣∣∣
(iii) If u = (uv) ∈

{∣∣∣Er
µ,q

∣∣∣
∞

}β

, then, ũ(q) = (ũ(q)v ) ∈ l for all δ ∈
∣∣∣Er

µ,q

∣∣∣
∞

and the equality

∞

∑
v=0

uvδv =
∞

∑
v=0

ũ(q)v yv (2.1)

holds, where y = T r(q)(δ ) is T r(q)-transformation sequence of the sequence δ = (δv) and

ũ(q)v = µ
−1/q∗
v

∞

∑
n=v

(
n−1
v−1

)
(r−1)n−vr−nun, ũ

(q)
0 = u0.

Proof. (i) Let u = (uv) ∈
{∣∣∣Er

µ

∣∣∣
q

}β

. Considering (1.4) the equation (2.1) is obtained immediately. Also, it follows from Theorem 1.29

in [30] that ũ(q) ∈ lq∗ whenever u ∈
{∣∣∣Er

µ

∣∣∣
q

}β

.

As (ii) and (iii) can be proved with similar lines, these parts are left to reader.
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Lemma 2.2. Let 1 < q < ∞. Then, we have ‖u‖∗|Er
µ |q

=
∥∥∥ũ(q)

∥∥∥
lq∗

for all u ∈
{∣∣∣Er

µ

∣∣∣
q

}β

, ‖u‖∗|Er
µ | =

∥∥∥ũ(1)
∥∥∥

l∞
for all u ∈

{∣∣∣Er
µ

∣∣∣}β

and

‖u‖∗|Er
µ,q|∞

=
∥∥∥ũ(q)

∥∥∥
l

for all u ∈
{∣∣∣Er

µ,q

∣∣∣
∞

}β

.

Proof. Take u ∈
{∣∣∣Er

µ

∣∣∣
q

}β

. Since lβ
q = lq∗ , we get ũ(q) ∈ lq∗ . Also, it follows from Theorem 1.29 in [30] and Lemma 2.1 that

‖u‖∗|Er
µ |q

= sup
δ∈S|Er

µ |q

∣∣∣∣∣ ∞

∑
v=0

uvδv

∣∣∣∣∣= sup
y∈Slq

∣∣∣∣∣ ∞

∑
v=0

ũ(q)v yv

∣∣∣∣∣= ∥∥∥ũ(q)
∥∥∥∗

lq
=
∥∥∥ũ(q)

∥∥∥
lq∗

.

For u ∈
{∣∣∣Er

µ

∣∣∣}β

and u ∈
{∣∣∣Er

µ,q

∣∣∣
∞

}β

, the proofs are similar, so the proofs are omitted.

Theorem 2.3. Let 1≤ q < ∞. Further, let W = (wn j) be a matrix satisfying

wn j = µ
1/q∗
n

n

∑
i=1

(
n−1
i−1

)
(1− r)n−iriui j. (2.2)

Then, U ∈
(

∆,
∣∣∣Er

µ

∣∣∣
q

)
equals to W ∈

(
∆, lq

)
, and U ∈

(
∆,
∣∣∣Er

µ,q

∣∣∣
∞

)
if and only if W ∈ (∆, l∞).

Proof. Let take λ ∈ ∆. Then, considering (2.2) it can be written that

∞

∑
j=0

wn jδ j = µ
1/q∗
n

n

∑
v=1

(
n−1
v−1

)
(1− r)n−vrv

∞

∑
j=0

u jvδ j,

which implies that Wn(δ ) = T r
n (q)(U(δ )). This shows that Un(δ )∈

∣∣∣Er
µ

∣∣∣
q

when δ ∈ ∆ if and only if W (δ )∈ lq when δ ∈ ∆, which completes

the first part of the proof of the theorem.
The remaining part of the proof is omitted, as it is similar.

Theorem 2.4. Assume that 1≤ q < ∞ and ∆ is arbitrary sequence space. Then, U ∈
(∣∣∣Er

µ

∣∣∣
q
,∆

)
if and only if for all n≥ 0

V (n) ∈
(
lq,c
)

and Ũ (q) ∈
(
lq,∆

)
,

U ∈
(∣∣∣Er

µ,q

∣∣∣
∞
,∆
)

if and only if for all n≥ 0

V (n) ∈ (l∞,c) and Ũ (q) ∈ (l∞,∆) .

Here the matrices Ũ and V (n) are described as

ũ(q)nk = µ
−1/p∗

k

∞

∑
v=k

(
v−1
k−1

)
(r−1)v−kr−vunv

and

v(n)mk =


un0, k = 0

µ
−1/q∗

k

m
∑

v=k

(v−1
k−1
)
(r−1)v−kr−vunv, 1≤ k ≤ m

0, k > m.

Proof. We only demonstrate for U ∈
(∣∣∣Er

µ

∣∣∣
q
,∆

)
to avoid repetition. Assume that U ∈

(∣∣∣Er
µ

∣∣∣
q
,∆

)
. Given δ ∈

∣∣∣Er
µ

∣∣∣
q
. Since

∣∣∣Er
µ

∣∣∣
q
=(

lq
)

T (r)(q), it follows from (1.4) that, for n,m≥ 0,

m

∑
k=0

unkδk =
m

∑
k=0

v(n)mk yk. (2.3)

So, we get that, for all δ ∈
∣∣∣Er

µ

∣∣∣
q
, Uδ is well defined iff V (n) ∈ (lq,c). Also, letting m→ ∞, gives (2.3) that Uδ = Ũ (q)y. Since Uδ ∈ ∆,

Ũ (q)y is also in ∆, and so Ũ ∈ (lq,∆).

On the contrary, let V (n) ∈
(
lq,c
)

and Ũ (q) ∈
(
lq,∆

)
. Then, by (2.3), we have Un ∈

{∣∣∣Er
µ

∣∣∣
q

}β

for all n, which gives that Uδ exists. Also, by

Ũ (q) ∈
(
lq,∆

)
and (2.3), by letting m→ ∞, we get U ∈

(∣∣∣Er
µ

∣∣∣
q
,∆

)
.

We present the following tables and conditions:
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From To c c0 l∞ l lp(p > 1)∣∣∣Er
µ

∣∣∣
q

1,3,12,14 2,3,12,14 3,12,14 4,12,14 –

∣∣∣Er
µ

∣∣∣ 1,6,11,14 2,6,11,14 6,11,14 5,11,14 5,11,14

∣∣∣Er
µ,q

∣∣∣
∞

1,7,13,14 8,13,14 10,13,14 9,13,14 9,13,14

Table 1: From Absolute Euler spaces to
{

l∞,c0,c, l, lp
}

From To cs bs∣∣∣Er
µ

∣∣∣
q

1, 3,12,14 3,12,14

∣∣∣Er
µ

∣∣∣ 1,6,11,14 6,11,14

∣∣∣Er
µ,q

∣∣∣
∞

1,7,13,14 10,13,14

Table 2: From Absolute Euler spaces to {cs,bs}

1. lim
n→∞

ũ(q)n j exists for all j ∈ N

2. lim
n→∞

ũ(q)n j = 0 for all j ∈ N

3. sup
n

∞

∑
j=0

∣∣∣ũ(q)nv

∣∣∣q∗ < ∞

4. sup
N

∑
v

∣∣∣∣ ∑
n∈N

ũ(q)n j

∣∣∣∣q∗ < ∞

5. sup
j

∑
n

∣∣∣ũ(q)n j

∣∣∣p < ∞,(1≤ p < ∞)

6. sup
n, j

∣∣∣ũ(q)n j

∣∣∣< ∞

7.
∞

∑
j=0
|ũq

n j|< ∞ uniformly in n

8. lim
n

∞

∑
j=0
|ũq

n j|= 0

9. sup
K

∞

∑
n=0

∣∣∣∣ ∞

∑
k∈K

ũq
n j

∣∣∣∣p < ∞,(1≤ p < ∞)

10. sup
n

∞

∑
j=0
|ũq

n j|< ∞

11. sup
m, j

∣∣∣v(n)m j

∣∣∣< ∞

12. sup
m

∞

∑
j=0

∣∣∣v(n)m j

∣∣∣q∗ < ∞

13.
∞

∑
j=0
|v(n)m j |< ∞ uniformly in m

14. lim
m→∞

v(n)m j exists for all j,n ∈ N

We obtain following by Theorem 2.4.

Theorem 2.5. Let 1 < p,q < ∞. Then, Table 1 presents us the necessary and sufficient conditions for U ∈ (η ,Λ), where η is one of absolute
Euler spaces and Λ ∈

{
c,c0, l∞, l, lp

}
.

Take the matrices T1 = (t1
n j) and T2 = (t2

n j) as

t1
n j =

{
1, 0≤ j ≤ n
0, j > n

and

t2
n j =


1, n = j

−1, n = j+1
0, otherwise.
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Then, since bs = {l∞}T1
, cs = {c}T1

and bvq =
{

lq
}

T2
, characterization of the matrix classes (η ,Θ) can be obtained immediately as follows,

where Θ ∈
{

cs,bs,bvq
}

and η is one of the any absolute Euler spaces.

Corollary 2.6. Let’s take u(n, j) =
n
∑

i=0
ui j instead of un j in the matrices V (n) = (v(n)mv ) and Ũ (p) = (ũ(p)

nv ) for all n, j ≥ 0. Then, Table 2

presents us the necessary and sufficient conditions for U ∈ (η ,Θ), where Θ ∈ {cs,bs} and η is one of the absolute Euler spaces.

Corollary 2.7. Put bn j = un j−un+1, j instead of un j in the matrices V (n) and Ũ (q) for all n, j ≥ 0. Then,

U ∈
(∣∣∣Er

µ

∣∣∣ ,bvp

)
iff the conditions 5,11,14 hold,

U ∈
(∣∣∣Er

µ,q

∣∣∣
∞
,bvp

)
iff the conditions 9,13,14 hold.

Theorem 2.8. (i) Let 1 < q < ∞ and Λ ∈ {c0,c, l∞}. Then,

U ∈
(∣∣∣Er

µ

∣∣∣
q
,Λ

)
⇒‖SU‖= sup

n

∥∥∥Ũ (q)
n

∥∥∥
lq∗

= sup
n

(
∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣q∗)1/q∗

U ∈
(∣∣∣Er

µ

∣∣∣ ,Λ)⇒‖SU‖= sup
n

∥∥∥Ũ (1)
n

∥∥∥
l∞
= sup

n,v

∣∣∣ũ(1)nv

∣∣∣
U ∈

(∣∣∣Er
µ,

∣∣∣
∞
,Λ
)
⇒‖SU‖= sup

n

∥∥∥Ũ (q)
n

∥∥∥
l
= sup

n

∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣ .
(ii) Let 1 < q < ∞. Then, there exists ζ ∈ [1,4] such that

U ∈
(∣∣∣Er

µ

∣∣∣
q
, l
)
⇒‖SU‖=

1
ζ

∥∥∥Ũ (q)
∥∥∥′
(lq,l)

=
1
ζ

 ∞

∑
v=0

(
∞

∑
n=0

∣∣∣ũ(q)nv

∣∣∣)q∗


1/q∗

,

U ∈
(∣∣∣Er

µ

∣∣∣ , lq)⇒‖SU‖=
∥∥∥Ũ (1)

∥∥∥
(l,lq)

= sup
v

{
∞

∑
n=0

∣∣∣ũ(1)nv

∣∣∣q} 1
q

,

U ∈
(∣∣∣Er

µ

∣∣∣ , l)⇒‖SU‖=
∥∥∥Ũ (1)

n

∥∥∥
(l,l)

= sup
v

∞

∑
n=0

∣∣∣ũ(1)nv

∣∣∣ ,
U ∈

(∣∣∣Er
µ,q

∣∣∣
∞
, lq
)
⇒‖SU‖=

∥∥∥Ũ (q)
∥∥∥
(l∞,lq)

,

U ∈
(∣∣∣Er

µ,q

∣∣∣
∞
, l
)
⇒‖SU‖=

∥∥∥Ũ (q)
∥∥∥
(l,l)

.

Proof. The theorem can be easily proved by using Lemma 1.3, Lemma 1.5, Lemma 2.2 and Theorem 1.23 in [30], so it have left to
reader.

Theorem 2.9. Let 1 < q < ∞.

(a) If U ∈
(∣∣∣Er

µ

∣∣∣
q
,c0

)
, then

‖SU‖χ = lim
r→∞

sup
n>r

∥∥∥Ũ (q)
n

∥∥∥
lq∗

= lim
r→∞

sup
n>r

(
∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣q∗)1/q∗

,

and

LU is compact iff lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣q∗ = 0.

(b) If U ∈
(∣∣∣Er

µ

∣∣∣
q
,c
)

, then

1
2

lim
r→∞

sup
n>r

(
∞

∑
v=0

∣∣∣ũ(q)nv − ũv

∣∣∣q∗)1/q∗

≤ ‖SU‖χ ≤ lim
r→∞

sup
n>r

(
∞

∑
v=0

∣∣∣ũ(q)nv − ũv

∣∣∣q∗)1/q∗

and

SU is compact iff lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv − ũv

∣∣∣q∗ = 0, where ũv = lim
n→∞

ũnv, for all n ∈ N.

(c) If U ∈
(∣∣∣Er

µ

∣∣∣
q
, l∞

)
, then

0≤ ‖SU‖χ ≤ lim
r→∞

sup
n>r

(
∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣q∗)1/q∗

,

and

if lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣q∗ = 0, SU is compact.
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Proof. (a) Let U ∈
(∣∣∣Er

µ

∣∣∣
q
,c0

)
. Then, the series

∞

∑
n=0

unvλv converges for all λ ∈
∣∣∣Er

µ

∣∣∣
q
, or, equivalently Un = {unv}∞

v=0 ∈
{∣∣∣Er

µ

∣∣∣
q

}β

. So,

it follows from Lemma 2.2 that ‖Un‖∗|Er
µ |q

=
∥∥Ũn

∥∥
lq∗

. Also, by Lemma 1.10 (a), we have

‖SU‖χ = lim
r→∞

sup
n>r

∥∥Ũn
∥∥

lq∗
.

Hence, the compactness of SU is immediate by Lemma 1.7, which completes the proof of (a).
(b) Let take the unit sphere S′|Er

µ |q
in
∣∣∣Er

µ

∣∣∣
q
. From Lemma 1.7 it follows that

‖SU‖χ = χ(U(S′|Er
µ |q

)).

Further, since
∣∣∣Er

µ

∣∣∣
q
∼= lq, U ∈

(∣∣∣Er
µ

∣∣∣
q
,c
)

equals to Ũ ∈
(
lq,c
)
, and

‖SU‖χ = χ(U(S′|Er
µ |q

)) = χ(Ũ(T (S′|Er
µ |q

))) =
∥∥SŨ

∥∥
χ
.

which implies, by Lemma 1.10 (b),

1
2

lim
r→∞

(
sup
n≥r

∥∥Ũn− ũ
∥∥∗

lq

)
≤ ‖LU‖χ ≤ lim

r→∞

(
sup
n≥r

∥∥Ũn− ũ
∥∥∗

lq

)
, (2.4)

where ũk = lim
n→∞

ũnk, for all k ≥ 0.

Considering Theorem 1.29 in [30], it can be easily written that
∥∥Ũn− ũ

∥∥∗
lq
=
∥∥Ũn− ũ

∥∥
lp∗

. The last equality and (2.4) complete the first part

of the proof of (b). Also, the compactness of SU is concluded by Lemma 1.7.
(c) can be proved by similar way, so it is omitted.

By following the above lines,the proof of the following theorems also can be obtained immediately. Therefore, we just give the statement of
the theorems.

Theorem 2.10. (a) If U ∈
(∣∣∣Er

µ

∣∣∣ ,c0

)
. Then

‖SU‖χ = lim
r→∞

sup
n>r

∥∥∥Ũ (1)
n

∥∥∥
l∞
= lim

r→∞
sup
n>r

sup
v

∣∣∣ũ(1)nv

∣∣∣ ,
and
SU is compact iff lim

r→∞
sup
n>r

sup
v

∣∣∣ũ(1)nv

∣∣∣= 0.

(b) If U ∈
(∣∣∣Er

µ

∣∣∣ ,c), then

1
2

lim
r→∞

sup
n>r

sup
v

∣∣∣ũ(1)nv − ũv

∣∣∣≤ ‖SU‖χ ≤ lim
r→∞

sup
n>r

sup
v

∣∣∣ũ(1)nv − ũv

∣∣∣
and
SU is compact iff lim

r→∞
sup
n>r

sup
v

∣∣∣ũ(1)nv − ũv

∣∣∣= 0

where ũv = lim
n→∞

ũnv, for all v ∈ N.

(c) If U ∈
(∣∣∣Er

µ

∣∣∣ , l∞), then

0≤ ‖SU‖χ ≤ lim
r→∞

sup
n>r

sup
v

∣∣∣ũ(1)nv

∣∣∣ ,
and
SU is compact if lim

r→∞
sup
n>r

sup
v

∣∣∣ũ(1)nv

∣∣∣= 0.

Theorem 2.11. Let 1 < q < ∞.
(a) If U ∈

(∣∣∣Er
µ,q

∣∣∣
∞
,c0

)
, then

‖SU‖χ = lim
r→∞

sup
n>r

∥∥∥Ũ (q)
n

∥∥∥
l
= lim

r→∞
sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣ ,
and
SU is compact iff lim

r→∞
sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣= 0.

(b) If U ∈
(∣∣∣Er

µ,q

∣∣∣
∞
,c
)

, then

1
2

lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv − ũv

∣∣∣≤ ‖SU‖χ ≤ lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv − ũv

∣∣∣
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and

SU is compact iff lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv − ũv

∣∣∣= 0

where ũv = lim
n→∞

ũnv, for all v ∈ N.

(c) If U ∈
(∣∣∣Er

µ,q

∣∣∣
∞
, l∞
)

, then

0≤ ‖SU‖χ ≤ lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣ ,
and

SU is compact if lim
r→∞

sup
n>r

∞

∑
v=0

∣∣∣ũ(q)nv

∣∣∣= 0.

Theorem 2.12. (a) If U ∈
(∣∣∣Er

µ

∣∣∣ , lq), 1≤ q < ∞, then

‖SU‖χ = lim
r→∞

sup
v

(
∞

∑
n=r+1

∣∣∣ũ(1)nv

∣∣∣q)1/q
 ,

and

SU is compact iff lim
r→∞

sup
v

∞

∑
n=r+1

∣∣∣ũ(1)nv

∣∣∣q = 0.

(b) If U ∈
(∣∣∣Er

µ

∣∣∣
q
, l
)

, 1 < q < ∞, then there exists ζ ∈ [1,4] such that

‖SU‖χ =
1
ζ

lim
r→∞

 ∞

∑
v=0

(
∞

∑
n=r+1

∣∣∣ũ(q)nv

∣∣∣)q∗


1/q

,

and

SU is compact iff lim
r→∞

∞

∑
v=0

(
∑

n=r+1

∣∣∣ũ(q)nv

∣∣∣)q∗

= 0.

3. Conclusion

One of the most important subjects in summability theory is the theory of sequence spaces which concerns with the generalization of the
concept of convergence for series and sequences. In this sense, the primary aim is to assign a limit value for divergent sequences or series by
using transformation which is given by the most general linear mappings of infinite special matrices. So, there has been a large literature,
concerned with characterizing completely all matrices which transform one given sequence space into another. Besides this, the literature has
been also grown up in terms of the studies of many sequence spaces defined as domain of special matrices and related matrix operators (see,

for instance, [1–4, 6–12]). For a recent paper [1], the infinite matrix classes
(∣∣∣Er

µ

∣∣∣ , ∣∣∣Er
µ

∣∣∣
q

)
and

(∣∣∣Er
µ

∣∣∣
q
,
∣∣∣Er

µ

∣∣∣) have been introduced. In

this study, estimating the operator norms, the classes
(∣∣∣Er

µ

∣∣∣
q
,Λ

)
and

(∣∣∣Er
µ

∣∣∣
∞
,Λ
)

have been characterized where 1≤ q < ∞. Also, in case

Λ is one of the spaces c0,c, l∞, lq, the necessary and sufficient conditions for each matrix in these classes to be compact have been obtained
and certain identities or estimates for the Hausdorff measures of noncompactness have been established.
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