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FOREWORD 

Hosted by Amasya University between July 3-6, 2017, the 15th International 

Geometry Symposium was held in Amasya, a city of learning throughout history. 

Undergraduate students aiming to do scholarly studies as well as new researchers 

had a great opportunity of getting together with highly experienced researchers. In 

light of scientific developments in Geometry and Geometry Education, 

presentations were made, and discussions were held, thus paving the way for new 

research. All the studies in this booklet were peer-reviewed, and then brought up 

to the attention of the audience. Through their presentations, the keynote speakers 

helped the researchers explore some new ways of thinking.  

In making our event happen, special thanks go to the following: Office of the 

Rector of Amasya University for letting us use its facilities, office of the Governor 

of Amasya for its support and belief in science as a key element in fostering social 

development, Amasya Municipality, Ziraat Bankası, Pegem Akademi, and 

Silverline. 

 

 

                                                               Prof. Keziban Orbay 

Head of the Organizing Committee 
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Manifolds 

 
Miguel Ortega 
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Spain, miortega@ugr.es 

ABSTRACT  

Famous solutions to the Mean Curvature Flow in Euclidean and Minkowski 

spaces are the translating solitons, which are submanifolds such that their mean 

curvature vector H satisfy H=v⊥ , where v is a fixed constant unit vector in the 

Euclidean Space, and v⊥  stands for the normal component of v along the 

immersion. For simpleness, it is very common to choose v = (1,0,...,0). These 

objects have been extensively studied. Now, let (M, g) be a semi-Riemannian 

manifold, and  ε ϵ {1, −1} a constant. Given a map u:M→R, we say that its graph 

F:M→(M×R,g+ε dt) is a (vertical) translating soliton if the mean curvature vector H 

of F satisfies H=∂t⊥ . As a first result, when the graph is semi-Riemannian, we 

obtain the PDE that function u must satisfy.  

Next, in the same setting, when we consider a semi-Riemannian 

submersion such that the mean curvature of the fibers is zero, we will obtain a lift-

type theorem, i.e., a translating soliton on M can be lifted to a translating soliton on 

P, and viceversa (i.e., projected from P to M.) 

As an application, we will let a Lie group Σ act on M in such a way that the 

space of orbits M/Σ is diffeomorphic to an open interval (a, b) ⊂ R. In this way, the 

PDE can be transformed in a ODE. In many situations, there is an associated 

boundary problem with a singularity, and we can obtain a solution. Next, we will 

see how we can extend this solution. The last part of the talk will be devoted to 

obtaining examples. 

These results are based on two works, one with M.-A. Lawn (Imperial 

College,UK) and one with E. Kocaku ̧saklı(Ankara University, Turkey) which are 

under revision. 
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ABSTRACT 

 

The curvature invariants are the most natural and the most important 
Riemannian invariants. They play key roles in physics and biology. Classically, 
among the Riemannian curvature invariants the most studied were the sectional 
curvature, the scalar curvature and the Ricci curvature. 

S.S. Chern [4] asked to search for necessary conditions for a Riemannian 

manifold to admit a minimal isometric immersion in a Euclidean space. 

B.Y. Chen ([2], [3]) introduced new curvature invariants, which are known as 

Chen invariants. Moreover, he established optimal estimates of these (intrinsic) 

invariants of Riemannian submanifolds in Riemannian space forms in terms of 

the main extrinsic invariant, namely the mean curvature function. Chen 

inequalities provided new solutions to Chern's problem. 

We have some contributions in this topic for submanifolds in complex space 

forms and Sasakian space forms, respectively (see [6], [5]). 

Recently, in a joint paper with M.E. Aydin and A. Mihai [1], we extended the 

study of curvature invariants to submanifolds in statistical manifolds of constant 

curvature. 

In the present lecture, we recall fundamental results from the above 

mentioned papers and outline some new directions of research in this topic. 

 
Keywords: Riemannian invariants, curvature invariants, scalar curvature, 

Ricci curvature, Chen invariants, Chen inequalities, Riemannian space form, 

complex space form, Sasakian space form, statistical manifold. 
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ABSTRACT  

A warped product manifold is a generalization of a Riemannian product 

manifold. It is very important in differential geometry and physics especially in the 

theory of the general relativity. It was defined in 1969 by Bishop and O’Neill. The 

study of a warped product submanifold was started to study by B. Y. Chen in 

2000. After the studies of Bishop and O’Neill (1969) and Chen (2000), the study of 

warped product manifolds and submanifolds become a very attractive research 

subject and about 600 papers have been published related to this notion.  

In the present talk, we give a survey on warped product manifolds and 

submanifolds in different ambient spaces. 

Key Words: Warped product manifolds, warped product submanifold. 
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ABSTRACT  

Harran (Assyrian Harraru) is an ancient city of strategic importance, now a 

village of Şanlıurfa, in southeastern Turkey. It has always been an important 

center of history, culture and science. In this talk, we firstly mention the historical 

significance of Harran. Then, we refer to scientific fields throughout history in 

Harran. Moreover, we speak of an academy called Beytü’l Hikme, a significant 

education, research and translating center. We also mention important scientists 

having researched in Beytü’l Hikme. 

 

Key Words: Harran, Beytü’l Hikme, history of Harran. 
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ABSTRACT 

 

The Tanaka-Webster connection is a unique connection satisfying some 

special properties. Slant curves are more general than Legendre curves. They 

form an important class of curves since they have constant contact angles. In this 

study, we consider slant curves with respect to the Tanaka-Webster connection 

and find pseudo-Hermitian biharmonicity conditions. 

 
Key Words: Sasakian space form, slant curve, pseudo-Hermitian 

biharmonic curve, the Tanaka-Webster connection. 
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ABSTRACT 

 

Using projection (submersion) of the tangent bundle TM over a manifold M, 
we define a semi-tensor (pull-back) bundle tM of type (2,0). 

The main purpose of this paper is to investigate complete and horizontal lift 

of vector fields for semi-tensor (pull-back) bundle tM of type (2,0). In this context 

cross- sections in a special class of semi-tensor (pull-back) bundle tM of type 

(2,0) can be also defined. 

 
Key Words: Vector field, complete lift, cross-section, horizontal lift, pull-

back bundle, tangent bundle, semi-tensor bundle. 
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ABSTRACT 

 

Ellipses provide a descriptive boundary for data points in various 

applications ranging from data mining to image processing. Finding the ellipse 

with minimum area is different from conventional ellipse fitting process. The 

former problem requires heuristic search techniques specially designed for 

minimizing the area. 

This paper tackled the problem by regarding it as an optimization problem 

and employing genetic algorithm to solve it. The general ellipse equation was 

given as (x2/a2+y2/b2=1). The orientation of the point dataset (angle with the 

positive x-axis) and equation parameters (a, b) are computed using the central 

moments of order two. After a change of variables in the form u=1/a2, and 

v=1/b2, then the product u.v is maximised subject to two constraints (1) u≥0 and 

v≥0 (2) xi2u+yi2v≤1 for all data points (xi, yi). Genetic operators (cross-over and 

mutation) were developed to yield better results. 

Results obtained from randomly generated and actual datasets show that 

different datasets require varying numbers of generations for convergence; 

however, the algorithm was able to shrink the initially computed ellipse into a 

smaller size after the completion of the genetic algorithm for all datasets. 

Key Words: Minimum Area Ellipse, Genetic Algorithm, Optimization. 
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ABSTRACT 

 

In this study firstly, It was studied almost paraholomorphic vector field with 

respect to almost para-Nordenian structure ( F,S g ) and the purity conditions of 

the Sasakian metric S g is investigate with respect to almost paracomplex 

structure F on cotangent bundle. Secondly, we obtained the integrability 

conditions of almost paracomplex structure F by  calculating  the  Nijenhuis   

tensors  NF ( X
H ,YH) , NF (X

H  ,ωH  )  and NF (ω
H  ,θH) of almost paracomplex 

structure  F  of type (1,1)  on C T (Mm) . Finally, the Tachibana operator  ϕφ  

applied to  S  g  according to an almost paracomplex  structure F and the 

Vishnevskii operators (ψφ -operator)  applied to the vertical and horizontal lifts 

with respect to  F  on cotangent bundle. 

 

Key Words: Sasakian metrics, integrability conditions, almost paracomplex 

structure, Nijenhuis tensor, Tachibana operators, Vishnevskii operators. 
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ABSTRACT 
 

In this paper firstly, the Tachibana operators were applied to 1-form, vertical, 

complete and horizontal lifts with respect to almost paracomplex structure ID (The 

diagonal lift ID) on cotangent bundle. Secondly, the Vishnevskii operators were 

applied to 1-form according to the diagonal lift ID on cotangent bundle. Finally, 

covariant derivatives of almost paracomplex structure ID with respect to vertical, 

complete and horizontal lifts were obtained. 

 
Key Words: Tachibana operators, Vishnevskii operators, almost 

paracomplex structure, vertical lift, horizontal lift, diagonal lift. 
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ABSTRACT 

 

The magnetic surface is defined as the surface on which the magnetic vector 

field lines are located. 

In the present paper we study the problem of consructing a family of magnetic 

surfaces from a given magnetic field lines. We derive a parametric representation 

for the surfaces pencil whose members share the same magnetic field lines. By 

utilizing the Frenet trihedron frame along the given magnetic field lines, we 

express the surface pencil as a linear combination of the components of this local 

coordinate frame. Moreover we give some examples and draw the pictures of 

these surfaces. 

 
Key Words: Special surfaces, magnetic field, Frenet frame. 
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ABSTRACT 

 

           In this study, we define the Cheeger-Gromoll metric in the cotangent bundle 

T *M n , which is completely determined by its action on vector fields of type X H 

and ωV .Later, we obtain the covarient and Lie derivatives applied to the  

Cheeger- Gromoll metric with respect to the horizontal and vertical lifts of vector 

and kovector fields, respectively. 

 

Key Words: Covarient derivative, Lie derivative, cheeger-gromoll metric, 

horizontal lift, vertical lift. 
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ABSTRACT 
 

The basic structure giving a direction to the noncommutative geometry is a 
differential calculus on an associative algebra. There exist covariant differential 
calculi on coordinate algebras of quantum spaces. Differential calculus (DC) can be 
applied to a Hopf algebra considered as a left (right) quantum space with respect to 
the coproduct. The function algebra on the extended quantum plane is a Hopf 
algebra, denoted by F (Rq (2)). Using the left and the right covariance, a 
bicovariant differential calculus on the Hopf algebra F (Rq (2)) is given. A quantum 
group that is the symmetry group of the differential calculus is introduced. 

 
Key Words: Quantum plane, hopf algebra, differential calculus. 
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ABSTRACT 

 

In this paper, the timelike ruled surfaces with respect to Darboux frame are 

studied. We give the characteristic properties of the timelike ruled surfaces 

related to the geodesic torsion, the normal and the geodesic curvatures. 

Furthermore, some special cases of non-null rulings are demonstrated according 

to {T, N, B} Frenet frame with {T, g,n} Darboux frame. Finally, the integral 

invariants of these   surfaces are examined. 

 

Key Words: Ruled surface, Darboux frame, Lorentz 3-space, integral 
invariants. 
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ABSTRACT 

 

In this  study,  the  spacelike  ruled  surfaces  with  Darboux  frame   in
3

1E  are introduced and characterization of them which are related to the geodesic 

torsion, the normal curvature and the geodesic curvature with respect to Darboux 

frame are examined. Additionally, we have given some theorems about the 

integral invariants of the spacelike surface with Darboux frame. 

 
 

Key Words: Ruled surface, Darboux frame, Lorentz 3-space,

 integral invariants. 
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ABSTRACT 

 In this paper we introduce a new metric �̃�  
R 
 ∑ 𝑔𝑖𝑗𝜕𝑝𝑗

𝑛
𝑖,𝑗 𝛿𝑝𝑖

which defined 

with Riemannian extension R 
 in the cotangent bundle. Then we investigate some 

curvature properties and geodesics for the metric  �̃� . 
 

Key Words: Riemannian extension, cotangent bundle, Levi-Civita 

connection, geodesic. 
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ABSTRACT 
 

In this work, we determine the conditions for coplanarity of the vertices, the 
incenter, the excenters, and the symmedian point of a tetrahedron. 

 
Key Words: Coplanarity, tetrahedron, barycentric coordinates. 
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ABSTRACT 

 

Slant submanifolds of an almost product Riemannian manifold are 

investigated. Some examples of these frame of submanifolds are presented. The 

existence of a useful orthonormal basis in proper slant submanifolds is proved. 

 
Key Words: Almost Product Riemannian manifold, slant submanifold, 

proper slant submanifold. 
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ABSTRACT 

 

Some inequalities involving the intrinsic and extrinsic invariants of 

submanifolds of quasi constant curvature manifolds and nearly constant 

curvature manifolds are established. By the help of these inequalities, some 

characterizations for these submanifolds are mentioned. 
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ABSTRACT 

 

Starting with a brief summary of the Lagrangian and Hamiltonian dynamics 
(Euler-Lagrange, and Euler-Poincare equations) on matched pairs of Lie groups 
[1,2], in the present talk we aim to develop the core concepts of the Euler-
Lagrange and Euler-Poincare formulation of the Vlasov equations. More 
precisely, we present the main components of a similar analysis on the (infinite 
dimensional) group Can(T*Q) of the canonical diffeomorphisms on the symplectic 
manifold T*Q, and its Lie algebra X(T*Q) of Hamiltonian vector fields. 

 

To this end, we first recall the Lie algebra of contravariant tensor fields with 
the Schouten concomitant as the Lie bracket, in order to present a better point of 
view towards the structure of the Lie algebra of Hamiltonian vector fields. We then 
provide the matched pair decomposition of this infinite dimensional Lie algebra, 
presenting the mutual actions of the subalgebras of this decomposition explicitly. 
(This is an ongoing joint work with O. Esen) 

 

Key Words: Matched pair of Lie groups and Lie algebras, Euler-Lagrange 
equations, Euler-Poincaré equations, Vlasov equations, Lie algebra of 
Hamiltonian vector fields. 
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ABSTRACT 

 

In this paper, we introduce a new frame on a surface in Minkowski space 

E₁³, called as B-Darboux frame. It is well known that we derive the parallel 

transport frame from the Frenet frame along a space curve. Analogously, we 

derive the B- Darboux frame from the Darboux frame on a surface. 

 
Key Words: Bishop frame, Darboux frame, Parallel surfaces. 
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ABSTRACT 
 

In this article, we define and study three types of surfaces of revolution in 

Galilean 3-space. The construction of the well-known surface of revolution, being 

the trace of a planar curve that is rotated about an axis in the supporting plane of 

the curve, is carried over to Galilean 3-space. Because of the existence of on the 

one hand isotropic and non-isotropic vectors and by that isotropic and Euclidean  

rotations, and on the other hand isotropic and Euclidean planes, one must 

distinguish three different possibilities for the construction of a surface of 

revolution in Galilean 3- space. Then, we classify the surfaces of revolution with 

vanishing Gaussian  curvature or vanishing mean curvature in Galilean 3-space. 
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ABSTRACT 
 

We consider multiply warped product submanifolds with two fibers. We 
observe the non-existence of such submanifolds under some circumstances. We 
also check that the existence of this kind of submanifolds in case of the ambient 
manifold is Kaehlerian and locally product Riemannian. 
 

Key Words: Warped product submanifold, Kaehler manifold,  locally 

product Riemann manifold. 
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ABSTRACT 

 

In this article, we study the so-called rectifying curves in an arbitrary 
dimensional Minkowski space. A curve is said to be a rectifying curve if, in all 
points of the curve, the orthogonal complement of its normal vector contains a 
fixed point. If this fixed point is chosen to be the origin, then this condition is 
equivalent to saying that the position vector of the curve in every point lies in 
the orthogonal complement of its normal vector. Here we characterize 
rectifying curves in the n-dimensional Minkowski space in different ways: 
using conditions on their curvatures, with an expression for the tangential 
component, the normal component, or the binormal components of their 
position vector, and construct them starting from an arclength parametrized 
curve on the unit hypersphere. 
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ABSTRACT 

Using projection (submersion) of the cotangent bundle T*M over a manifold 
M, we define a semi-tensor (pull-back) bundle tM of type (p,q). In this context 
cross- sections in a special class of semi-tensor (pull-back) bundle tM can be also 
defined. 

 

Key Words: Vector field, complete lift, cross-section, horizontal lift, pull-

back bundle, tangent bundle, semi-tensor bundle. 
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ABSTRACT 

 

We transfer complete lifts from the semi-tangent bundle tM to the semi- 
cotangent bundle t*M using a musical isomorphism between these bundles. In this 
article, we also analyze complete lift of vector and affinor (tensor of type (1,1)) 
fields for semi-tangent (pull-back) bundle tM. Finally, we study compatibility of 
transferring lifts with complete lifts in the semi-cotangent bundle t*M. 
 

Key Words: Semi-tangent bundle, semi-cotangent bundle, complete lift,  

musical isomorphism, vector field, pull-back bundle. 
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ABSTRACT 
 

Minimal surface has zero mean curvature at every point in Euclidean space. 

Björling formula is a way to create minimal surfaces from a curve with the help of 

complex variables. Minimal surfaces which based on circle and helix are obtained 

via Björling formula, then they are called bending helicoids and helicoidal helicoids 

respectively. In this talk we consider Björling problem in Lorentz-Minkowski space 

to get maximal surfaces. We investigate bending helicoids and helicoidal helicoids 

in this space. 

 
Key Words: Björling problem, maximal surfaces , circle, helix. 
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ABSTRACT 

 

Let G be the group M(n) of all motions of the n-dimensional Euclidean 

space Rn  or G = SM(n) is the subgroup of M(n) generated by rotations and 

translations of Rn. The present paper is devoted to a study of complete systems of 

Euclidean control invariants of Bézier curves. According to the group M(n) and 

SM(n), the type of a Bézier curve and the second minimal complete system of 

control invariants of a Bézier curve are obtained. 

 
Key Words: Bézier curve, control invariant, equivalence. 
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ABSTRACT 

 

Let MT(3)  be the taxicab space group. In this study, according to the group 

MT(3),  the definitions of taxicab curve and the taxicab arc length function of a 

curve are given. Besides, the definition of an invariant parametrization of a curve 

and invariant parametrization of a curve with a fixed taxicab type are decribed. The 

problem of the MT(3) –equivalence of curves is reduced to that of paths. 
 

Key Words: Taxicab space, curve, invariant. 
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ABSTRACT 

 

The aim of the present paper to define and study semi-slant   -Riemannian 

submersions from Sasakian manifolds onto Riemannian manifolds as a  

generalization of anti-invariant   -Riemannian submersions, semi-invariant   - 

Riemannian submersions and slant Riemannian submersions. We obtain 

characterizations; investigate the geometry of foliations which arise from the 

definition of this new submersion. After we investigate the geometry of foliations, 

we obtain necessary and sufficient condition for base manifold to be a locally 

product manifold and proving new conditions to be totally umbilical and totally 

geodesicness, respectively. Moreover, some examples of such submersions are 

mentioned. 

 

Key Words: Riemannian submersion, Sasakian manifold, anti-invariant   - 

Riemannian submersion, semi-invariant   -Riemannian submersion, slant 

Riemannian submersion. 
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ABSTRACT 
 

As a generalization of semi-invariant submersions, we introduce conformal 

semi-invariant submersions from almost product Riemannian manifolds onto 

Riemannian manifolds. We give examples, investigate the geometry of foliations 

which are arisen from the definition of a conformal submersion and show that 

there are certain product structures on the total space of a conformal semi-

invariant submersion. Moreover, we also find necessary and sufficient conditions 

of a conformal semi-invariant submersion to be totally geodesic. 

 
Key Words: Almost product Riemannian manifold, Riemannian 

submersion, Semi-invariant submersion, conformal submersion, conformal semi-

invariant submersion 
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Poisson and Symplectic Geometry of 3D and 4D Dynamical 

Systems 
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ABSTRACT 
 

Some basic notions of the Poisson and the symplectic geometry will be 

introduced. Fundamentals of (multi-)Hamiltonian systems will be summarized in 

finite dimensions. Using the Darboux integrability method and the method of the 

Jacobi’s last multiplier, we shall derive integrals and (bi-,tri-)Hamiltonian 

realizations of some particular models in 3D and 4D models such as Lü, Qi, Chen, 

T systems. 

 
Key Words: Poisson geometry, symplectic geometry, Hamiltonian 

dynamics, integrability. 
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ABSTRACT 

In this talk, we present the m-generalized taxicab metric which includes the 

slightly generalized taxicab metric and so the well-known taxicab metric as special 

cases. Then, we give some distance properties of the plane with the m-

generalized taxicab metric such as shortest path, circle, minimum distance set of 

any two points and isometry. 

 

          Key Words:  Taxicab metric, generalized taxicab metric, shortest path, 

minimum distance set, isometry. 
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ABSTRACT 

In this paper, we study the circular Burmester theory in Euclidean, Galilean 

and Lorentzian planes, respectively and extend the classical Burmester theory to 

the affine Cayley-Klein planes by following unified method. For this purpose we 

use the generalized complex numbers and define generalized form of Bottema’s 

instantaneous invariants. By this way we expose the instantaneous geometric 

properties of motion of rigid bodies in the affine Cayley-Klein planes. 

 
Key Words: Instantaneous invariants, Burmester theory, affine Cayley-

Klein planes. 

REFERENCES 

 
[1] A. Cayley, A Sixth Memoir upon Quantics, Phil. Trans. R. Soc. London, 1859–cp. 
Collected Math. Papers, Vol. 2, Cambridge, 1889. 
 
[2] B. Roth, On the Advantages of Instantaneous Invariants and Geometric Kinematics, 
Mech.Mach. Theory, 2015; 89:5–13. 

 
[3] B. Roth and A.T. Yang, Application of Instantaneous Invariants to the Analysis and 
Synthesis of Mechanisms, ASME J. Eng. Ind., 1977; 99:97–103. 

 
[4] F. Klein, Über die sogenannte Nicht-Euklidische Geometrie, Math. Ann. Vol. 4 (1871) 
573–625 (cf. Ges. Math. Abh. 1, 244-350). 

 
[5] G.N. Sandor and F. Freudenstein, Higher-Order Plane Motion Theories in Kinematic 
Synthesis, ASME J. Eng. Ind. 1967; 89(2):223-230. 
 
[6] O. Giering, Vorlesungen über höhere Geometrie, Vieweg, Braunschweig-Wiesbaden, 
1987. 
 
[7]  I.M. Yaglom, Complex Numbers in Geometry (Academic Press, New York, 1968. 

 
[8] I.M. Yaglom, A Simple Non-Euclidean Geometry and its Physical Basis, Springer, New 
York, 1979. 

 

mailto:kemal.eren1@ogr.sakarya.edu.tr
mailto:sersoy@sakarya.edu.tr


 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

72  

Some Characterizations of Semi Q-Discrete Surfaces of 
Revolution 

 
Sibel Paşalı Atmaca1 and Emel Karaca 2 

1 Muğla Sıtkı Koçman University, Faculty of Science, Department of Mathematics, Muğla,Turkey, 

sibela@mu.edu.tr 

2 Muğla Sıtkı Koçman University, Faculty of Science, Department of Mathematics, Muğla,Turkey, 

emelkaraca@gmail.com 

 
ABSTRACT 

 

Discrete differential geometry has a lot of applications in geometry. One 

kind of applications is semi discrete surfaces. Semi discrete surfaces consist of 

bivariate function of one discrete and one continuous variable. In this study, we 

briefly introduce semi q- discretization of smooth surfaces. We also study semi q- 

discrete surface of revolution. Then, we give some definitions of semi q- discrete 

surface by using q- trigonometric functions. Finally, we discuss basic theorems 

about the study. 

 
Key Words: Semi q- discrete surface, surface of revolution, discrete 

surfaces. 
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Fibonacci Tessarines with Fibonacci and Lucas Number 
Components 
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ABSTRACT 

 

Lately, some results about Fibonacci numbers and Lucas numbers are 
given by the authors. In this present paper, our object introduce a detailed study of 
a new generation of Fibonacci tessarine with Fibonacci and Lucas number 
components. We define a new vector which are called Fibonacci tessarine vector. 
We give properties of this vector to expert some applications on Fibonacci 
tessarines and Fibonacci tessarines vector in geometry. 

Due to the matter is given Fibonacci tessarine with Fibonacci and Lucas 

number components, we give some formulas, facts and properties about Fibonacci 

tessarine with Fibonacci and Lucas numbers and variety of geometric and 

algebraic properties which are not generally known. 

Key Words: Tessarine, Fibonacci numbers and Lucas numbers, Fibonacci 

vector. 
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ABSTRACT 

 

In this paper, affine solutions of pseudo-Finsler eikonal equations and 
some related theorems are derived. Besides, we introduce a natural definition for 
the affine maps between pseudo-Finsler manifolds and we give some geometrical 
properties of these maps. 

 
 

Key Words: Affine solutions, pseudo-Finsler eikonal equations, affine maps 

between pseudo-Finsler manifolds. 
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Singular Perturbations of Rational Maps 
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ABSTRACT  

In this study is to describe what happens when Newton's method is applied 

to the complex polynomial Fc(z) = (z2 + c)(z -1) when the parameter c is non-zero 

but quite small.  

 
  Key Words: Newton's method, Julia set, Fractal 
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ABSTRACT 

 

It is well known that a characteristic property of the Bertrand curve is the 

existence of a linear relation between its curvature and torsion. In this paper, we 

propose a new method for generating timelike Bertrand curves, which avoids the 

basic restrictions. Our main result is that every timelike space curve is a 

directional timelike Bertrand curve with infinite directional timelike Bertrand 

mates. 

 
Key Words: Bertrand Curves, Offset, Frenet frame, Minkowski space. 
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ABSTRACT 
 

For a space curve to evolve in time and construct a surface, it is more 

convenient to use the alternative moving frame. A growth velocity in the direction 

of the Darboux vector at every point on the generating curve is defined in this 

work. Also, the Darboux growth along a general helix is investigated and the 

components of the growth velocity are calculated for an arbitrary space curve. 

 
Key Words: Alternative moving frame, accretive growth, Darboux vector, 

general helix. 
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ABSTRACT 

 

       We investigate the kinetic energy formula of the projective curve for 1-
parameter closed spatial motion and find the formula as following, 

3 3 3
2

0 i ij i j i i

i 1 i, j 1 i 1

2S 2S p x - b x x c x
  

      

Also, we obtain some results related with that formula. 
 

Key Words: Kinetic energy, motion, kinematic. 
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ABSTRACT 

 

In this study, we investigate non-null Darboux slant ruled surfaces in 

Minkowski 3-space. We define different kinds of Darboux slant ruled surfaces and 

introduce some characterizations. We also determine some significant relations 

between Darboux slant ruled surfaces and some other slant ruled surfaces in 

Minkowski 3- space. We finally give examples for the obtained results. 

 
Key Words: Frenet frame, Darboux slant ruled surface, Minkowski 3-space. 
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ABSTRACT 

Using the Banach Grassmann algebra 𝐵𝐿, given by Rogers, a new scalar 

product,  a new definition of  the orthogonality and of the Frenet frame associated 

to supersmooth supercurve are introduced on the (𝑚, 𝑛)-dimensional total super-

Euclidean space 𝐵𝐿
(𝑚,𝑛)

. It is well known that a characteristic property of the 

Bertrand curve is the existence of a linear relation between its curvature and 

torsion. In this study, definition of the Bertrand super curve in 𝐵𝐿
(𝑚,𝑛)

 is given and 

also some theorems for the Bertrand curve in 𝐵𝐿
(4,4)

 are obtianed. 

Key Words: Super-Euclidean space, Supercurve, Bertrand supercurve, 

Frenet frame. 
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ABSTRACT 

 

In Euclidean 3-space, curves of constant breadth according to the Bishop 

Frame are characterized by a system of first order linear three differential 

equations. In this study, we present a numerical method based on Bessel 

polynomials to determine curves of constant breadth according to Bishop frame in 

Euclidean 3- space. By using the matrix operations and collocation points, original 

problem is transformed into a system of linear algebraic equations. So, the 

coefficients of the approximate solution are computed. Error estimation is made by 

using residual function. Numerical applications are given to explain the method. 

 
Key Words: Bishop frame, curves of constant breadth, system of linear 

differential equations, Bessel collocation method. 
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ABSTRACT 

 

In this paper, by using the Darboux frame of null curves, we define null 

Bertrand partner D- curves and give the relations between curvatures of these 

curves in Minkowski 3-space 𝐸1
3. Besides, we obtain some special results. Finally,  

by considering surface construction methods, we give examples for null Bertrand 

partner D-curvature in 𝐸1
3. 

Key Words: Null Curve; Bertrand partner D -curves; Darboux frame; 

Geodesic. 
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ABSTRACT 

 

A rectifying curve is defined as a space curve whose orthogonal 

complement  of its normal vector contains a fixed point in all points of the curve. 
In this study, first of all, we recharacterize rectifying curves with their harmonic 
curvature functions in n-dimensional Euclidean space. Furthermore, we introduce 
some relations between rectifying curves and focal curves. Finally, we investigate 
a rectifying Salkowski curve with the condition that its focal curve is a rectifying 
curve. 
 
 
          Key Words: Rectifying curve, harmonic curvature, focal curve. 
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ABSTRACT 

 

In this work, we investigate the invariants of a parameter ruled surface with 

common Smarandache curves of the line congruence according to Type-2 Bishop 

frame in Euclid space. Also we obtain some interesting results and illustrate of 

the examples by the aid Maple program. 

 
Key Words: Type-2 Bishop Frame, İnvariants, Congruence, Parameter 

Ruled Surface, Euclid Space. 
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ABSTRACT 

 

In this paper, we describe twisted surfaces in  isotropic 3-space.This 

surfaces are generated by synchronized rotations of non-isotropic planar curve 

lying in the non-isotropic xz-plane and this supporting plane with the z-axis as its 

containing rotation axis. Then we give some characterizations and examples 

about flat, constant Gaussian curvature, minimal and constant mean curvature 

twisted surfaces in isotropic 3-space. 

 
Key Words: Twisted surface, Isotropic Space, Gaussian curvature, minimal 

surface, mean curvature. 
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ABSTRACT 

 

In this study, we define the group Spin^T(p,q) and give some properties of 

this group. By using the spinor representation of the group Spin^T(p,q), we 

construct Spin^T spinor bundle S. We describe the covariant derivative operator 

and Dirac operator on the spinor bundle S. 
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ABSTRACT 

 

In this study, we investigate the Horadam sequence as a generalization of 

the linear recurrence equations of order two. We define dual Horadam sequence. 

By the aid of this sequence we obtain a new generalization for the sequences 

quaternions and octonions. Moreover, we give some important algebraic 

properties related with them.. 
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ABSTRACT 

 

In this paper, we introduce a new type of associated curves called 

quaternionic (1,3)-Bertrand direction curves. These curves are defined as the 

integral curves of quaternionic functions generated by Frenet frame of a given 

quaternionic curve. We give some relationships concerning Frenet vectors and 

curvatures of the quaternionic curves. 

 
Key Words: associated curves, direction curves, quaternionic curves, 

quaternionic Bertrand curves. 
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ABSTRACT 

 

In this study, we give some characterizations for pseudo null curves which 

lie on some subspaces of 4-dimensional Semi-Euclidean space with index 2. 

 
Key Words: Pseudo null curves, Semi-Euclidean space, Frenet frame. 
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ABSTRACT 

 

Quaternionic curves are defined by using the quaternions. ɣ is a 

quaternionic helices in Quaternionic space if and only if non-zero curvatures 

r1(s),r2(s) and r₃(s) of the quaternionic curve ɣ satify the following characterization 

22

1 1

2 3 1 2

r (s) r (s)1 d

r (s) r (s) r (s) ds r (s)

   
    

    
=constant. 

In  this talk we obtain some characterizations for quaternionic helices with 

the help of the spherical curves. 

Key Words: quaternionic curve, quaternionic helices, spherical curves. 
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ABSTRACT 
 

We have already define and find the parametric equations of Frenet ruled 

surfaces which are called IFRS and BFRS an involute curve and Bertrand mate of 

a curve α respectively. In this paper, first we find only one matrix gives us all 

sixteen positions of normal vector fields of eight IFRS and BFRS in terms of Frenet  

apparatus of curve α. Further using orthogonality conditions of the eight normal 

vector fields,. we give perpendicular transversal intersection curves of eight IFRS 

and BFRS in terms of Frenet apparatus of curve α. ITRS and BDRS have always 

normal vector fields, but IDRS and BNRS may not have normal vector fields. Also 

involutive normal ruled surface (INRS) and Bertrandian normal ruled surface 

(BNRS) of the curve α have perpendicular normal vector fields along the curve 

  2 2 2

2 2 2** (s) ( (( y( )k / (1 y ))))V           . 

 
Key Words: Involute curve, Bertrand curve, ruled surface. 
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ABSTRACT 

 

We have already define and find the parametric equations of Frenet ruled 

surfaces which are called IFRS and MFRS an involute curve and Mannheim 

partner of a curve α. In this paper, first we find only one matrix gives us all sixteen 

positions of normal vector fields of eight IFRS and MFRS in terms of Frenet 

apparatus of curve α and using orthogonality conditions of the eight normal vector 

fields. We give perpendicular transversal intersection curves of eight IFRS and 

MFRS as the solution of SSS problem. 

 
Key Words: Involute curve, Mannheim curve, ruled surface. 
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ABSTRACT 

 

We have already define and find the parametric equations of Frenet ruled 

surfaces which are called BFRS and  MFRS of Bertrand mate, Mannheim partner 

of  a curve α respectively. In this paper, Surface Surface Section (SSS) problems 

about Perpendicular transversal intersection of BFRS and MFRS of Bertrand 

mate, Mannheim partner of a curve α, respectively are examined. First we find 

only one matrix gives us all sixteen positions of normal vector fields of eight 

BFRS and MFRS in terms of Frenet apparatus of curve α. Further using 

orthogonality conditions of the eight normal vector fields, we give perpendicular 

transversal intersection curves of eight BFRS and MFRS in terms of Frenet 

apparatus of curve α. 
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ABSTRACT 
 

In this paper, Surface Surface Intersection (SSI) problems about 

Perpendicular transversal intersection of IFRS, BFRS, and MFRS of an involute 

curve, Bertrand mate, Mannheim partner of a curve α respectively are examined. 

We have already define and find the parametric equations of IFRS, BFRS, MFRS 

which the Frenet ruled surfaces. 

First using definition of transversal surface and orthogonality conditions of 

the sixteen normal vector fields, we find only one matrix which gives us all 

intersections of sixteen normal vector fields of sixteen FRS, IFRS, BFRS, and 

MFRS in terms of Frenet apparatus of curve α. Further, we give perpendicular 

transversal intersection curves of eight FRS, IFRS, BFRS,  MFRS in terms of 

Frenet apparatus of curve α. 

 
Key Words: Involute curve, Bertrand curve, Mannheim curve, Frenet ruled 

surface. 
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ABSTRACT 

 We consider Einstein statistical warped product manifolds 𝐼×𝑓𝑁, 𝑀×𝑓𝑁 and 

𝑀×𝑓𝐼, where I,M and N are 1,m and n dimensional Riemannian manifolds, 

respectively. We show that if  𝐼×𝑓𝑁 (resp. 𝑀×𝑓𝐼) is an Einstein statistical manifold 

then N (resp. M) is an Einstein statistical manifold. We also show that if 𝑀×𝑓𝑁 is a 

statistical  space  of  constant  sectional  curvature 𝐾 > 0 then  the  Hessian  of 

the conjugate connection 𝐷∗ is 𝐻𝐷∗
𝑓

= −𝐾𝑓𝑔𝑀. 
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ABSTRACT 

 

As a topological invariant, Reidemeister torsion (R-torsion) was introduced 

by K. Reidemeister [4]. The notion of symplectic chain complex was introduced by 

E.  Witten [6]. Using this algebraic tool and R-torsion, he obtained a volume 

element on the moduli space of representations from the fundamental group of a 

surface to a compact gauge group. 

Let ∑ be a closed oriented surface of genus g ≥ 2. Teichmüller space 

Teich(∑)  of ∑ is the deformation classes of complex structures on ∑. On 

Teich(∑), there are  the well known naturally defined symplectic forms, namely, 

Weil-Petersson, Atiyah- Bott-Goldman(ABG) [3], and Thurston [2] symplectic 

forms. 

In [1], it was proved by M.T. Anderson that the moduli space M of constant 

curvature (+1) compact 3-manifolds with ∑ minimal surface boundary is a finite 

dimensional smooth manifold and it can be locally parametrized by Teich(∑). It 

was also proved that similar results hold for the moduli space M of constant 

curvature (-1) Riemannian metrics on a handlebody with minimal surface of genus 

at least 2. 

In this work, we establish volume elements on the moduli space M, by using 

Anderson's results, R-torsion, and the symplectic structures of Teich(∑). 

Key Words: Reidemeister torsion, ABG-symplectic form, Thurston 
symplectic form, Weil-Petersson form, 3-manifold with minimal surface, 
Teichmüller space. 
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ABSTRACT 

 

In the present study, we find a surface family possessing the natural lift of a 

given spacelike curve with timelike binormal as an asymptotic curve in Minkowski 

3- space. We express necessary and sufficient conditions for the given curve 

such that its natural lift is an asymptotic curve on any member of the surface 

family. Finally, we illustrate the method with some examples. 

 

Key Words: Surface family, asymptotic curve, natural lift, Minkowski 3-

space. 
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ABSTRACT 

 

In this study, we consider the representation variety Rep(M,G), where M is a 

closed Kähler manifold and G = SU(N), N ≥ 2. Firstly, we prove that topological 

invariant Reidemeister torsion of such representations is well-defined. 

Furthermore, by using Y.Karshon’s symplectic structure of Rep(M,G) [4], we 

establish a formula for Reidemeister torsion of such representations. In the case 

M is closed surface, this structure coincides with Atiyah-Bott-Goldman symplectic 

form for G [1]. As an application, we apply our results to hyperkähler manifold and 

closed orientable Riemann surface of genus at least 2. 

 
Key Words: Reidemeister torsion, symplectic chain complex, Kähler 

manifold, ABG-symplectic form, Karshon symplectic form, Hard Lefschetz 

Theorem. 
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ABSTRACT 

 

The purpose of the present work is two-fold: Firstly, to investigate the 

curvature properties of the Kaluza-Klein metric, secondly to study the conditions 

of which the tangent bundle is almost Kahlerian with respect to a compatible 

almost complex structure. 

(This work was supported by Research Fund of the Iğdır University, Project 

Number: 2016-FBE-B06). 
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ABSTRACT 

 

            In this study, we investigate special Smarandache curves with regard to 
Sabban frame for Mannheim partner curve   spherical indicatrix. We created 
Sabban frame belonging to this curves. It was explained Smarandache curves 
position vector is consisted by Sabban vectors belonging to this curves. Then, we 
calculated geodesic curvatures of this Smarandache curves. Found results were 
expressed depending on the Mannheim curve. 

 

Key Words: Mannheim curve pair, Smarandache curve, Sabban frame, 

Geodesic curvature. 
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ABSTRACT 

 

In this study, we investigate planar and spatial motions which are composed 

of a rotation and a translation. First, the geometry of invariant points is expressed 

in planar motions. Then, this theory is extended the spatial motions. Moreover, 

spatial motions is interpreted according to whether the invariant points are exist or 

not. 
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ABSTRACT 

 

In the present work, we find a surface family possessing the natural lift of a 

given timelike curve as an asymptotic curve in Minkowski 3-space. We express 

necessary and sufficient conditions for the given curve such that its natural lift is 

an asymptotic curve on any member of the surface family. Finally, we illustrate 

the method with some examples. 

 
Key Words: Surface family, asymptotic curve, natural lift, Minkowski 3-

space. 
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ABSTRACT 

In the present study, we consider a curve whose position vector can be  
written as  a  linear  combination  of  its  Frenet  frame   in  Euclidean n-space 

𝑰𝑬𝒏. We characterize such curve in terms of its curvature functions. Further, we 

obtain some results of constant ratio, T-constant and N-constant type curves in 

𝑰𝑬𝒏. 

 

Key Words: Position vector, W-curves, constant ratio curves. 
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ABSTRACT 

         In the present paper, we consider a special class of canal surfaces which is 

called tubular surface in Euclidean 4-space 𝐼𝐸4. We study this surface with 

respect to its Gauss map. We find that there is no tubular surface with harmonic 

Gauss map and we give the complete classification of tubular surface with 

pointwise 1-type Gauss map in Euclidean 4-space 𝐼𝐸4. 

Key Words: Tubular surface, Gauss map, pointwise 1-type. 
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ABSTRACT 
 

            In this study, we investigate special Smarandache curves with regard to 
Sabban frame belonging to Darboux vector of evolute curve.We created Sabban 
frame belonging to this curves. It was explained Smarandache curves position 
vector is consisted by Sabban vectors belonging to this curves. Then, we 
calculated geodesic curvatures of this Smarandache curves. Found results were 
expressed depending on the base curve. 

 

Key Words: Evolute curve, Smarandache curve, Sabban frame, Geodesic 

curvature. 
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ABSTRACT 

In this paper, in 𝑬𝟏
𝟑 it is showed conditions that any frame is rotation  

minimizing frame (RMF) using spherical curves. It have also expressed how the 

Bishop frames can be obtained from frames of any curve on surface and on 

space. The necessary and sufficient conditions are given. Then, it is investigated 

whether obtained frames are rotation minimizing frame (RMF) or not. Theorems, 

warnings and conclusions are expressed. The examined situations are shown 

over the examples. 

 

Key Words: Spherical curve, Bishop frame, Rotation minimizing frame (RMF). 
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ABSTRACT 

 

As distinct from the Euclidean case, there exist two different type of graph 

surfaces immersed in a (pseudo-) Galilean space G3. In other words, the graphs 

of the functions z=z(x,y) and x=x(y,z) have different intrinsic and extrinsic 

properties in G3. In this talk, we present the graph surfaces of the sum and the 

product of two functions with constant Gaussian and mean curvature. 

 
Key Words: Galilean space, Gaussian curvature, mean curvature. 
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ABSTRACT 

In the present study, we consider the spacelike translation surfaces in 

Minkowski 4-space. We characterize such surfaces in terms of their Gaussian 

curvature and mean curvature functions.  We classify flat and minimal spacelike 

translation surfaces in  𝐸1
4. 

Key Words: Translation surface, Minkowski 4-space, Gaussian curvature, 

mean curvature. 
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ABSTRACT 

 

An affine translation surface in a Euclidean space is formed by a translation 

of two curves lying in non-orthogonal planes and is the graph of the function 

z(x,y)=f(x)+g(y+ax), a≠0, for an orthogonal coordinate system (x,y,z), [1]. In this 

presentation, we are interested in such surfaces in Euclidean and isotropic 

spaces with constant Gaussian and mean curvature. 

Key Words: Affine translation surface, Gaussian curvature, mean curvature. 
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ABSTRACT 

 

     In kinematics, the motion of planar, spherical aand spatial mechanism is 
investigated. In this paper, the structure equation of Lorentz plane is studied 
according to the casual character of normal vector of this plane. The spherical 
motion in Lorentz space is presented by means of the character of first link on 
sphere. 

 

Key Words: Planar Mechanism, Open Chain, Closed Chain, 

Spherical Mechanism. 
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ABSTRACT 

 

    Minkowski space is investigated by using properties such as hyperbolic 
curves, hyperbolic angles, hyperbolic arc length and so on. In this study, the 
hyperbolic angles between two timelike vectors and spacelike vectors are 
presented in terms of Einstein Theory of General Relativity. Some 
characterizations related to these hyperbolic angles are obtained. Relationships 
between angle, velocity and time are studied. 

 

Key Words: General Relativity, Hyperbolic Angle, Bondi Factor. 
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ABSTRACT 
 

In mathematics, if there exist n-1 independent vector fields on , this 

sphere is parallelizable. In this paper, by using split complex numbers, split 

quaternions and split octonions, it is shown that  and  have one, three and 

seven independent vector fields, respectively. Since parallelizable manifolds are 

orientable, these spheres are orientable. 

 
Key Words: Split complex number, Split quaternion, Split octonion, 

Parallellization 
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ABSTRACT 

 

In this work, we give some relations between extended rectifying curves and 
their modified Darboux vector fields in in Galilean 3-Space. We show that the 
modified Darboux curves of a unit speed curve are rectifying curve or circular 
helix in Galilean 3-space. The other aim of the study is to introduce the ruled 
surfaces whose base curve is rectifying curve in Galilean 3-Space. 

 
 

Key Words: Galilean space, rectifying curves, ruled surfaces 
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ABSTRACT 

 

In this paper, we introduce slant submersions from almost paracontact 

Riemannian manifolds onto Riemannian manifolds. We give examples and 

investigate the geometry of foliations which are arisen from the definition of a 

Riemannian submersion. We also find necessary and sufficient conditions for a  

slant submersion to be totally geodesic. 

 
Key Words: Riemannian submersion; almost paracontact Riemannian 

manifold; slant submersion. 
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ABSTRACT 
 

It is well-known that the classical Sierpinski triangle is a fractal constructed 

on an equilateral triangle. On the other hand, we can also construct Sierpinski-

like triangles on a scalene or isosceles triangles. In [5], we give an explicit 

formula for the intrinsic metric on the classical Sierpinski triangle via code 

representation. In this work, we define geodesic metrics on the Sierpinski-like 

triangles using their code representation. Finally, we mention some properties of 

these structures. 
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ABSTRACT 

 

In this paper, we study contact pseudo-slant submanifolds of a sasakian 
space form M(k) with constant φ-sectional curvature k. Necessary and sufficient 
conditions are given for a submanifold to be a contact pseudo-slant submanifold 
contact pseudo-slant product, mixed geodesic and totally geodesic in sasakian 
manifolds. Finaly, we obtain some results for such submanifolds in terms of 
curvature tensor. 
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ABSTRACT 

 

The present paper deals with deformed 2-nd lift metric on the second-order 

tangent bundle over a Riemannian manifold. First we introduce the deformed 2-

nd lift metric and an integrable nilpotent affinor structure, and give some results 

concerning the lifts of vector fields. Then we show that the second-order tangent 

bundle with these structures is a plural-holomorphic B-manifold. 

 
Key Words: Second-order tangent bundle, deformed 2-nd lift metric, 

Conformal Killing vector field. 
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ABSTRACT 

 

In this paper, we consider nearly paraKähler manifolds and give some 

curvature properties of them. Also, we define a metric connection with torsion on 

this setting and investigate its some properties. 

 
Key Words: Metric connection, nearly paraKähler manifold, curvature tensor. 
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ABSTRACT 

 

We first derive the Euler-Lagrange equation corresponding to curvature 

energy functional of tangential indicatrix elastic curves and solve this equation. 

We obtain a classification for curves whose tangential spherical indicatrix are 

elastic. Similarly, we give this classification for principle normal and binormal 

indicatrix elastic curves with respect to curvature and torsion. Moreover, we show 

that there exists no binormal indicatrix elastic curve. We eventually give an 

example for tangential spherical indicatrix elastic curve. 

 

Key Words: Elastic curve; Euler-Lagrange equation; spherical image. 
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ABSTRACT 

 

We study critical points of the curvature energy functional on regular curves 
in a two dimensional lightlike cone. We derive the Euler-Lagrange equation 
corresponding to spacelike elastic curves and solve the equation. Then we find a 
Killing field along the critical curve and construct three special coordinate 
systems. Finally we express the elastic curve by quadratures. 

 

Key Words: Elastic curve; Euler-Lagrange equation; Lightlike cone. 
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ABSTRACT 
 

In this study we explained the Fermi-Walker derivative along the principal 

normal indicatrix of a curve in Euclid space. We get a unit speed curve in Euclid 

space. According to the principal normal indicatrix of the curve Fermi-Walker 

derivative, Fermi-Walker parallelism and Fermi-Walker termed Darboux vector 

concepts are given. We proved non-rotating frames are explained with Fermi-

Walker derivative along the principal normal indicatrix of any curve in Euclid 

space. Then we proved while the curve is a helix Frenet frame is a non-rotating 

frame along the principal normal indicatrix. 

 
Key Words: Fermi-Walker derivative, Fermi-Walker parallelism, Non-

rotating frame, Fermi-Walker termed Darboux vector, Principal normal indicatrix, 

Helix 
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ABSTRACT 

In this paper, we obtain the rotation trihedron  * * *e , t ,g  by rotating the 

geodesic Frenet frame  e, t,g  at an angle (s)   in the plane  e,g  We 

expressed by new curve and ruled surfaces by means of these frames. Also, we 

give some new results and theorems related to be the asymptotic curve, the 

geodesic curve and the line of curvature of the base curves on the ruled surfaces. 

 
Key Words: Ruled surface, Asymptotic curve, Geodesic curve, Line of 

curvature 
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ABSTRACT 

 

In this paper, the timelike ruled surfaces generated by vectors of type-2 

bishop frame were investigated. Using this frame, the necessary and sufficient 

conditions when the ruled surfaces are developable were obtained and some new 

results and theorems related to be the asymptotic curve, the geodesic curve of 

the base curve on the ruled surfaces were gived. Also, the gaussian and mean 

curvatures of timelike ruled surfaces were calculated. 

 

Key Words: Timelike Ruled surfaces, Curves, Bishop frame, 
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ABSTRACT 

 

In this talk, we give some basic facts about S – metric spaces with 

necessary examples. We introduce the notion of a fixed circle and investigate 

some fixed – circle theorems on S – metric spaces with a geometric viewpoint. 

 
Key Words: Fixed circle, S – metric space, existence theorem, uniqueness 

theorem. 
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ABSTRACT 

 

In this talk, we present the notion of a fixed circle and determine some  

existence and uniqueness theorems for fixed circles of self-mappings on metric 

spaces with geometric interpretation. Also we give some illustrative examples. 

 
Key Words: Fixed circle, metric space, existence theorem, uniqueness 

theorem. 
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ABSTRACT  

Let E₁³ be the 3-dimensional pseudo-Euclidean space with the 

332211,),( yxyxyxYXYXg    

for all ),,( 321 xxxX  , 
3

1321 ),,( EyyyY   is a flat pseudo-Riemannian manifold of 

signature (2,1). 

Let M be a submanifold of E₁³. If the pseudo-Riemannian metric g  of E₁³ 

induces a pseudo-Riemannian metric g  (respectively, a Riemannian metric, a 

degenerate quadratic form) on M, then M is called a timelike ( respectively, 

spacelike, degenerate) submanifold of E₁³. 

 The lightlike cone is defined by 

 .0),(:3

1

2  xxgExQ  

Let E₁³ be 3-dimensional Minkowski space and 2Q  be the lightlike cone in 

E₁³. A vector V≠0  in E₁³ is called spacelike, timelike or lightlike, if 〈V,V〉>0, 〈V,V〉<0 

or 〈V,V〉=0, respectively. A frame field  yx ,,  on E₁³ is called an asymptotic 

orthonormal frame field, if 

.1,,,0,,,,   yxyxyyxx  

         We assume that curve 3:)( QIsxx   is a regular curve in 2Q  for It . In 

the following, we always assume that the curve is regular. Thus, the derivative 

formula of the asymptotic orthonormal frame of 2:)( QIsxx   is given by 
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'

'

'

y

yx

x

  

         In this formula,  ,  are called the cone curvature and cone torsion, 

respectively. 

         The Lorentz force φ of a magnetic field F  on 2Q  is defined to be a skew-

symetric operator given by 

),()),(( YXFYXg  , for all 2, QYX  . 

        The  -magnetic trajectories of F  are x  on 2Q  that satisfy the Lorentzian 

equation 

)'('

' xx

x  . 

       Furthermore, the mixed product of the vector fields 2,, QZYX   is the defined 

by 

),,(),( ZYXdvZYXg g , 

where gdv  denotes a volume on 2Q . 

        If V is a Killing vector in 2Q and let gvV volıF   be the corresponding Killing 

magnetic field, here the inner product is indicated by ı. Hence the equation Lorentz 

force of VF  is 

XVX )( , .2QX    

       Corresponding the Lorentz equation can be written as 

')'('

' xVxx

x   . 
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        In Minkowski space E₁³, consider the Killing vector field zcybxaV  , 

with IRcba ,, , the magnetic trajectories 2:)( QIsxx   determined by V are 

solutions of the Lorentz equation 

xVx ''  

       In this study, we examine the impact of magnetic fields on the moving particle 

trajectories by variational approach to the magnetic flow associated with the Killing 

magnetic field on 2- dimensional lightlike cone 2Q ⊂E₁³. We find different magnetic 

curves in the 2- dimensional lightlike cone using the Killing magnetic field of these 

curves. We also give some characterizations and definitions and examples of 

these curves with their shapes. 

 

Key Words: Magnetic curve, lightlike cone, killing vector field. 
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ABSTRACT  

Let 4

1E  be the 4-dimensional pseudo-Euclidean space with the following metric 

                             j

j

jj

i

i yxyxYXYXG 



4

3

3

1

,),(
~

 

for all ,),,,(),,,,( 4

143214321 EyyyyYxxxxX   4

1E  is a flat pseudo Riemannian 

manifold of signature )1,3( .  

Suppose that M is a submanifold of 4

1E . If the pseudo Riemannian metric G
~

(respectively, a Riemannian metric, a degenerate quadratic form) on M, then M is 

a timelike( respectively, spacelike, degenerate) submanifold of 4

1E .  

Let c be a fixed point in 4

1E  and r>0 be an arbitrary constant. The pseudo-

Riemannian null cone (quadratic cone) is defined as follows  

                                      .0),(
~

:),( 4

1

3

1  cxcxGExrcQ  

It is known that ),(3

1 rcQ  is a degenerate hypersurface in 4

1E . The point c is the 

center of )(3

1 cQ . When c=0 and q=1, we denote )0(3

1Q  by 3Q  and call it the 

lightlike or null cone. A vector V on 4

1E  is called spacelike if 0, VV  or V=0, 

timelike if 0, VV and null if 0, VV  and 0V , [4]. 

         Thus, the derivative formula of the asymptotic orthonormal frame of

3:)( QIsxx   is given by 
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      .1,,,,0,,,,,,   yxyxxyyxx  

          In this formula,  ,  are called the cone curvature and cone torsion, 

respectively. 

Smarandache curve is defined as a regular curve whose position vector is 

composed by Frenet frame vectors of another regular curve. 

In this paper, we studied special Smarandache curves such as yxxyxx  ,,,

Smarandache curves according to asymptotic orthonormal frame in the null cone 3Q  

and we examine the curvature and the asymptotic orthonormal frame's vectors of 

Smarandache curves. We give theorems related to these Smarandache curves and 

some characterizations. 

Key Words: Smarandache curve, asymptotic orthonormal frame, null cone. 

REFERENCES  

[1] Ali, A. T., Special Smarandache Curves in the Euclidean Space, International Journal of Math. 
Comb.  2(2010), 30-36. 

[2] Bayrak, N., Bayrak, O., Yuce, S., Special Smarandache Curves in 
3

1R  , Commun. Fac. Sci. 

Univ. Ank. Ser. A1 Math. Stat. 65(2) (2016), 143-160. 

[3] Cetin, M., Kocayigit, H., On the Quaternionic Smarandache Curves in Euclidean Space 3-
Space, Int. J. Contemp. Math. Sciences 8(3) (2013), 139-150. 

[4] Kulahci, M., Bektaş, M., Ergüt, M., Curves of AW(k)-type in 3-dimensional null cone, Physics 
Letters A 371 (2007), 275-277.  

[5] Kulahci, M., Almaz, F., Some characterizations of osculating curves in the lightlike cone, Bol. 
Soc. Paran. Math., 35(2) (2017), 39-48. 

[6] Liu, H, Curves in the lightlike cone, Contribbutions to Algebra and Geometry Volume 45(1) 
(2004), 291-303 

[7] Liu, H., Meng, Q., Representation Formulas of Curves in Two- and Three- Dimensional 
lightlike Cone, Results Math. 59 (2011), 437-451. 



 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

147  

[8] Senyurt, S., Caliskan, A., Smarandache Curves in Terms of  Sabban Frame of fixed Pole 
Curve, Bol. Soc. Paran.  Math. 34(2) (2016), 53-62. 

  



 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

148  

The Quadratic Trigonometric Bezier Spiral with Single Shape 
Parameter 

Aslı Ayar 
1   

and Bayram Şahin 
2

 

 

1 Ege University,Faculty of Science, Department of Mathematics,İzmir,Turkey 

asliayar1@gmail.com 

2 Ege University,Faculty of Science, Department of Mathematics,İzmir,Turkey 

bayram.sahin@ege.edu.tr 

ABSTRACT 

 

Spirals based on quadratic Bezier curves are suitable for computer-aided 

geometric design applications. Spirals segments are widely used in applications 

such as highway design, railway design and robot trajectories. Quadratic Bezier 

curves cause some difficulties in obtaining the desired shape because of their 

polynomial nature. For overcoming this problem, splines with shape parameters 

have been developed as alternatives to B-splines and Bezier curves. 

The purpose of our paper is to introduce a quadratic trigonometric Bezier 

spiral with a shape parameter which are similar to quadratic Bezier spirals 

discussed in [1]. Since curvature of the quadratic trigonometric Bezier spiral 

segment with a shape parameter varies monotonically with arc-length, it is 

suitable for applications such as highway design, in which the clothoid has been 

traditionally used. 

 
Key Words: Spirals, Quadratic Trigonometric Polynomials, The Quadratic 

Trigonometric Bézier Spiral with Single Shape Parameter. 
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ABSTRACT 

       The trajectory of a robot end effector is described by a ruled surface and a 

spin angle about the ruling of the ruled surface. In this paper, we analyzed the 

problem of describing  trajectory  of  a  robot  end-effector  by  a  spacelike  ruled  

surface with spacelike ruling. We obtained the developed frame  1 1 1t , r ,k  by 

rotating the generator frame  t, r,k at  an  Darboux angle (s)  . in  the  plane  

 r,k  which  is  on the striction curve β of the spacelike ruled surface X. 

Afterword, natural frame, tool  frame and surface frame which is necessary for the 

movements of robot are defined derivative formulas of the frames are founded 

by calculating the Darboux vectors. Tool frame  O,A, N . are constituted by 

means of this developed frame. Thus,   robot end effector motion is defined for 

the spacelike ruled surface φ generated by the orientation vector 1t 0 . Also, by 

using Lancret curvature of the surface and Darboux angle in the developed frame 

the robot end-effector motion is developed. Therefore, differential properties and 

movements an different surfaces in Minkowski space is analyzed by getting the 

relations for curvature functions which are characterized a spacelike ruled surface 

with spacelike directix. Finally, to be able to get a member of trajectory surface 

family which has the same trajectory curve is shown with the examples in every 

different choice of the Darboux angle which is used to described the developed 

frame. 

 
Key Words: Curvature theory, Darboux angle, Developed frame, Robot 

end- effector, Trajectory curve. 
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ABSTRACT 
 

In this paper, we give definition normal-direction curve and normal-donor 
curve. We obtain some theorems and characterizations curves. And we give 
some applications of normal-direction curves related to helix,slant helix,plane 
curve in Euclidean 3-space. 

 
Key Words: Normal-direction curve, Normal-donor curve, Helix 
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ABSTRACT 

 

Quaternion rational surface which generated from quaternion product of two 
rational space curves is defined by Wang and Goldman in [1]. They also defined 
quaternion rational ruled surface which is special quaternion rational surface. In 
this work, we investigate the new rational ruled surface which generated from the 
split quaternion product of a line and a space curve. We give some split 
quaternion rational ruled surface examples by Mathematica 10. Moreover, we 
describe of syzygy, mu-basis for split quaternion rational ruled surfaces and give 
its implicit equations. 

 

Key Words: Syzygy, mu-basis, split quaternion rational surface, split 

quaternion rational ruled surface. 
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ABSTRACT 

 

In this study generalized Fermi-Walker derivative, generalized Fermi-

Walker parallelism and generalized non-rotating frame are investigated along any 

curve in Euclidean space. Initially, we investigate the conditions of the 

generalized Fermi- Walker paralellism of any vector field along any curve in 

Euclidean space by considering the Frenet frame. Then we show that Frenet 

frame is generalized non- rotating frame along all curves with the choice of tensor 

field. We analyse that if the generalized Fermi-Walker derivative coincides with 

the Fermi-Walker one, then the Frenet frame is a non-rotating frame along the 

planar curves. 

 
Key Words: Generalized Fermi-Walker derivative, generalized Fermi-Walker 

parallelism, generalized non-rotating frame, Frenet frame. 
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ABSTRACT 

 

In this paper, almost contact metric structures on 5-dimensional nilpotent Lie 

algebras are studied and the classes of left invariant almost contact metric 

structures on the corresponding Lie groups are investigated. Furthermore, certain 

classes, that a five dimensional nilpotent Lie group cannot be equipped with, are 

determined. 

 
 

Key Words: 5-dimensional nilpotent Lie algebra, almost contact metric 
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ABSTRACT 
 

In this paper, we define a semi-symmetric metric connection on the tangent 

bundle equipped with complete lift metric. The Riemannian curvature tensors of 

this connection are computed and their properties are studied. Also we 

investigate conditions for the tangent bundle to be locally conformally flat with 

respect to this connection. 

 
Key Words: Tangent bundle, complete lift metric, semi-symmetric metric 

connection. 
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ABSTRACT 

In this presentation we derive some general conditions for a polygon of 

orientable hypersurfaces to be repellor (respectively attractor) using modern 

geometric methods. In order to make easy the presentation clear write some 

propositions and examples. 

Key Words: Manifold, Hypersurface, Cooperation, Orientable, Repellor, 

Attractor, Jumping Cancer. 
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ABSTRACT 

 

In this paper, anti-invariant submanifolds of a normal paracontact metric 
manifold are studied and characterizing the submanifold with respect to covariant 
derivative of the second fundamental form of anti-invariant submanifold. 
Furthermore, some special cases are also discussed and we give a non-trivial 
example. 

 
           Key Words: Riemannian curvature tensor, concircular curvature tensor, 
anti- invariant submanifold, semi-parallel and 2-semiparallel. 
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ABSTRACT 

 

In this study we present the Hamiltonian formulations of the dynamical 

systems generated by the second order Pais-Uhlenbeck, Sarıoğlu-Tekin and 

Clèment Lagrangians. 

Pais-Uhlenbeck Lagrangian is non-degenerate in the sense of Ostrogradsky 

whereas Sarıoğlu-Tekin and Clèment Lagrangians are degenerate. For the 

degenerate or/and constraint systems, the Legendre transformation is not 

possible in a straight forward way. For the degenerate systems, one additionally 

needs to employ, for example, the Dirac-Bergmann algorithm in order to arrive at 

the Hamiltonian picture. An alternative way arriving at the Hamilton's equations is 

to construct the Dirac bracket. 

Key Words: Second order degenerate Lagrangians, Dirac-Bergmann  

algorithm, Pais-Uhlenbeck Lagrangian, Sarığlu-Tekin Lagrangian, Clement 

Lagrangian. 
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ABSTRACT 

 

In this study, we investigate spacelike T-conical helix in Minkowski 3-space. 

Moreover, we obtain characterization of this curve and give some parametric 

equations for its. Also related examples and their illustrations are drawn with 

Mathematica 10.1. 
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ABSTRACT 

 
 

In this paper, we study semi-slant submanifolds of a cosymplectic space 
form M(c) with constant φ-sectional curvature c. Necessary and sufficient 
conditions are given for a submanifold to be a semi-slant submanifold, semi-slant 
product, mixed geodesic and totally geodesic in cosymplectic manifolds. Finaly, 
we obtain some results for such submanifolds in terms of curvature tensor 

 
Key Words: Cosymplectic manifold, cosymplectic space forms, semi-slant 

submanifold. 
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ABSTRACT 

 

An isotropic space is a Cayley-Klein space obtained from the real projective 

space with a certain absolute figure. This talk deals with the isotropic 

counterparts of the surfaces of codimension 2. We present several formulas for 

such surfaces to compute extrinsic and intrinsic invariants. We also provide the 

classification results for some types of surfaces with vanishing curvature. 

Key Words: Isotropic space, Cayley-Klein space, relative curvature, 

isotropic mean curvature. 
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ABSTRACT 

 

In this study, we obtain the necessary and sufficient conditions for multiply 

warped product to be gradient Ricci solitons. 
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ABSTRACT 

 

In this paper, we discuss some geometric properties of two types of 

Lorentzian submersions whose total space is a Lorentzian almost paracontact 

manifold. The study is focused on the transference of structures. 

 
Key Words: Lorentzian almost paracontact manifold, Lorentzian 

submersion, Lorentzian almost paracontact submersion. 
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ABSTRACT 

 

Throughout this work, on the basis of the fundamental theorem of the local 

theory of curves, we obtain considerable solutions to both the Bishop frame 

equations and the type-2 Bishop frame equations by means of a new local 

coordinate system described. Further, we construct the general equations 

(including bishop curvatures) of regular curves and their frame apparatus for each 

case. As a consequence of these, we also give results which presents the Frenet 

apparatus. 
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ABSTRACT 

 

Mean curvature flow is maybe the most important geometric evolution 

equation of submanifolds in Riemannian manifolds. In this presentation, we focus 

on a special family of solutions, known as Translating Solitons. We give some 

properties and theorems about this in Euclidean and Minkowski space. 

Furthermore, we present known examples, such as the Grim Reaper 

Cylinder, the Translating Catenoid and the Translating Paraboloid. Finally, we 

study a new family of Translating Solitons which move in a null direction in the 

Minkowski Plane. 

 
Key Words: Translating solitons, Mean curvature flow, null direction 
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ABSTRACT 

 

We establish a Reidemeister torsion formula for the three-holed-sphere  by 

taking its double. Using this formula and considering the three-holed-sphere 

decomposition of orientable closed surfaces, we also establish a formula that 

computes Reidemeister torsion of orientable closed surfaces. Moreover, we 

obtain a Reidemeister torsion formula for orientable 3-manifold whose boundary 

consists of unions of finitely many closed orientable surfaces. 

 
Key Words: Reidemeister torsion, Symplectic chain complex, Three-holed- 

sphere decomposition of Riemann surfaces, Compact 3-manifolds. 
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ABSTRACT 
 

The aim of this paper is focusing on η-Einstein geometry of normal complex 
contact metric manifolds. We give the definition of complex η -Einstein normal 
complex contact metric manifolds and we obtain some conclusions. 

 

Key Words: Normal complex contact metric manifold, conformal curvature 

tensor, concircular curvature tensor, projectively semi-symmetric, complex η - 

Einstein. 
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ABSTRACT 

 

We classify three-dimensional paracontact metric manifold whose Ricci 
operator Q is invariant along Reeb vector field, that is, L_{ξ}Q=0. 

 
Key Words: Paracontact metric manifold, Ricci collineation, Reeb vector field. 
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ABSTRACT 

 

The purpose of this paper is to study CR-submanifolds of an Lorentzian β- 

Kenmotsu manifold. We investigate that some properties of CR-submanifolds of a 

Lorentzian β-Kenmotsu manifold whose φ-sectional curvature is constant. We 

consider bisectional curvature of CR-product of Lorentzian β-Kenmotsu manifold. 
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ABSTRACT 

 

This paper deals with the study of geometry of normal paracontact metric 

manifolds. We investigate some properties of  D  conformally  flat,  D  

conformally semi-symmetric, B( ,Y)P 0,B( ,Y)Z 0    and B( ,Y)C 0   

curvature conditions on normal paracontact metric space forms. 

Key Words: D- conformal curvature tensor,   Normal paracontact metric 

manifold, Einstein manifold. 
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ABSTRACT 

 
In this paper, the Steiner area formula and the polar moment of inertia were 

expressed during one-parameter closed planar homothetic motions in complex 
plane. The Steiner point or Steiner normal concepts were described according to 
whether rotation number was different zero or equal to zero, respectively. The 
moving pole point was given with its components and its relation between Steiner 
point or Steiner normal was specified. The sagittal motion of a telescopic crane 
was considered as an example. This motion was described by a double hinge 
consisting of the fixed control panel of telescopic crane and the moving arm of 
telescopic crane. The results obtained in the second section of this study were 
applied for this motion. 

 
Key Words: Steiner formula, polar moment of inertia, homothetic motions. 
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ABSTRACT 

In  this  talk  we  focus  on  CMC  surfaces  in  the  Minkowski  4-space 𝐸1
4 

and pseudo-Euclidean space 𝐸2
4. We firstly present a survey of results on 

surfaces with finite type Gauss map. Then, we show a construction method of 

surfaces with the prescribed boundary curve. We also want to show examples of 

compact surfaces without boundary. 

 
Key Words: CMC surfaces, finite type Gauss map, pseudo-Euclidean 

space, quasi-minimal surfaces 
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ABSTRACT 

In a spin manifold M, two first-order differential operators can be defined on 

spinor fields which are Dirac operator and twistor operator. The spinor fields that 

are in the kernels of the Dirac operator and twistor operator are called harmonic 

spinors and twistor spinors, respectively. Symmetry operators that map harmonic 

spinors to harmonic spinors and twistor spinors to twistor spinors are constructed 

in terms of conformal Killing-Yano forms which are antisymmetric generalizations 

of conformal Killing vector fields to higher degree differential forms. 

Transformation operators that transform twistor spinors to harmonic spinors are 

also constructed in terms of potential forms. These constructions are generalized 

to Spinc geometry. 

 
Key Words: spin geometry, Dirac operator, twistor operator, symmetry 

operators, Spinc geometry 
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ABSTRACT 

In this work, we consider an integral geometry problem along geodesics and 

related inverse problem. This problem has important applications in various 

areas, particularly in medicine and industry. 

First, we reduce the overdetermined problem to a determined one by using 

a special method developed by Amirov [1] and later we prove the existence of 

solution to the inverse problem by the Galerkin method. 
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ABSTRACT 

 

In this study, we have investigated the properties of fuzzy spaces by using 
fuzzy sets. Fuzzy spaces like the fuzzy sphere or fuzzy cylinder have received 
remarkable attention in string theory. The Fuzzy coordinates on the fuzzy bundle 
structure of fuzzy-manifolds have been given. For given fuzzy bundle structures, 
all fundamental geometrical properties have been investigated in Hamiltonian 
energy equations and applications. Moreover, we have presented a new concept 
of velocity and time dimensions for fuzzy energy systems. 

 
Key Words: Hamiltonian Energy Equations, Fuzzy Space, Fuzzy Manifold. 
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ABSTRACT 

 

The aim of this paper is to improve Hamiltonian energy equations for fuzzy 
cylinder on fuzzy space. Fuzzy spaces like the fuzzy cylinder have received 
remarkable attention. The fuzzy spaces coordinates have been given for fuzzy 
cylinder. For given fuzzy bundle structure, fundamental geometrical properties 
have been investigated in Hamiltonian energy equations on fuzzy manifolds. We 
have presented a new concept of velocity and time dimensions for energy 
movement equations on fuzzy surfaces. 

 
Key Words: Hamiltonian Energy Equations, Fuzzy Cylinder, Fuzzy 

Manifold. 
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ABSTRACT 

 

In this study, we build the concept of fuzzy split quaternion numbers of a 
natural extension of fuzzy real numbers. Then, we give some differential 
geometric properties of this fuzzy quaternions. Moreover, we construct the frenet 
frame for fuzzy split quaternions. We investigate frenet derivation formulas with 
fuzzy quaternion numbers. 

 

Key Words: Fuzzy Space, Fuzzy Quaternions, Frenet Frame. 
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ABSTRACT 
 

The aim of this article is to improve Hamiltonian energy equation for super 

helix on super manifolds with super jet bundles. The super helix coordinates on 

the super bundle structure of supermanifolds have been given for body and soul 

part and also even and odd dimensions. For given super bundle structures,super 

fundamental geometrical properties have been investigated in super Hamiltonian 

energy equations and applications to super bundle structures. We have 

presented a new concept of velocity and time dimensions for energy movement 

equations. Finally, this study showed a physical application and interpretation of 

super velocity and super time dimensions in super Hamiltonian energy equations 

for given example. 

 
Key Words: Supermanifold, Superbundle, Super Helix, Hamiltonian Energy, 

Hamiltonian energy equations 
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ABSTRACT 

The aim of this article is to improve Hamiltonian energy equations for 
equiangular spiral(logarithmic spiral) on supermanifold with super jet bundle. The 
super logarithmic spiral’s super coordinates on the super bundle structure of 
supermanifolds have been given for body and soul part and also even and odd 
dimensions. This study showed a physical application and interpretation of super 
velocity and super time dimensions in super Hamiltonian energy equations for 
this curve. 

 

Key Words: Supermanifold, Superbundle, Super Logarithmic Spiral, 

Hamiltonian Energy,  Hamiltonian energy equations 
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ABSTRACT 

 

In this study, the basic algebraic structures of semi-quaternions are given. 

Moreover, the unit tangent bundle of Euclidean 3-space is stated in terms of unit 

semi-quaternions. 
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ABSTRACT 

 

In this study, firstly the basic algebraic structures of split semi-quaternions 

are given. Afterwards, we have defined the unit tangent bundle of Minkowski 3-

space in terms of unit split semi-quaternions. 
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ABSTRACT 

 

In this study, firstly we will give a brief summary of the concepts Legendre 

curves and rotation minimizing vector fields. Afterwards, we will give a one-to-one 

correspondence between the Legendre curves and rotation minimizing frames  

(RMF). 
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ABSTRACT 

 

In this study, we obtain the parallel surfaces of the non-developable ruled 

surfaces of which the base curve is the striction line. In this case, we calculate 

curvatures  of  parallel  non-developable  ruled   surfaces   under   the   condition 

that 𝝁𝟐 + 𝝂𝟐 = 𝟏. Under this condition, then, we show that relations between the 

curvatures of the surfaces are more special. 

Finally, the image of the striction line on the parallel surface is obtained and 

this situation is examined in terms of differential geometric properties. 

 
Key Words: Non-Developable Ruled surface, Parallel surface, Line of 

striction. 
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ABSTRACT 

 

In this paper, we study on the spacelike rational Bezier Curve with a 

Timelike Principal normal in Minkowski-3 space. Firstly, we consider the Serret-

Frenet frames. Secondly, we calculate the curvature and torsion of this curves. 

Then we obtain derivation formulas. Finally we give an example. 
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ABSTRACT 

 

The aim of this paper is to investigate some low-degree uniform B-splines 

which are called quadratic and cubic uniform B-splines on time scale. Firstly, we 

define quadratic and cubic uniform B-spline curves on time scale. Secondly, we 

try to calculate the derivative matrix of these B-spline curves. Then we obtain the 

derivatives of end points and give some properties of these curves on time scale. 

Finally, we give an example for this concept. 
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ABSTRACT 

 

The intention of this article is to study on timelike uniform B-spline curves in 

Minkowski-3 space. In our paper, we take the control points of uniform B-spline 

curves as timelike point in Minkowski-3 space. Then we calculate some 

geometric elements for this new curve in Minkowski-3 space. 
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ABSTRACT 

 

In this study, we studied complete and horizontal lifts of complex golden 

structure to the cotangent bundle. Further, we investigated integrability conditions 

of complex golden structure in the cotangent bundle. 

 
Key Words: Complex golden structure, complete lift, horizontal lift, 
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ABSTRACT 

 

Alpha plane geometry is a non-Euclidean geometry, and also a Minkowski 

geometry. -plane is almost the same as Euclidean plane since the points are the 

same, the lines are the same, and the angles are measured in the same way. 

Since the -plane geometry has a different distance function it seems interesting 

to study the -analog of the topics that include the concepts of distance in the 

Euclidean geometry [7]. 

One of the concepts which include notation of distance is an inversion. 

Inversion has attracted the attention of scientist from past to present. So there are 

a lot of studies about inversion. Many scientists studied and also are studying 

different side of this concept [1,2,5,6]. 

In this representation, we introduce inversion which is also valid in the alpha 

plane geometry, and give some properties with respect to inversion in the alpha  

plane geometry. We also show the inversive images of some basic curves. We 

apply this new transformation to well-known fractals such as Sierpinski triangle,  

Koch curve, dragon curve, Fibonacci fractal, among others. Then new fractal 

patterns is obtained [3,4]. 

Key Words: Fractal, Alpha plane, Alpha Circular Inversion. 
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ABSTRACT 

 

The one hundred year old concept of "Minkowski space" is a nice topic of 

recent geometric research. Nevertheless, the phrase "Minkowski space" is 

applied for two different theories: the theory of normed linear spaces and the 

theory of linear spaces with indefinite metric. It is interesting that these essentially 

distinct theories have similar axiomatic foundations. The axiomatic build-up of the 

theory of linear spaces with indefinite metric comes from H. Minkowski [6] and the 

similar system of axioms of normed linear spaces was introduced by Lumer [5] 

much later. 

The first concept widely used in physics is the mathematical structure of  

relativity theory and thus its importance is without doubt. On the other hand, the 

importance of the second theory is based on the fact that a large part of modern 

functional analysis works in so-called normed spaces which are more general 

ones than inner product (or Hilbert) spaces. Of course, in both of these two 

theories a lot of problems can be formulated or can be solved in the language of 

geometry. Such a normed space with the branches of its geometric properties is 

called Minkowski geometry [4,7]. 

Unit ball of Minkowski geometries is a general symmetric convex set. 

Therefore this show that one can find a relation between symmetric convex set 

and metrics. For example, in the 3-dimensional analytical space there are five 

regular polyhedra. These are known as Platonic solids. We mention existence of 

metrics which their unit balls are Platonic solids [1,2,3]. Polyhedrons can be 

formed from other polyhedrons by subjecting them to various geometric 
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operations. For example, some of the Archimedean solids can be formed by 

cutting the edges of the Platonic solids at a certain rate, while some Catalan 

solids are formed by elevating the faces of the Platonic bodies with a point from 

the center of gravity. One of these geometric operations is a chamfer operation. It 

is similar to expansion, moving faces apart and outward, but also maintain the 

original vertices. For polyhedra, this operation adds a new hexagonal face in 

place of each original edge. Solids obtained by applying this geometric process 

are called chamfered solids. 

One of the fundamental problem in geometry for a space with a metric is to 

determine the group of isometries. In this work, we show that the group of 

isometries of the 3-dimesional space covered metrics which their unit balls are 

chamfered solids is the semi-direct product of octahedral group Oh and T(3) or 

the semi-direct product of octahedral group Ih and T(3), where T(3) is the group 

of all translations of the 3- dimensional space. 

 

Key Words: Chamfered solids, Minkowski geometry, Normed finite 

dimensional Banach space, Isometry. 
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ABSTRACT 

 

In the present study we consider generalized rotational surfaces in 

Euclidean 4- space E⁴. Further, we obtain some curvature properties of these 

surfaces. We also introduce some kind of generalized rotational surfaces in E⁴ 

with the choice of meridian curve γ(u). Finally, we give some examples. 

 
Key Words: Rotational surface, spherical product, Gaussian curvature. 
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ABSTRACT 

 

Some special submanifolds of pseudo Riemannian manifolds are 

introduced. Scalar curvature for pseudo Riemannian submanifolds is 

investigated. Some basic equalities and inequalities involving curvatures for these 

submanifolds are given. 

 
Key Words: Submanifold, pseudo Riemannian manifold, scalar curvature. 
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ABSTRACT 

 

In the Euclidean space E3, it is well known that normal curves, i.e., curves 
with position vector always lying in their normal plane, are spherical curves. In 
this study, the quaternionic normal curves are studied and some 
characterizations are obtained for quaternionic normal curves in terms of their 
curvature functions. Also, it is investigated under what conditions a quaternionic 
curve is a quaternionic normal curve. 

 
Key Words: Normal curves, real quaternion, quaternionic curve, position 

vector. 
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ABSTRACT 

 

In the present study we consider Grassmann manifolds G(2,4) embedded in 

6- dimensional Euclidean space E⁶ using the Plücker coordinates. Further, for a 

given smooth surface M² in E⁴ we describe its Grassmann image a surface 

F²⊂G(2,4). 
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ABSTRACT 

 

In this paper, by using a hyperbolic lifting transformation to a plane curve, 

we construct an envelope ruled surface. Then we show that it is a developable 

surface in three dimensional Euclidean space and we give the conditions of this 

surface to be a minimal surface. Finally, we constructed some examples. 

 
Key Words: Ruled surfaces, Developable surface, Lifting. 
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ABSTRACT 

In this study we consider Tzitzeica curves ( Tz-curve ) in Euclidean 3-space 

IE3. We characterize such curves according to their curvatures. We show that 

there is no Tzitzeica curve with constant curvatures ( i.e. W-curves ). We 

consider Salkowski  and anti-Salkowski curves. 

 
Key Words: Tzitzeica curve, Salkowski curve, W-curve. 
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ABSTRACT 

 
In the present study we consider the generalized rotational surfaces in 

Euclidean m-space Em. Firstly, we introduce some basic concepts of second 

fundamental form and curvatures of the surfaces in Em. Further, we obtained 

some basic properties of  generalized  rotational surfaces in Em  and  some  
results   related with their curvatures. Finally,we give some examples of 

generalized rotational surfaces in Euclidean 5-space E5. 
 

Key Words: Generalized tractrix , Gaussian curvature, Rotational surface , 
Beltrami surface. 
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ABSTRACT 

 

In this study, firstly the corresponding anti-symmetric matrix for 3-

dimensional real Fibonacci vectors is described and the vector product is 

reconsidered by using this matrix. Furthermore, some properties of this vector 

multiplication are given. Then, the inner product, the Lorentzian inner product, the 

vector product and the scalar triple product for the 4-dimensional and 7-

dimensional Fibonacci vectors are defined and their properties are examined. 

 
Key Words: Fibonacci vectors, anti-symmetric matrix, the vector product, 

the Lorentzian inner product. 
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ABSTRACT 

In this paper, we investigate the geometric properties of self similar curves 

and surfaces in the Galilean spaces. Also we obtain some theorem and results of 

self similar curves and surfaces in the Galilean spaces. 

 
Key Words: Self similar curves, Self similar surface, Galilean space. 

 
REFERENCES 

 
[1] Isaak M Y. A Simple Non-Euclidean Geometry and its Physical Basis. New York: Springer-
Verlag, (1979) 

 

[2]  Ethemoglu E., 𝐸𝑛  deki Kendine Benzer Eğriler ve Yüzeylerin Bir Karekterizasyonu,Y.T.L. ; 

Bursa (2013). 

[3] Etemoğlu, E., Arslan, K., Bulca, B. 2013. Self similar surfaces in Euclidean space, Selçuk J. 

of Appl. Math., 

[4] Anciaux H. 2006. Construction of equivariant  self-similar  solutions  to  the  mean curvature 

flow in C
n  

Geom. Dedicata, 120 (1): 37.48. 

[5] B. Divjak, Geometrija pseudogalilejevih prostora, PhD thesis, University of Zagreb(Zagreb, 
1997). 

 
[6] B. Divjak and Z. Milin Sipus, Special curves on ruled surfaces in Galilean and pseudo-
Galilean space, Acta Math. Hungar., 98 (2003), 203-215. 

 
[7] B. Divjak and Z.Milin Sipus, Minding isometries of ruled surfaces in pseudo-Galilean space, 
J. Geom., 77 (2003), 35_47. 

 
[8] A. Ogrenmis, M. Ergut , M. Bekatas , On the helices in the Galilean space G 3 , Iranian J. 
Sci.Technol. Trans. A 31 (A2) (2007) 177–181. Printed in The Islamic Republic of Iran. 

 
[9] M. Dede, C. Ekici , A. Coken , On the parallel surfaces in Galilean space, Hacettepe J. 
Math. Stat.42 (6) (2013) 605–615 . 

 
[10] Z. Erjavec , B. Divjak , The equiform differential of curves in the pseudo-Galilean space, 
Math.Commun. 13 (2008) 321–332. 

mailto:maltin@bingol.edu.tr
mailto:bayram.karadag@inonu.edu.tr


 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

207  

[11] H. Oztekin, S. Tatlipinar , Deter mination of the position vectors of curves from intrinsic 

equations in G3   , Walailak J.Sci. Tech. 11 (12) (2014) 1011–1018. 

[12] Z.Milin Sipus and B. Divjak, Surfaces of constant curvature in the pseudo-Galilean space, 
submitted. 

 
[13] O. Röschel, Die Geometrie des Galileischen Raumes, Habilitationsschrift (Leoben,1984). 

 
[14] Gray, A. Modern Diferantial Geometry of curves and surfaces, CRS Press,Inc. (1993) 

 
[15] B. O.Neill,, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, 
New York (1983) 

 
[16] Pressley A. ,Elementary Differential Geometry, Springer. 

 

  



 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

208  

Da-Homotetic Deformed 3-Dimensional Quasi-Sasakian 

Manifolds with the Schouten-Van Kampen Connection 

Ahmet Sazak 
1
, Ahmet Yildiz 

2 
and Azime Cetinkaya

3
 

1 Mus Alparslan University,  Department of Mathematics, Mus, Turkey, 

a.sazak@alparslan.edu.tr 

2 Inonu University, Education Faculty, Department of Mathematics, Malatya, 

Turkey,a.yildiz@inonu.edu.tr 

3 Piri Reis University,Department of Mathematics,İstanbul,Turkey,azzimece@hotmail.com 

 
 

 
ABSTRACT 

 

In this paper we study the Schouten-van Kampen connection on Da-homotetic 

deformed 3-dimensional quasi-Sasakian manifolds. Also we study semisymmetry 

condition on Da-homotetic deformed 3-dimensional quasi-Sasakian manifolds  

with the  Schouten-van  Kampen connection. 

 

Key Words: Da-homotetic deformation, The Schouten-van Kampen 

connection, 3-dimensional quasi-Sasakian manifolds, Semisymmetric manifolds. 
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ABSTRACT 

 

In this paper we study generalized Tanaka-Webster connection on 3- 

dimensional quasi-Sasakian manifolds. Also we study semisymmetry condition on 

3- dimensional quasi-Sasakian manifolds with generalized Tanaka-Webster 

connection. 

 

Key Words: Generalized Tanaka-Webster connection, 3-dimensional 

quasi- Sasakian manifolds,  Semisymmetric manifolds. 
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ABSTRACT 

 

In the present study we consider conchoid curves and surfaces in Euclidean 

spaces. This study consists of two parts. In the first part we consider planar 

curves satisfying conchoidal property. We also give some examples and plot their 

graphics. In the second part we consider conchoid surfaces of rotational surfaces 

in E³. Further, we obtain some results related with their curvature properties. 

Key Words: Regular surface, Conchoid surface, modelling with surfaces. 
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ABSTRACT 

In this study, we have established universal similarity factorization equalities 
(USFE) over the commutative quaternion and their matrices. On the basis of 
these equalities, real matrix representations of the commutative quaternion and 
their matrices have been derived. Also, their algebraic properties and 
fundamental equations have been determined. 

 
Key Words: Commutative quaternion, commutative quaternion matrix, 

universal similarity factorization equalities (USFE). 
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ABSTRACT 

 

In this study, our main interest is a linear system of equations characterizing 

curves of constant breadth in 3-dimensional Galilean space. In given a space 

curve, our aim is to determine a second curve of constant breadth with respect to 

this curve by obtaining solutions of the aforementioned system in terms of 

Laguerre polynomials. By satisfying the system in a desired number of 

equidistant collocation points, the problem is reduced to a system of linear 

algebraic equations. The solution of this system then yields the solutions of the 

original problem. In order to test the validity and efficiency of the proposed 

method, we consider an example problem. 

 
Key Words: Curves of constant breadth, Laguerre polynomials, Collocation 

points, System of differential equations, Galilean space. 
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ABSTRACT 

 

In this paper, we define spherical orthotomic and spherical antiorthotomic on 

the pseudo-hyperbolic space. Then, we apply the unfolding theory to spherical  

orthotomic and spherical antiorthotomic. Finally, we use the technique in [4] to 

determine their local diffeomorphic type. 

 
Key Words: Spherical curve, orthotomic, antiorthotomic, unfolding. 
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ABSTRACT 

 

    In this study,firstly, the darboux vector   W  of the natural lift     of the curve   

are calculated in terms of those  of   in IR
3 . Secondly, we obtained striction 

lines and distribution parameters of ruled surface pair generated by Darboux 

Vectors of  the curve and its natural lift  . Finally, for    and    those notions are 

compared  with each other. 

 
Key Words: Natural Lift, ruled surface, striction line, distribution parameter. 
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ABSTRACT 

 

In this study, we investigate special associated curve of a  non-degenerate 

Frenet curve according to the Sabban frame in anti de Sitter 3-space. Moreover, 

we give a construction method of Sabban apparatus of a special direction curve 

in terms of the elements of Sabban apparatus of its donor curve. Furthermore, we 

obtain some results for the direction curve with respect to special cases of the 

base curve. Finally, we give an example of a helix and its direction curve which is 

also a helix and draw theirs images under the stereographic projection in 

Minkowski 3-space. 

 
Key Words: Frenet curve, associated curve, direction curve, donor curve, 

helix. 
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ABSTRACT 

 

In the present study we consider convolution of curves and surfaces in 

Euclidean spaces. This study consists of two parts. In the first part we consider 

convolution of curves in Euclidean spaces. We also give some examples related 

with these types of curves. In the second part we consider convolution of 

surfaces in Euclidean spaces. Further, we also give some results related with 

their curvature properties. 

Key Words: Regular surface, Convolution of surfaces, modelling with surfaces. 
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ABSTRACT 

 

In this article, we investigate semi - parallel and harmonic surfaces. 

Firstly, by considering semi parallelity condition R(X,Y).h=0, we  obtain 

necessary and sufficient conditions for semi - parallel surfaces. We have shown 

that translation surfaces form a part of semi- parallel surfaces. 

Secondly, we have shown that if M is a harmonic surface then it must be a 

translation surface. 

 
Key Words: Semi parallel surface, harmonic surface, translation surface. 
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ABSTRACT 

 

In classical diff erential geometry, an important tool analyzing geodesics on 

ordi- nary surfaces of revolution is Clairaut’s Relation. Let α be a unit-speed curve 

on a surface of revolution S, let ρ : S → R be the distance of a point of S from the 

axis of rotation, and let φ be the angle between α˙ and the meridians of S. If α is a 

geodesic, then ρ sin φ is constant along α. Clairauts relation also has a simple 

me-chanical interpretation, for interested readers, see:[15, page:230]. On the 

other hand, Clairaut Riemannian submersions have been defined and studied by 

Bishop in [6]. Moreover, Lorentzian Clairaut submersions have been defined in [1] 

as a Lorentzian  submersion defined from a spacetime onto a Riemannian 

manifold. It is shown that if the integrability tensor of the submersion vanishes, 

the null geodesic of the total space behaves like geodesics of static spacetimes. 

More precisely, in this case, null geodesics in the total space project to null pre-

geodesics in the base equipped with a certain conformally related metric. 

 
In this talk, we introduce Clairaut CR-submanifolds and obtain a characteriza-

tion. We also show that this notion gives a geometric meaning of CR-products in 

terms of geodesic and certain angles. 

 
Key Words: Kaehler manifold, Clairaut surface, CR-submanifold, Clairaut CR- 

submanifold. 
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ABSTRACT 

 

In this paper, we studied the ruled surface generated by a straight line in 
parallel transport frame moving along a curve in four dimensional Euclidean 
space and we obtained Gaussian and mean curvatures. 

Some results and theorems related to be developable and Chen surfaces 
were given. As a result we gave a special example of ruled surfaces in E⁴. 

 

Key Words: Ruled surface, Gaussian curvature, Developable surface. 
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ABSTRACT 

 

Riemannian submersions are widely studied in differential geometry. Planar 

normal sections were defined by Chen and this subject has been also studied in 

the submanifold theory by many authors. In this talk, we check relations between 

Riemannian submersions and planar normal sections. We give a characterization 

for a Riemannian submersion to have such normal sections. We also related this 

subject to O'neill's tensor fields and obtain a new criteria. 

 
Key Words: Riemannian submersion, planar normal section, planar 

horizontal section. 
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ABSTRACT 

 

In this paper, we introduce the notion of the energy on the particle that 
corresponds to different type of associated curves defined earlier for a given in 
space. Also, the relationship on the variation of the energy for their mates is 
investigated. 

 

Key Words: Associated Curves, Energy, Frenet frame. 
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ABSTRACT 

 

It is well known that contact kinematics is divided into two categories: 

forward kinematics and inverse kinematics. The forward kinematics problem is 

that of using the kinematic equations to compute the motion of the moving 

surface from a specified contact locus on each surface. In this paper, we study 

the forward kinematics of rolling contact without sliding for two spacelike contact 

surfaces tracing on each spacelike trajectory curve in Lorentzian 3-space. One of 

these spacelike surfaces is a fixed surface and the other is a moving surface. The 

rolling contact pairs have one, two, or three degrees of freedom (DOFs) 

consisting of angular velocities. Rolling contact motion can be divided into two 

categories: spin-rolling motion and pure-rolling motion. Spin-rolling motion has 

three (DOFs), and pure-rolling motion has two (DOFs). 

 
Key Words: Darboux frame, forward kinematics, Lorentzian 3-space, rolling 

contact. 
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ABSTRACT 

 

It is well known that contact kinematics is divided into two categories: 

forward kinematics and inverse kinematics. The inverse kinematics problem is 

that of determining the control parameters that give the moving surface the 

desired motion. In this paper, we study the inverse kinematics including three 

nonlinear algebraic equations by using curvature theory in Lorentzian geometry. 

These equations can be reduced as a univariate polynomial of degree six by 

applying the moving frame method. This polynomial enables us to obtain rapid 

and accurate numerical root approximations. Furthermore, we obtain two 

fundamental parts of the spin velocity in Lorentzian 3-space: the induced spin 

velocity and the compensatory spin velocity. 

 
Key Words: Darboux frame, inverse kinematics, Lorentzian 3-space, rolling 

contact. 
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ABSTRACT 

 

In this study, the pedal and contrapedal curves of regular curves in 

hyperbolic and de Sitter 2-spaces are introduced via the Lorentzian Sabban 

frame. But, the definitions do not work for singular curves since the Lorentzian 

Sabban frame is not well-defined at singular points. Thus, the differential 

geometry of pedal and contrapedal curves of singular curves is also considered. 

The definitions of pedal and contrapedal curves of spacelike and timelike frontals 

are given by utilizing the Legendrian moving frames along the fronts. 

Furthermore, some relationships among pedal curves, contrapedal curves and 

evolutes of spacelike and timelike fronts are presented. 

 
Key Words: Pedal Curve, Front, Singularity, Minkowski Spheres. 
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ABSTRACT 

 

In 1900’s p-complex Fibonacci numbers were defined by means of complex 
Fibonacci numbers which were described C. J. Harman. Furthermore, A. F. 
Horadam examined complex Fibonacci numbers and their some general 
equations. In this study, some identities as Cassini and Binet formulas which 
include p-complex Fibonacci numbers were analyzed. In this process, Fibonacci 
identities have benefited. As a result real, complex and hyperbolic numbers’ 
general form has been reached with p-complex Fibonacci numbers. 

Key Words: Fibonacci numbers, Complex Fibonacci numbers, p-complex 

Fibonacci numbers. 

 
 

REFERENCES 

 
[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, A Willey-Interscience 
Publications, U.S.A, 2001. 

 
[2] R. A. Dunlap, The Golden Ratio and Fibonacci Numbers, World Scientific, Canada, 1997. 

 
[3]  A.  F.  Horadam,  Complex  Fibonacci  Numbers  and  Fibonacci  Quaternions,  Amer. 
Math. Monthly 70 (3) (1963), 289-291. 
 

[4] C. J. Harman, Complex Fibonacci Numbers, The Fibonacci Quaterly, 19 (1), (1981), 82-86.  

 

[5]  A.  A.  Harkin,  J.  B.  Harkin,  Geometry  of  Generalized  Complex  Numbers, 
Mathematics Magazine 77 (2) (2004), 118-129. 

 

  

mailto:tosun@sakarya.edu.tr
mailto:y.kulac@hotmail.com


 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

231  

 

The Finite Type Curves Lying in the Cylinder 

Çetin CAMCI 
1
, Arzu AKTAŞ 

2
 

1 Çanakkale Onsekiz Mart University, Çanakkale,Turkey, ccamci@comu.edu.tr 
 

2 Çanakkale Onsekiz Mart University, Çanakkale,Turkey,  aktas_arzu@hotmail.com 
 

 
ABSTRACT 
 

In R²ⁿ⁺¹(-3) Sasaki space, Baikousis and Blair studied a Legendre curve 

which lies in a hipercylinder N²ⁿ(c) ([2]).Furthermore, they conjectured that a finite 

type curve which lies on cylinder N²(c) is of constant curvature ([3] ). In PhD. 

thesis,  Camci studied a curve in N²(c) cylinder and he proved this open problem 

([5], ([6] ).  In this paper, we study the finite type curve in cylinder and It has been 

shown that only the finite type curves lies in the elliptical cylinder. 

 
Key Words: Legendre curve Sasaki space Finite type curve 
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ABSTRACT 
 

In our work we introduced sliced almost contact manifolds as a wider class 

of almost contact manifolds which are studied in mathematics till now. We defined 

and gave examples of sliced almost contact manifolds, sliced almost contact 

metric manifolds and sliced contact metric manifolds. Finally we proved the 

theorems of necessary and sufficient conditions of being sliced contact metric 

manifolds. 

 

Key Words: Contact manifolds, Sliced Contact Manifolds, Sliced Contact 

Metric Manifolds. 
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ABSTRACT 
 

It is known that hyperbolic geometry is used to describe the geometry of the 

action  of  discrete  groups  of  Möbious  transformations  [2,3,4].  In  this  study, 

we mention about Fuchsian groups, especially Modular group as an well-known 

example [1]. It is a discrete subgroup of PSL(2, %) which act discontiously on the 

upper half- plane H. The discontinuoity implies the existence of a fundamental 

region. We give some examples pointing out that these are hyperbolic polygons. 

The hyperbolic area of a fundamental region is shown to be an important 

invariant and it is used to clarify the structure of the discrete groups as follows. 

All Fuchsian groups have signature 

1 r(g;m ,...,m : s)  

where m1, . . , mr are integers 2  and called periods, s is the parabolic class 

number, and g is the genus of the group. For such a group G, the hyperbolic 

measure is  

n

i 1 i

1
(G) 2 {2(g 1) (1 ) s}

m
 



      

Key Words: Möbiüs transformations, Modular group, Fundamental domain. 
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ABSTRACT 

 

In this paper, the instantaneous velocities for Frenet, Darboux, Blaschke 

and Bishop trihedrons of timelike ruled surfaces are calculated by using their 

derivate formulas. The relations among dual Lorenzian instantaneous rotations 

vectors are obtained for these trihedrons. 

 
Key Words: Dual space, timelike surface, ruled surface. 
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ABSTRACT 

 

In this study, we investigate pedal and contrapedal curves of plane curves  

which have singular points. By utilizing the Legendrian Frenet frame along a front, 

the pedal and contrapedal curves of a front are introduced and properties of these 

curves are given. Furthermore, by considering the definitions of the evolute, the 

involute and the offset of a front some relationships are given. 
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ABSTRACT 
 

We consider taxicab plane using the taxicab metric defined in [1,2] instead 

of the well-known Euclidean metric for the distance between any two points.  The 

taxicab metric is defined using the following distance function 

                             dT(P1,P2)= |x1-x2|+|y1-y2| 

 
where any two points P1=(x1,y1) and P2=(x2,y2) in the analytical plane. Since the 

taxicab plane geometry has a different distance function it seems interesting to 

study the taxicab analogues of the topics that include the concept of distance in 

the Euclidean geometry. 

In Euclidean plane geometry, Apollonius's circle is the circle that touches all 

three excircles of a triangle and encompasses them [4], [5]. In taxicab geometry, 

the shape of a circle changes to a rotated square [3]. Therefore, it is a logical 

question whether the Apollonius's circle for given any triangle in taxicab plane. In 

this work, we try to determine under what conditions which Apollonius’s circle 

exists in taxicab plane. 

Key Words: Apollonius's circle, Metric Geometry, Distane Geometry, 

Taxicab Geometry. 
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ABSTRACT 

 

Polyhedra have interesting symmetries. Therefore they have attracted the 

attention of scientists and artists from past to present. Thus polyhedra are 

discussed in a lot of scientific and artistic works. There are only five regular 

convex polyhedra known as the platonic solids. Semi-regular convex polyhedron 

which are composed of two or more types of regular polygons meeting in identical 

vertices are called Archimedean solids. The duals of the Archimedean solids are 

known as the Catalan solids. 

Minkowski geometry is a non-Euclidean geometry in a finite number of 

dimensions that is different from elliptic and hyperbolic geometry. Linear structure 

of Minkowski geometry which is different from Minkowskian geometry of space-

time is the same as the Euclidean one. There is only one difference which 

distance is not uniform in all directions. This difference cause chancing concepts 

with respect to distance. For example, instead of the usual sphere in Euclidean 

space, the unit ball is a general symmetric convex set. Unit ball of Minkowski 

geometries is a general symmetric convex set [6]. Therefore this show that one 

can find a relation between symmetries convex set and metrics [1,2,3,5]. In [4], 

we introduce metrics, and show that the spheres of the 3-dimensional analytical 

space furnished by these metrics are truncated dodecahedron and truncated 

icosahedron. 

One of the fundamental problem in geometry for a space with a metric is to 

determine the group of isometries. In this work, we show that the group of 
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isometries of the 3-dimesional space covered dodecahedron and truncated 

icosahedron metric 

is the semi-direct product of octahedral group Oh and T(3), where T(3) is the 

group of all translations of the 3-dimensional space. 

 
Key Words: Archimedean solids, Minkowski geometry,Normed finite 

dimensional Banach space, Isometry. 
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ABSTRACT 

 

In this study, we consider special two parameter motions in Euclidean 3-

space and compute the projection area of the orbit surface of a fixed point under 

such motions. 
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ABSTRACT 

 

In this work, we give a characterization between null geodesic curves and 

timelike ruled surfaces in dual Lorentzian space D1 . We first establish a system of 

differential equations characterizing timelike ruled surfaces in  dual Lorentzian 
space D1  by  using the invariant quantities of null geodesic curves on the given 
timelike ruled surfaces. We obtain the solutions of these systems for special 
cases. Regarding to these special solutions, we give some results of relations 

between null geodesic curves and timelike ruled surfaces in dual Lorentzian 

space D1 . 
 

Key Words: Dual Lorentz space, null geodesic curve, Blaschke frame, 

Darboux frame. 
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ABSTRACT 

 

In this work, considering a regular spacelike curve on a smooth timelike 
surface in Minkowski 3-space, we investigate relations between the mentioned 
curve's Darboux and Bishop frames on the timelike surface. Next we obtain 
Darboux vector of the regular spacelike curve in terms of Bishop apparatus. 
Thereafter, translating the Darboux vector to the center of the unit sphere, we 
determine aforementioned spacelike curve. Moreover, we investigate this 
spherical image's Frenet-Serret and Bishop apparatus and illustrate our results 
with two examples. 

 
Key Words: Spacelike curve, Darboux frame, Darboux vector, Type-2 Bishop 

frame. 
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ABSTRACT 

 

In this paper, we first obtain the system of differential equations 

characterizing hyperspherical curves in Galilean 4-space G4. Then we give a 

condition for a curve to be hyperspherical one in Galilean 4-space G4 by using 
the system of differential equations. 

 

 Key Words: Galilean 4D space, Galilean iner product, hypersphere, 

hyperspherical curves. 

 
 
REFERENCES 
 
 

[1] H.S. Abdel-Azi, M.F. Saad, D.M. Farghal, Spherical indicatrices of special curves in the 

Galilean space G₃. Dig Proc Inter Conf Math, Egyptian Math Soc 2013:1-10. 

 
[2] M.E. Aydın, M. Ergüt, The equiform differential geometry of curves in 4-dimensional 
galilean space G₄. Stud Univ Babeş-Bolyai Math 2013;58(3):393--400. 

 
[3] M. Bektaş, M. Ergüt, A.O. Öğrenmiş, Special curves of 4D Galilean space. Int Jour Math 
Engin Scie 2013;2(3):1-8. 

 
[4]   B. Divjak, Curves in pseudo Galilean geometry. Annal Univ Budapest 1998;41:117-128. 

 
[5] B. Divjak, Z. Milin Sipus, Special curves on ruled surfaces in Galilean and pseudo Galilean 
spaces. Acta Math Hungar 2003;98:203-215. 

 
[6] M. Ergüt, A.O. Öğrenmiş, Some characterizations of a spherical curves in Galilean space. 
Jour Adv Res Pure Math 2009;1:18-26. 

 
[7] A.O. Öğrenmiş, M. Ergüt, M. Bektaş, On the helices in the Galilean space G₃. Iran Jour Sci 
Tech Transac A Scie 2007; 31(2):177--181. 

 
[8] A.O. Öğrenmiş, M. Ergüt, On the explicit characterization of admissible curve in 3-
dimensional pseudo-Galilean space. Jour Adv Math Stud 2009;2:63-72. 

 

 

mailto:suha.yilmaz@deu.edu.tr
mailto:yasinunluturk@klu.edu.tr


 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

247  

[9] H. Öztekin, Special Bertrand curves in 4D Galilean space. Math Prob Eng 2014;2014:7 
pages. http://dx.doi.org/10.1155/2014/318458 

[10] B.J. Pavkovic, I. Kamenarovic, The equiform differential geometry of curves in the 

Galilean space G₃. Glas Mat 1987;22(42):449-457. 

 
[11] I.M. Yaglom, A simple non-Euclidean geometry and its physical basis. NewYork: 
Springer-Verlag; 1979. 

 
[12] S. Yılmaz, Construction of Frenet-Serret frame of a curve in 4D Galilean Space and some 
applications. Int Phys Sci 2010;8:1284-1289. 

 
[13] D.W. Yoon, On the inclined curves in Galilean 4-space. Appl Math Sci 2013;7(44):2193-
2199. 

 
[14] D.W. Yoon, J.W. Lee, C.W. Lee, Osculating curves in the Galilean 4-space. Int Jour Pure 
Appl Maths 2015;100(4):497-506.

http://dx.doi.org/10.1155/2014/318458


 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

248  

 

On Characterization of Integrable Geometric Flows with some 
Solutions 

Zeliha Körpınar 
1
, Gülden Altay 

2
 ,Talat Körpınar 

3 
and Muhammed Talat Sarıaydın

4 
 

1 Mus Alparslan University, Department of Admst., Mus,Turkey,zelihakorpinar@gmail.com 

2 Fırat University, Department of Math., Elazığ,Turkey,guldenaltay23@hotmail.com 

3 Mus Alparslan University, Department of Math., Mus,Turkey,talatkorpinar@gmail.com 

4 Mus Alparslan University, Department of Math., Mus,Turkey,talatsariaydin@gmail.com 

 

 
ABSTRACT 

 

In this paper, we present a new approach for computing the differential 
geometry properties of surfaces by using Bäcklund transformations of integrable 
geometric curve flows. We give some new solutions by using the extended 
Riccati mapping method. Finally, we obtain figures of this solutions. 
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flows. 
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ABSTRACT 

 

A circular surface is a map defined 

by  

 

V:I×R/2πZ→R3 

V(t,θ)=γ(t)+r(t)(cosθa₁(t)+sinθa₂(t)) 

 

where  γ,a₁,a₂:I→R³  and  r→R≻0.  It  is  assumed  that   <a₁,a₁>=<a₂,a₂>=1, 

<a₁,a₂>=0 for all t∈I, where <,> denotes the canonical inner product on R³. γ is 

called the base curve and a pair of two curves a₁,a₂ is called director frame. The 

standart circles θ→γ(t)+r(t)(cosθa₁(t)+sinθa₂(t)) are called generating circles. For 

a circular surface V(t,θ), vectors {a₁(t),a₂(t),a₃(t)=a₁(t)×a₂(t)} form an orthonormal 

frame of R³ which is called a base frame of the circular surface. Roller coaster 

surfaces are a classification of these surfaces. These surfaces is defined as 

R(t,θ)=γ(t)+r(t)(cosθT(θ)+sinθ(cosϕ(t)N(t)+sinϕ(t)B(t)) 
 
{T,N,B,τ,κ} is the Frenet apparatus and -ϕ(t) is a primitive functions of the torsion 

τ(t) [1]. 
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In this paper, we give the Roller Coaster Surfaces with an alternative 

moving frame which first identified by [2]. Also, we give the geometric properties 

for these surfaces. 

Key Words: Circular surfaces, roller coaster surfaces, curvatures, alternative 

moving frames. 
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ABSTRACT 

 

In this paper, we describe a method to derive a Weierstrass-type 
representation formula for simply connected immersed surfaces in Heisenberg 
spacetime. We consider the left invariant metric and use some results of Levi-
Civita connection. Finally, we obtain some new resuts about Weierstrass-type 
representation. 

 

Key Words: Heisenberg Spacetime, Weierstrass representation, immersed 
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ABSTRACT 
 

The paper deals with a complex semi-symmetric metric F- connection on an 

anti-Kähler manifold. We present some results concerning the torsion tensor of 

the complex semi-symmetric metric F- connection. Also, we calculate 

expressions of the curvature tensor, the conharmonic curvature tensor and the 

Weyl projective curvature tensor of such connection, and give some properties of 

them. 

 
Key Words: Anti-Kähler manifold, complex semi-symmetric metric F- 

connection, curvature tensors, pure tensor, Tachibana operator. 
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ABSTRACT 

 

We obtain Chen inequalities for a Kaehler manifold endowed with complex 
semi- symmetric metric connection. Using these inequalities, we prove the 
relation between scalar and sectional curvatures, Ricci curvatures and the mean 
curvature associated with the complex semi-symmetric metric connection. The 
equality cases are considered. Furthermore, we obtain an inequality for k-plane 
section for a Kaehler manifold endowed with complex semi-symmetric metric 
connection. 

Key Words: Kaehler manifold, Chen inequalities, complex semi-symmetric 

metric connection. 

 

REFERENCES 
 

 
[1] B. Y. Chen, Mean curvature and shape operator of isometric immersion in real space 
forms, Glasgow Mathematic Journal, 38 (1996), 87-97. 

 
[2] B. Y. Chen, Relation between Ricci curvature and shape operator for submanifolds with 
arbitrary codimension, Glasgow Mathematic Journal, 41 (1999), 33-41. 

 
[3] B. Y. Chen, A Riemannian invariant for submanifolds in space forms and its applications, 
Geometry and Topology of submanifolds VI, (Leuven, 1993/Brussels,193), (NJ:Word Scientific 
Publishing ,River Edge), 1994, pp.58-81, no.6,568-578. 

 
[4] S. Hong and M. M. Tripathi, On Ricci curvature of submanifolds, Int J. Pure Appl. Math. Sci 
2(2005),227-245. 

 
[5] M. M. Tripathi, Improved Chen-Ricci inequality for curvature-like tensor and its 
applications, Differential Geom. Appl. 29(2011),685-698. 

 

 

mailto:nonen@cu.edu.tr
mailto:bdogan@mersin.edu.tr,
mailto:yerol@mersin.edu.tr


 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

254  

[6] M. M. Tripathi, Chen-Ricci inequality for curvature like tensor and its applications, Diff. 
geom. Appl. 29(5)(2011),685-692. 

 
[7] K. Yano and T. Imai, On Semi-Symmetric Metric F-Connection, Tensor, N. S., 29(1975), 
134- 138. 

 
[8] A. Yücesan, Totally real submanifolds of an indefinite Kaehler manifold with a complex 
semi- symmetric metric connection, The Arabian Journal for Science and Engineering, 1A(33), 
114-122. 



 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

255  

Lightlike Hypersurfaces of a Golden Semi-Riemannian Manifold 

Nergiz (Önen) Poyraz 
1 
and Erol Yaşar

2
 

1 Çukurova University Department of Mathematics, Adana,Turkey, nonen@cu.edu.tr  

2 Mersin University Department of Mathematics, Mersin,Turkey, yerol@mersin.edu.tr  

 

ABSTRACT 

 

We introduce lightlike hypersurfaces of a golden semi-Riemannian manifold. 
We investigate several properties of lightlike hypersurfaces of a golden semi-
Riemannian manifold. We prove that there is no radical anti-invariant lightlike 
hypersurface of a golden semi-Riemannian manifold. In particular, we obtain some 
results for screen semi-invariant lightlike hypersurfaces of a golden semi-
Riemannian manifold. 

 
Key Words: Golden semi-Riemannian manifolds, Golden structures, 

Lightlike hypersurfaces, Screen semi-invariant lightlike hypersurfaces. 
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ABSTRACT 

 

Pasch's postulate says that if a line intersects one side of a triangle then it 

must intersect one of the other two sides in a metric geometry which satisfies 

plane separation axiom. If a metric geometry satisfies Pasch's postulate then it 

also satisfies plane separation axiom. A Pasch geometry is a metric geometry 

which satisfies plane separation axiom. In this paper, we will give the properties 

of Pasch geometry. 
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ABSTRACT 

Let M and 𝑀𝑓 be two surfaces in E3 Euclidean space and 𝑁𝑃 be a unit 

normal vector of M at the point P∈M. Let 𝑇𝑃𝑀 be tangent space at P∈M and {𝑋𝑃, 

𝑌𝑃} be an orthonormal bases of 𝑇𝑃𝑀. Take a unit vector 𝑍𝑃 = 𝑑1𝑋𝑃  +           𝑑2𝑌𝑃 +    𝑑3𝑁𝑃,   w here 

𝑑1, 𝑑2, 𝑑3 ∈ ℝ are constant numbers and 𝑑1 + 𝑑2 + 𝑑3 = 1. If a function f exists 

and satisfies the condition 𝑓: 𝑀 → 𝑀𝑓, 𝑓(𝑃) = 𝑃 + 𝑟𝑍𝑃, r constant, 𝑀𝑓 is called parallel-like 
surface of 𝑀. 

In this study, we give some theorems and properties for parallel-like surfaces. 

 
Key Words: Parallel surfaces, Parallel-like surfaces. 
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ABSTRACT 

 

The importance of the plane separation axiom stems from a remark made 

by Millman and Parker [1]. According to their idea, the plane separation axiom is 

a careful statement of the very intuitive idea that every line in a Cartesian 

(Euclidean) plane has “two sides”. The Einstein Relativisitc Velocity Model of 

Hyperbolic Geometry and its plane separation axiom is studied by Sönmez and 

Ungar [2] in terms of inner products of vectors. In this paper, we will give an 

example of a metric geometry which doesn't satisfy the plane separation axiom. 
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ABSTRACT 

 

It is well known that all W-curves (curves with non-zero constant 

curvatures) in the Minkowski 3-space are completely classified by Walrave in [1] 

.For example, the only planar spacelike W-curves are circles and hyperbolas. 

The characterizations of W-curve with respect to their position vectors are given 

by Ilarslan in [4, 5] . All spacelike W-curves, namely all spacelike curves with 

constant curvatures in the Minkowski space-time are studied by Petrovic-

Torgasev and Sucurovic in [3].  Timelike W-curves in the same space have been 

studied by Synge in [2]. In this paper, we classify all spacelike and timelike W-

curves with non-null normals in 4- dimensional semi-Euclidean space with index 

2. Since all three curvatures k₁,k₂ and k₃ are constant, the classification is 

reduced mainly to differential equations with constant coefficients and a method 

well developed by B. Y. Chen. 

 
Key Words: W-curves, spacelike and timelike curves, curvatures, 
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ABSTRACT 

 

          In this paper, we give a new approach for properties of Hasimoto. We   
give some new results for this surface by using solutions of partial differential 
equations. 

 

Key Words: Partial differential equations, Hasimoto surface, position 
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ABSTRACT 

 

In this paper, we study a new construction of curves by Fermi-Walker 
parallelism and derivative with Ribbon frame. Finally, we give some 
characterizations according to Ribbon frame. 
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ABSTRACT 

 

In this paper, Roller Coaster surfaces with Bishop frame is introduced in 
Euclidean space 3-space. The Gaussian curvature, mean curvature, first and 
second fundamental form of coefficients of Roller Coaster surfaces of are 
examined. We characterize Roller Coaster surfaces in the Euclidean space 3-
space. 

 

Key Words: Euclidean space, Roller Coaster surfaces, Bishop frame. 

 
 

REFERENCES 
 

 
[1]  J. Bohr, S. Markvorsen, Ribbon Crystals, Plos One, 8( 10) : e74932 (2013). 

[2] L. R. Bishop, There is more than one way to frame a curve, Amer. Math. Monthly 82 (3) 
(1975) 246-251. 

[3]  M.P. Carmo, Differential Geometry of Curves and Surfaces, Pearson Education, 1976. 

[4]  F. Dogan, Y.Yaylı, On the curvatures of tubular surfaces with Bishop frame, Commun. Fac. 

Sci.Univ. Ank. Series A1, 60 (1) (2011) 59-69. 

[5] T. Körpınar, E. Turhan, On characterization of B-canal surfaces in terms of biharmonic B-
slant helices according to Bishop frame in Heisenberg group Heis³, J. Math. Anal. Appl. 382 
(2012) 57-65. 

[6] T. Körpınar, E. Turhan, Time-Canal Surfaces Around Biharmonic Particles and Its Lorentz 

Transformations in Heisenberg space-time, Int. J. Theor. Phys. 53 (2014) 1502-1520. 

[7] M.K. Karacan, H. Es, Y. Yaylı, Singuler Points of Tubular Surface in Minkowski Surfaces, 
Sarajevo J. Math. 2 (14) (2006) 73-82. 

[8] S. Izumiya, S. Saji, N. Takeuchi, Circular surfaces, Commun, Advances in Geometry, 7, 295- 
313. 

 

http://icrapam.org/2016/images/AbsBook2016.pdf#page%3D158
mailto:slckbs@hotmail.com
mailto:vasil@firat.edu.tr
mailto:talatsariaydin@gmail.com
mailto:talatkorpinar@gmail.com


 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

263  

A New Method for Designing a Developable Surface Using Bishop 
Frame in Minkowski 3-Space 

 
Mustafa Yeneroğlu

1
, Selçuk Baş 

2
, Muhammed T. Sariaydin

3
, and Vedat Asil 

4
 

 
1 Firat University, Department of Mathematics,Turkey, mustafayeneroglu@gmail.com  

2, Muş Alparslan University, Department of Mathematics,Turkey, slckbs@hotmail.com 

3 Muş Alparslan University, Department of Mathematics,Turkey, talatsariaydin@gmail.com  

4 Firat University, Department of Mathematics,Turkey, vasil@firat.edu.tr 

 

 
ABSTRACT 

 

A developable surface is a ruled surface having Gaussian curvature K=0 
everywhere. Developable surfaces therefore include the cone, cylinder, elliptic cone, 
hyperbolic cylinder, and plane. By utilizing the Bishop frame, this paper proposes a 
new method to construct a developable surface possessing a given curve as the line 
of curvature of it. By using Bishop frame to express the surface, we derive the 
necessary and sufficient conditions when the resulting spacelike developable 
surface is cylinder, cone or tangent surface. 

 

Key Words: Minkowski space, Spacelike developable surfaces, Bishop frame. 
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ABSTRACT 

 

In this paper, it is investigated Lorentz force equations for magnetic curves 
by using in 3-dimensional Euclidean space. Firstly, we give the Lorentz force 
according to the modified orthogonal frame with curvature in E3. Then, we give 
the Lorentz force according to the modified orthogonal frame with torsion in E3. 
Finally, we obtain a new characterization for a magnetic field V. 

 

Key Words: Magnetic curve, Modified frame, Killing vector field. 
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ABSTRACT 
 

In this talk which consists of the results of [1], I answer the questions of 

Bochner, conformal and conharmonic flatness of complex (𝜅, 𝜇)- spaces when 
𝜅 > 1 and prove that such kind of spaces cannot be Bochner flat, conformally flat 

or conharmonically flat. Moreover, I give some corollaries for   1, taking into 

account the answers of these questions for   1 (normal complex contact metric 

manifolds), by means of [2]. Thus, it can be deduced from [2] that the only 

complete and simply connected complex (𝜅, 𝜇)- spaces which are Bochner flat 

are locally isometric to ℂ𝑃2𝑛+1(4) with the Fubini-Study metric and   1and that 

there do not exist    any conformally flat nor any conharmonically flat complex ( , 

 ) -spaces. 

 

Key Words: Bochner flatness, conformal flatness, conharmonic flatness, 
complex (𝜅, 𝜇)- spaces 

 
 

REFERENCES 
 

[1] H. Yıldırım, On the geometry of complex ( ,  ) - spaces, Math. Nachr. 289 (17-18) 

(2016), 2312-2322. 

 

[2] D. E. Blair, V. Martín-Molina, Bochner and conformal flatness on normal complex contact 
metric manifolds, Ann. Glob. Anal. Geom. 39 (2011), 249-258. 

 

 

  

mailto:handanyildirim@istanbul.edu.tr


 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

266  

 

 

Stationary Acceleration Curves Geometry 
 
 

Hasan Es¹ , Yusuf Yaylı² 
 

1 Gazi Üniversitesi, Gazi Eğitim Fakültesi, Matematik ve Fen Bilimleri Eğitimi Bölümü, Matematik 
Eğitimi Anabilim Dalı 06500 Beşevler, Ankara,Turkey, hasan_es64@yahoo.com 

2 Ankara Üniversitesi, Fen Fakültesi Matematik Bölümü Dögol cad. 06100 
Tandoğan,Ankara,Turkey, yayli@science.ankara.edu.tr 

 
 
 

ABSTRACT  
 

In this study, we will introduce stationary curves. We will mention about the 
studies in recent years on this subject. In addition, we will give the stationary 
hypotheses of the curve when different frames are taken on the curve.  

 
 
Key Words: Stationary Curves, stationary accelerations, rigid body motion  
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ABSTRACT 

 

In [1], the relationships between quaternions and spinors with complex 

components and the kinematics of quaternion and spinor were given by J. 

Kronsbein. In addition, Vivarelli offered a new approach to quaternions and spinors 

in the Euclidean 3-space deriving from the vector formulation of the Euler’s 

theorem on the general displacement of a rigid body with a fixed point in [2]. 

Moreover, the spinor model of generalized rotations in Euclidean 3-space were 

given in [3]. 

In this study, considering the studies mentioned above, firstly, we have 
introduced spinors with two complex components and quaternions. Then, we have 
given the spinor representation of the rotations can be expressed with quaternions 
in Euclidean 4-space.  Finally,   we have showed the spinor model of the some 
characterizations of the rotations 𝐸4 with the aid of quaternions. 

 

Key Words: Spinors, quaternions, rotations. 
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ABSTRACT 

 

The purpose of this present paper is to study two special linear 

connections, which named Schouten and Vrănceanu connections, defined by a 

fixed linear connection on a differentiable manifold which admits a golden 

structure. The golden structure defines naturally two complementary and 

orthogonal distributions of the tangent bundle, so there are two complementary 

projector operators split the tangent bundle into two complementary parts. We 

investigate integrability of the golden structure and parallelism, half parallelism 

and anti half parallelism of the distributions with respect to Schouten and 

Vrănceanu connections. We also analyze the notion of the geodesic on the 

manifold endowed with the golden structure in terms of Schouten and 

Vrănceanu connections. First of all, we give the basic definitions, concepts and 

formulas which will be used throughout the paper. We get a condition for 

Vrănceanu connection to be symmetric. We find a necessary and sufficient 

condition for Schouten connection to be equal to the fixed linear connection. We 

prove that the golden structure is integrable when one of Schouten and 

Vrănceanu connections is symmetric. We show that the distributions are parallel 

with respect to Schouten and Vrănceanu connections. Moreover, we 

demonstrate that the projector operators corresponding to the distributions are 

parallel with respect to Schouten and Vrănceanu connections. We obtain 

separately a necessary and sufficient condition for each of the distributions to be 

half parallel with respect to Schouten connection (respectively, Vrănceanu 
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connection). We show that the distributions are anti half parallel with respect to 

Schouten and Vrănceanu connections. Finally, we find a condition for a 

curve on the manifold with the golden structure to be geodesic with respect to 

Schouten connection (respectively, Vrănceanu connection). 

 

Key Words: Golden structure, Schouten connection, Vrănceanu connection, 

integrability, parallelism, half parallelism, anti half parallelism, geodesic. 
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ABSTRACT 

 

A surface M in Minkowski space is said to be a generalized constant ratio 

(GCR) if the tangential part of its position vector is one of its canonical principal 

direction. On the other hand, if the tangential part of the fixed direction in tangent 

plane of M is one of its canonical principal direction, then in case this surface is 

called as surfaces endowed with canonical principal direction (CPD). In this talk, first, 

we  will present a short survey on CPD and GCR surfaces in semi-Euclidean spaces. 

Then, we will give some of classification results for space-like CPD and GCR 

surfaces that we have obtained recently. 

 
 Key Words: Minkowski space,Space-like surface, Canonical principal 
direction, Angle function. 
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ABSTRACT  

We introduce the generalized helicoidal hypersurface in the four 

dimensional Euclidean space. We obtain the mean curvature and the Gaussian 

curvature formulas. In addition, we find some differential equations to the 

helicoidal hypersurface. 

Key Words: 4-space, helicoidal hypersurface, mean curvature, Gaussian 

curvature. 
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ABSTRACT  

We consider the Gauss map of the rotational hypersurface in the four 

dimensional Euclidean space. We define the mean curvature and the Gaussian 

curvature formulas. We also find some geometric properties to the rotational 

hypersurface. 

Key Words: 4-space, rotational hypersurface, Gauss map, mean 

curvature, Gaussian curvature. 
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ABSTRACT  

We define a new mechanism RPPPTi. The mechanism RPPPTi has two 

functional parts. The first part is RPPP mechanism which makes pressure. The 

second part is that the mechanism RPPPTi repeats the RPPP’s motion i times 

along the fixed line which we define. Finally, we give some Matlab applications. 

 

Key Words: Matlab, mechanism, prismatic joint, revolute joint.  
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ABSTRACT  

A Bezier curve with n-control points is defined as B(n,z)=∑Bi
nPi, i=0,…,n. 

Also a Bezier curve is a polynomial curve and coefficients belong to the 

coordinate of the control points. This state gives us a linear equation system. We 

define an equivalence relation using the solution of this linear equation system 

and give a characterization of the n-control points which define the same Bezier 

curve. 

 

Key Words: Bezier, control points, equivalence class.  
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ABSTRACT  

Graph-directed iterated function systems (GIFS) can be considered as a 

generalization of the notion of classical iterated function systems (IFS) which is 

one of the most important tools in fractal geometry (see [1, 2]). On the other hand, 

an IFS with condensation is another important generalization which consists of 

finite contractions and a condensation map. In [3] and [4], the authors present 

some useful results to compute the Hausdorff dimension of the attractor of an IFS 

with condensation. 

In this work, we define the notion of graph-directed iterated function system 

with condensation and then obtain similar results (as given in [3]) for the 

Hausdorff dimensions of the attractors of this new graph-directed system. 

 

Keywords: Iterated function systems (IFS), condensation, graph-directed 

IFS, Hausdorff dimension. 
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ABSTRACT  

Geometric kinematics studies the time-independent kinematics. The 

freedom to choose parameters results in a simplified analytic description of the 

motion. That is, the arc lengths of the contact loci are chosen as the parameters 

to study the geometrical properties of the motion. This work aims to investigate 

geometric kinematics in Minkowski 3-space. As a result, we obtain the fixed-point 

conditions, which provides the geometric kinematics of an arbitrary point on the 

moving surface in Minkowski space. 

 

REFERENCES 

[1]  O. Bottema, B. Roth, Theoretical Kinematics, Dover Publications, 1990. 

[2]  L. Cui and J.S. Dai, From sliding-rolling loci to instantaneous kinematics: An adjoint 

approach, Mechanism and Machine Theory 85 (2015) 161171.  

[3]  A. Gray, Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC 

Press, Inc., 1996  

[4]  D. Wang, D.Z. Xiao, Distribution of coupler curves for crank-rocker linkages, Mech. Mach. 

Theory 28 (1993) 671684.  

  

mailto:keziban.orbay@amasya.edu.tr


 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

280  

 
Ruled Surface Pair Generated by Darboux Vectors of a Curve 

and Its Natural Lift in 𝐈𝐑𝟑 
 

Evren ERGÜN 1, Mustafa ÇALIŞKAN 2 

1 Ondokuz Mayıs University, Çarşamba Chamber of Commerce Vocational School, Çarşamba, 

Samsun, Turkey, eergun@omu.edu.tr 

2 Gazi University, Faculty of Sciences, Department of Mathematics, Ankara, Turkey, 

mustafacaliskan@gazi.edu.tr 

ABSTRACT  

In this study,firstly, the darboux vector  W  of the natural lift    of the curve  

    are calculated in terms of those of     in  3IR . Secondly, we obtained 

striction lines and distribution parameters of ruled surface pair generated by 

Darboux Vectors of the curve  and its natural lift  . Finally, for    and   those 

notions are compared with each other. 

 

Key Words: Natural Lift, ruled surface, striction line, distribution 

parameter. 
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ABSTRACT 

In this paper, we derive the intrinsic equations for a relaxed elastic line on 

an oriented surface in the pseudo-Galilean 3-dimensional space. We also 

investigate the relationship between relaxed elastic lines and some special curves 

on surfaces such as geodesics, curvature of line, etc, with the help of the intrinsic 

equations 

Key words: Galilean space; Relaxed elastic line; Variational problem; 

Intrinsic formulation; Geodesic  
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ABSTRACT 

 

Geometry has a significant place in mathematics curricula. NCTM points out 
the importance of students knowing the properties of two and three dimensional 
geometric objects as well as the definitions of geometric concepts, and 
developing arguments about geometric relationships (NCTM, 2000, p.41). To 
date, Turkey has not been successful in the geometry sections of international 
exams. According to the results of the latest international mathematics and 
science study (TIMSS), Turkey ranked 22 among 39 countries in geometry, thus 
remaining below the international mean (Mullis, I. V. S., Martin, M. O., Foy, P., & 
Hooper, M, 2016). This failure may be attributed to various reasons. However, it 
is a known fact that the most influential factor in student success is the teacher 
(Mewborn, 2003) and that the depth of teacher knowledge in mathematics is a 
critical factor for students’ mathematical success (Hill et al., 2005). 

This study aims to identify the geometry content knowledge of teacher 

candidates in an elementary mathematics education program. The study was  run 

with 52 teacher candidates attending the first year of a Turkish state university. 

Data were collected with a five-item written form distributed during the first week 

of the Geometry class offered in the second term of the freshman year of the 

elementary mathematics education program. The first item asked the teacher 

candidates  to define the terms of angle, height and diagonal (Gutierrez and 

Jaime, 1999; Cunnigham and Roberts 2010), while the second item, a short 

response one, asked them to fill in the blank with the right word by using the 

relationships between quadrilaterals. This second question was designed to 

identify teacher candidates’ level of identifying relationships between 

quadrilaterals by using Usiskin et  al.’s (2008) hierarchical classification. The 

third, fourth and fifth items, on the other hand, attempted to identify teacher 

candidates’ performance in measuring angles, drawing diagonals and drawing 

heights, respectively. 

It was found in the study that almost all teacher candidates defined the 

geometric concepts of “angle”, “height” and “diagonal” either in a wrong or 

incomplete way. Findings from the second item revealed that 9 (17%) teacher 

candidates believed that a parallelogram was always a trapezoid, 16 (31%) 

believed that a square was always a deltoid and a rectangle always a 

parallelogram. The number  of teacher candidates who thought a parallelogram 

would sometimes be a rectangle, and a rhombus would sometimes be a square 
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was 24 (46%). In light of these  findings, it was concluded that most teacher 

candidates were not aware of the relationships between quadrilaterals. 

Findings from the third question showed that all teacher candidates 

responded to item d correctly, while almost all responded to items a, b and c 

correctly. However, the same performance was not true for item e. Eighteen 

(35%) teacher candidates believed that two coincident beams with the same 

starting point and in the same direction would not make an angle. Only 11 of the 

34 teacher candidates  who believed MXW to be an angle reported this angle to 

be 0 degrees. Therefore, the percentage of correct responses to item e was 21 

and rather low. 

In their diagonal drawings, all teacher candidates stated that a triangle did 

not have a diagonal and could accurately draw all diagonals of a convex 

quadrilateral. However, no teacher candidate could draw all diagonals of a 

concave pentagon, thinking that the diagonals of a concave pentagon only pass 

through its inner area. 

In sum, it was found that the content knowledge of teacher candidates related to 

these concepts was low. The results suggest that the geometry courses offered in 

education faculties should emphasize “geometric concepts and relationships” and 

the education given to these teacher candidates should be planned to reflect this. 

 

Keywords: Teacher candidates, content knowledge, angle, diagonal, 

height, rectangle 
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ABSTRACT 

 

The aim of this study is to investigate preschool age children’s recognition 

strategies of two dimensioned shapes. For this purpose, 24 preschool children 

aged between 56 to 66 months (12 girls -12 boys) were interviewed. Clinical 

Interview which ensures us to modify interview questions according to motivation-

related status of each children, was performed (Ginsburg, 1997). Descriptive 

Method which is one of Qualitative Research Methods was used. Convenience 

Sampling Method was used to determine the participants. It was so practical and 

accessible to study with relevant participants, because of teachers’ being 

volunteer or not (Creswell, 2012). Children were offered examples of two 

dimensioned shapes as Circle, Hoop, Square, Triangle and Rectangle made of 

wood, respectively. They were asked some questions as “How can you 

understand the shape this wood has?”, “How can you describe the edges of this 

shape? Can you show me?”, “How can you describe the angles of this shape? 

Can you show me?”, “Which one of the other shapes look like this shape? And 

why?”, “Which object or tool in our daily life looks like this shape?”. Data obtained 

by interviews were descriptively analysed. According to the results of this study; 

Children most think that, a circle shaped object is a circle because of its being 

filled and being round and some children think that, a circle has several edges; 

children most think that, a circle looks like a hoop, because of its being round. 

And, also they think that, it looks like a wheel or a dish, most. Children most think 
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that, a hoop shaped object is a hoop because of its not being filled and being 

round. And some children think that, a hoop has several edges; children most 

think that, a hoop looks like a circle because of its being round. And, also they 

think that, it looks like a hole or bracelet, most. Children most think that, a square 

shaped object is a square because of its having equal sized edges and being a 

square. And children most think that, square looks like a rectangle, because of its 

being similar and having same numbers of edges. And, also they think that, it 

looks like a box or table, most. Children most think that, a triangle shaped object 

is a triangle because of its having three edges and angle. And children most think 

that, a triangle doesn’t look like any of other shapes, because of its not being 

similar. And, also they think that, it looks like a roof or ray, most. Children most 

think that, a rectangle shaped object is a rectangle, because of its having un 

equal sized edges and having four edges. And children most think that, a 

rectangle looks like a square, because of its having the same number of edges 

and angles. And, also they think that, it looks like a mobile phone or a picture, 

most. Considering to the results of this study, we may take children’s thoughts 

about shapes into  account, while planning or implementing educational 

procedures. 

 
Key Words: Preschool, shapes, geometry, recognition strategy. 

 
 
 

REFERENCES 

 
Ginsburg, H. (1997). Entering the child's mind: The clinical interview in psychological 

research and practice. Cambridge University Press. 

 
Creswell, H., W. (2012). Educational research: Planning, conducting, and evaluating 

quantitative and qualitative research (4th Edition). Boston: Pearson. 



 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

288  

 

Preschool Age Children’s Strategies of Composing Two 

Dimensioned Shapes: In the Context of Creativity 

Halil İbrahim Korkmaz 1, Birol Tekin 2 and Ayşegül Korkmaz 3 
 

1 Amasya University, College of Education, Department of Primary Education, Amasya, 
Turkey,: halilgazi1988@hotmail.com 

2 Amasya University, College of Education, Department of Math and Science Education, 
Amasya, Turkey, biroltekin95@mynet.com 

3 Directorate of National Education, Aydınca Secondary School, Amasya, Turkey, 
korkmazform@gmail.com 

 
 

 
ABSTRACT 

 

It is not quite possible to identify “Creativity”. There are many different 

identification of creativity but also common facts. We may describe a creative  

process that has imagination, being original, producing an original product, 

solving problems by using different ways (Sharp, 2004). 

The aim of this study is to investigate preschool age children’s strategies of 

composing two dimensioned shapes, in the context of creativity. For this purpose, 

18 preschool age children aged between 58 to 71 months (10 girls and 8 boys) 

were offered an interview session. Criterion Sampling method was used because 

of its allowing us to select the participants according to some criteria determined 

by researchers. In this study, 25 preschool age children were offered an inventory 

which ensures us to determine children who can exactly distinguish the two 

dimensioned shapes, before. As the results of this procedures 18 children were 

selected who can exactly distinguish two dimensioned shapes as circle, hoop, 

square, triangle and rectangle (Büyüköztürk, Kılıç-Çakmak, Akgün, Karadeniz ve 

Demirel, 2011). Clinical Interview was used to obtain the data. We may slightly 

modify the questions according to children’s responds or situations, to sustain 

children’s attention (Ginsburg, 1997). Children were given a wire, a paper sized 

A4, two strip shaped papers and a square shaped paper, respectively for them to 

create relevant shapes. Children were expected to create a hoop by using a wire; 

to create a circle by using a A4 sized paper; to create a square by using two strip 

shaped papers and finally to create a rectangle by using a square shaped paper. 
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Firstly, children were asked if it is possible to create the expected shapes for 

them to create and how, by using the materials offered. Secondly, they were 

expected to create the shapes. As results of this study; most children think that a 

hoop may be created by using a wire; a circle may be created by using a paper; a 

square may be created by using only two strip shaped papers and a rectangle 

may be created by using a square shaped paper. Some children think that it is 

not possible to create a hoop by using a wire because of its being straight; to 

create a circle by using a paper because of its not being round;  to create a 

square by using only two strip shaped papers because of square’s having four 

edges and to create a rectangle by using a square shaped paper because of its 

being a square. Children most curled the wire to create a hoop; draw a circle on 

paper to create a circle; cut the pieces of two strip shaped papers to create a 

square and folded square shaped paper to create a rectangle, as strategies of 

composing shapes. We may consider curling the wire to create a hoop, rolling the 

paper to  create a circle, adding two imaginary edges to create a square and 

adding another imaginary square next to square shaped paper to create a 

rectangle are some of creative strategies, children revealed. 

 

Key Words: Preschool, geometry, shape, strategy, creativity. 
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ABSTRACT 

 

Geometry is the branch or mathematics dealing with point, line, plane, plane 

figure, space, space figures and the relationship between them, and the 

measures of geometric shapes (Erol, 2008). Geometrical language is one type of 

mathematical language. Usage of correct mathematical language is really 

important to eliminate the misconceptions which occur in students’ minds. If the 

mathematical language is used correctly, it is obtained that abstract concepts can 

be visualized in students’ mind easily; students can reach new concepts and 

information themselves (Yeşildere, 2007). 

The purpose of this study is to determine the prospective primary 

mathematics teachers’ efficacy belief levels regarding using of geometrical 

language, analyze the factors from the point of gender, grade level, and the type 

of high school which is graduated, and to investigate the links amongst them. The 

study group of this research consists of 329 prospective teachers who are in their 

first, second, third, or fourth year at the Faculty of Education, Primary School 

Mathematics Teaching at a university which is located in the West side of Turkey, 

between 2015 and 2016 teaching period. “Using of Geometrical Language 

Efficacy Belief Instrument” which were improved by researchers have been used. 

Using of Geometrical Language Efficacy Belief Instrument is a measurement in a 

five Likert type scale. The reliability coefficient of the scale consists of 22 items 

has been calculated as 0.943. Also, at the end of the factor analysis the items 

were clustered around two factors; and, it was showed that the total variance 

explained by these two factors was 55.27%. Consequently, the levels of efficacy 

beliefs of prospective teachers were found high.   
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In accordance  with  the  results  of  the  research,  it  has  been  found  out  that  

the prospective teachers’ efficacy belief levels does not show a meaningful 

difference according to the gender, grade level and the type of high school which 

is graduated. 

 
Key Words: Geometry, geometrical language, efficacy-belief. 
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ABSTRACT  

 

Mathematics has had an important place in Turkish educational history for 

long. Philosophy, mathematics, geometry, astronomy etc. collectively known as 

the rational sciences had been taught in the madrasahs, which were the most 

important institutions for the educational system of Classical Ottoman Period, 

beginning from the reign of Mehmed the Conqueror, as well as the 

traditional/religious subjects. However, with madrasahs getting corrupted during 

the mid-17th century, besides other rational sciences, geometry was also 

abandoned. 

19th century is when the Ottoman Empire had started a reformation and 

transition, implementing western models in military, politics and administration. 

This is also the period, during which the most significant improvements in 

education and science were observed. Transferred from the western civilization, 

course books on fundamental sciences that were taught only in higher at the 

beginning, were also published and used in primary and secondary education as 

well, in the following years. 

Educational Statute 1869, involved geometry in educational system. 

Following this Statute, whereas in the elementary schools, only calculus was 

taught, geometry took its place in the curriculums of junior high schools (rüştiye), 

high schools (idadi), and higher education (sultani).In those elementary schools, 

called “Mekatib-iptidâiye” and today known as “secondary school”, formed in 1870, 

there were no geometry courses in the beginning, however in the following years, 
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geometry was attached to the curriculum. This research studies the articles, “An 

Example Geometry Course in Elementary Schools” by Ali Haydar on the issue 32 

of Teaching Journal in 1922. This articles define the stages of course planning in 

geometry, and the equipment required, and present an example course. This 

research aims to introduce how geometry (back then hendese) was taught in the 

period mentioned and how it is taught today, comparatively. 

This is a descriptive research, conducted using screening model in order to 

introduce textual contents of example geometry courses in 1922. The research 

uses document review method. 

The text reviewed exhibits preparation phases, review of the previous 

courses, introduction of new concepts, and association of those concepts with 

real-life and exercises for students. All stages presented as teacher-student 

dialog, it allows identifying the teacher-student interaction of that period. This 

research, raising awareness on the historical development of geometry education 

in terms of how the courses were conducted, is expected to contribute to the 

studies of educators of this field. 

 

Key Words: Geometry course, Turkish educational history, Secondary 

school, Planning in geometry.  
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ABSTRACT 

 

The purpose of the study is to investigate out the effects of teaching in the 

dynamic environment of the subject of lines, angles and circle which are parts of 

secondary school seventh grade math class, on student’s achievement and 

retention levels. 

This is an experimental study in which pre-test and post-test group have 

been conducted. The experimental group and the control group have not been 

formed or chosen randomly, which may be considered a limitation of the study. 

The study was conducted in Spring Term of 2016-2017 academic year. 

This study group consists of 7th and 8th grade students who are studying at 

Kozlu Secondary School in Kozlu district of Zonguldak. The participants of the 

study are 55 seventh grade students divided into two classrooms. 

To find out the effects of teaching in the dynamic environment supported 

by GeoGebra on student’s achievement and retention levels, an experimental 

group consisting of 27 students and a control group consisting of 28 students 

have been assigned. In the experimental group, students were provided with 

GeoGebra construction activities involving active use of GeoGebra. Meanwhile, 

control group was taught the same units only in accordance with the curriculum of 

Ministry of National Education. 

Achievement tests, which were prepared for particular units were 

administered to both groups as pre-test, post test before and after the activities. 

After the post test, the retention tests were applied to both groups after 1 month 

in class. 

The analysis of the data was conducted in computer environment using 

ITEMAN and SPSS programs. Independent sample t-test and paired sample t-

test have been used in order to find out the difference among the achievement 

levels of the groups. 
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As a result of the comparisons between groups, it might be inferred that 

GeoGebra positively influences academic achievements and retention levels of 

the students. 

Key Words: Teaching in the Dynamic Environment, GeoGebra, Lines, Angles, 
Circle 
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ABSTRACT 

 

The works that have been done about teaching geometry showing 

remarkable increase last years. Not to be fixed main terms and conceptual failure 

at geometry, an important part of maths, will cause to increase these mistakes in 

next levels of technology. (Şenyurt and Karakuyu, 2015). The purpose of this 

work is to determine that 4th class student’s difficulties at measuring angle by 

using goniometer and conceptual failure. This work was actualized with 25 

students educated at a primary school in Amasya. In this work 12 questions had 

been asked to the students. 

Concepts of angle is central to the development of geometric. (Clements & 

Burns, 2000: 31). When we ask students, drawing wide, acute and right angle, 

usually, they all say that the angle is right or acute or wide. 

When we want them to draw angle with protractor and know the degree, 

some students get wrong. There are angle degrees on the right and left sides, 

beginning 0° degrees to 180° degrees on the protractor. Although we remark that 

borders of the angle are called ‘ray’ and they should read the numeric values that 

0° degrees on the direction of ray is the beginning, some students confound the 

numeric degree on the top or at the bottom when they say the degree of the 

angle. For example, they might say that 40° degrees acute angle is 140° 

degrees, 140° degrees wide angle is 40° degrees, as we see on the degrees 

beam. 
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As we remarked at upper part, in an application made in a class with 25 

students. All students have declared that C angle in shape 2 is a wide-angle 

meter laving been asked to say the degree of angle on the protractor, 8 

students declared 140° instead of 40°. As for careful students decided that 

wide angle can’t be 40° by thinking about it. 

 
 

 

9 students couldn’t draw angles which are given sizes with help a ruler upper 

shape 3 and shape 4. They couldn’t tend setting corners of angles above 
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protractor. They slog on using protractor. They are making a mistake while 

they are drawing and reading. Due to two row angle degree. 

Study shown that students slog on while they are measuring angle. 

Students have mistaken about using protractor. Well-documented that learners 

experience ‘difficulty with angle, angle measure concept. (Lindquist and Kouba, 

1989; Mantaon  Et Al, 1993; Simmons and Cope, 1990). 

 

Key Words: Geometry, Angle, Size, Goniometer. 
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ABSTRACT 

 

Concept which includes the common features of events and objects and 

collect them under a certain name is an abstract and common idea. The 

knowledge geometry is one of the important secondary branches of maths. 

Geometry is a  branch of mathematics concerned with point, straight line, plane, 

circle, spatial figures, and the relations between them besides the measures of 

geometric figures including length, angle, area, volume, etc. (Baykul, 1999). The 

research purpose is that of discovering the student’s misconception on the 

triangle. Triangle introduction which is the subject of geometry teaching is given 

for students from 4th grade in elementary education. 

Concepts of angle is central to the development of geometric. (Clements & 

Burns, 2000: 31). Well-documented that learners experience ‘difficulty with angle, 

angle measure concept. (Lindquist And Kouba, 1989; Mantaon Et Al, 1993; 

Simmons And Cope, 1990). 

Misconceptions about triangle knowledge have the quality which affects 

directly to the geometric knowledge. So, the realization concept of angles was 

chosen. In this research, primary school students’ concepts of angles in triangle 

in geometry lesson according to their errors and misconceptions and some 

suggestions have been offered to the teachers. The purpose of this research is to 

examine the sample includes 24 students that is one 4th grade selected from the 

primary school in Amasya  2017-2018  academic  year.  Questionnaire  of  the  

test  were  prepared by considering the acquisitions (sub problems). teachers 
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were asked their opinion about the questions as well. Data are collected through 

a test including 15 open-ended questions. The results indicate that the students 

have some misconceptions about triangle and angle. The reason of the errors 

can be summarized as follows: students can not make contact with the concepts 

of interior angles in a triangle, students are forced themselves to practice some 

properties in angle concepts of  triangle.  Data with questions of angle are not 

analyzed well. Based on the examination of the answers given by students to 

these questions, it was seen that the same students repeated similar mistakes. 

Having students experiment with drawing triangles and attempting to draw a 

triangle with more than one obtuse angle could eliminate this misconception. 

Geometry should not be taught as stand-alone subject matter. Good teaching 

practice exposes misconceptions, not hide them. 

 
Key Words: Triangle, Misconception, Angle, Geometry. 
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ABSTRACT 

 

Spatial thinking skills refer to objects locations, shapes, movements, their 

directions of moving and interactions and relations between other objects. Spatial 

thinking skills are widely being used in our daily lives even if we are not aware of 

it. These skills arise when we decorate a room or a place, order the books on a 

shelf,  try to find our way according to a plan or a map and try to explain various 

situations. Pre-school years are important for acquiring and improving spatial 

thinking skills. Children’s early experiences of spatial relations predict and provide 

their developing spatial thinking skills and future success on math, science and 

engineering (Newcombe, 2010; Newcombe & Frick, 2010). 

The aim of this study is to investigate whether pre-school teacher 

candidates’ spatial thinking skills are associated with the type of high school they 

graduated from, gender, grade and their taking a course on math education which 

is being offered to teacher candidates, before. Totally 132 pre-school teacher 

candidates who are attending pre-school teacher training program at one of a 

state university in Turkey, participated the study. 34 of them were 1st, 36 of them 

were 2nd, 35 of them were 3rd and finally 27 of them were 4th graders. Only 12 

of them were male. 45 of them were graduated from vocational high school. 34 of 

them haven’t attended any math education course which is being offered to 

teacher candidates, before. Age wasn’t taken into consideration because of their 

being almost at the same age level. Participants were decided according to 

convenience sampling method. They were already accessible because of their 

being close to the institution (Creswell, 2012). Teacher candidates    were free to 

participate. Participants were offered two different assessment scale as they 
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were, “Spatial Ability Self-Report Scala” (Cronbach’s alpha of entire scale was 

found as ,88) which was developed by Turgut (2015) and “Santa Barbara Sense 

of Direction Scala” which was adopted to Turkish Language and culture by Turgut 

(2014). Data obtained by offering these two different scales was analysed by the 

help of a statistics software. Independent Samples T-test was performed in order 

to understand whether difference between the scores according to the type of 

high school they graduated from, gender and their taking a course on math 

education which is being offered to teacher candidates before, is statistically 

significant, but ANOVA for grade, because of its having 4 different subgroups. 

Correlation between the results of two different scale was found as it is 

statistically significant. Difference between Teacher candidates’ scores of two 

different scale for the type of high school they graduated from, gender, grade and 

their taking a course on math education which is being offered to teacher 

candidates before, are not statistically significant, as other results of this study. 

Results were concluded and discussed with other related studies’ results. Some 

recommendations were made according to the results. 

 

Key Words: Pre-school, teacher candidate, spatial thinking 
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ABSTRACT 

Proof is considered to be among the most significant elements of 

mathematics education (Schoenfeld, 2009). The importance of mathematical 

proofs has been emphasized in recent educational reforms. In particular, The 

National Council of Teachers of Mathematics (NTCM) highlighted the importance 

of mathematical proofs as a significant part of mathematics curriculum from 

kindergarten through high  school. Through new curriculum in Turkey, the 

significance of the concept of proof has also been emphasized (Ministry of 

Education, 2013). 

Cognitive processes that students use while justifying the correctness of a 

mathematical statement have attracted the interests of many researchers 

(Balacheff, 1988; Harel and Sowder, 1998a). One of the most detailed proof 

schemes brought  up to identify these cognitive processes students have 

exposed is proposed by Harel and Sowder. Harel and Sowder (1998a) categorize 

students’ proof schemes in three categories with several sub-categories as: (1) 

externally based proof schemes, (2) empirical proof schemes and (3) analytic 

proof schemes. These proof schemes guided not only the design of the study, but 

also the data collection and analysis processes. 

The aim of this study is to analyze the proof schemes of 7th grade students on 

the topic of quadrilaterals. Since this study focuses on one particular 7th grade 

class,  it is designed as a case study. The participants consist of six 7th grade 

students who attends  at  Kizik  Secondary  School  in  Tokat.  The  participants  

are  selected  to exemplify different levels as low, intermediate and upper-

intermediate, in a way of placing two students in each category. To identify 

mailto:60aslihanustun@gmail.com
mailto:zeybekzulfiye@gmail.com


 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

305 
 

participants’ proof schemes, individual interview forms are developed by using 

the proof schemes suggested by Harel and Sowder (1998a). Individual interview 

forms are composed of three correct and one incorrect mathematical statement 

on the topic of quadrilateral. For each correct statement, four arguments at 

different proof schemes (externally, experimental, analytic) are developed.. For 

the incorrect statement, no argument is provided to the participants, but they are 

expected to construct a justification by themselves. In the process of data 

collection, participants are interviewed individually and these interviews are 

video-recorded. In the process of data analysis, the  interview videos are watched 

and analyzed by using content analysis methods. 

According to the findings of this study, the participants have difficulty in  

proving and they demonstrated several misconceptions regarding the concept of 

proving. For instance, nearly all of the participants chose the validation method 

done by exemplifying as mathematical proof. This finding is consistent with the 

results of the study conducted by Ozer and Arikan (2000). As for the comments 

on proof, the participants are observed that they classify the proving as to mostly 

either they comprehend it or not. Additionally, the participants ignored the fact 

that mathematical proofs should be general, which shows that the statement is 

true for all cases. This result aligns well with the results of other studies in the 

literature. For instance, Stylianides (2007), Harel and Sowder (1998b) and 

Balacheff (1988) stated that students tend to ignore the fact that mathematical 

proofs should be general. 

 

Key Words : Geometry, Proof, Proof Schemes, Reasoning 
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ABSTRACT 

 

Studies in the field of geometry, which has an important place in 

mathematics education, show that students are very difficult to learn geometry. 

(Kılıç, 2003; Ubuz  & Üstün, 2003; Yenilmez & Korkmaz,2013). One of these 

difficulties is the problems in the sense of geometry. One of the important 

reasons for the problems in the sense of geometry is that geometric thinking 

levels are not taken into consideration in geometry teaching. (Fidan & Türnüklü, 

2010). 

Because of the lack of consideration of the students' level of geometric 

thinking, students have difficulties in encountering a concept that they are not 

ready. For this reason, much of the research on understanding geometry has 

been based on Van Hiele levels. (Turgut & Yilmaz, 2008, Gül, 2014). 

The purpose of this research is to determine the relationship between the Van 

Hiele Geometric Thinking Levels of secondary school 8th graders and the 

achievements of geometric objects in terms of geometric objects. The research 

also aimed to determine whether the students' geometric thinking levels differed 

in terms of gender, pre-school education status and Teog placement score 

variables. The study group of the study consists of 60 students who are studying 

in the 8th Grades of Tokat / Pazar Üzümören Middle School in 2016-2017 

Academic Year. The research is a study in the screening model. "Van Hiele 

Geometric Thinking Test" developed by Usiskin (1982) and translated into 
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Turkish by Duatepe (2000) was use to determine geometric thinking levels of 

students as data collection tool. Other data collection tools are Geometrical 

Objects Success Test and Personal Information  form. The data were analyzed 

using the SPSS program. 

Van Hiele is expected to correspond to the second level of junior high 

school years according to the geometric thinking model. However, when the data 

were analyzed, it was found that the middle school students participating in the 

research had a relatively low level of geometric thinking. It is very difficult for 

students at this level to understand the 8th grade geometry topics. This result, 

which is related to the students' level of geometric thinking, is in parallel with the 

results of Duatepe (2000), Coskun (2009), Duatepe Paksu (2013), and Bal 

(2014). No significant difference was observed between the students' geometrical 

thinking levels and gender and pre- school education variables. There was a 

significant correlation between the scores of the students obtained from the Van 

Hiele test and the scores of the Geometric Objects Achievement test. 

 
Key Words: Geometry, Van Hiele Geometric Thinking, Geometric Objects 
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ABSTRACT 

 

Vector is an important tool in mathematics. According to Szabo (1966) 

“vector is a beautiful and useful bridge between algebra and geometry”. In fact, it 

is a way of relating algebra with geometry. Moreover, for the field of mathematics, 

vector is a facilitator and can be used as a conceptual tool in school mathematics 

including analytic geometry, algebra, trigonometry and Euclidean geometry 

(Copeland, 1962; Hausner, 1998; Barbeau, 1988; Bundrick, 1968 & Nissen, 

2000). Besides, when it is desired to solve a geometric problem via analytical 

and/or vectorial approaches, vectors are the key components of these solutions. 

In fact, vector-approach solutions are qualified as "royal road" by Choquet 

(1969), and Robinson (2011) accepts vectors as having a central significance in 

Euclidean geometry. 

Vectors are beneficial tools for the topics in the other disciplines, in addition 

to mathematics and geometry. To illustrate, vectors have an important role and 

place in various courses at university levels such as linear algebra, calculus, 

physics and engineering etc., as it is known. Specifically, vector is an 

indispensable part of the units in secondary school and undergraduate physics 

courses such as Kinematics (velocity, acceleration), Dynamics (mechanical force, 

torque, impulse and  momentum) and Electromagnetism (electric force, magnetic 

force) (Nguyen & Meltzer, 2003). Because of the importance of vectors for many 

aspects, it is  important to examine the research studies focused on “vectors, the 

teaching of vectors and vector approach” and there is a need to determine the 

current situation for these contexts in academic studies. 
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The purpose of this study is to examine dissertations and master theses, 

completed in Turkey and the articles published in Turkey addressed journals, 

which are in the scope of SSCI and SCI in the context of vectors and to reveal 

and report the current situation in these studies. In order to realize this aim, all of 

the doctoral and master theses, registered in Turkish National Higher Education 

Council (YÖK) National Thesis Center and the articles published between the 

years 2011-2016 in Turkish journals, which are in the scope of 2016 SSCI and 

SCI in mathematics and physics education fields were examined. The academic 

studies were investigated through content analysis method, the data were 

collected through Vector Related Studies Classification Form (VRSCF) and the 

obtained data were analyzed by means of descriptive statistical methods. The 

results of the study are thought to be helpful and will be light for the future studies 

focused on vectors. 

 
 

Key Words: Vectors, Teaching vectors, Vector approach, Research 

Trends, Content Analysis 
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ABSTRACT 
 

According to National Council of Teachers of Mathematics (NCTM 2000), 

using technology in teaching and learning mathematics is essential because it 

enhances students’ learning. Parallel to this perspective, the use of Information 

and Communication Technology is recommended in High School Mathematics 

Curricula while teaching geometry (MoNE, 2013). This is also the case for the 

teaching of solids. While teaching this subject, cross-sections can be presented 

to the students  to improve their imagination in space, as an activity. However, 

because of the requirement of thinking in 3D and spatial visualization skills, the 

teachers and the students have troubles when teaching and learning these 

subjects. Actually, there is  a considerable evidence that learners develop their 

own interpretations of the images they see and they hear (Jones, 1999). It can be 

expected that the conceptual understanding of teachers for solids and space 

geometry improves as they engage with Dynamic Geometry Environment (DGE) 

programs. Therefore, it would be valuable to supply an alternative to the teachers 

and students to overcome these difficulties, to yield a better teaching-learning 

environment and to reply the requirements of teaching program. 

A module containing cross-sections was developed by the author  to  teach 

solids by means of Cabri 3D, one of the DGE software. Specific to teaching of 

cross sections, there are 34 activities in this module, to find out cross-section of a 

solid (right triangular prism, cube, right hexagonal prism, cylinder, cone and 

sphere) when it is intersected with a plane. To illustrate, students had 

opportunities to construct “a pentagon” from the intersection of right triangular 

prism with a plane or “a   trapezoid” 
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from the intersection of cube with a plane. In these activities, the students have 

possibilities to observe the resulting objects from different perspectives. 

It is inevitable to consider teaching-learning process focused on teachers 

because they take an important place in classes. A study without taking into 

account of teachers cannot be accepted as complete. Therefore, the purpose of 

the study is  to determine teachers’ views about the use of Cabri 3D while 

teaching cross-sections in the context of “Solid Geometry” in high school levels. 

In order to realize the aims of the study, five mathematics teachers from different 

schools in Diyarbakır were included to the study to learn their reflections by 

means of semi-conducted interviews related to this module. 

 
 

Key Words: Dynamic Geometry Environment, Cabri 3D, Solids, Cross 

Sections and Teachers’ View 
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ABSTRACT 

 

Affective variables are important factors that influences students' learning. 

The attitude towards mathematics which is one of the affective factors, have been 

studied since 1970s in mathematics education (Dede, 2015). It can be considered 

as a factor affecting students’ mathematical learning especially mathematical 

achievements (Duatepe-Paksu & Ubuz, 2007). It is stated that most of the 

students who failed in the mathematics courses taught at the first grade of the 

universities have negative thoughts about this course (Duatepe & Çilesiz, 1999). 

In mathematics courses, some reactions are observed regarding the topics that 

are discussed in the speeches made by the students from time to time. It is not 

surprising to hear the reaction of "I do not like geometry", "I hate geometry", "I fail 

geometry" or understand this from facial expressions in some of these reactions 

when students are dealing with geometry issues (Utley, 2007). This is remarkable 

in that it shows that there may not be a parallel between students' attitudes towards 

mathematics in general and their attitudes towards other sub-branches of 

mathematics (Avcu & Avcu, 2015). 

While there have been various researches on the attitude towards 

mathematics and the attitude towards geometry, no studies have been found that 

deal with the relation between the two. This study is important in terms of 

comparing the attitudes of prospective teachers towards mathematics and 

geometry, and in this way initiating attempts to eliminate the negative effects of 

their approach towards their students. The main purpose of the study in this 

context is to determine the relationship between the attitudes of primary school 

teacher candidates towards geometry and towards mathematics. 
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In this research, students' attitudes towards mathematics and attitudes 

towards geometry were accepted as variables and the model of the research was 

determined as correlational research model because the relationship between 

these variables was examined. The sample of the study is composed of 96 

students who study in the first class of Manisa Celal Bayar University Primary 

School Teacher Department. In the study, mathematical attitude scale and 

geometrical attitude scale were used. Descriptive statistics and simple correlation 

analysis were used in the analysis of the data. 

Findings show that, students’ geometry attitudes correspond to “undecided” 

category and this points out that primary school teacher candidates’ attitudes 

towards geometry were medium level. On the other hand, students’ mathematics 

attitudes correspond to “agree” category and this points out that primary school 

teacher candidates have positive attitudes towards mathematics. The relationship 

between mathematics attitude scores and geometry attitude scores was 

investigated by using Pearson product-moment correlation coefficient. There was 

a moderate positive correlation between the two variables. 

Based on the results of this study, it is suggested that the teaching methods 

and techniques used in the basic mathematics and mathematics teaching 

courses taken by the classroom teacher candidates should be reviewed, the 

weights of the geometry topics in these courses should be increased, the hours of 

mathematics lessons should be increased and the compulsory geometry course 

should be added. 

 

Key Words: Geometry, Mathematics, Attitude, Teacher Candidates. 
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ABSTRACT 

 

Since the topics in mathematics are hierarchical, abstract and cumulative, 

the ways which teachers follow during this course can lead to a relational 

understanding of the subjects or to their meaning within their own boundaries. 

Secondary school mathematics curriculums of Turkey have been based on 

radical or partial changes or/and revisions several times over the past decade, so 

that the subjects of geometry were aimed to be able to be taught better. Within 

the academic year 2016-2017, proposals from stakeholders (academicians, 

teachers, parents, curriculum developers, etc.) started to be collected for 

updating the curriculum (MEB, 2017). It is important to take into account the 

teaching cycle models and the hierarchy of subject ordering proposed by 

teachers in the teaching of geometry subjects in order to improve the efficiency in 

the process from development to implementation of the curriculum. In this study, 

the opinions and suggestions of mathematics teachers regarding the teaching 

order of the secondary school geometry topics in the curriculum were determined 

and evaluated. 

The case study was used as a research design in this research, since it is 

aimed to examine a particular situation (geometry topics) deeply (via teachers’ 

views) within its boundaries (in secondary school curriculum). Participants of the 

study are six elementary school mathematics teachers who are actively teaching 

and continuing graduate education. These teachers were selected according to a 
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purposeful sampling method; In the selection criteria, attention has been paid that 

they have 3-10 years of teaching experience,  have taken graduate courses in 

textbook review and curriculum development, and participate in the research as a 

volunteer. Within the scope of the research, interview protocols using semi-

structured interview forms were recorded and firstly these data were transcribed, 

then coded under the themes pre-determined by the researchers. Descriptive 

statistics were used in the analysis, and the results were presented 

comparatively in the context of the tables and graphics. 

When study findings were examined under the theme of "the distribution of 

subjects according to class level ", participants indicated that the transformation 

geometry was very abstract for the students and that those students had difficulty 

in perceiving this subject (four of six participants). In the context of the 

"distribution of topics within units" theme, the participants all indicated that there 

was no integrity between the subjects and that there was a disconnection 

between the units. Another situation that all the participants criticize is that the 

topics of geometry are predominantly given at the end of the semester. In the last 

weeks of the school, it has been criticized for having geometry subjects in the last 

units due to the reasons such as low student motivation, the disinterest of 

students in subjects, low participation in classes. In addition, while four of six 

participants suggested that geometry should be given under a different course 

heading, the two participants indicated that it would be better to  stay on the same 

course provided the geometry was more integrated with mathematics. 

 

Key Words: Teaching sequence, Geometry topics, Teachers’ views. 
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ABSTRACT 

In school curricula students are introduced to the concept of mathematical 

proofs only in secondary education (MoEd,2013). Whereas, studies show that 

students can develop ability of reasoning and proving when given the necessary 

support (Stylianides, 2007; Aylar & Şahiner, 2016). Moreover, it has been 

eveidenced that the students who are confronted with the concept of proof in 

secondary education struggle with mathematical proofs and demonstrate several 

misconceptions (Kılıç, 2013; Özer & Arıkan, 2001). The fact that students are 

introduced with the concept of mathematical proofs at a very late stage of their 

education could be one of the possible reasons fort his issue (Dreyfus, 1999). 

The purpose of this study is to investigate how the 7th grade students are able to 

use their reasoning and proving skills effectively in one week of geometry unit. In 

the study; "Explains the edge and angle properties of regular polygons" and 

"Determines the diagonals of polygons, internal and external angles, calculates 

the sum of measures of internal angles and external angles" achievements are 

chosen as the standards to be focused on. The participants of this study consist 

of a total of 9 students who are  attending at the 7th grade at a public school. The 

research is designed by using the action research method and the lesson plans 

that  are consisted of 5 lessons per week are planned accordingly. A pre and 

post-tests consists of 10 questions are applied before and after the geometry unit 

implementation. After the post- test, 5 students, who demonstrated variety of 

answers, were chosen to be interviewed individually. In the interviews, students 

were asked to further explain their answers to the pre and post test questions, 

and these interviews were voice recorded. Students' answers to the pre-test and 

post-test were examined by using the document analysis method. According to 

the pre-test and post-test results, it is observed that there is an increase in the 

students' ability of reasoning and proving It has been seen that students can 

determine the number of diagonals of a polygon, can support their answers by 

using reasoning skills such as telling the diagonal which can be drawn from a 

corner of the polygon divide the polygon into several triangular regions,can find  

the sum of the interior and exterior angles of polygons and can find the interior 
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angles of regular polygons. Another finding of this study is that students hold a 

belief that they can learn mathematical concepts more effectively and profoundly 

by proving. This finding is compatible with the study that a large majority of 

primary school mathematics teacher candidates believe that proving will 

contribute positively to teaching and learning mathematics (Köğce, 2012). 

 

Keywords: Argumentation, geometry, polygons, proof, reasoning. 
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ABSTRACT 

It is important for the students to learn and define the solid objects with 
respect to the basis of it since the development of geometric thinking and 
geometric thinking at higher level necessitates understanding the definition. 
Therefore, it is necessary to understand the concept definitions and explain them 
appropriately. Teachers' content knowledge is very important in the 
understanding of geometrical objects by students. The students’ understanding 
solid geometric objects is related to teachers’ knowledge of content knowledge. 
The purpose of the present study was to examine the Mathematical Content 
Knowledge (MCK) of Middle School Mathematics Teachers (MSMT) on pyramid 
subject. For this purpose, six mathematics teachers actively working at a public 
secondary school constituted the study group of the research. The purposeful 
sampling method was used in the selection of the participants. The case study 
method based on the qualitative approach was used in the study. The 
triangulation was made by using the techniques of semi-structured interviews, 
semi-structured observation and document analysis. In the data collection 
process, the interviews and observations were recorded by audio recordings and 
the lessons of three teachers were recorded by video camera. The data were 
analyzed by the techniques of qualitative data. The packet program of Nvivo 8 
was used in the analysis of data. In this context, voice and video recordings were 
primarily transferred to the computer environment. Participants' voice dumps that 
were transferred to the computer environment were separated into significance 
units, and categories and codes were created from these significance units. 
Furthermore, the thematic framework of Zazkis and Leiken (2008) and Tsamir et 
al. (2008) was taken into account while encoding the data. At the end of the 
study, it was determined that most of the teachers did not have difficulty in 
describing and drawing the concept of the pyramid but the pyramid examples 
they drew were limited to the prototype examples. It was found out that two 
teachers had difficulty in giving an answer to the calculation of the surface area 
and volume of the pyramid. 

 
* This study was produced through the doctoral thesis with the title of “Examination of Middle School Mathematics Teachers’ 

Pedagogical Content Knowledge on the Subject of Geometric Solids”. This study was funded by BAP (Project No: 169) 
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ABSTRACT 

 

Teacher qualities are one of the important factors affecting the efficiency of 
the education system. In this regard, it can be said that the teaching strategies 
chosen in the learning environments by teachers, who are one of the important 
components of the teaching process, are important. Furthermore, the fact that 
they are informed about the mistakes students make on the subject taught and 
about the reasons for these mistakes can prevent students from making probable 
mistakes or having misconceptions. One of the learning domains in which 
students have difficulty is the field of learning geometry. Students have many 
difficulties especially in geometrical solids, one of the geometry subjects. 
Accordingly, in this study, pedagogical content knowledge of middle school 
mathematics teachers' on pyramid was examined in line with the components of 
knowledge of student, and knowledge of instructional strategies. The purposive 
sampling strategy was used in the study with the design of case study. The 
participants of the study consisted of 6 (4 Male, 2 Female) middle school 
mathematics teachers with different periods of service. In the study, data 
triangulation was made using different data collection methods (interviews, 
observation and document analysis). Voice and video recordings were taken 
while collecting the interview and observation data. The data were analyzed by 
the techniques of qualitative data. At the end of the study, it was determined that 
most of the teachers performed teaching in the teacher-centered role and that 
only one teacher benefited from the strategies based on the constructivist 
approach that actively involves the student in the process. Based on the results 
on knowledge of student, it was found out that teachers were generally able to 
identify students' mistakes, but they preferred the strategies based on the 
traditional approach regarding the elimination of the students' mistakes. In line 
with these results, suggestions were made for teacher training. 

 
Key words: Pedagogical content knowledge, knowledge of 

instructionalstrategies, knowledge of student, pyramid. 

*This study was produced through the doctoral thesis with the title of “Examination of Middle School Mathematics Teachers’ Pedagogical 

Content Knowledge on the Subject of Geometric Solids”. This study was funded by BAP ( Project No: 169). 
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ABSTRACT 

 

Geometry is an important sub-learning of mathematics and includes more 
abstract structures when compared to mathematical subjects (Gökbulut, 2010). 
Especially the subject of mathematical shapes is indicated among the subjects in 
the understanding of which students experience most difficulties (Battista & 
Clements 1996, Gökkurt, 2014). The teacher’s knowledge of teaching strategies 
is important in terms of eliminating these difficulties which students experience 
and comprehending the subject cognitively (Fernandez, Balboa,& Stiehl, 1995). 
Accordingly, in this study, it is aimed to examine the knowledge of teaching 
strategies of preservice mathematics teachers about geometrical shapes. In the 
study, the lectures of the preservice teachers at the schools affiliated to the 
Ministry of National Education were observed. As a result of the fact that 
preservice teachers teach lessons in the real school environment with real 
secondary school students, it is considered that the data collected in the subjects 
such as making students participate in the lesson, teaching according to the level 
of the student, attracting the student’s interest to the lesson, changing strategy in 
response to the reaction of the student are more realistic and including such 
studies in the literature is important in terms of teaching mathematics and 
geometry. In the study, the qualitative research approach was adopted, and the 
case study method was used. The participants of the study consist of seven 
preservice primary mathematics teachers studying at a state university in Turkey. 
These preservice teachers included in the study were selected from 4th- grade 
students, and they are suitable for the aim of the study because these preservice 
teachers have taken all educational courses which are effective in the 
development of the knowledge of teaching strategies playing a role in conveying 
the knowledge they have to students. While collecting the data of the study, the 
interview and observation techniques were used together. By this means, rich 
and comprehensive data were collected in accordance with the nature of the case 
study method. While analysing the data of the study, the content and descriptive 
analysis techniques were used together and the findings obtained were made 
meaningful to the reader. In the light of the findings obtained from the study, it is 
possible to say  that preservice teachers prefer ordinary and regular teaching 
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methods in the subject of the definition and characteristics of geometric shapes 
and their knowledge of teaching strategies in this subject is insufficient. Similarly, 
it is observed that most of the preservice teachers adopt a rote teaching in the 
subject of the surface areas and volumes of geometric shapes, which is one of 
the most difficult subjects for students to learn and which they generally learn by 
rote, and these teachers do not perform teaching that forms a basis for effective 
and permanent learning. In this respect, it is observed that preservice teachers 
cannot use the knowledge of teaching strategies effectively and sufficiently and 
their knowledge in this subject is insufficient. 

 
Key Words: Preservice Mathematics Teachers, Knowledge of Teaching 

Strategies, Geometric Shapes. 
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ABSTRACT 

 

The memorization of the features of shapes and giving inadequate 
examples in teaching geometry cause students to create limited structures 
related to geometric concepts and thus to have difficulties in learning geometric 
concepts. In this direction, students are afraid of geometry-related subjects and 
make many mistakes in the field of learning geometry. One of the important 
components affecting the geometry teaching process and playing a role in this 
process is the teacher factor. The fact that teachers are informed about students' 
mistakes or misconceptions can prevent students from making probable mistakes 
or having misconceptions. The purpose of the study was to examine primary 
school teachers’ knowledge of students in the field of learning geometry. In this 
context, primary school teachers' abilities to identify student mistakes and 
misconceptions related to the field of learning geometry were examined in this 
study. The case study method based on the qualitative approach was used in the 
study. The participants of the study consisted of 10 (5 Female, 5 Male) primary 
school teachers with different periods of service. The interview form consisting of 
eight questions was used as the data collection tool. The questions in the 
interview form consisted of teaching scenarios containing mistakes or 
misconceptions in different subjects of geometry. Interviews were held by taking 
sound recording with a semi-structured interview technique. The data were 
analyzed by the techniques of qualitative data. At the end of the study, it was 
observed that most of the teachers were able to identify students' mistakes and 
misconceptions in teaching scenarios, but their explanations on these mistakes 
and misconceptions were superficial. In particular, it was found out that most of 
the teachers had difficulty in giving an answer to the questions containing 
overspecialization, which is one of  the types of misconceptions. 

 
Key words: Teaching geometry, mistake, misconception, knowledge of 

students 
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ABSTRACT 

 

Geometrical construction refers to the standard procedures required to  

construct geometric structures by using a compass-ruler and is thought to play an 

important role in the development of geometric thinking. Geometrical construction 

activities are important because they provide a deep insight into the properties of 

the geometric structure created. In this study, the authentic attempts of the eighth 

grade students in solving the problem of a geometrical construction by means of 

compass and ruler were investigated. The purpose of study is to reveal the 

thinking models which have been used by students to solve geometrical 

construction problems. This research used a qualitative case study approach in 

order to enable the in-depth analysis of problem-solving processes. Eight 

students working in pairs constitute the participants of this study. Participants 

were selected from eighth grade students who know the basic drawing rules and 

interested in the subject. The data collection tools of the study were video 

recordings taken during drawing, documents (reports and drafts which the 

solutions are detailed) and unstructured interviews after problem solving. The 

data were analysed according to an analysis framework which was developed by 

the researchers based on the literature (Polya, 1957; Smart, 1998; Verschaffel, 

De Corte, Lasure, Van Vaerenbergh, Bogaerts & Ratinckx, 1999) and  the 

problem-solving processes studied in depth. First of all, it is seen that the school 

are about telling the basic drawings of the geometrical construction and the 
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problem solving dimension is not exist. In result of analysis made, it has been 

seen that in-group discussions contribute to the solution. It has also been 

determined that all participants are primarily concerned with drawing a draft and 

re-expressing the problem situation. It has been seen that students solve the 

problem with interest, and they cannot do effective work at the stages of proof 

and discussion. 

 

Key Words: Compass-ruler use, geometrical construction, problem solving 
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ABSTRACT 

 

Nowadays, technology is being used in every area of our lives and it makes 
our lives significantly easier. It can be said that technology provides so much free 
time and liberates people besides, it makes our lives easier (Turan and 
Esenoglu,2006). We live in an era that the learners require to demonstrate the 
power of their mental design, technology is used in many areas of our daily life 
and information constantly changes and increases (Erdem and Akkoyunlu,2002). 
As a requirement of this era that we live in, we interact with technology in all 
areas. Today, the development  levels of societies can be measured by the 
number of individuals who can use the computer (Aktumen and Kacar, 2003). 
This situation shows the importance of technology in the world. As technology 
evolves, the need for pen and paper decreases, blackboard gives the place to the 
smart board. Thus, the processing load of students and teachers was reduced. 
The use of material in education has great importance in terms of teaching to be 
more meaningful and enduring (Kaya and Aydın,2011). It can be said that the 
education system increasingly concentrates on problem solving and reasoning. 
And this is required to give attention to process instead of result. The abstraction 
of Mathematics course causes students to be prejudiced against the course. The 
prejudice that is created as a result of this attitude in math class may cause 
students to have a negative attitude towards future math success (Yenilmez, 
2010). This case can lead students to focus on only passing the course. 
However, to pass the course should not only be a success indicator. In addition, 
the success is not simple thing that is measured with just grade.  The creative 
thinking and to develop this should be accepted as a success indicator. 
Therefore, methods and techniques that are used during the handling of course 
must be taken into consideration whether these methods and techniques have an 
effect on not only the students’ success but also creativity levels  or not. In this 
context, the  aim of this study is to examine the effects of teaching circle subject 
with GeoGebra  on creative thinking skills of 7th grade students. The sample of 
the study included 18 7th grade of Secondary Education students studying at 
Education in Bayburt in 2015- 2016 academic year. In this study quantitative 
methods was used and pretest- posttest experimental design was adopted. As a 
data collection tool Torrance Test of Creativity Thinking Verbal-Figural Form A 
was used and the collected data were evaluated by using SPSS program 
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(Statistical Packagefor the Social  Sciences). While evaluating data, t-test was 
used for the lower dimensions with normal distribution, whereas Wilcoxon test 
was used for the lower dimensions not  with normal distribution. 

The results of this study showed that teaching with GeoGebra has a positive 
effect on creative thinking skills of students'. Furthermore, according to the lower 
dimensions of Torrance Test of Creativity Thinking Verbal Form A, significant 
differences were found for all dimensions. According to the results obtained from 
Figural Form A, while significant differences were not found between pretest and 
posttest results for the dimensions of abstractness of titles, elaboration, 
resistance to premature closure, storytelling and synthesis of incomplete figures, 
significant differences were found for the rest of dimensions in favor of the 
posttest. 

 

Key Words: Geometry, geogebra, creative thinking 
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ABSTRACT  

           The main aim of this study was to determine elementary mathematics 

teacher candidates’ geometric thinking levels. Other aim of this study was to 

investigate whether gender, geometry scores and basic mathematics scores affect 

elementary mathematics teacher candidates’ geometric thinking levels and scores. 

Descriptive Method which is one of Qualitative Research Methods, was used in 

this study. This method ensures us to collect, describe and to present numerical 

values of a current or past situation, variables (Karasar, 1995) and also describe 

the common thought and structure (Büyüköztürk, 2003; Wellington, 2006). Totally 

55 (11 male and 44 female) elementary mathematics teacher candidates 

participated the study.  They were 2nd grade bachelor degree students of an 

elementary mathematics teacher training program at a college of education, in 

Turkey. Convenience Sampling method was used to determine the participants. 

Teacher candidates were so close to institution, they were accessible and also 

volunteers (Creswell, 2012). Van Hiele Geometry Test which is developed by 

Usiskin (1982) and adopted into Turkish language and culture by Duatepe (2000) 

was used to obtain data. Date were descriptively analysed in order to determine 

that, at which level of Van Hiele’s geometric thought elementary mathematics 

teacher candidates are. Results of descriptive analysis were presented as 

frequencies and percentiles. Correlation analysis was used to determine the 

corelation between elementary mathematics teacher candidates’ scores of basic 

mathematics, geometry and scores of Van Hiele Geometry Test, levels of Van 

Hiele geometric thought. Mann-Whitney U test was used to determine whether 
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gender affect elementary mathematics teachers’ geometric thinking levels and 

scores. According to the results of this study, most elementary mathematics 

teacher candidates are at 2nd level of geometric thinking. Effect of gender, basic 

mathematic scores and geometry scores on elementary teacher candidates’ 

scores of Van Hiele Geometry Test, are not statistically significant. Beside, effect 

of gender and geometry scores on elementary teacher candidates’ levels of 

geometric thought, are not statistically significant, but for basic mathematics 

scores. Some recommendations could be done as; longitudinal studies should be 

done, other studies should be done according to some variables as age, gender, 

grade and branch, assessment scales of space geometry should be developed, 

geometry curriculums and programs should be reviewed and educational 

programs should be prepared according to learners’ levels of geometric thought. 

 

Key Words: Van Hiele geometric thinking levels, mathematics education, 

teaching geometry, geometry education 
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ABSTRACT  

This paper illustrates the authors’ efforts in the solution process of a real–life 

problem and the facilitating role of dynamic geometry software. As known, 

computer technology, especially mathematics software, has been an alluring tool 

among mathematicians and mathematics educators while struggling with a 

mathematical problem in the last quarter century. Dynamic mathematics software 

(DMS) emerged in recent years brought innovative approaches to the solution of 

non-routine problems such as testing assumptions, controlling interim solutions 

etc. This study presents the solution of a daily life problem with the help of 

mathematical modelling. The problem is “There is some water in a cylindrical cup 

with radius r and height h. How much do we have to tilt the glass to start the 

discharge of the water inside glass?” First, the problem state is modelled in DMS 

environment to solve the problem. When the problem was solved by researches, a 

new problem has arisen. What if the glass is tea cup? A special case of the 

second problem is also solved by using DMS. The general equation of hyperbola, 

translation and rotation transformations were used in the second problem’s 

solution. The solutions and the modelling process will be presented in the 

symposium.  

Key Words: Dynamic mathematics software, modelling, problem solving. 
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ABSTRACT  

The aim of the study is to find out the effects of the changes of the 

constants of the plane equation on plane equation. The equation Ax+By+Cz+D=0 

expresses the general equation of plane in space. When you write this equation on 

the blackboard, one of the first possible problem that comes to mind is what 

happens if A, B, C and D changes? It is quite difficult to answer to this problem 

with traditional teaching tools such as papers and pencils. Dynamic mathematics 

software was used the solution of this problem to provide a prediction to 

researcher.  

Dynamic mathematics software has emerged as a revolution compared to 

traditional teaching tools, especially in the last 20 years. One of the most salient 

software is GeoGebra. Algebra and Graphics windows in GeoGebra interface 

provide users to see together the geometric shapes forms. In this study, the 

geometric constructions were created with the help of Slider tool on 3D screen and 

some investigations were done. With the help of the GeoGebra, it is determined 

how the plane equation is affected by each constant change.   

Key Words: Plane equation, dynamic mathematics software, problem solving 
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ABSTRACT  

 The aim of geometry is to provide an opportunity for the students in order 

to have critical thinking and problem solving ability and better understanding ability 

of mathematic topics by gaining high level of geometric thinking ability (MEB, 

2000). Despite the geometry is so important, a large part of the students have a 

low success in geometry and they don't understand geometry subjects. The results 

of international exams such as TIMSS and PISA show that Turkey has under 

achievement about geometric topics (Eşme, 2008; Yayan & Berberoğlu, 2009; 

Hurma 2011). One of the main reasons for this failure is that it is not give much 

importance to relation of the shapes in geometry teaching. In particular, it is known 

that the relation between the quadrilaterals and the hierarchical classification is 

increasing the level of students' geometric thinking (Fujita & Jones, 2007; Kaleli-

Yılmaz & Koparan, 2016). So, it is important to question the relationship between 

geometric shapes in geometry teaching.  

 In this context, it is aimed to examine the ability of teacher candidates to 

establish relations between quadrilaterals in this study. For this purpose, 50 

mathematics teacher candidates have been studied. In this study, where the case 

study method is used, interview and open-ended form were used as data 

collection tool. In the open-ended interview form, prospective teachers were asked 

the following questions: “Is every trapezoid a parallelogram? Is every square an 

equilateral quadrangle? Is every deltoid a parallelogram?” By examining the 

answers given by the teacher candidates, 3 correct, 3 semi-correct and 3 incorrect 

responsive teacher candidates were selected. These teacher candidates were 
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asked the same questions again and conducted detailed interviews. The obtained 

data were analyzed by qualitative data analysis method.  

 When the findings are examined, it is seen that the teacher candidates 

have difficulties in establishing relations between the quadrangles although they 

know the properties of the quadrangles. This finding also suggests that the 

geometric thinking levels of the teacher candidates are not very high. The main 

reason for this is that many educational institutions do not teach geometry 

information by questioning. This leads to the formation of a line of knowledge that 

has too much geometric knowledge but is not capable of geometric questioning 

and which cannot relate to geometric concepts.  This can be corrected by well-

designed geometry activities.  

 

Key Words: Geometry, Prospective teachers, Quadrilaterals  
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ABSTRACT  

Geometric objects is one of the geometric subject which is difficult to 

understand by using two dimensional areas such as books and boards. (Tutak, 

2008; Özen, 2009, Topaloğlu, 2011). The use of technology in geometry 

education seems to be widespread. It is considered that the correct use of 

technology in the education of the topic of geometric objects is particularly 

useful in education. The use of technology makes it easier to demonstrate to 

the students and grasp the third dimension, as well as enable the student to 

make application on his/her own. GeoGebra is one of the technologies used in 

geometry education as well. GeoGebra prepared by Markus Hohenwarter as a 

project of master thezis. The aim of GeoGebra was combine the geometry 

software, calculator and computer assisted learning systems (Hohenwarter and  

Lavicza, 2007). The dynamic materials prepared with GeoGebra enable the 

student to construct knowledge, to test it, to make trials and applications. With 

the dynamism feature, changes can be made in the material and these 

changes can be observed. It also makes it possible to move objects and 

examine their appearance from different directions thanks to this feature.  

The aim of this work is to develop a worksheet for a dynamic material that is 

prepared for a intersection with a regular hexagonal prism and surface in a 

dynamic environment (GeoGebra 3D). By this means, it is foreseened that it 

would be possible to ensure that the students see the surface intersection more 

easily and applied, which they had trouble to see and imagine. For this 

purpose, a dynamic material was prepared by using GeoGebra 3D in the 

direction of parallel with learning outcomes. Following the preparation of the 
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material, three experts (two specialists in the field of the mathematics 

education and one visual arts expert) were consulted. A feedback was received 

from the mathematics education experts on the appropriateness of the material 

on the topic, the sufficiency of the ability of giving learning outcomes, and the 

points of practicability. Information was taken from the visual arts expert on the 

colour and the style of the material. The reorganized material was put into its 

final form as the result of taking the expert opinions. Following the preparation 

of the material, the worksheet has  been prepared.  The moving of the slide, 

 the image the regular hexagonal prism and the surface intersection will be 

asked on the worksheet. They will be asked to draw this intersection. Following 

the drawing of the intersections, the students will be asked to check their 

answers by clicking on the relevant point in the software. It is foreseened that 

the use of this worksheet will allow the students to see that the intersection has 

changed as a result of the surface change.  

 

Key Words: Worksheet, Geogebra 3D, intersection face of a regular prism 
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Dual and Complex Fibonacci and Lucas Numbers 
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ABSTRACT  

In this study, we define the dual-complex Fibonacci and Lucas numbers. 

We give the generating functions and Binnet formulas for these numbers. 

Moreover, the well-known properties e.g. Cassini and Catalan formulas have been 

obtained. 

 

Key Words: Fibonacci numbers, Lucas numbers, Binnet formula, Catalan 

formula. 
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ABSTRACT  

In this work, we study the local properties of the intersection curve of the 

tangent, rectifying developable and Darboux developable surfaces of a timelike 

Mannheim curve pair. We derive the curvature vector and curvature for the 

transversal intersection problem. Furthermore, we investigate some characteristic 

features of the intersection curve for all three cases and give some important 

results. 

 

Key Words: Mannheim Curve Pair, Rectifying Developable Surface, transversal 

intersection. 
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ABSTRACT  

In this paper, we obtain results on Lorentzian Para-Sasakian manifolds with 

respect to quarter-symmetric non-metric connection. We deduce ξ-conharmonicly 

flat and Gauss equations according to quarter-symmetric non-metric connection. 

 

Key Words: LP-Sasakian manifold, ξ-conharmonicly flat, Gauss equation, 

Quarter symmetric non-metric connection. 
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ABSTRACT  

          A surface M in Minkowski space is said to be a generalized constant ratio 

(GCR) if the tangential part of its position vector is one of its canonical principal 

direction. On the other hand, if the tangential part of the fixed direction in tangent 

plane of M is one of its canonical principal direction, then in case this surface is 

called as surfaces endowed with canonical principal direction (CPD). In this talk, 

first, we will present a short survey on CPD and GCR surfaces in semi-Euclidean 

spaces. Then, we will give some of classification results for space-like CPD and 

GCR surfaces that we have obtained recently. 

 

Key Words: Minkowski space, Space-like surface, Canonical principal 

direction, Angle function. 
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ABSTRACT  

          A pair of space curve is called as Mannheim curves, if these space curves 

whose principal normals are the binormals of another curve. The notion of 

Mannheim curves was discovered by A. Mannheim in 1878. Also, R. Blum studied 

a remarkable class of Mannheim curves in [7]. O. Tigano obtained general 

Mannheim curves in the Euclidean 3-space in [8]. Recently, H. Liu and F. Wang 

studied the Mannheim partner curves in Euclidean 3-space and Minkowski 3-

space. They obtained the necessary and sufficient conditions for the Mannheim 

partner curves in [9]. This work is motivated by [6]. 

In that paper, we give some new characterizations for null Mannheim curves 

related with modified Darboux frame with time-like (space-like) Mannheim partner 

curves lying on surfaces in Minkowski 3-spaces. Also, we obtain some new 

characterization for these curves. 

Key Words: Mannheim partner curve, Null curve, Space-like surface, 

Lorentzian surface, Minkowski space. 
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ABSTRACT  

          In a semi-Riemannian manifold, there exist three families of curves, that is, 

space-like, time-like, and null or light-like curves, according to their causal 

characters. In the case of null curves, many different situations appear compared 

with the cases of space-like and time-like curves. The theory of Frenet frames for 

a null curve has been studied and developed by several researchers in this field 

(cf. [5] - [10]). In [10] Ferrandez, Gimenez and Lucas introduced a Frenet frame 

with curvature functions for a null curve in a Lorentzian manifold, and studied null 

helices in Lorentzian space forms. 

       In that paper, we defined new frame as modified Darboux frame for null 

curves lying on surfaces in Minkowski 3-spaces.  

 

Key Words: Null curve, Space-like surface, Darboux Frame, Minkowski 

space. 
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ABSTRACT  

This work combine different fields of mathematics such as algebra, 

geometry, group theory and number theory, it can be seen as an example of 

multidisciplinary approach which offer a new understanding of some situations. We 

consider the action of a permutation group on a set in the spirit of the theory of 

permutation groups, and graph arising from this action in hyperbolic geometric 

terms [1,3]. In this study, we take the normalizer of Γ0(𝑁) in  

𝑃𝑆𝐿2(ℝ) = {𝑇: 𝑧 ↦
𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑
∶ 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℝ  𝑎𝑛𝑑 𝑎𝑑 − 𝑏𝑐 = 1} 

 as an object of this topic. Clearly, whether the graph contain a circuit or not 

depends on the choice of N. We note that some subgraph family has just the 

hyperbolic paths. All these subgraphs are worthwhile to investigate, because it is 

well-known that some number theoretical results arise from the action of some 

Fuchsian groups. With this motivation, examining the suborbital graphs of the 

normalizer, we obtained some results about the solution of the some congruence 

equations and the sizes of the circuits in the suborbital graphs [2].  

Key Words: Möbiüs transformations, Modular group, Fundamental domain. 
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ABSTRACT  

In this paper, by means of generalized quaternions we determine rotational 

surfaces and obtain a characterization of these rotational surfaces in four 

dimensional generalized space 
4E . 

 

Key Words: Generalized Quaternions, Rotational Surface, Gauss map. 
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ABSTRACT 
  In this study, the Fibonacci commutative quaternions are introduced. We use 

the well known identities related to the Fibonacci and Lucas numbers to obtain the 
relations regarding these quaternions. Furthermore, the Fibonacci commutative 
quaternions are classified by considering the special cases (elliptic, parabolic and 
hyperbolic units) of quaternionic units. 

 

  Key Words:Fibonacci and Lucas numbers, Commutative quaternions, Fibonacci 
commutative quaternions. 
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ABSTRACT  

In this presentation, the geometry of almost α-cosymplectic manifolds when 

they satisfy some certain semi-symmetric conditions are studied. The results related to 

the effects of semi-symmetric conditions with respect to η-parallelism are given. 

Finally, illustrating examples on almost α-cosymplectic manifolds depending on α are 

constructed. 

 

Key Words: Almost α-cosymplectic manifold, Semi-symmetry, Projectively flat, 

Conformally flat, Concircularly flat, η-parallelity. 
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ABSTRACT  

In this presentation, we have studied some certain tensor fields on almost 

α-cosymplectic manifolds of dimension 3. In particular, semi-symmetric, locally 

symmetric and some pseudo symmetric conditions are examined. Finally, some 

examples on almost α-cosymplectic manifolds depending on α are given. 

 

Key Words: Almost α-cosymplectic manifold, Semi-symmetry, Local 

symmetry, Pseudo symmetry, Conformally flat, η-parallelity. 
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 ABSTRACT  

In this study generalized Fermi-Walker derivative, generalized Fermi-Walker 
parallelism and generalized non-rotating frame are investigated along any curve in 
Euclidean space. Initially we investigate the conditions of the generalized Fermi-
Walker paralellism of any vector field along any curve in Euclidean space by 
considering the Bishop frame. Then we show that Bishop frame is generalized 
non-rotating frame along planar curves with the choice of tensor field.  
 

Key Words: Generalized Fermi-Walker derivative, generalized Fermi-
Walker parallelism, generalized non-rotating frame, Bishop frame  
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 ABSTRACT  

In this study we explained the Fermi-Walker derivative along the tangent 
indicatrix of a curve in Euclid space. We get a unit speed curve in Euclid space. 
The concepts of Fermi-Walker derivative, Fermi-Walker parallelism, non-rotating 
frame and Fermi-Walker termed Darboux vector are analyzed along the tangent 
indicatrix of any curve in Euclid space. We proved along the tangent indicatrix the 
Frenet frame is a non-rotating frame.  
 

Key Words: Fermi-Walker derivative, Fermi-Walker parallelism, Non-
rotating frame, Fermi-Walker termed Darboux vector, Tangent indicatrix.  
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ABSTRACT  

In this study we investigated the Fermi-Walker derivative along the binormal 
indicatrix of a curve in Euclid space. A unit speed curve is considered in Euclid 
space and analyzed its Fermi-Walker derivative. Then Fermi-Walker parallelism, 
non-rotating frame and Fermi-Walker termed Darboux vector are given along the 
binormal indicatrix of any curve in Euclid space. And then we proved along the 
binormal indicatrix the Frenet frame is a non-rotating frame.  
 

Key Words: Fermi-Walker derivative, Fermi-Walker parallelism, Non-
rotating frame, Fermi-Walker termed Darboux vector, Binormal indicatrix.  
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ABSTRACT  
In this work, we study timelike Bertrand-B curves having timelike-Bertrand-B 

mates in three dimensional Minkowski space. Meantime, we use type-2 Bishop 
frame to define this curves and its mates. We give a lemma which presents the 
conditions of existence of timelike Bertrand-B curve and within this period, state 
the fact that the curve to be the Bertrand-B curve is possible only if there exists a 
mate of it. In addition, we also obtain the some significant results.  
 

Key Words: Bertrand-B curve, Type-2 Bishop frame, 3-dimensional 
Minkowski space.  
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ABSTRACT  

In this study, we define the neutrosophic continuous function, neutrosophic 

open function, neutrosophic closed function and neutrosophic homeomorphism on 

neutrosophic topological spaces. Then, we introduce some properties of these 

functions. 

Key Words: Neutrosophic set, neutrosophic topological space, 

neutrosophic continuous function, neutrosophic open function, neutrosophic 

homeomorphism. 
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ABSTRACT  
 

We deal with the problem of constructing the general equations including 
curvature functions (i.e. and ) of non-null curves in 3-dimensional Minkowski 
space. While doing this, we reconstitute the fundamental theorem of curves by 
means of a new local coordinate system described such that there exists ‘steady’ 
solutions for non-null curves, that is, there exists vector fields (i.e. T,N,B ) for each 
given differentiable the curvature κ and the torsion τ functions.  

 
 
Key Words: Frenet frame, Local coordinate system, Minkowski space.  
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ABSTRACT  
 

In this study, we examined the Bertrand curves and Bartrand curve pairs in 
3- dimensional Minkowski space. A method to construct Bertrand curves and 
Bertrand curve pairs with the help of both timelike and spacelike curves is 
presented in 3- dimensional Minkowski space. Finally, some examples are given 
to illustrate our method.  
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ABSTRACT  

In this paper we classify 3-dimensional f-Kenmotsu manifolds with respect 

to the Schouten-van Kampen connection. 

 

Key Words: Almost contact metric manifolds, the Schouten-van Kampen 

connection, semisymmetry, Ricci solitons.  
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ABSTRACT  

The trajectory of a robot end effector is described by a ruled surface and a 

spin angle about the ruling of the ruled surface. In this paper, we analyzed the 

problem of describing trajectory of a robot end-effector by a spacelike ruled 

surface with spacelike ruling. We obtained the developed frame  1 1 1, ,k r t  by 

rotating the generator frame  , ,r t k  at an Darboux angle ( )s   in the plane 

 ,r k , which is on the striction curve   of the spacelike ruled surface X . 

Afterword, natural frame, tool frame and surface frame which is necessary for the 

movements of robot are defined derivative formulas of the frames are founded by 

calculating the Darboux vectors. Tool frame  , ,O A N  are constituted by means of 

this developed frame. Thus, robot end effector motion is defined for the spacelike 

ruled surface   generated by the orientation vector 1k O . Also, by using Lancret 

curvature of the surface and Darboux angle in the developed frame the robot end-

effector motion is developed. Therefore, differential properties and movements an 

different surfaces in Minkowski space is analyzed by getting the relations for 

curvature functions which are characterized a spacelike ruled surface with 

spacelike directix. Finally, to be able to get a member of trajectory surface family 

which has the same trajectory curve is shown with the examples in every different 

choice of the Darboux angle which is used to described the developed frame.   

Key Words: Curvature theory, Darboux angle, Developed frame, Robot end-

effector, Trajectory curve. 
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ABSTRACT  

Firstly we define a special quarter symmetric non-metric connection on f 

Kenmotsu manifold. We consider invariant submanifolds of f Kenmotsu manifold 

given with quarter symmetric non-metric connection and we give an example for 

invariant submanifolds of f Kenmotsu manifold. given with quarter symmetric non-

metric connection. 

Key Words: Invariant submanifold , f Kenmotsu manifold, Quarter 

symmetric non-metric connection. 
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ABSTRACT  

The aim of this study is to obtain a general formulation for inextensible flows 

of a semi-real quaternionic curve in 
4

2R . Necessary and sufficient conditions are 

provided for flows of a semi-real quaternionic curve. Also, the evolution equations 

of curvatures are given as a partial differential equation. 

 

Key Words: Curvature flows, inextensible flow, semi-real quaternionic 

curve. 
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ABSTRACT  

Throughout history, mankind has been influenced by the visibility of 

geometric shapes such as circle, ellipse, parabola, and hyperbola. Therefore, 

geometric shapes have been a source of inspiration in the formation of the 

civilizations and the objects, apparatus and objects that it invented by mankind. 

The conics were first studied in the B.C. 3rd century by Apollonius, who was a 

student of Platon. In his first work, Apollonius, Conics, he defined the circular 

ellipse, parabola and hyperbolic curves as the intersection of any plane of a 

circular perpendicular cone [1]. 

In this study, it is aimed to give the daily applications (Fig. 1.) of conics in 

technology and architecture. 

 

Figure 1. Parabolic antenna application. 

 

REFERENCES  

 
[1] H. Bason, En Doğal Halleriyle Konikler, Matematik Dünyası, İstanbul , 2005(2). 



 
15th International Geometry Symposium 
Amasya University, Amasya, Turkey, 3-6 July 2017 

                            
 

 

366  

 

New Representation of The Surface Pencil According to The 
Modified Orthogonal Frame with Curvature in Euclidean 3-Space 

 
Muhammed T. Sarıaydın 1, Zeliha KörpınaR2, Selçuk Baş 3  and Talat Körpınar4

 

1 Muş Alparslan University, Department of Mathematics,Turkey, talatsariaydin@gmail.com 
2 Muş Alparslan University, Department of Mathematics,Turkey, zelihakorpinar@gmail.com 

3 Muş Alparslan University, Department of Mathematics,Turkey, slckbs@hotmail.com 
4 Muş Alparslan University, Department of Mathematics,Turkey, talatkorpinar@gmail.com 

 
 

ABSTRACT  
 

In this paper, we study line of curvature on a surface in E3. By using the 
Modified frame with curvature, we show that the surface pencil can be expressed 
as a linear combination of the components of the Modified frame in Euclidean 3-
space. Then, we derive the necessary and sufficient condition for the given curve 
to be the line of curvature on the surface.  

 
Key Words: Surface Pencil, Modified frame, Euclidean space.  
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