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Abstract—The guesswork refers to the distribution of the min-
imum number of trials needed to guess a realization of a random
variable accurately. In this study, a non-trivial generalization of
the guesswork called guessing cost (also referred to as cost of
guessing) is introduced, and an optimal strategy for finding the
ρ-th moment of guessing cost is provided for a random variable
defined on a finite set whereby each choice is associated with a
positive finite cost value (unit cost corresponds to the original
guesswork). Moreover, we drive asymptotically tight upper and
lower bounds on the logarithm of guessing cost moments. Similar
to previous studies on the guesswork, established bounds on
the moments of guessing cost quantify the accumulated cost of
guesses required for correctly identifying the unknown choice and
are expressed in terms of Rényi’s entropy. Moreover, new random
variables are introduced to establish connections between the
guessing cost and the guesswork, leading to induced strategies.
Establishing this implicit connection helped us obtain improved
bounds for the non-asymptotic region. As a consequence, we
establish the guessing cost exponent in terms of Rényi entropy rate
on the moments of the guessing cost using the optimal strategy
by considering a sequence of independent random variables with
different cost distributions. Finally, with slight modifications to
the original problem, these results are shown to be applicable
for bounding the overall repair bandwidth for distributed data
storage systems backed up by base stations and protected by
bipartite graph codes.

Index Terms—Guessing, entropy, moments, bounds, cellular
networks, sparse graph codes, LDPC, repair bandwidth.

I. INTRODUCTION

THE typical guessing framework involves finding the value
of a realization of a random variable X from a finite

or countably infinite set X by asking a series of questions
“Is X equal to x ∈ X ?” until the answer becomes “Yes”.
What makes guessing framework challenging is that each
answer typically affects the following questions and associated
answers in which the number of questions is not necessarily
fixed a priori, whereas the questions are determined based on a
fixed strategy before the decision about the guess is finalized.

Given the distribution of X , denoted by PX(x), the ultimate
objective of guessing framework is to find the distribution of
the number of questions (guesses) before identifying the right
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answer. In an attempt to optimize the order of these questions,
an optimal guessing strategy i.e., a bijective function from X
to a finite or countably infinite set [|X |] ≜ {1, . . . , |X |} is
adapted to typically minimize the average number of guesses,
also known as the average guessing number. In [1], this
problem is named as guesswork and lower and upper bounds
are investigated on the guessing number in terms of Shannon’s
entropy by Massey [2] and later on by McElice and Yu [3].
A sequence of independent and identically distributed random
variables X1, . . . , Xn are considered for practical applications
and asymptotically tight bounds are derived on the moments
of the expected number of guesses for the guesswork [4].
This study has related the asymptotic exponent of the best
achievable guessing moment to the Rényi’s entropy. Later,
bounds on the moments of optimal guessing are improved
in [5] and subsequently in [6]. Particularly, the relationship
between Rényi’s entropy and average guessing number is
interesting and useful in different engineering contexts. In fact,
Rényi’s entropy was a frequently used information measure
in different contexts such as source coding to be able to
generalize coding theorems in the past [7]. Such findings on
the derived bounds are successfully applied to various recent
applications of data compression [8], channel coding [9],
networking and data storage security [10] through tweaking
the original guesswork problem so that it fits within the
requirements of the application at hand.

In many practical scenarios, making a guess about the state
of a system (in a physical realm) or the unknown value
of a random variable (both in presence or absence of side
information [4] or compressed side information [11] might
lead to a certain amount of cost. In our work, using the same
set-up, unlike the guesswork, the random variable will be
associated with the cost set C = {c1, . . . , c|C|} and the additive
term in the computation of average cost for x ∈ X would
be
∑

x cxPX(x). Hypothesizing this cost measure to typically
represent the potential risks and consequences that may arise
from making an incorrect guess, unity costs will correspond
to the guesswork as the baseline. With this generalization, the
impact of making an error could be high enough to justify
taking the time and effort to gather more information or
perform additional measurements to reduce the uncertainty.
Consequently, making a choice among multiple possibilities
may lead to different types and amounts of costs overall where
we would refer it as the cost of guessing or simply guessing
cost throughout. In general, these costs may dynamically be
changing after making subsequent guesses about a series of
random variables {Xi}ni=1 not necessarily independent. Inde-
pendent and identically distributed random variables within the
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Fig. 1. A motivating example for data regeneration scenario using a protocol based on the guessing cost. The cellular phone (a node) first attempts the data-
carrying bus ( 1⃝), then two cars ( 2⃝), respectively, since downloading data from two different cars is more expensive than from a bus. Upon unavailability
or download failure, the node finally retrieves the data from the base station ( 3⃝). Each connectivity has its own cost measure and is a function of the code
used to protect data. For instance, at time of the regeneration, the drone group (due to mobility) and satellite antenna site (due to obstructions) connections
were too costly to be used.

context of guesswork is thoroughly studied in the literature
and some extensions to ergodic Markovian dependencies are
also considered [12]. More complex dependencies such as the
one formed by shift spaces are considered for a sequence of
random variables in [13]. To our best of knowledge, the cost of
guessing is only mentioned recently in [8] in a limited context
whereby the guesser is allowed to stop guessing and declare an
error and only then a fixed amount of cost is applied, otherwise
the mechanism is identical to the guesswork. In addition, the
definition of “cost” is expanded in the context of guessing in
[14] to cover each choice to have an individual numerical cost
value and a few improved bounds are provided later in [15].

A. Background and Past Applications

There are numerous applications involving guesswork and
its various uses, with many of them being related to cryp-
tography and data correction. For instance, in the field of
security known as the (public) keyword guessing [16] around
the cryptographic notion called searchable encryption [17].
On the other hand, guessing is recognized to be a useful
analysis tool for data detection and error correction coding
as well. For instance, it is shown that the cut-off rate of
sequential decoding can easily be characterized if guessing
theory is applied to the general idea of decoding of a tree
code [4]. The application of guessing to coding theory dates
back to Ulam’s problem [18] where one is allowed to lie in
their responses [19]. More recently, capacity-achieving maxi-
mum likelihood decoding algorithms are developed in a data
communication context based on guessing [9]. Later, these
studies evolved to develop universal decoders especially for
low-latency communication scenarios [20]. Moreover, thanks
to the optimal strategy that lists most likely noise sequences
and low implementation complexity, guessing framework is
demonstrated to be a viable decoding option for the control
channel of 5G networks [21]. Therefore, we believe that
extending the idea of guessing by associating a cost with
each choice would be quite powerful and will find plenty

of interesting applications in communications engineering of
future generation standards. Distributed systems constitute yet
another application area in which cost of data communication
depends on the link loads, node availabilities and current
traffic at the time of data communication etc. Moreover base
stations (BS) could also be used to help with the network data
reconstruction processes at the expense of increased costs [22].
BS can help reduce the time needed to reconstruct data, as
well as reduce the average cost of the process. Such costs
can be expressed in terms of latency, bandwidth used to
transfer information or computation complexity depending on
the context.

Recently, there have been a multitude of diverse research
efforts undertaken to investigate the general concept of guess-
ing across various domains. For instance, in [23], security
attacks on distributed storage systems in which an attacker
can use one hint on the sensitive data is analyzed. In another
study [24], bounds for a specific setting in which simultaneous
guesses can be made is investigated. Furthermore, the study
presented in [25] delves into the subject of restricted-memory
guessing, wherein the individual making the guesses is limited
by their ability to recall their previous attempts. In a more
recent study, [26] focuses on developing general framework
on well-known problems related to guesswork such as, source
coding, task partitioning, etc. Among these studies, both [24]
and [25] can be extended with the assignment of “costs"
for guessing random variables. As for the case in [25], the
representation size of each variable can be associated with a
form of cost value since guessing a particular value can incur
different usage patterns in memory, whereas the number of
simultaneous guesses, i.e. the number of attacking computers,
can cause additional cost in the system. The study in [24] can
be further extended by taking into account the same specific
parameter.

B. Motivating Example and Contribution

In various applications of dynamic cellular networks, data
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is partitioned and disseminated among multiple nodes of the
system, with nodes joining and leaving the cell at unpre-
dictable times. An example scenario is provided in Fig. 1.
Because of the frequently changing status of the nodes in
the cell, it is difficult to be informed of data location in real
time. The data on the departed nodes may be lost indefinitely,
necessitating data regeneration, while the system only has
minimal knowledge about the cached data whereabouts. Data
may be downloaded from either local nodes or the base station,
with the cost of each option depending on the physical distance
of the nodes, potential obstructions for the line of sight,
available bandwidth, or even the popularity of the file being
regenerated/cached.

As can be seen in Fig. 1, a guessing protocol is required
to run in a smartphone to regenerate the needed data piece.
As can be seen, the protocol makes two attempts based on a
predefined strategy to locate the data. Upon unavailability, the
third attempt has been to download it from the base station.
Another intriguing use case could be searchable encryption
[17]. One can typically spend more time searching for a cipher
keyword in an encrypted document depending on its size or
number of defined keywords, leading to varying processing
requirements. We finally notice that all such cost consider-
ations can be integrated into our generalized guessing cost
framework.

Motivated from such examples, in this study, we introduce
the guessing cost, and derive optimal guessing strategies (the
ones that minimize the various statistics about the cost as well
as asymptotically tight bounds by using a quantity related to
the Rényi’s entropy for the expected values of real powers
a.k.a. moments of the guessing cost. Note that numerical calcu-
lation of moments of guessing cost might be computationally
feasible for small |X |, however when we consider a series of
random variables {Xi}ni=1 each defined on the same set X ,
finding the optimal guessing strategy for minimum average or
the moments of the guessing cost would be computationally
intractable (exponential in n), motivating us for finding tight
bounds. We also have shown that bounds on the guessing cost
of a sequence of independent random variables (not necessarily
identically distributed) can be expressed in terms of Rényi
entropy rate (Theorem 3.3), which is defined for order-α
(α ∈ R+) as

Rα({Xi}) ≜

{
limn→∞

H({Xi})
n , if α = 1,

limn→∞
Hα({Xi})

n , Otherwise
(1)

as long as the limits exist, where Hα({Xi}) is the joint
Rényi entropy [28] and H({Xi}) is the Shannon entropy of
the sequence {Xi}ni=1. On the other hand, the computation
of the moments of guessing cost for independent sequence of
random variables {Xi}ni=1 is observed to be linear in n. Our
results are asymptotically tight i.e., as n→∞ we characterize
the exponential growth rate of the moments of guessing
cost. Several improved bounds are conjectured for the non-
asymptotic region based on an established connection with
the guesswork. Moreover, we realized that our findings for
guessing cost can be easily applied to an example distributed
data storage scenario, as depicted in Fig. 1, where nodes

are repaired using a master-based regeneration protocol and
graph-based codes such as low density parity check (LDPC)
codes [29] in the event of node failures or unexpected node
departures from a base station’s coverage [22].

C. Organization

The rest of the paper is organized as follows. In Section
II, the problem is formally stated and necessary and sufficient
conditions are laid out for an optimal guessing strategy that
minimizes the moments of guessing cost. In addition, distinct
guesses for costs are discussed along with an algorithm that
describes an optimal guessing strategy for non-configurable
costs. In Section III, tight upper and lower bounds are provided
for guessing cost moments of a random variable and the
logarithm of the guessing cost moments of a series of random
variables. While deriving the upper bound, new random vari-
ables are introduced and the connection with the guesswork
is established. This connection helped us observe that the
previous findings may be utilized to find/characterize tighter
bounds in the non-asymptotic regime for the guessing cost. In
Section IV, an example distributed storage scenario is consid-
ered where a long–blocklength LDPC code is utilized along
with a guessing protocol which uses a master node/base station
to help with the data regeneration process. It is shown that
the data repair problem of an LDPC code can be considered
within the context of guessing cost. Several numerical results
are provided before we conclude our paper in Section V.

D. Notation

In our work, X denotes the random variable whose val-
ues are selected from the set X according to a probabil-
ity distribution i.e., X ∼ PX(x) where ∼ denotes “dis-
tributed”. We use | . | to denote the cardinality of a set
or absolute value depending on the context and [M ] to
mean the index set {1, 2, . . . ,M}. E[.] is the expectation
operator. We denote the order-α Rényi’s entropy by Hα(X)
and Rényi’s rate by Rα(X) for a given random variable X .
Also, (z)+ ≜ max{z, 0} for z ∈ R. For a given length-
n vector x = (x1, . . . , xn), the a–norm is defined to be
||x||a = (

∑n
i=1 |xi|a)

1/a for any positive real a ≥ 1. Also
for integers c and l ≤ n, we define x(l) ≜ (x1, x2, . . . , xl)
and x(l) + c ≜ (x1 + c, x2 + c, . . . , xl + c).

II. PROBLEM STATEMENT AND GUESSING STRATEGY

Let CG(x) denote the guessing cost required by a particular
guessing strategy G : X → [M ] when X = x (the realization
of the random variable X is x). If the cost of making the guess
X = x is independent of other guesses, each having unit cost,
then this problem would be the same as the characterization of
the average number guesses (expected guessing number) and
is identical to Massey’s original guessing problem introduced
earlier [2].

Let us assume that the random variable X can take on
values from a finite set X = {x1, . . . , xM} according to
a distribution PX(x) with the associated set of costs C =
{ci ∈ R+, ci ≥ 1|1 ≤ i ≤ M} and M ∈ Z+. Without
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loss of generality, sets are assumed to have cardinalities
|X | = |C| = M in which using a particular guessing strategy
G, the probability that a randomly selected element of X can
be found in the i-th guess is pi = PX(G−1(i)) with the
associated cost ci = cG−1(i), independently of already made
guesses. Then, the average guessing cost using the strategy G
can be expressed as follows

E[CG(X)] =

M∑
i=1

i∑
j=1

cjpi =

M∑
i=1

fipi =

M∑
i=1

ci (1− gi−1)

(2)

where fi =
∑i

j=1 cj and gi =
∑i

j=1 pj are cumulative cost
and probability distributions. The minimization of this value
is a function of both guessing strategy G and the probability
distribution of X .

In the context of guessing, One of the fundamental questions
arises: when provided with the probability distribution PX(x)
and ρ > 0, what strategy, denoted as G∗, can minimize
E[CG(X)ρ], i.e.,

G∗ ≜ argmin
G

E[CG(X)ρ]. (3)

For ci = 1,∀i ∈ [M ], ρ = 1, the optimal strategy is
studied and well known i.e., guess the possible values of
X in the order of non-increasing probabilities [2]. In other
words, without loss of generality, we can assume p(M) with
p1 ≥ p2 ≥ · · · ≥ pM being the probabilities of choosing
values from [M ] and G(X = xi) = i. Then with this choice,
the quantity

∑
i ipi would be minimized. However, the same

conclusion cloud not be easily drawn for an arbitrary vector
of costs c(M) ∈ {R+ \ [0, 1)}M . Let us consider two possible
cost selection scenarios based on the timing with respect to
when exactly the guesses are made, that will have different
implications.

In the first scenario, although the cost values are given i.e.,
C, the assignments are not made a priori i.e., costs can be asso-
ciated with each choice as it minimizes the average/moments
of guessing cost in the beginning of or during the guessing
process. To illustrate this scenario, let us assume that we are
in the situation of transporting a water tank to a fireplace. The
collection of M tanks at our disposal, despite having the same
capacity, is made of different materials, incurring different
expenses. Furthermore, we have M different vehicles, each
with a different chance of successfully reaching the firing zone.
In this situation, our primary purpose is to transport a single
tank to the given site. Such a work gives us the freedom to
attach any tank to any vehicle, with preset prices associated to
each choice but costs that may vary based on the precise tank
and vehicle coupling chosen. Given the configurable costs,
the best strategy for ρ = 1 is to guess the possible values of
X in the order of non-increasing probabilities and associate
the more probable choice with the smallest cost value. In
other words, for any assignment (a permutation of c(M))
c̃(M) = (c̃1, c̃2, . . . , c̃M ) with c̃1 ≤ c̃2 ≤ · · · ≤ c̃M and
c̃i ∈ c(M), it is easy to see that for any ρ > 0, we have

M∑
i=1

 i∑
j=1

cj

ρ

pi ≥
M∑
i=1

 i∑
j=1

c̃j

ρ

pi. (4)

In case the cumulative costs are given by the moments of
the guessing number i.e., fi = iρ for any ρ ≥ 1, then it
is easy to see that ci = iρ − (i − 1)ρ which implies that
c1 ≤ c2 ≤ · · · ≤ cM is satisfied. Thus, the optimal strategy
would again be to guess the possible values of X in the order
of non-increasing probabilities as argued in [4].

The second scenario, in which costs associated with each
choice are externally determined, involves finite costs and
choices predetermined before the guessing process begins.
This typical scenario is examined throughout the article. In
this case, the best strategy for ρ = 1 would not necessarily
be guessing the possible values of X in the order of non-
increasing probabilities.

Example: Suppose that there are three choices 1, 2, 3 (M =
3) and ρ = 1 with {1, p1 = 0.5, c1 = 20}, {2, p2 = 0.4, c2 =
2} and {3, p3 = 0.1, c3 = 1}. In that case the guessing order
expressed as the index set {2, 3, 1} would be preferable over
the set {1, 2, 3} with the average costs being 12.6 and 21.1,
respectively. Note that the latter choice, which is based on the
order of non-increasing probabilities, is clearly not optimal.

We next provide the following proposition establishing a
necessary condition for the optimal guessing strategy G∗ for
non-configurable costs.

Proposition 2.1. For a given ρ > 0 and an optimal guessing
strategy, namely G∗ (or G∗ρ1) for the ρ-th moment of guessing
cost, we have the following necessary condition for all i, j ∈
[M ] satisfying i ≤ j,[
||c(i)||ρ1 − ||c(j)||

ρ
1

]
pi +

[
||c(j)||ρ1 − (||c(i)||1 − ci + cj)

ρ
]
pj

≤
j−1∑

l=i+1

[
(||c(l)||1 − ci + cj)

ρ − ||c(l)||ρ1
]
pl.

(5)

Corollary 2.1.1. Furthermore, if ρ ≥ 1, then for any i ≤ j
the condition (5) can be simplified to[
||c(i+1)||ρ1 − (||c(i+1)||1 − ci)

ρ
]
pj ≤

[
||c(j)||ρ1 − ||c(j−1)||ρ1

]
pi

(6)

Proof. The proof of Proposition 2.1 as well as Corollary 2.1.1
can be found in Appendix A.

Remark 2.1. It is clear from Corollary 2.1.1 that for a given
optimal guessing strategy for the mean guessing cost (i.e., ρ =
1), we must have cipj ≤ cjpi for all i, j ∈ [M ] satisfying
i ≤ j.

Remark 2.2. We also note that there may be more than one
optimal guessing strategy that would satisfy the conditions
given above. Of these, one or more specific selections will
result in the minimum guessing cost. The solution is unique
only if the relation in the necessary condition (5) is a strict
inequality.

Remark 2.3. Note that in our setting due to the freedom of
choosing cost values arbitrarily, the choice of ρ may change

1The subscript indicates the dependency of the optimal strategy on the
choice of ρ. However, we omit this notation unless it is absolutely necessary
to simplify the notation.
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Fig. 2. An example cost set C = {cxi}6i=1 is shown (right plot) and used with a uniform distribution (i.e., PX(x) = 1/6). Based on the definitions 3.1
and 3.2, plot on the left demonstrates the calculated distributions PY (y) and PZ(z). Also shown are the index thresholds (cumulative sum of (floor/ceiling
of) costs) for y ∈ Y (red) and z ∈ Z (blue) across which the assigned probabilities may change. Note that the support for random variables Y and Z are
different due to floor/ceiling operations.

the stochastic nature of guessing strategies i.e., the strategies
for different ρ’s satisfying the condition in Proposition 2.1
are not necessarily the same and hence making a stochastic
dominance argument across the optimal guessing strategies
for distinct moments would not be possible.

In observation of Proposition 2.1, let us provide an algo-
rithmic solution to finding optimal strategy for the minimum
guessing cost. We notice that if the order based on the
inequality in the proposition is executed using a Bubble-sort2

style for the given strategy, the convergence to an optimal
guessing would be guaranteed. Here, using Algorithm 1, we
can find the optimal solution with the best and the worst
time complexities, which is mainly dominated by the sorting
processes, with Ω(M) and Θ(M2), respectively. An example
naive algorithm that finds an optimal guessing strategy for
minimizing the ρ-th moment of accumulated cost is provided
in Algorithm 1 where swap(.,.) function swaps the entries
of a given array in the argument. Alternatively, Merge-sort
[39] or Heap-sort [38] could also be applied, which would
result in Θ(M logM) worst and the average case complexities
respectively. In the next section, we focus on the moments
of the guessing cost whereby the average cost would be a
special case. Furthermore, lower and upper bounds are derived
in terms of a popular information theoretic measure, namely
Rényi’s entropy.

III. BOUNDS ON MOMENTS OF THE GUESSING COST

Throughout this section and the following sections, we shall
assume static costs determined a priori and focus on moments
of guessing as the average guessing cost would be a special
case. Let us begin by defining two auxilary random variables
Y and Z based on previously defined random variable X and
its associated set of costs C = {cx1

, cx2
, . . . , cxM

}.

Definition 3.1. Let us define the random variable Y that
takes on values from a finite set Y = {y1, y2, . . . , y∑M

x=1⌈cx⌉
},

and the probability distribution of Y is defined as PY (yt) =

2Bubble-sort is a sorting algorithm that works by repeatedly swapping the
adjacent elements in a given list based on a condition.

Algorithm 1
1: function OptimalCostGuess(p, c, ρ)
2: M ← |p|
3: I ← {1, 2, 3...,M} ▷ Selection Order
4: swapped← true
5: while swapped do
6: swapped← false
7: for j = 1 : M − 1 do
8: if

[
||c(j+1)||ρ1 − (||c(j+1)||1 − cj)

ρ
]
pj+1 >[

||c(j+1)||ρ1 − ||c(j)||
ρ
1

]
pj then ▷ If the condition does

not hold
9: swap(cj , cj+1)

10: swap(pj , pj+1)
11: swap(Ij , Ij+1)
12: swapped← true
13: end if
14: end for
15: end while
16: return I

PX(xi)/⌈cxi
⌉ for all positive reals cxi

≥ 1, i ∈ [M ] and
t ∈ [|Y|]satisfying∑

x∈X i−1

⌈cx⌉ < t ≤
∑
x∈X i

⌈cx⌉ (7)

where X i = {x1, . . . , xi} with i = 0 corresponding to empty
set and the random variable Z to take on values from a finite
set Z = {z1, z2, . . . , z∑M

x=1⌊cx⌋
} with probabilities PZ(zt) =

PX(xi)/⌊cxi
⌋ for all cxi

> 1, i ∈ [M ] and t ∈ [|Z|] satisfying∑
x∈X i−1

⌊cx⌋ < t ≤
∑
x∈X i

⌊cx⌋. (8)

In Fig. 2, An example cost set C (to the right) along
with a uniform PX(x) is assumed where the corresponding
distributions PY (y) and PZ(z) are illustrated (to the left).
The same plot also shows the threshold points (red for Y ,
blue for Z) where different realizations may have a different
probability of occurring. Let us continue with the definition
of induced guessing strategy. Note that the induced strategy is
defined for integer costs to make it applicable to both random
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variables Y and Z at the same time since they are defined
based on either ceiling or floor of real costs.

Any guessing strategy function G defined on X can be
transformed to one specific guessing strategy using the induced
guessing strategy described below, for Y and Z, named as
H(Y ) and F(Z), respectively.

Definition 3.2. (Induced Guessing Strategy) Let us consider a
new random variable X to take on values from a finite set X =
{x1, x2, . . . , x∑M

x=1 cx
} with probabilities PX(x) = PX(x)/cx

for x ∈ X , x ∈ X and cx ∈ Z+. Let us further assume that
the guessing strategy G is used to guess the values of X .
For a given index i ∈ [

∑
x cx] there exists a positive integer

k(i) ≤M satisfying∑
x∈Xk(i)−1

cx < i ≤
∑

x∈Xk(i)

cx. (9)

The induced guessing strategy G for guessing the values of
X is defined to be

G(X = xi) ≜
∑

x:G(x)<G(xk(i))

cx −
∑

x∈Xk(i)−1

cx + i. (10)

Proposition 3.1. The induced guessing strategy, namely G, is
a valid strategy (bijection).

Proof. The proof can be found in Appendix B.

Using the Definition 3.2, since ⌊cx⌋ and ⌈cx⌉ are integers,
we can define F(Z) and H(Y ) to be the induced guessing
strategies for random variables Z and Y , respectively.

Example: Let us consider the example in Fig. 2. Note that
the optimal strategy (G∗(X)) is to perform selections in order
of non-decreasing costs due to uniform PX(X) = 1/6. In
other words, G∗(X = x1) = 3, G∗(X = x2) = 2, G∗(X =
x3) = 1, G∗(X = x4) = 4, G∗(X = x5) = 6, G∗(X =
x6) = 5. For, say i = 15, it is not hard to verify k(i) = 5
using inequalities (7) since

∑
x∈Xk(i)−1 cx = 14 < i ≤ 21 =∑

x∈Xk(i) . Now, using (10), we compute

H∗(Y = y15) =
∑

x:G∗(x)<G∗(x5)

⌈cx⌉ −
∑
x∈X 4

⌈cx⌉+ 15

=
∑

x:G∗(x)<6

⌈cx⌉︸ ︷︷ ︸
= 17

−
4∑

i=1

⌈cxi
⌉︸ ︷︷ ︸

= 14

+15 = 18. (11)

which is in line with the optimal guessing strategy (H∗)
induced for Y using the arguments of the guesswork i.e.,
guessing in order of non-increasing probabilities (see Fig. 2)
Let us now state the main results of this subsection.

A. Lower and Upper Bounds

Let PX(x) to denote the probability distribution of X and
define the moments of the guessing cost using a particular
guessing function G as

E[CG(X)ρ] =

M∑
i=1

PX(G−1(i))

 i∑
j=1

cG−1(j)

ρ

(12)

where the costs are not necessarily integers. Let us use the pre-
vious notation ci = cG−1(i) and define c∗ = {c∗1, c∗2, . . . , c∗M}
to be the order of costs obtained by running Algorithm 1 for
a given ρ > 0 to find the optimal guessing strategy G∗. This
shall be useful in expressing the lower and upper bounds in
the following two theorems.

Theorem 3.1. For any guessing function G, ρ ≥ 0 and costs
cj > 1, ρ-th moment of the guessing cost is lower bounded by

E[CG(X)ρ] ≥ E[CG∗(X)ρ] ≥
(

M

1 + γ∗

)−ρ

exp
{
ρH 1

1+ρ
(X)

}
(13)

where γ∗ is the harmonic mean of {
∑i

j c
∗
j − 1}′s for i =

{1, 2, . . . ,M} and Hα(X) is Rényi’s entropy of order α for
a given random variable X as long as the limit for Renyi’s
entropy exists.

Proof. The proof can be found in Appendix C.

This lower bound, as will be illustrated in numerical results,
is not tight particularly for large ρ. However, this theorem
would be useful for asymptotic analysis. For instance, using
this result we can demonstrate in the next theorem that the
bound given in Theorem 3.1 is tight within a factor of
(M/(1 + γ∗))

ρ.

Theorem 3.2. For the optimal guessing function G∗, and ρ ≥
0, ρ-th moment of the guessing cost is upper bounded by

E[CG∗(X)ρ] ≤ exp{ρH 1
1+ρ

(Y )} (14)

where Hα(X) is Rényi’s entropy of order α for a given random
variable X .

Proof. The proof can be found in Appendix D.

B. Relation to Guesswork and Guessing Cost Exponent

In this section, we present tight bounds for the logarithm of
guessing cost moments, for a series of M random variables
variables, which would be useful for our later data storage
application. We primarily realize that the introduction of a
random variable Z is useful for establishing a relationship with
the guesswork. From the earlier discussions on the random
variable Z, we can express a looser lower bound (compared
to (13)) for any guessing function G(.) by observing the
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following for cj > 0,

E[CG(X)ρ]

=
∑
x

PX(x)CG(x)
ρ =

M∑
i=1

PX(G−1(i))

 i∑
j=1

cG−1(j)

ρ

(15)

=

M∑
i=1

⌊cG−1(i)⌋∑
j=1

PX(G−1(i))

⌊cG−1(i)⌋

[
i−1∑
k=1

cG−1(k) + cG−1(i)

]ρ
(16)

≥
M∑
i=1

⌊cG−1(i)⌋∑
j=1

PX(G−1(i))

⌊cG−1(i)⌋

[
i−1∑
k=1

⌊cG−1(k)⌋+ j

]ρ
(17)

= E[CF (Z)ρ] ≥

(
1 + ln

(∑
x

⌊cx⌋

))−ρ

exp
{
ρH 1

1+ρ
(Z)
}

(18)

where the last inequality is due to guesswork and follows
directly from [4] based on the definition of the random variable
Z. Better lower bounds can be given, however this loose lower
bound is enough to prove the following asymptotic result. Here
the guessing function F(Z) for the random variable Z defined
earlier is directly induced from G(X). Next, the guessing cost
exponent is given by the following theorem.

Theorem 3.3. Let {X1, . . . , Xn} be a sequence of indepen-
dent random variables where each is defined over the set Xi

with the associated cost distribution Ci, and random variables
{Yi}, {Zi} based on Definition 3.1. Let G∗(X1, . . . , Xn) be
an optimal guessing function. Then, for any ρ > 0, we have

lim sup
n→∞

1

n
ln (E[CG∗(X1, X2, . . . , Xn)

ρ])
1/ρ

= R 1
1+ρ

({Yi})

(19)

lim inf
n→∞

1

n
ln(E[CG∗(X1, X2, . . . , Xn)

ρ])1/ρ = R 1
1+ρ

({Zi})
(20)

where R 1
1+ρ

(.) denotes the order-1/(1 + ρ) Rényi rate is
assumed to exist, Yis and Zis are random variables induced
from random variables Xis as defined before. Moreover if the
costs are integers, then the limits converge and we will have

lim
n→∞

1

n
ln(E[CG∗(X1, X2, . . . , Xn)

ρ])1/ρ = R 1
1+ρ

({Xi})
(21)

Proof. The proof can be found in Appendix E.

These results indicate that the complexity of guessing cost
of a random variable X with strategy G can be tied to the
complexity of guessing two related random variables Z and
Y with the induced strategies F and H, respectively, which
are derived based on the cost distribution C defined earlier.

C. Improved Bounds: Non-asymptotic regime

One of the observations is that the provided bounds have the
potential for improvement particularly in the non-asymptotic
regime similar in spirit to works such as [5], [6] and [37].
These improvements can easily be made after we recognize

the relationship between guessing cost and the standard guess-
work. In the following, we go through these extensions by
referring to related past works. We shall also demonstrate how
these bounds play out with varying ρ.

1) Extension of Boztas’ bounds [5]: Let us extend Boztas’
upper bound by deriving the analog for the guessing cost. Let
us first start with the following definition.

Definition 3.3. For a given random variable X and ρ > 0,
the balancing cost cX(ρ) is defined to satisfy the following
equality

M∑
i=1

i−1∑
j=1

cj

ρ

pi =

M∑
i=1

 i∑
j=1

cj − cX(ρ)

ρ

pi (22)

and equals a constant if costs are fixed i.e., c1 = · · · = cM = c
for some constant c ∈ R.

Remark 3.1. Note that for the special case ρ = 1, we
will have cX(1) =

∑
i cipi, i.e., balancing cost would be

equivalent to the average (expected) cost of guessing.

Now considering telescoping sequence argument for ρ ≥ 1,
we observe the following relation

M∑
i=1

 i∑
j=1

cj

ρ

−

i−1∑
j=1

cj

ρ pi
⌈ci⌉

≤
M∑
i=1

 i∑
j=1

⌈cj⌉

ρ

−

i−1∑
j=1

⌈cj⌉

ρ pi
⌈ci⌉

(23)

=

M∑
i=1

⌈ci⌉∑
z=1

(( i−1∑
k=1

⌈ck⌉+ z
)ρ
−
( i−1∑

k=1

⌈ck⌉+ z − 1
)ρ) pi

⌈ci⌉
(24)

Finally using the equality provided in Eqn. (22), we get

E[CG(X)ρ]− E[(CG(X)− cX(ρ))ρ]

=

M∑
i=1

 i∑
j=1

cj

ρ

−

 i∑
j=1

cj − cX(ρ)

ρ pi (25)

=

M∑
i=1

 i∑
j=1

cj

ρ

−

i−1∑
j=1

cj

ρ pi (26)

≤
M∑
i=1

⌈ci⌉∑
z=1

(( i−1∑
l=1

⌈cl⌉+ z
)ρ
−
( i−1∑

l=1

⌈cl⌉+ z − 1
)ρ)

pi

(27)

=

M ′∑
k=1

(kρ − (k − 1)ρ)qk ≤

M ′∑
k=1

q
1/ρ
k

ρ

(28)

where M ′ =
∑M

i=1⌈ci⌉ and

qk = pi for
i−1∑
l=1

⌈cl⌉ < k ≤
i∑

l=1

⌈cl⌉ and i = 1, . . . ,M, (29)

q
1/ρ
k+1 ≤

1

k
(q

1/ρ
1 + · · ·+ q

1/ρ
k ), for k = 1, . . . ,M ′ − 1. (30)
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Note that the inequality in (28) follows from the Lemma in
[5] as long as the “weights” q1, . . . , qM ′ are non-negative reals
satisfying the inequality given in Eqn. (30). We can show that
the necessary condition for optimal strategy derived earlier will
satisfy this inequality. Hence, this is a looser condition making
the inequality apply to a broader range of guessing functions
other than the optimal. Note here that

∑
k qk =

∑
i⌈ci⌉pi ̸= 1

unless ci = 1 for all i = 1, . . . ,M i.e., qks are not forming
a probability distribution for non-unity costs. Next, let us
provide our theorem as an extension/generalization of Boztas’
arguments.

Theorem 3.4. For cX(.) as given in Definition 3.3 and all
guessing functions G for a random variable X inducing {qk}s
which satisfy the relation in Eqn. (30) for ρ = m + 1 where
m ≥ 1 is an integer, the m-th moment of the guessing cost
can be upper bounded by the recursive relation

E[CG(X)m]

≤ 1

cX(m+ 1)(m+ 1)

[M ′∑
k=1

q
1

m+1

k

m+1

(31)

+

m−1∑
l=0

(
m+ 1

l

)
E[CG(X)l](−cX(m+ 1))m+1−l

]
(32)

where m ≥ 1 is a positive integer and M ′ =
∑M

i=1⌈ci⌉.

Proof. Using equations (22), (28) and the Binomial expansion,
we have the following inequalities for integer m,

E[CG(X)m+1]− E[(CG(X)− cX(m+ 1))m+1]

= E[CG(X)m+1] (33)

−
m+1∑
l=0

(
m+ 1

l

)
E[CG(X)l](−cX(m+ 1))m+1−l

(34)

≤

M ′∑
k=1

q
1

m+1

k

m+1

(35)

which implies that cX(m+1)(m+1)E[CG(X)m] is less than

M′∑
k=1

q
1

m+1

k

m+1

+

m−1∑
l=0

(
m+ 1

l

)
E[CG(X)l](−cX(m+ 1))m+1−l

(36)

from which the result follows.

The main difference of our result compared to that of Boztas
is the introduction of {qk}s and the term cX(m+ 1). In case
of m = 1, we would have

E[CG(X)] ≤ 1

2cX(2)

M ′∑
k=1

q
1
2

k

2

+
cX(2)

2
(37)

Algorithm 2
1: function gradientDescent c̄(p, c, n, δ, µ, ρ)
2: M ← |p|
3: minusCost ←

∑M
i=1 C

ρ
i−1pi where Ci−1 =

∑i−1
j=1 cj

4: minusCost′(c̄) ←
∑M

i=1 (Ci − c̄)
ρ
pi where Ci =∑i

j=1 cj

5: f ′(c̄) ← |
∑M

i=1 (Ci−1
ρ
pi) −

(c̄(−ρ)(Ci − c̄)ρ−1pi + (Ci − c̄)
ρ
pi)| where

Ci =
∑i

j=1 cj
6: c̄ = min(c)
7: for i = 1 to n do ▷ n represents the iteration count
8: step ← −δ × f ′(c̄) ▷ δ represents the step size
9: if step < 0 then

10: c̄ = c̄− step
11: else
12: c̄ = c̄+ step
13: end if
14: if |step| ≤ µ ∨ c̄ ≥ max(c) then ▷ µ represents the

step tolerance
15: return c̄
16: end if
17: end for
18: return {−1} ▷ Notify an error

subject to q
1/2
k+1 ≤

1
k (q

1/2
1 +· · ·+q

1/2
k ), for k = 1, . . . ,M ′−1.

Similarly for m = 2, we shall have

E[CG(X)2] ≤ 1

3cX(3)

M ′∑
k=1

q
1
3

k

3

+ cX(3)E[CG(X)]− cX(3)
2

3

(38)

≤ 1

3cX(3)

M ′∑
k=1

q
1
3

k

3

+
cX(3)

2cX(2)

M ′∑
k=1

q
1
2

k

2

+ cX(3)

(
cX(2)

2
− cX(3)

3

)
(39)

subject to the conditions q
1/2
k+1 ≤

1
k (q

1/2
1 + · · · + q

1/2
k ) and

q
1/3
k+1 ≤

1
k (q

1/3
1 + · · ·+ q

1/3
k ), for k = 1, . . . ,M ′ − 1.

We finally note that these expressions/bounds form a gener-
alization of Boztas’ results and requires the calculation of the
balancing cost for integer ρs. We provide a gradient descent
scheme in Algorithm 2 for efficiently finding the balancing
cost for a given integer ρ.

2) Extension of Sason’s bounds [6]: In particular, we have
the following improved lower bounds for any guessing strategy
G and ρ > 0 that show better performance in the non-
asymptotic regime of ρ,

E[CG(X)ρ] ≥ E[CF (Z)ρ]

≥ sup
β∈(−ρ,∞)−{0}

exp

{
ρ

β

[
H β

β+ρ
(Z)− log u∑

x⌊cx⌋(β)
]}
(40)

= sup
β∈(−ρ,∞)−{0}

[
u∑

x⌊cx⌋(β)
]− ρ

β exp

(
ρ

β
H β

β+ρ
(Z)

)
(41)
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where u|Z|(β) is defined similarly as in [6] and given by

u|Z|(β) =



ln |Z|+ γ + 1
2|Z| −

5
6(10(|Z|)2+1)

β = 1

min{ζ(β)− (β+1)(|Z|+1)1−β

2(β−1) , u|Z|(1)} β > 1

1 + 1
1−β

[
(|Z|+ 1

2 )
1−β −

(
3
2

)1−β
]

|β| < 1

(|Z|)1−β−1
1−β + 1

2 (1 + |Z|
−β

) β ≤ −1
(42)

where |Z| =
∑

x⌊cx⌋, γ ≈ 0.5772 is the Euler-Mascheroni
constant and ζ(β) =

∑∞
n=1

1
nβ is the Riemann zeta function

for β > 1. Here the first inequality follows due to equations
(15)–(18). Moreover the second inequality follows due to
guesswork arguments given in [6] which are directly appli-
cable to random variable Z as its cost distribution assumes
only unity values. As an extension of the upper bound, we
provide the following theorem.

Theorem 3.5. For any guessing function G, ρ ≥ 0 and
costs cj > 1 associated with {qk}s for a random variable

X satisfying both q
1
ρ

k+1 ≤
1
k (q

1
ρ

1 + · · · + q
1
ρ

k ) and q
1

1+ρ

k+1 ≤
1
k (q

1
1+ρ

1 + · · · + q
1

1+ρ

k ) for k = 1, . . . ,M ′ − 1, then the ρ-th
moment of the guessing cost is upper bounded by

E[CG(X)ρ] ≤ 1

cminX
(ρ)(1 + ρ)

M ′∑
k=1

q
1

1+ρ

k

1+ρ

+ c
ρ1ρ<1

minX
(ρ)

M ′∑
k=1

q
1/ρ
k

ρ1ρ≥1

−
cρminX

(ρ)

1 + ρ

(43)

where cminX
(ρ) = min{cX(ρ), cX(1+ρ)}, M ′ =

∑M
i=1⌈ci⌉,

1A is the indicator function and equals 1 if the condition A is
true otherwise 0, and cX(ρ), cX(1 + ρ) are as defined before
for a given ρ and can be found using Algorithm 2.

Proof. The proof can be found in Appendix F.

Remark 3.2. Theorem 3.5 may be loose for a given parameter
set compared to previous upper bounds. However, we note that
Theorem 3.5 is in similar form to Theorem 3.4 except it is non-
recursive and assumes any real ρ ≥ 0 rather than an integer.

It will become evident that by utilizing the claim given
above, we will be able to improve the upper bound, particularly
for values of ρ that are relatively small. Additionally, it
is worth noting that the subsequent theorem provides an
opportunity to refine this bound even further, specifically for
ρ ∈ (0, 2].

Theorem 3.6. For any guessing function G and the cost of
guessing CG(.), ρ ∈ (0, 2] and costs cj > 1 associated

with {qk}s for a random variable X satisfying both q
1
ρ

k+1 ≤
1
k (q

1
ρ

1 + · · · + q
1
ρ

k ) and q
1

1+ρ

k+1 ≤
1
k (q

1
1+ρ

1 + · · · + q
1

1+ρ

k ) for
k = 1, . . . ,M ′− 1, then the ρ-th moment of the guessing cost

is upper bounded by

E[CG(X)ρ]

≤



1
cminX

(ρ)(1+ρ)

[∑M ′

k=1 q
1

1+ρ

k

]1+ρ

+
ρcρminX

(ρ)

1+ρ P (cminX
(ρ) ≤ CG(X) < cminX

(ρ) + 1)

+
(
(cminX

(ρ) + 1)ρ − (cminX
(ρ)+1)1+ρ−1

cminX
(ρ)(1+ρ)

)
×P (CG(X) ≥ cminX

(ρ) + 1) for ρ ∈ (0, 1)

1
1+ρ

[∑M ′

k=1 q
1

1+ρ

k

]1+ρ

+ 1
ρ

[∑M ′

k=1 q
1
ρ

k

]ρ
+

cρminX
(ρ)(ρ2−cminX

(ρ)ρ−1)

ρ(1+ρ) for ρ ∈ [1, 2]

where cminX
(ρ) = min{cX(ρ), cX(1 + ρ)} and M ′ =∑M

i=1⌈ci⌉.

Proof. The proof can be found in Appendix G.

Furthermore, we provide the following recursive upper
bound that can be used along with Theorem 3.6 to extend
the previous result to explicit upper bounds for larger values
of ρ > 2.

Theorem 3.7. For any guessing function G and the cost of
guessing CG(.), ρ ∈ (2,∞) and costs cj > 1 associated with

{qk}s for a random variable X satisfying q
1

1+ρ

k+1 ≤
1
k (q

1
1+ρ

1 +

· · ·+q
1

1+ρ

k ) for k = 1, . . . ,M ′−1, ρ-th moment of the guessing
cost is upper bounded by

E[CG(X)ρ] ≤ 1

cX(1 + ρ)(1 + ρ)

M ′∑
k=1

q
1

1+ρ

k

1+ρ

+
ρcX(1 + ρ)

2
E[CG(X)ρ−1]− ρ(ρ− 1)

2(1 + ρ)
(44)

Proof. The proof can be found in Appendix H.

Remark 3.3. Using Theorem 3.7, we can find an explicit
bound for ρ’s satisfying i+ 1 ≥ ρ > i for all integers i > 2.
We can obtain these bounds by applying Equation (44) for
i − 2 times using the result of Theorem 3.6. In this case
however, the set of conditions would be more restrictive i.e.,
we would require to satisfy q

1
1+ρ

k+1 ≤
1
k (q

1
1+ρ

1 + · · ·+ q
1

1+ρ

k ) for
ρ, ρ−1, . . . , ρ− i and k = 1, . . . ,M ′−1 all at the same time.

In order to help understand Remark 3.3 with an example,
let us consider for instance ρ ∈ (2, 3]. In this case we can
apply the result of Theorem 3.6 to get

E[CG(X)ρ−1] ≤ 1

ρ

M ′∑
k=1

q
1
ρ

k

ρ

+
1

ρ− 1

M ′∑
k=1

q
1

ρ−1

k

ρ−1

+
cρ−1
minX

(ρ− 1)((ρ− 1)2 − cminX
(ρ− 1)(ρ− 1)− 1)

(ρ− 1)ρ
(45)
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which is subject to q
1
ρ

k+1 ≤
1
k (q

1
ρ

1 + · · · + q
1
ρ

k ) and q
1

ρ−1

k+1 ≤
1
k (q

1
ρ−1

1 + · · · + q
1

ρ−1

k ). Then using Theorem 3.7 the upper
bound for ρ ∈ (2, 3] can be expressed in a closed form as

E[CG(X)ρ] ≤ 1

cX(1 + ρ)(1 + ρ)

M ′∑
k=1

q
1

1+ρ

k

1+ρ

− ρ(ρ− 1)

2(1 + ρ)

+ cX(1 + ρ)

[
1

2

M ′∑
k=1

q
1
ρ

k

ρ

+
ρ

2(ρ− 1)

M ′∑
k=1

q
1

ρ−1

k

ρ−1

+
cρ−1
minX

(ρ− 1)(ρ2 − 2ρ− cρ−1
minX

(ρ− 1)(ρ− 1))

2(ρ− 1)

]
(46)

with the additional constraint q
1

1+ρ

k+1 ≤
1
k (q

1
1+ρ

1 + · · · + q
1

1+ρ

k )
for k = 1, . . . ,M ′ − 1.

Remark 3.4. It is not hard to verify that the bounds given in
Theorems 3.5, 3.6 and 3.7 will be reduced to Sason’s bounds
given in [6] if we assume constant and unit costs. Hence these
bounds are useful extensions and characterize a more general
scenario.

D. Extension of Dragomir’s bounds [37]

Finally, we would like to remark on the Dragomir’s bounds
which was originally presented in the context of guesswork.
These bounds have been introduced right after Boztas’ bounds
are published [37]. Unfortunatelly these bounds are quite loose
particularly in the context of guessing cost. The proposed
bounds were based on the following theorem.

Theorem 3.8. Let ai, bi ∈ R for i ∈ [n] such that

amin ≤ ai ≤ amax, bmin ≤ bi ≤ bmax for all i = 1, . . . , n
(47)

with amax = min{ai} and bmax = min{bi}. Then, we have
the inequality∣∣∣∣∣ 1n

n∑
i=1

aibi −

(
1

n

n∑
i=1

ai

)(
1

n

n∑
i=1

bi

)∣∣∣∣∣
≤ 1

4
(amax − amin)(bmax − bmin) (48)

Proof. The proof can be found in [37].

Let ai = fρ
i =

(∑i
j=1 cj

)ρ
and bi = pi in equation (48).

Also, let us define random variable U with exactly the same
cost distribution C of X and uniform probability distribution,
then for any gussing strategy G we have

|E[CG(X)ρ]− E[CG(U)ρ]|

≤ M(pmax − pmin)

4

 M∑
j=1

cj

ρ

− cρmin

 (49)

where cmin = min{ci}. Note that this relation defines both
an upper and a lower bound for E[CG(X)ρ]. The bound can
be tightened using the optimal guessing strategy G∗. However,
Dragomir’s bounds are generally looser compared to that of
Sason’s and hence we omit to present numerical results for
this bound.

E. Numerical Results

First, let us provide several numerical results to be able to
illustrate how close the provided bounds are for finite values of
costs, ρ and M . The exact moments for the optimal guessing
strategy are calculated using Algorithm 1 and denoted by
OPT. The results are provided in Fig. 3. More specifically,
inspired from the past research [6], we consider the quantity
1
ρ lnE[CG∗(X)

ρ
] in our comparisons where ρ ∈ [0.25, 10].

The probability of each choice is generated using geometric
distribution as assumed in [6] with the restricted probability
distribution PX(x) = (1 − a)ax−1/(1 − aM ) using M = 32
and the parameter a = 0.9. The non-integer cost values are
generated based on a truncated normal distribution defined
in the range (1, 100) with the same mean and variance i.e.,
µ = σ2 = 16.

As shown in Fig. 3, the closest values to 1
ρ lnE[CG∗(X)

ρ
]

for ρ ∈ (0.25, 10], are given by the Eq. (41), which are
followed by the bounds provided in Theorem 3.1 and Eq.(18).
On average, the lower bounds of 1

ρ lnE[CG∗(X)
ρ
] using Eq.

(41) is 16.3% and 30.5% higher than that of bounds due
to Theorem 3.1 and Eq. (18), respectively. In fact, it is
interesting to show that bounds of Theorem 3.1 and Eq. (18)
are not asymptotically tight. The tightest bound is achieved
by the bound given in Theorem 3.4 among other alternative
upper bounds. The bounds given in Theorem 3.4 are 5.98%
and 0.391% less than the bounds given in Theorem 3.2 and
Theorem 3.5 for ρ ∈ {1, 2, . . . , 10}, respectively. Moreover,
for ρ ∈ {4, 5, . . . , 10} the bound values of Theorem 3.4
are 0.023% less than that of Theorem 3.7. Notice also that
bounds given in Theorem 3.4 and Theorem 3.7 are only
valid for integer values of ρ and Theorems 3.6 and 3.7 are
complementary and should be considered together.

IV. AN APPLICATION: DISTRIBUTED DATA
REGENERATION

In this section, we provide an application of the guessing
cost within the context of a distributed data storage in which
data content regeneration and repair are necessary to maintain
the data durability. Such a data repair application scenario
involves a slight variation of the guessing cost problem (in-
troduced earlier), which is shown to be quite useful in this
section in deriving optimal protocol design for highly dynamic
networks, for instance, wireless networks or mobile ad-hoc
networks.

A. Long Block Length Sparse Graph Codes With A Back-up
Master

Let us consider a cellular network with a master-slave
configuration for a distributed data storage scenario in which
the data protection is provided by a long block length (n, k)
sparse graph code. Each slave node in the system is assumed
to store a single coded symbol of a codeword. In addition,
a master node constitutes a backup system (a.k.a. a base
station) and keeps the copy of all coded symbols. If one of
the slave nodes fails, departs the cellular network, or becomes
permanently unavailable, it is interpreted as loss of a coded
symbol in the system. Thanks to the multiple check relations
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Fig. 3. This figure presents the exact value as well as the lower and upper bounds for 1
ρ
lnE[CG∗ (X)ρ]. OPT stands for the actual computation.

defined for that lost symbol in the sparse graph code, there
would be multiple options of repair for that specific node. To
be able to maintain instantaneous reliability, this symbol is
required to be repaired as soon as possible.

In a highly dynamic network [32], it may not be possible to
obtain the status of all nodes (due to other unexpected failures
or network link breakages and congestion) instantaneously, or
else it may be time and bandwidth costly to contact the master
directly and retrieve that information. Therefore, in that case,
the newcomer node needs to adapt the best guessing strategy
and choose among the multiple repair options to complete the
repair process (either exactly or functionally) as quickly as
possible using minimum network resources.

Let us suppose one of the degree-dv symbols of an irregular
LDPC code, shown as a black-colored node in Fig. 4 is to
be exactly repaired. Suppose it is connected to check nodes
of degrees du1

, du2
, . . . , dudv

, as shown in the same figure.
Accordingly, let us define the costs associated with each repair
option to be the number of downloaded symbols, i.e., cj ≜
duj
− 13 for all j satisfying 1 ≤ j ≤M − 1 with M = dv +1

i.e., each symbol download within the same cell has a unit cost.
One of the differences of this application scenario compared
to the standard cost of guessing is that the probabilities are
functions of costs as will be explored next. The following
proposition establishes a condition for contacting the master
node under optimal guessing context and independent node
loss model.

Theorem 4.1. Let each slave node to be independently un-

3Here, due to large block length assumption, it is assumed that subsequent
guesses cannot help each other. In addition, the cost of download can also
be scaled with the link weight for a more realistic communication scenario.
In an alternative context, the physical distances between nodes could have
also been part of this cost definition, making the rest of our discussion more
general.

degree-dv node 

Base Station  
(Back-up Master)

Local  
(Slave) Nodes

Local  
Cell

Cell boundary

Check Relations 
for Local Nodes

Fig. 4. An example repair process using an LDPC code Tanner graph.
dv represents the degree number of the lost symbol/node v whereas the
du1 , . . . , dudv

are the degrees of the potential repair check relations.

available/failed with probability q > 0. Assuming a degree-dv
node is lost, let also cM be the cost of contacting the back-up
node and cmax ≜ max{c1, c2, . . . , cdv} satisfying

cM ≥ cmax((1− q)−cmax − 1) ≥ cmax (50)

where M = dv + 1. Then guessing check relations as well
as the back-up master in the order of non-decreasing costs
minimizes the average cost of downloaded symbols in the node
repair process. (Here we use the guessing term for trying these
relations until the lost symbol is repaired or using back-up
master if this symbol could not be repaired using local nodes’
check relations.)

Proof. Assuming independence, the probability that j-th check
node will successfully repair the gray-colored node of Fig. 4
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can be shown to be of the form

pj = (1− q)cj
j−1∏
i=1

(1− (1− q)ci) where

pM = 1−
dv∑
j=1

pj =

M−1∏
i=1

(1− (1− q)ci) (51)

from which we realize that the probabilities are dependent on
the costs. In a more general version of the problem, the costs
of the check nodes may take values independent of the degrees
(e.g., the communication cost required for obtaining a variable
node may be different). In search of an optimal strategy, we
need to think about pj’s and cj’s at the same time. Fortunately
from equation (51), we can express pj’s recursively for j ≤
M − 1,

pj = pj−1

[
(1− q)cj−cj−1 − (1− q)cj

]
(52)

which implies that if cj−1 ≤ cj , due to 0 < (1 − q)s ≤
(1−q)t ≤ 1 for all positive t ≤ s and q ∈ (0, 1), we shall have
pj ≤ pj−1. Therefore, rearranging costs in non-decreasing
order leads to rearrangement of probabilities in non-increasing
order. But this result implies that the necessary condition of
Remark 2.1 for ρ = 1 i.e., cipj ≤ cjpi is satisfied for all
i, j ∈ {1, 2, . . . ,M − 1} and i ≤ j. Note that if cj−1 > cj
was the case, we would not be able to satisfy the necessary
condition. In order to contact the master (back-up) node when
no neighboring nodes are able to help, we then have to satisfy
the necessary condition cMpM−1 ≥ cM−1pM . Using equation
(51), this condition can be reexpressed as

cM (1− q)cM−1 ≥ cM−1(1− (1− q)cM−1) (53)

which is the upper bound in inequality (50) with cmax =
cM−1. We finally recognize that lower bound in inequality
(50) while costs satisfying ci > 1 means (1− q)cmax ≤ 1/24.
Considering it with inequality in (53), this condition reduces
to cM ≥ cM−1 which completes the proof of the optimality of
the non-decreasing cost order. We finally note that the lower
bound inequality need not be satisfied for the back-up master
to be the last resort. In fact, the upper bound inequality is a
sufficient condition for that. However cM ≥ cM−1 becomes
only necessary if the lower bound inequality is satisfied and
hence the assertion of the theorem follows.

Let us associate the random variable Xv with a variable
node v (having degree-dv) that characterizes the identification
of the right check node for a successful repair. Note that
a specific node failure pattern determines usable options of
repair for that variable node. For instance given the finite
set Xu = {u1, u2, . . . , udv} associated with the costs Cu =
{du1

− 1, du2
− 1, . . . , dudv

− 1}, Xv = uj indicates that the
check relation uj would be the first option for repair (i.e.,
G(Xu = uj) = 1) if duj

≤ dui
for all i ∈ [dv], i ̸= j (due to

proposition 4.1) for a successful regeneration. Furthermore, let
G∗(X1, X2, . . . , Xn) denote the optimal guessing function for
the value of a joint realization of independent random variables
X1, X2, . . . , Xn. Then due to Theorem 3.3, for large enough

4This implies an upper bound on q i.e., q ≥ 1− 2−1/cmax .

block length (number of nodes n tends large), the moments
of repair bandwidth (cost in terms of downloaded symbols)
using the optimal guessing strategy can be well approximated
by the Rényi entropy rate (with equality in the ideal case),

E[CG∗(X1, X2, . . . , Xn)
ρ] ≈

∏n
i=1 exp{ρH 1

1+ρ
(Xi)}

= exp{nρR 1
1+ρ

({Xi})} (54)

due to costs are defined to be integers in our application
scenario.

B. Data Repair with Multiple Passes: Density and Cost Evo-
lution

In the previous subsection we have considered a static case
i.e., a realization of an LDPC code ensemble i.e., a fixed
bipartite graph representation. On the other hand, check and
variable node degrees of a typical LDPC code ensemble is
governed by degree distributions. As can be seen in Fig.
4, the variable node of interest as well as its neighboring
check nodes of degrees du1 , du2 , . . . , dudv

, are shown. One
can think of these values as realizations of the variable and
check node degree distributions of LDPC codes typically
expressed in polynomial forms as Λ(x) =

∑Dv

d=1 Λdx
d and

Φ(x) =
∑Dc

d=1 Φdx
d, respectively. Furthermore, we can define

edge-perspective degree distributions for variable and check
nodes in terms of node-perspective ones as follows [34],

λ(x) =
Λ′(x)

Λ′(1)
=

Dv∑
d=1

λdx
d−1,

ϕ(x) =
Φ′(x)

Φ′(1)
=

Dc∑
d=1

ϕdx
d−1. (55)

where the code rate (rLDPC) can be described in terms of
edge-perspective degree distributions as follows

rLDPC =
k

n
= 1−

∫ 1

0
ϕ(x)dx∫ 1

0
λ(x)dx

= 1−
∑

d ϕd/d∑
d λd/d

. (56)

where ϕd(λd) is the probability that when we select an edge
from the underlying bipartite graph randomly, it belongs to the
set of the edges of a degree-d check (variable) node.

In Proposition 4.1, we have 1) conditioned on the node
degrees of variable and check nodes and 2) considered only a
single pass of the iterative repair strategy. Also, depending
on the node failure patterns, it is likely that none of the
check relations would be able to help with the repair process
in the initial pass which would require us to decide on the
successful completion of the repair process. One option is
to download the missing content from the backup master
and cease the repair process. The alternative option is to
execute one more iteration to reduce the slave node unavail-
ability/failure probability5. Note that in this scenario, the node
repairs are decentralized and take place in the absence of node
unavailability/failure information.

5For this option to be reliable, we have to have the simultaneous repair
successes of the other slave nodes which were to be repaired in the previous
pass and the assumption that no further node losses occur during the
consecutive iterations.
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End	of	0-th	
iteration

End	of	1st	
iteration

Repair	options

Base	station

Delay	till	the
end	of	iteration

Start

Time

(l=0) (l=1)

Fig. 5. An example of multi-iteration repair process as a function of time for an LDPC code symbol that has a node degree of 3. At the end of each iteration,
the process can either choose to contact the back-up node or another round of iteration to complete the repair. Repair options colored as black hexagons get
less intense as we have better chances of repair completion.

Let {cu1 , . . . , cudv
} be the list of random variables charac-

terizing the costs of contacting the check nodes u1, . . . , udv
,

and {cu(1)
≤ · · · ≤ cu(dv)

} denote these random variables
rearranged in non-decreasing order of magnitude with cmax =
cu(dv)

representing the maximum of the cost values. Based on
proposition 4.1, an optimal guessing strategy shall order the
check nodes on the basis of their degrees (i.e., costs) assuming
independent node failures. Accordingly, let us define

ϕ(z)(x) ≜
Dc∑
d=1

ϕ
(z)
d xd−1 (57)

to be the distribution of the z-th order statistic (z-th smallest)
of the costs i.e., cu(z)

∼ ϕ(z)(x) for 1 ≤ z ≤ dv . Note that
here ϕ

(z)
d refers to the probability that a randomly selected

edge belongs to a degree-d check node which gets selected
in the z-th position in our guessing strategy when we order
costs in non-decreasing order. Then, given that the variable
node under repair has dv check options, the probability that
j-th check node selection of the optimal guessing strategy will
successfully repair the lost node in the l-th pass can be shown
based on conditioning arguments to be6

p
(l)
j (c(j))

=
∑

d∈c(j)+1

ϕ
(j)

d|dv (1− ϵl)
d−1

j−1∏
i=1

1−
∑

d∈c(j)+1

ϕ
(i)

d|dv (1− ϵl)
d−1

 ,

(58)

where ϵl is the loss probability of a randomly chosen node at
the l-th iteration and ϕ

(i)
d|dv

is the conditional probability that
i-th check node neighbor of a variable node having degree dv
has degree d when neighboring check node degrees are sorted
in non-decreasing order and can be expressed in a closed-form
as follows, Since we conditioned on dv check options for a
recovering variable node, we realize that we will not be able
to complete the repair process if none of the check relations

6Here, we note that the repairing variable node does not download the
corresponding symbols unless the check relations ensure that the repair can
complete successfully.

are able to help, which happens with probability at the l-th
iteration

1−
dv∑
j=1

p
(l)
j (c(j)) =

dv∏
i=1

1−
∑

d∈c(j)+1

ϕ
(i)
d|dv

(1− ϵl)
d−1

 .

(60)

To remove conditioning, we sum over all possibilities of
both sides and obtain

1−
Dv∑

dv=1

λdv

dv∑
j=1

p
(l)
j (c(j)) (61)

=

Dv∑
dv=1

λdv

dv∏
i=1

1−
∑

d∈c(j)+1

ϕ
(i)
d|dv

(1− ϵl)
d−1

 (62)

=

Dv∑
dv=1

λdv

dv∏
i=1

1−
∑

d∈c(j)+1

ϕ
(i)
d (1− ϵl)

d−1

 (63)

=

Dv∑
dv=1

λdv

1−
∑

d∈c(j)+1

ϕd(1− ϵl)
d−1

dv

(64)

=

Dv∑
dv=1

λdv
(1− ϕ(1− ϵl))

dv = λ(1− ϕ(1− ϵl)) (65)

which clearly does not depend on the guessing strategy since
the local repair process already fails. From these equalities we
observe that we readily have

dv∏
i=1

1−
∑

d∈c(j)+1

ϕ
(i)
d (1− ϵl)

d−1

 ̸=

1−
∑

d∈c(j)+1

ϕd(1− ϵl)
d−1

dv

=

dv∏
i=1

1−
∑

d∈c(j)+1

ϕ
(i)

d|dv (1− ϵl)
d−1

 . (66)

The recovery failure probability of a given unavailable/failed
slave node now evolves (due to the assumption of indepen-
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ϕ
(i)
d|dv

=

i−1∑
l1=0

i−1−l1∑
l2=0

i−1−l1−l2∑
l3=0

. . .

i−1−l1−l2−...−ld−1∑
ld=0

d∏
t=1

(
ϕlt
t . . .

ϕd

dv−i∑
r1=0

dv−i−r1∑
r2=0

. . .

dv−i−r1−r2−...rDc−i∑
rDc−d+1=0

Dc∏
y=d

ϕ
ry−d+1
y

dv!

(
∏d−1

h=1 lh!
∏Dc−i+1

h=2 rh!)(ld−1 + rr1 + 1)!

)
. (59)

dence and averaging over the edge-perspective variable node
degrees) and can be expressed as

ϵl+1 = ϵ0

Dv∑
d=1

λd(1− ϕ(1− ϵl))
d−1 = ϵ0λ(1− ϕ(1− ϵl))

(67)

which brings us to the standard density evolution formula for
erasure channels.

C. A deferred master-node communication protocol

Let us assume there is a backup master (a base station) to
help with the repair process within the cell. In this case, we
assume that we can directly download the contents from this
backup at the expense of a fixed cost Cπ(> 1) per symbol
download. In this simple protocol, we aim at maximizing
(minimizing) the use of local nodes (master nodes) in the
repair process. More specifically, we order the check relations
based on the degrees i.e., bandwidth cost of repair, and utilize
multiple iterations to ensure the regeneration. Since the node
availability information is missing at the time of the repair, we
confirm whether all connections of the neighbors of the first
check node can successfully be established. If at least one
of the variable nodes can not be reached, we next check the
availability of neighbors of the next check node and so on.
The lost node is repaired (actual download happens) using
neighbors of a check node whose all neighboring variable
nodes are intact and reachable. However, if this attempt is not
successful at the current iteration, we have to decide whether
to reach the backup for the completion of the repair process
or take another round of iteration, unless a predetermined
maximum number of iterations is reached. An example is
shown in Fig. 5 for dv = 3. As can be seen, at the end of each
iteration, a decision is made whether to complete the repair
process with the help of a backup or continue with another
round of iteration. Since we may have downloaded the contents
of the repaired node directly from the backup, we first check if
the backup node is to be contacted at the end of contacting all
local nodes for a given iteration round. If so, we allow another
round of iteration and if not, we cease iterations and complete
the repair with the help of the backup node. Therefore, with
this deferred master-node communication protocol, to be able
to ease the analysis, the backup node is allowed to be contacted
only at the end of each iteration round and the advantage of
conducting data regeneration using local nodes is maximized.

Accordingly, to contact the backup at the beginning of the
l-th iteration for l ≥ 1, we need to make sure that the backup
node would not be contacted last within the same iteration
i.e., the cost of contacting back-up is not too costly compared

to local downloads. Recall from Theorem 4.1 that the back-
up is not considered as a last resort only when the condition
Cπ < cmax ((1− q)

−cmax − 1) is met. In other words, when
the repair process comprises several iterations, to contact the
back-up at the beginning of the l-th iteration for l ≥ 0, we
need to make sure that it would not be contacted at the end of
the current iteration. For the LDPC code ensembles, the above
condition happens with a non-zero probability since cmax is
a random variable. For a given variable node degree d, we
contact the backup node at the beginning of the l-th iteration
with conditional probability τl|d given by

τl|d = Pr

(
(Cπ < cmax ((1− ϵl)

−cmax − 1))

∧ (Cπ ≥ cmax ((1− ϵt−1)
−cmax − 1) ∀ t ∈ [l])

)
(68)

which can be simplified due to the monotonicity of
cmax ((1− ϵl)

−cmax − 1)) as (see also Remark 4.1)

τl|d = Pr
(
(Cπ < cmax ((1− ϵl)

−cmax − 1))

∧(Cπ ≥ cmax ((1− ϵl−1)
−cmax − 1))

)
. (69)

Note that since successful repair is guaranteed when the back-
up node is involved, based on the above formulation, the
evolution formula in (67) can be rewritten as (again with the
And-Or tree assumption [31] in the decoding path)

ϵl+1 = ϵ0

Dv∑
d=1

λd(1− τl|d)(1− ϕ(1− ϵl))
d−1. (70)

On the other hand, we notice that the conditional probability
that we contact the back-up at the end of the l-th iteration i.e.,
1− ρl|d can be approximated for small ϵ0cmax (i.e., ϵ0Dc) as

1− τl|d = Pr
(
cmax ((1− ϵl+1)

−cmax − 1) ≤ Cπ

)
= Pr

(
c2maxϵl+1 ≤ cmax((1− ϵl+1)

−cmax − 1) ≤ Cπ

)
≈ Pr

(
cmax ≤

√
Cπ/ϵl+1

)
(71)

=

min{Dc,⌊
√

Cπ/ϵl+1⌋}∑
i=1

Φi


d

(72)

where (72) follows due to independence of ci’s.

Remark 4.1. Note that in this setting, as long as ϵl → 0 as l
tends large, we have ϵl+1 ≤ ϵl which leads to the relationship
τl|d ≥ τl+1|d i.e., as the iterations get deeper, it becomes less
likely to contact the back-up node for the repair due to reduced
loss probabilities of the neighboring nodes.
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D. Decoding Threshold with Back-up
For ease of analysis, let us assume small ϵ0Dc and not

put any limit on the number of iterations with a predefined
threshold. In this case, we notice that if

√
Cπ/ϵ0 ≥ Dc,

then this would result in standard density evolution and the
decoding threshold, in that case, would be defined to be

ϵ∗0 = sup{ϵ0λ(1− ϕ(1− x)) < x,∀x, x ∈ (0, ϵ0]}, (73)

i.e., the maximal erasure probability below which error-free
repair is possible through solely using iterations/local nodes.
On the other hand if

√
Cπ/ϵ0 < Dc, suppose in one of the

iterations of the BP (say l∗-th iteration), we have ϵ0 ≥ ϵl∗−1 ≥
ϵl∗ such that ⌈

√
Cπ/ϵl∗−1⌉ ≤ Dc ≤ ⌈

√
Cπ/ϵl∗⌉, then for all

l ≤ l∗ − 2 we would have ϵl+1 to be the solution to the
following equation

ϵl+1 = ϵ0

Dv∑
d=1

λd

⌊
√

Cπ/ϵl+1⌋∑
i=1

Φi


d

(1− ϕ(1− ϵl))
d−1

(74)

and finally for l ≥ l∗−1, ϵl+1 is given by the standard density
evolution formula. Accordingly, the decoding threshold in that
case is given by ∀x, x ∈ (0, 1),

ϵ†0(Cπ) = sup

{
ϵ0

Dv∑
d=1

λd

min{Dc,⌊
√

Cπ/ϵl+1⌋}∑
i=1

Φi


d

(75)

× (1− ϕ(1− x))d−1 < x,∀x, x ∈ (0, ϵ0]

}

= inf


x(1− ϕ(1− x))1−d

∑Dv

d=1 λd

(
1−

∑min{Dc,⌊
√

Cπ/ϵl+1⌋}
i=1 Φi

)d


(76)

Here we immediately realize the relationship ϵ∗0 ≤
ϵ†0(Cπ) ≤ 1 i.e., the decoding threshold can be improved
with the help of a master back-up node in the context of data
reconstruction.

E. Numerical Demonstration
We consider an irregular LDPC code that performs provably

close to the optimal (achieving minimum gap to the channel
capacity) under BEC [33]. The edge-perspective degree distri-
butions of this code ensemble are given by

ϕ(x) = 0.60829x5 + 0.39171x6 (77)

λ(x) = 0.20503x+ 0.45572x2 + 0.19325x13 + 0.146x14

(78)

from which the rate of the code can be calculated to be 0.4339
with Dc = 7 and Dv = 15. The results of our cost evolution
process are presented in which τl|d is estimated numerically
based on

τl|d ≈ Pr
(
Cπ < cmax ((1− ϵl)

−cmax − 1)
)

× Pr
(
Cπ ≥ cmax ((1− ϵl−1)

−cmax − 1)
)

(79)
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Fig. 6. Cost of a symbol repair with a back-up Master

TABLE I
NUMERICAL COMPUTATION OF 1

n
ln(E[CG∗ (X)ρ])

ρ values ϵ0 values 0.01 0.05 0.1

ρ = 1
Thm.3.4 5.40 5.184 5.342
OPT 2.099 3.996 4.967

Eq.(41) 1.040 3.443 4.502

ρ = 2
Thm.3.4 6.216 6.047 6.105
OPT 4.048 5.431 5.926

Eq.(41). 3.253 4.882 5.465

ρ = 3
Thm.3.4 6.260 6.152 6.222
OPT 4.461 5.652 6.075

Eq.(41) 3.694 5.105 5.616

rather than the approximation given by the Eqn. (71) since
max{ϵ0Dc} = 3.037 is not small enough.

The cost of a symbol repair using the strategy with back-
up master node having Cπ ∈ {50, 700, 1000}, respectively,
is provided in Fig. 6. When Cπ = 50, the the use of the
base station has commenced in early stages of the node repair
process (iterations). In other words, in case of Cπ = 50, the
master node is used as the last resort without further iterations
are performed for ϵ ∈ [0.53, 0.56]. When Cπ = 700 and ϵ0 ≥
0.544, the use of backup master is preferred, which in turn
leads to higher node repair cost. Moreover, when Cπ = 1000
and ϵ0 gets the value of 0.551, the value of ϵmax is increased
substantially. For the value of Cπ = 1000, the use of BS before
the last iteration is started to occur when ϵ0 ≥ 0.575.

In Table I, the results of actual optimal LDPC repair cost as
well as upper and lower bounds obtained through numerical
evaluations of Thm. 3.4, and Eq. (41) are presented for all
combinations of ρ ∈ {1, 2, 3} and ϵ0 ∈ {0.01, 0.05, 0.1}. For
this data repair scenario, the base station cost is assumed to be
Cπ = 1000. Based on our numerical results for ρ = 1, ρ =
2, ρ = 3, the evaluation of Thm. 3.4 gives 64%, 22%, 17%
higher results than the actual results on average, whereas Eq.
(41) provides 24%, 12%, 11% lower values than the actual
on average, respectively.

V. CONCLUSIONS AND FUTURE WORK

In this work, the general notion of guessing cost is in-
troduced and an optimal strategy is provided for guessing a
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random variable defined on a finite set with each choice may
be associated with a positive finite cost. Upper and lower
bounds on the moments of guessing cost are derived and
expressed in terms of the Rényi’s entropy and entropy rate.
We have established connections with the guesswork through
introducing novel random variables. Thanks to this connection,
previous works on the improvements of upper/lower bounds
for the guesswork become readily applicable. Accordingly, we
provided improved bounds on the moments of guessing cost
without lengthy proofs. Finally, we established the guessing
cost exponent on the moments of the optimal guessing by
considering a sequence of random variables. These bounds
are shown to serve quite useful for bounding the overall
repair latency cost (data repair complexity) for distributed data
storage systems in which sparse graph codes may be utilized.
We have assumed a simple protocol to derive initial results
and demonstrated the usefulness of the previously derived
bounds. It’s important to highlight that in the design of a
distributed storage protocol, there may be value in giving up
the prediction of the next value based on conditions like the
total accumulated cost. Characterization of the guessing cost,
in that case, would have to be expressed in terms of smooth
Rényi’s entropy. Recent studies such as [8] considered similar
constraints for the guesswork within the context of source
coding. Such scenarios would be considered in our future
work to be able to improve protocol design towards better
system maintenance in presence/assistance of an external back-
up/base station master.

APPENDIX A
PROOF OF PROPOSITION 2.1

Let us start with ρ = 1 i.e., mean guessing cost given in
Remark 2.1. Consider swapping the i-th and (i+1)-th guessed
values. Let Gi,i+1 be the original guessing strategy and Gi+1,i

be the swapped version. Then it is straightforward to show
that the difference is

E[CGi,i+1
(x)]− E[CGi+1,i

(x)] = ci(1− gi−1) (80)
+ ci+1(1− gi−1 − pi) (81)
− ci+1(1− gi−1) (82)
− ci(1− gi−1 − pi+1) (83)
= cipi+1 − ci+1pi (84)

which implies that if cipi+1 > ci+1pi, then we swap i-th
and (i + 1)-th guessed values in order to reduce the average
guessing cost, otherwise no swapping is performed. Since each
swapping leads to lower cost, for any i, j ∈ {1, . . . ,M} with
i ≤ j, the optimal guessing strategy G∗ would satisfy the
following series of inequalities

cipi+1 ≤ ci+1pi
ci+1pi+2 ≤ ci+2pi+1

...
cj−1pj ≤ cjpj−1

⇒ cipj

j−1∏
k=i+1

ckpk ≤ cjpi

j−1∏
k=i+1

ckpk

where continuing deriving the inequality and multiplying left-
hand and right-hand consecutive terms individually would give
us the desired result since all pis and cis are non-negative.

Now, let us consider the general case i.e., for any real ρ > 0,
we have

E[CG(X)ρ] =

M∑
i=1

 i∑
j=1

cj

ρ

pi =

M∑
i=1

||c(i)||ρ1pi (85)

In general, we would be looking for a condition that would
ensure the following for indices i, j satisfying i ≤ j

E[CGi,j
(x)ρ]− E[CGj,i

(x)ρ] ≤ 0 (86)

which would mean that swaping these indices do not improve
the moments of guessing cost. This condition can be shown
to imply for any ρ ∈ (0,+∞) through some algebra that[
||c(i)||ρ1 − ||c(j)||

ρ
1

]
pi +

[
||c(j)||ρ1 − (||c(i)||1 − ci + cj)

ρ
]
pj

≤
j−1∑

l=i+1

[
(||c(l)||1 − ci + cj)

ρ − ||c(l)||ρ1
]
pl (87)

If we had consider i-th and (i + 1)th indices instead, then
the condition we have derived for ρ = 1 i.e., cipi+1 ≤ ci+1pi
would have been extended to any ρ > 0 for all indices between
i and j. We can finally arrive at the following set of inequalities[

||c(i+1)||ρ1 − (||c(i+1)||1 − ci)
ρ
]
pi+1 ≤

[
||c(i+1)||ρ1 − ||c(i)||ρ1

]
pi

(88)[
||c(i+2)||ρ1 − (||c(i+2)||1 − ci+1)

ρ
]
pi+2 ≤

[
||c(i+2)||ρ1 − ||c(i+1)||ρ1

]
pi+1

(89)
...[

||c(j)||ρ1 − (||c(j)||1 − cj−1)
ρ
]
pj ≤

[
||c(j)||ρ1 − ||c(j−1)||ρ1

]
pj−1

(90)

Note that due to non-negativity of costs, for any l ∈
{2, . . . , j − i} and ρ ≥ 1, we always have

||c(i+l)||ρ1 − (||c(i+l)||1 − ci+l−1)
ρ ≥ ||c(i+l−1)||ρ1 − ||c(i+l−2)||ρ1

(91)

which can be rewritten as

(||c(i+l−1)||1 + ci+l)
ρ − (||c(i+l−2)||1 + ci+l)

ρ

≥ ||c(i+l−1)||ρ1 − ||c(i+l−2)||ρ1. (92)

Then in order to satisfy all the inequalities above, we must
have[
||c(i+1)||ρ1 − (||c(i+1)||1 − ci)

ρ
]
pj ≤

[
||c(j)||ρ1 − ||c(j−1)||ρ1

]
pi

(93)

which is a simplified condition as compared to the condition
in (87) for ρ ∈ (1,+∞).

APPENDIX B
PROOF OF PROPOSITION 3.1

Let us assume cx ∈ Z+. Our objective is to show that G :
X → [

∑
x cx] is a bijection. Let us begin with one-to-one

property and with a trivial case. Suppose that j = i + 1 ̸= i
for i <

∑
x cx, and assume that the following relation is true.

G(X = xi) = G(X = xj) = G(X = xi+1) (94)
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which obviously violates the 1-to-1 property. For a given index
i ∈ [

∑
x cx], due its construction in the manuscript, there exists

a positive integer k(i) ≤M satisfying∑
x∈Xk(i)−1

cx < i ≤
∑

x∈Xk(i)

cx. (95)

where X i = {x1, . . . , xi} with X 0 = ∅. If k(i) = k(i+1),
then it is easy to see that the equality (94) would be impossible
to hold since i ̸= i+1 in the definition of G. If k(i) ̸= k(i+1)

we notice that we can use the expression given for G and
rewrite both sides of the equation (94) as

G(X = xi) =
∑

x:G(x)<G(xk(i))

cx −
∑

x∈Xk(i)−1

cx + i

=
∑

x:G(x)<G(xk(i))

cx −
∑

x∈Xk(i)

cx + i+ cx
k(i)

(96)

G(X = xi+1]) =
∑

x:G(x)<G(xk(i+1))

cx −
∑

x∈Xk(i+1)−1

cx + i+ 1

=
∑

x:G(x)<G(xk(i+1))

cx −
∑

x∈Xk(i)

cx + i+ 1.

(97)

where we used the fact that X k(i+1)

= X k(i)+1 due to the way
X i is defined. Note that since k(i) ̸= k(i+1) is assumed, the
first terms in the expressions of (96) and (97) cannot be equal
to satisfy the equation (94). Therefore, we have two possible
cases.

• Case
∑

x:G(x)<G(xk(i)) cx >
∑

x:G(x)<G(xk(i+1)) cx: In
this case however, it can be clearly seen that we must
have G(X = xi) > G(X = xi+1) since cx

k(i)
≥ 1.

• Case
∑

x:G(x)<G(xk(i)) cx <
∑

x:G(x)<G(xk(i+1)) cx: In
this case we must have∑

x:G(x)<G(xk(i+1))

cx −
∑

x:G(x)<G(xk(i))

cx ≥ cx
k(i)

(98)

due to the ordering of costs. This result implies that
G(X = xi) < G(X = xi+1), which is necessarily a
strict inequality due to the assumption j = i+ 1 ̸= i.

As a result, our initial assumption that G(X = xi) =
G(X = xi+1) cannot be true. Using this observation, we
can extend our arguments to any (i, j) pair with i ̸= j.
WOLOG, assume that j > i, by considering the pairs
(i, i+ 1), (i+ 1, i+ 2), . . . , (j − 1, j) in this particular order,
it is not hard to show G(X = xi) ̸= G(X = xj) i.e., G is
one-to-one. On the other hand, we also notice that

G(X = xi) =
∑

x:G(x)<G(xk(i))

cx + i−
∑

x∈Xk(i)−1

cx

︸ ︷︷ ︸
> 0 due to Eqn. (95)

> 0 (99)

due to non-negativity of costs. Hence, the minimum integer
the strategy could map to is 1. In addition,

G(X = xi) =
∑

x:G(x)<G(xk(i))

cx + i−
∑

x∈Xk(i)

cx

︸ ︷︷ ︸
≤ 0 due to Eqn. (95)

+cx
k(i)

≤
∑

x:G(x)≤G(xk(i))

cx ≤
∑
x

cx (100)

which, together with (99), implies 1 ≤ G(X = xi) ≤
∑

x cx.
As a result, we can induct that G must be a bijection and hence
a valid strategy/mapping.

APPENDIX C
PROOF OF THEOREM 3.1

Before giving the formal proof let us state a well known
lemma.

Lemma 3.1 (Hölder’s inequality). Let ai and bi for (i =
1, ..., n) be positive real sequences. If q > 1 and 1/q+1/r = 1,
then (

n∑
i=1

aqi

)1/q ( n∑
i=1

bri

)1/r

≥
n∑

i=1

aibi (101)

Let ai be a positive real number for all i, M be a natural
number, and γ be the harmonic mean of {a1, . . . , an}, then
we have

M∑
i=1

1

1 + ai
≤ M

1 + γ
(102)

which can easily be proved using Radon’s inequality [35].
Now, let us express the lower bound of the moments of the
guessing cost as follows,

E[CG(X)ρ] ≥ E[CG∗(X)ρ]

≥

[
M∑
i=1

1∑i
j=1 c

∗
j

]−ρ [ M∑
i=1

PX(G−1(i))
1

1+ρ

]1+ρ

(103)

which easily follows from a direct application of Hölder’s
inequality, where {c∗j} are the optimal ordering of cost values.
To see this, let us set r = 1 + ρ, q = (1 + ρ)/ρ in Hölder’s
inequality so that 1/q + 1/r = 1 is satisfied for ρ > 0. We
also let

ai =

 i∑
j=1

cG−1(j)

−ρ/(1+ρ)

and

bi =

 i∑
j=1

cG−1(j)

ρ/(1+ρ)

PX(G−1(i))1/(1+ρ).
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Now, using Hölder’s inequality, it would be easy to obtain

[
M∑
i=1

1∑i
j=1 cG−1(j)

]ρ/(1+ρ)

(E[CG(X)ρ])
1/(1+ρ)

≥
M∑
i=1

PX(G−1(i))1/(1+ρ) (104)

from which inequality (103) follows for the optimal strategy
G∗. Now, considering the ordering of costs that minimizes the
right hand side, we shall have,

E[CG(X)ρ] ≥

[
M∑
i=1

1∑i
j=1 c

∗
j

]−ρ [ M∑
i=1

PX(G−1(i))
1

1+ρ

]1+ρ

≥
(

M

1 + γ∗

)−ρ
[

M∑
i=1

PX(xi)
1

1+ρ

]1+ρ

(105)

=

(
M

1 + γ∗

)−ρ

exp
{
ρH 1

1+ρ
(X)

}
(106)

where γ∗ is the harmonic mean of {
∑i

j c
∗
j − 1}’s for i =

{1, 2, . . . ,M} and Hα(X) is Rényi’s entropy of order α (α >
0, α ̸= 1) for random variable X defined as,

Hα(X) =
α

1− α
ln

[∑
x

PX(x)α

]1/α
(107)

Note that inequality (105) followed from the inequality (28).

APPENDIX D
PROOF OF THEOREM 3.2

Let us first observe that with the optimal guessing strategy
G∗ that minimizes the expected guessing cost x,

CG∗(x) =
∑

x′:CG∗ (x′)≤CG∗ (x)

cx′∑
x′′

1 (108)

≤
∑

x′:CG∗ (x′)≤CG∗ (x)

cx′∑
x′′

(
cxPX(x′)

cx′PX(x)

) 1
1+ρ

(109)

=
∑

x′:CG∗ (x′)≤CG∗ (x)

c
ρ

1+ρ

x′

(
cxPX(x′)

PX(x)

) 1
1+ρ

(110)

≤
∑
x′

c
ρ

1+ρ

x′

(
cxPX(x′)

PX(x)

) 1
1+ρ

(111)

where the inequality (109) follows from the necessary condi-
tion of Proposition 2.1 with ρ = 1 i.e., cx′PX(x) ≤ cxPX(x′)
for all {x′ : CG∗(x′) ≤ CG∗(x)} that needs to hold for the
optimal guessing strategy G∗. Also, although the exponent
1/(1 + ρ) decreases the value, it is still greater than 1 due to

cxPX(x′)
cx′PX(x) ≥ 1. Using the inequality given in (111) in equation
(12), we get

E[CG∗(X)ρ] =
∑
x

PX(x)CG∗(x)ρ (112)

≤
∑
x

PX(x)

(∑
x′

c
ρ

1+ρ

x′

(
cxPX(x′)

PX(x)

) 1
1+ρ

)ρ

=

[∑
x

c
ρ

1+ρ
x PX(x)

1
1+ρ

]1+ρ

=

[∑
x

cx(PX(x)/cx)
1

1+ρ

]1+ρ

(113)

Note that for a given i, j satisfying i ≤ j, the condition
cipj ≤ cjpi (i.e., cx′PX(x) ≤ cxPX(x′)) does not necessarily
imply the condition given in (5) for any ρ > 0. However, we
observe that the general necessary condition of Proposition 2.1
is more strict in the sense that the strategy that is satisfying
cipj ≤ cjpi (condition in (5) with ρ = 1) would be an upper
bound on the moments of guessing cost using the optimal
guessing strategy. For instance, if for all i ≤ j,[
||c(i)||ρ1 − ||c(j)||

ρ
1

]
pi +

[
||c(j)||ρ1 − (||c(i)||1 − ci + cj)

ρ
]
pj

≤
j−1∑

l=i+1

[
(||c(l)||1 − ci + cj)

ρ − ||c(l)||ρ1
]
pl. (114)

is satisfied, then cipj ≤ cjpi may or may not hold. However,
in the worst case the strategy satisfying cipj ≤ cjpi may not
be optimal for a given ρ. Hence, our argument in Eqn. (109)
is still valid since we are generating an upper bound for the
optimal guessing strategy. However with the general condition
the upper bound can be tightened at the expense of ending up
with more complex expressions. For the asymptotic result of
the paper, this simpler upper bound would be just sufficient.

On the other hand, we notice that

PX(x)

⌈cx⌉
=

cxPX(x)

⌈cx⌉cx
≥ PX(x)

cx

(
cx
⌈cx⌉

)1+ρ

(115)

from which the following inequality follows for ρ ≥ 0,

⌈cx⌉(PX(x)/⌈cx⌉)
1

1+ρ ≥ cx(PX(x)/cx)
1

1+ρ . (116)

Thus, using the inequality (116) and the pre-defined auxil-
iary random variable Y earlier, we finally express the upper
bound in a more compact form

E[CG∗(X)ρ] ≤

[∑
x

cx(PX(x)/cx)
1

1+ρ

]1+ρ

(117)

≤

[∑
x

⌈cx⌉(PX(x)/⌈cx⌉)
1

1+ρ

]1+ρ

=

[∑
y

PY (y)
1

1+ρ

]1+ρ

= exp{ρH 1
1+ρ

(Y )}

(118)

Notice that this upper bound will reduce to Arikan’s upper
bound i.e., exp(ρH 1

1+ρ
(X)) with all costs set to unity.
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APPENDIX E
PROOF OF THEOREM 3.3

Let us consider the general case and first define the induced
random variables Zi ∼ Z and Yi ∼ Y for the corresponding
random variables Xi ∼ X for i = {1, . . . , n} each with cost
distributions Ci based on Definition 3.1. Also let F∗ and H∗

be the induced optimal guessing strategies from G∗ for random
variables {Z1, . . . , Zn} and {Y1, . . . , Yn}, respectively.

Now, consider the upper bound for i.i.d. random variables
and observe

CG∗(x1, . . . , xn) (119)

≤
∑

x′
1,x

′
2,...,x

′
n:

CG∗ (x′
1,...,x

′
n)≤CG∗ (x1,...,xn)

cx′
1∑

x
′′
1

· · ·
cx′

n∑
x′′
n

(
n∏

i=1

cxiPXi(x
′
i)

cx′
i
PXi(xi)

) 1
1+ρ

(120)

≤
n∏

i=1

∑
x′
i

c
ρ

1+ρ

x′
i

(
cxiPXi(x

′
i)

PXi(xi)

) 1
1+ρ

=

∑
x′
1

c
ρ

1+ρ

x′
1

(
cx1PX1(x

′
1)

PX1(x1)

) 1
1+ρ

n

(121)

due to independence and series of inequalities cx′
1
PX(x1) ≤

cx1
PX(x′

1), cx′
2
PX(x2) ≤ cx2

PX(x′
2), . . . , cx′

n
PX(xn) ≤

cxnPX(x′
n) for all {x′

i : CG∗(x′
i) ≤ CG∗(xi)} where i =

1, . . . , n that needs to hold for the optimal strategy G∗ required
by the necessary condition. Finally, we can upper bound
the expected guessing cost for a sequence of i.i.d. random
variables as

E[CG∗(X1, . . . , Xn)
ρ]

=
∑
x

PX(x1, . . . , xn)CG∗(x1, . . . , xn)
ρ (122)

≤
n∏

i=1

∑
xi

PXi
(xi)

∑
x′
i

c
ρ

1+ρ

x′
i

(
cxi

PXi
(x′

i)

PXi
(xi)

) 1
1+ρ

ρ

=

n∏
i=1

[∑
xi

cxi
(PXi

(xi)/cxi
)

1
1+ρ

](1+ρ)

≤
n∏

i=1

[∑
yi

PYi
(yi)

1
1+ρ

](1+ρ)

= exp

{
ρ
∑
i

H 1
1+ρ

(Yi)

}
(123)

where the last inequality follows due to inequalities similar to
(116) for each random variable Xi. If the cost and probability
distributions of Xi’s are arranged such that the induced Yi’s are
identically distributed (for instance Xi’s are i.i.d. with identical
cost distributions i.e., C1 ≡ C2 ≡ · · · ≡ Cn ≜ C) then we can
further simplify (123) as

E[CG∗(X1, . . . , Xn)
ρ] ≤ exp{ρnH 1

1+ρ
(Y1)}. (124)

Let us define sn = E[CG∗(X1, . . . , Xn)
ρ] and βk =

inf{sn : n ≥ k} for k ≥ 1. Note that βk is an increasing

sequence (βk+1 ≥ βk) bounded above by (123). Then we
have

lim inf
n→∞

1

nρ
ln(sn) = lim

k→∞

{
1

nρ
ln(βk)

}
= lim

n→∞

1

n

n∑
i=1

H 1
1+ρ

(Yi) = R 1
1+ρ

({Yi})

(125)

which is defined to be the order-1/(1+ ρ) Rényi entropy rate
[30] as long as the limit exists. In addition to the upper bound,
we can extend the lower bound given in (18) for a sequence
of random variables as

E[CG∗(X1, . . . , Xn)
ρ] ≥ E[CF∗(Z1, . . . , Zn)

ρ]

≥

(
1 + ln

(
n∏

i=1

∑
xi

⌊cxi
⌋

))−ρ

exp

{
ρ

n∑
i=1

H 1
1+ρ

(Zi)

}
(126)

where the first inequality can be shown to be true through
induction and the second inequality follows from [4] through
a bit of generalization. Note that F∗ is the optimal induced
strategy from G∗. If the cost and probability distributions of
Xi’s are arranged such that the induced Zi’s are identically
distributed (for instance Xi’s are i.i.d. with identical cost
distributions i.e., C1 ≡ C2 ≡ · · · ≡ Cn ≜ C) then we can
further simplify (126) as

E[CG∗(X1, . . . , Xn)
ρ]

≥

(
1 + ln

(
n∏

i=1

∑
xi

⌊cxi
⌋

))−ρ

exp
{
ρnH 1

1+ρ
(Zi)

}
.

(127)

Similarly, we further define αk = sup{sn : n ≥ k} for
k ≥ 1 which makes it a decreasing sequence lower bounded
by (127). As a consequence, we have

lim sup
n→∞

1

nρ
ln(sn) = lim

k→∞

{
1

nρ
ln(αk)

}

= lim
n→∞

ln

(
1 + ln

(
n∏

i=1

∑
xi

⌊cxi
⌋

))−1/n

+ lim
n→∞

1

n

n∑
i=1

H 1
1+ρ

(Zi)

= lim
n→∞

1

n

n∑
i=1

H 1
1+ρ

(Zi) = R 1
1+ρ

({Zi}).

(128)

If {Xi} are indentically distributed with the same cost
distribution C, then order-1/(1+ρ) Rényi entropy rates would
be equal to H 1

1+ρ
(Y ) and H 1

1+ρ
(Z), respectively. Note that

in general, these rates are not necessarily equal. However,
if the costs are integers, it would not be hard to verify
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R 1
1+ρ

({Yi}) = R 1
1+ρ

({Zi}). Thus, combining equations
(128) with (125), we shall have

lim sup
n→∞

1

nρ
ln(sn) = lim inf

n→∞

1

nρ
ln(sn)

= R 1
1+ρ

({Yi}) = R 1
1+ρ

({Zi}) = R 1
1+ρ

({Xi})
(129)

which completes the proof.

APPENDIX F
PROOF OF THEOREM 3.5

Let us first consider ρ ≥ 1, and for a given real constant
c ≥ 1 we let r(u; c) be the parametric function given for u ≥ c
by

r(u; c) =
1

c(1 + ρ)

(
u1+ρ − (u− c)1+ρ − c1+ρ

)
− (u− c)ρ.

(130)

One of the things we realize about this function is that its
derivative is non-negative, i.e.,

∂

∂u
r(u; c) =

1

c
(uρ − (u− c)ρ)− ρ(u− c)ρ−1 ≥ 0 (131)

which is not hard to see by invoking mean value theorem from
standard calculus. Moreover, we have

∂

∂c

∂

∂u
r(u; c) =

ρ

c
(u− c)ρ−1 − 1

c2
(uρ − (u− c)ρ)

+ ρ(ρ− 1)(u− c)ρ−2 ≥ 0, (132)

i.e., it is always non-negative for u ≥ c ≥ 1 and ρ ≥ 1.
Thus ∂

∂ur(u, c) is an increasing function of c which therefore
leads to the conclusion that for c ≥ 1, it is non-negative.
Since r(c, c) = 0, it follows that r(u; c) is non-negative for
u ≥ c ≥ 1.

Remember that for a given random variable X associated
with costs C = c1, . . . , cM , we have from equation (28)

E[CG(X)ρ]− E[(CG(X)− cX(ρ))ρ] ≤

M ′∑
k=1

q
1/ρ
k

ρ

, (133)

where M ′ =
∑M

i=1⌈ci⌉, qk = pi for
∑i−1

l=1⌈cl⌉ < k ≤∑i
l=1⌈cl⌉ and i = 1, . . . ,M and balancing cost cX(ρ) is as

defined in Definition 3.3 for as long as qk’s satisfy the relation
given in equation (30). Note that since E[r(CG(X), cX(ρ))] ≥
0, it implies for ρ ≥ 1 that if cX(ρ) ≤ cX(1 + ρ),

E[(CG(X)− cX(ρ))ρ]

≤ 1

cX(ρ)(1 + ρ)

(
E[CG(X)1+ρ]

− E[(CG(X)− cX(ρ))1+ρ]
)
−

cρX(ρ)

1 + ρ
(134)

≤ 1

cX(ρ)(1 + ρ)

(
E[CG(X)1+ρ]

− E[(CG(X)− cX(1 + ρ))1+ρ]
)
−

cρX(ρ)

1 + ρ
(135)

≤ 1

cX(ρ)(1 + ρ)

M ′∑
k=1

q
1

1+ρ

k

1+ρ

−
cρX(ρ)

1 + ρ
. (136)

where inequality (136) follows for as long as q
1

1+ρ

k+1 ≤
1
k (q

1
1+ρ

1 +

· · ·+ q
1

1+ρ

k ), for k = 1, . . . ,M ′−1. However if equation (30)
is already satisfied for ρ ≥ 1, then this inequality would also
be satisfied. Hence combining it with the equation (133), we
finally obtain

E[CG(X)ρ]

≤ 1

cX(ρ)(1 + ρ)

M ′∑
k=1

q
1

1+ρ

k

1+ρ

+

M ′∑
k=1

q
1/ρ
k

ρ

−
cρX(ρ)

1 + ρ
.

(137)

On the other hand, if cX(1 + ρ) ≤ cX(ρ), then we use
the fact that E[r(CG(X)), cX(1 + ρ)] ≥ 0 which implies for
ρ ≥ 1,

E[(CG(X)− cX(1 + ρ))ρ]

≤ 1

cX(1 + ρ)(1 + ρ)

(
E[CG(X)1+ρ]

− E[(CG(X)− cX(1 + ρ))1+ρ]
)
−

cρX(1 + ρ)

1 + ρ
(138)

≤ 1

cX(1 + ρ)(1 + ρ)

M ′∑
k=1

q
1

1+ρ

k

1+ρ

−
cρX(1 + ρ)

1 + ρ
(139)

Hence using equation (133) and (139), we finally obtain

E[CG(X)ρ] ≤

M ′∑
k=1

q
1/ρ
k

ρ

+ E[(CG(X)− cX(ρ))ρ] (140)

≤

M ′∑
k=1

q
1/ρ
k

ρ

+ E[(CG(X)− cX(1 + ρ))ρ]

(141)

≤ 1

cX(1 + ρ)(1 + ρ)

M ′∑
k=1

q
1

1+ρ

k

1+ρ

+

M ′∑
k=1

q
1/ρ
k

ρ

−
cρX(1 + ρ)

1 + ρ
(142)

Thus combining (137) and (142), we get the final expression

E[CG(X)ρ] ≤ 1

min{cX(ρ), cX(1 + ρ)}(1 + ρ)

M ′∑
k=1

q
1

1+ρ

k

1+ρ

+

M ′∑
k=1

q
1/ρ
k

ρ

− [min{cX(ρ), cX(1 + ρ)}]ρ

1 + ρ

(143)

Let us now consider the case ρ ∈ (0, 1). Now, we introduce
the following function for u ≥ c ≥ 1,

r(u, c) =
1

c(1 + ρ)
(u1+ρ − (u− c)1+ρ + ρc1+ρ)− uρ.

(144)
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When we take the derivative with respect to u, we get
∂

∂u
r(u, c) =

1

c
(uρ − (u− c)ρ)− ρuρ−1 (145)

= ρxρ−1 − ρuρ−1, x ∈ (u− c, u) (146)
> 0, (147)

where the equation (146) holds due to mean value theorem
for all ρ ∈ (0, 1). Since r(c, c) = 0, we always have r(u, c) ≥
0 for all u ≥ c ≥ 1. Applying this function, we will have
E[r(CG(X)), cX(1 + ρ)] ≥ 0 meaning that

E[CG(X)ρ] ≤ 1

cX(1 + ρ)(1 + ρ)

(
E[CG(X)1+ρ]

− E[(CG(X)− cX(1 + ρ))1+ρ] + ρc1+ρ
X (1 + ρ)

)
(148)

≤ 1

cX(1 + ρ)(1 + ρ)

M ′∑
k=1

q
1

1+ρ

k

1+ρ

+
ρ

1 + ρ
cρX(1 + ρ) (149)

where the inequality (149) follows since 1 + ρ ≥ 1. Similarly
for E[r(CG(X)), cX(ρ)] ≥ 0, we get

E[CG(X)ρ] ≤ 1

cX(ρ)(1 + ρ)

(
E[CG(X)1+ρ]

− E[(CG(X)− cX(ρ))1+ρ] + ρc1+ρ
X (ρ)

)
(150)

≤ 1

cX(ρ)(1 + ρ)

M ′∑
k=1

q
1

1+ρ

k

1+ρ

+
ρ

1 + ρ
cρX(ρ)

(151)

if cX(ρ) ≤ cX(1 + ρ). Thus,

E[CG(X)ρ] ≤ 1

min{cX(ρ), cX(1 + ρ)}(1 + ρ)

M ′∑
k=1

q
1

1+ρ

k

1+ρ

+
ρ

1 + ρ
[min{cX(ρ), cX(1 + ρ)}]ρ (152)

Thus, using an indicator function 1ρ≥1 to be able to combine
(143) and (152), the result follows.

APPENDIX G
PROOF OF THEOREM 3.6

Let us consider the case ρ ∈ (0, 1) case first and state the
following Lemma.

Lemma 7.1. For ρ ∈ (0, 1) and any c ∈ R, c ≥ 1 and u ≥ c,

uρ ≤ u1+ρ − (u− c)1+ρ

c(1 + ρ)
+

ρcρ

1 + ρ
1{c≤u<c+1}

+

(
(c+ 1)ρ − (c+ 1)1+ρ − 1

c(1 + ρ)

)
1{u≥c+1} (153)

Proof. For ρ ∈ (0, 1) and a given real constant c ≥ 1 we
define to parametric functions given by

r1(u, c) =
u1+ρ − (u− c)1+ρ

c(1 + ρ)
+

ρcρ

1 + ρ
− uρ, (154)

r2(u, c) =
u1+ρ − (u− c)1+ρ

c(1 + ρ)
+ (c+ 1)ρ − (c+ 1)ρ − 1

c(1 + ρ)
− uρ

(155)

For u ∈ (c,∞), we have ∂
∂ur1(u, c) =

∂
∂ur2(u, c) =

1
c (u

ρ −
(u − c)ρ) − ρuρ−1 > 0 again similarly due to mean value
theorem. Moreover, r1(c, c) = r2(c + 1, c) = 0. As a result,
r1(u, c) ≥ 0 for u ≥ c and r2(u, c) ≥ 0 for u ≥ c + 1.
Next we observe that for ρ ∈ (0, 1) and c ≥ 0, we have
(cρ− 1)(c+ 1)ρ < ρc1+ρ − 1 which implies that

(c+ 1)ρ − (c+ 1)ρ − 1

c(1 + ρ)
<

ρcρ

1 + ρ
(156)

which completes the proof by recognizing
min{r1(u, c), r2(u, c)} = r2(u, c).

Let cminX
(ρ) = min{cX(ρ), cX(1 + ρ)}. Now using the

result of Lemma 7.1 for ρ ∈ (0, 1) and replacing u with
CG(X), and considering both cases cX(1 + ρ) ≤ cX(ρ),
cX(ρ) ≤ cX(1 + ρ) separately, similar to Appendix E, we
obtain

E[CG(X)ρ] ≤ 1

cminX
(ρ)(1 + ρ)

(
E[CG(X)1+ρ]

− E[(CG(X)− cX(1 + ρ))1+ρ]
)

+
ρcρminX

(ρ)

1 + ρ
P (cminX

(ρ) ≤ CG(X) < cminX
(ρ) + 1)

+

(
(cminX

(ρ) + 1)ρ − (cminX
(ρ) + 1)1+ρ − 1

cminX
(ρ)(1 + ρ)

)
× P (CG(X) ≥ cminX

(ρ) + 1) (157)

≤ 1

cminX
(ρ)(1 + ρ)

M ′∑
k=1

q
1

1+ρ

k

1+ρ

+
ρcρminX

(ρ)

1 + ρ
P (cminX

(ρ) ≤ CG(X) < cminX
(ρ) + 1)

+

(
(cminX

(ρ) + 1)ρ − (cminX
(ρ) + 1)1+ρ − 1

cminX
(ρ)(1 + ρ)

)
× P (CG(X) ≥ cminX

(ρ) + 1) (158)

where equation (158) follows from (133). Next, we state the
following Lemma.

Lemma 7.2. For ρ ∈ [1, 2] and any c ∈ R, c ≥ 1 and u ≥ c,

uρ ≤ u1+ρ − (u− c)1+ρ

1 + ρ
+

uρ − (u− c)ρ

ρ
+

cρ(ρ2 − cρ− 1)

ρ(1 + ρ)
(159)

Proof. For ρ ∈ [1, 2], let r(u, c) be a parametric function given
by

r(u, c) =
u1+ρ − (u− c)1+ρ

1 + ρ
+

uρ − (u− c)ρ

ρ

− uρ +
cρ(ρ2 − cρ− 1)

ρ(1 + ρ)
, u ≥ c (160)
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If we take the partial derivative of this function with respect
to u, we get

∂

∂u
r(u, c) = uρ − (u− c)ρ + uρ−1 − (u− c)ρ−1 − ρuρ−1

(161)

≥ c+ ρ(u− c)ρ−1 + uρ−1 − (u− c)ρ−1 − ρuρ−1

(162)

= c+ (ρ− 1)((u− c)ρ−1 − uρ−1) ≥ 2c− ρc ≥ 0
(163)

where equation (162) follows from the convexity of f(x) = xρ

function in (c,∞) for ρ ≥ 1 and equation (163) holds due to

−c ≤ (u− c)ρ−1 − uρ−1 ≤ 0 (164)

for ρ ∈ [1, 2] and u ≥ c. Finally, note that r(c, c) = 0 implying
that r(u, c) ≥ 0 for ρ ∈ [1, 2] and u ≥ c.

Replacing u in (159) with CG(x), c with the balancing cost,
and taking the expectation of both sides, and considering both
cases cX(1 + ρ) ≤ cX(ρ), cX(ρ) ≤ cX(1 + ρ) separately,
similar to Appendix E, we finally obtain

E[CG(X)ρ] ≤ 1

1 + ρ

(
E[CG(X)1+ρ]

− E[(CG(X)− cX(1 + ρ))1+ρ]
)

+
1

ρ
(E[CG(X)ρ]− E[(CG(X)− cX(ρ))ρ])

+
cρminX

(ρ)(ρ2 − cminX
(ρ)ρ− 1)

ρ(1 + ρ)
(165)

from which the result follows using the relationship given in
(28).

APPENDIX H
PROOF OF THEOREM 3.7

Considering ρ ≥ 2, u ≥ c > 1 for some c ∈ R, we define
the parametric function,

r(u, c) =
u1+ρ − (u− c)1+ρ

c(1 + ρ)
− uρ +

ρcuρ−1

2
− ρ(ρ− 1)

2(1 + ρ)
(166)

One of the things we realize about this function is that its
derivative is non-negative for ρ ≥ 2, i.e.,

∂

∂u
r(u, c) =

1

c
(uρ − (u− c)ρ)− ρuρ−1 +

1

2
ρ(ρ− 1)cuρ−2

(167)

To be able to shorten the notation let v(x) = xρ. Now consider
the Taylor series expansion of v(x) around u i.e.,

v(x) = v(u) + v′(u)(x− u)

+
1

2
v′′(u)(x− u)2 +

1

6
v′′′(u)(x− u)3 + . . . (168)

Now, evaluate v(x) at x = u− c and observe to truncate the
expansion,

(u− c)ρ = v(u− c) = v(u)− cv′(u) +
c2

2
v′′(u)− c3

6
v′′′(u′)

(169)

for some u′ ∈ (u − c, u) for u ≥ c. By plugging (169) into
(167), we obtain

∂

∂u
r(u, c) = v′(u)− c

2
v′′(u)

+
c2

6
v′′′(u′)− ρuρ−1 +

1

2
ρ(ρ− 1)cuρ−2 (170)

=
c2

6
v′′′(u′) =

c2

6
ρ(ρ− 1)(ρ− 2)(u′)ρ−3 ≥ 0

(171)

since u′ > 0 due to u ≥ c and ρ ≥ 2. It is also not hard to
verify that r(c, c) = 0, which eventually implies that r(u, c) ≥
0 for u ≥ c. If we substitute u = CG(X) and c = cX(1 + ρ)
and take the expectation i.e. E[r(u, c)] ≥ 0, we finally obtain

E[CG(X)ρ] ≤ 1

cX(1 + ρ)(1 + ρ)

(
E[CG(X)1+ρ]

− E[(CG(X)− cX(1 + ρ))1+ρ]
)

+
ρcX(1 + ρ)

2
E[CG(X)ρ−1]− ρ(ρ− 1)

2(1 + ρ)
(172)

from which the result follows using the relationship given in
(28).
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