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Abstract
In this paper, a combined form of Laplace transform is applied with the Adomian Decom-
position technique for the first time to obtain new semi-analytical solutions of the frac-
tional Newell–Whitehead–Segel equation which is a model arising in nonlinear optics with 
Caputo–Fabrizio derivative which involves non-singular and non-local kernels in its defini-
tion. The obtained results by the suggested method are compared with exact solutions, as 
a result of remarkable concurrence between the acquired results and the exact proposed 
method and the exacted solutions. Plotted graphs and given tables illustrate the efficiency 
and accuracy of the proposed technique. All the calculations are made by the computer 
software called MAPLE and Mathematica.

Keywords Newell–Whitehead–Segel equation · Caputo–Fabrizio derivative · Adomian 
decomposition method · Laplace transformation · Semi-analytical solutions

1 Introduction

Fractional calculus plays a significant role in understanding the dynamics of complex real-
world problems. It is non-local operators that provide a more accurate representation of 
various natural phenomena. The use of fractional derivatives is highly advantageous for 
researchers, engineers, mathematicians, and scientists working with real-life phenomena 
(Miller and Ross 1993; Kumar and Baleanu 2019; Ali et  al. 2019; Jaradat et  al. 2018; 
Alquran et  al. 2021). It is used in various significant areas including electro-magnetic 
waves (Gómez-Aguilar et al. 2016), diffusion equations (Shaikh et al. 2019), viscoelasticity 
(Bagley and Torvik 1983) polarization (Berezovsky and Cheremnykh 2018; Eslami et al. 
2021), electrode–electrolyte (L’vov et  al. 2021), heat transfer (Yang et  al. 2019), control 
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theory (Kilbas et al. 2006), finance (Raberto et al. 2002), biomedical engineering, and biol-
ogy (Prakash and Verma 2019).

Nonlinear mathematical models involving fractional terms are more compatible with the 
real-world data. Due to non- local characteristics can be used for modeling systems with 
memory. Fractional calculus comes through the critical trouble of integer calculus that the 
theoretical model results often fail to match up with the experimental results. These cir-
cumstances make the fractional derivative one step ahead of the integer order derivative. 
As a result, nonlinear fractional models are more useful than integer ones.

Therefore, the field of fractional calculus has recently undergone transformative devel-
opments, opening doors to profound insights and fostering innovative applications across 
an array of scientific domains (see references Liu et al. 2022,2023; Liu and Yang 2023).

A fractional derivative, denoted by Dα , is a mathematical operator that extends the con-
cept of the ordinary derivative. The history of fractional derivatives can be traced back 
to 1695 when L’Hopital wrote a letter to Leibniz inquiring about the interpretation of the 
expression

when n is non-integer. The question led to the development of the theory of fractional cal-
culus. Although the concept of non-integer derivatives and integrals as a generalization of 
the traditional integer order differential and integral calculus was mentioned earlier, the 
first definition of the fractional derivative was introduced by Liouville and Riemann at the 
end of the nineteenth century (Girejko et al. 2011; Nchama et al. 2020).

Thenceforth, various notions of fractional order derivatives have been available for 
solving fractional differential equations, including well-known derivatives such as Rie-
mann–Liouville and Caputo, also more recent derivatives such as Atangana-Baleanu and 
Caputo–Fabrizio, among others (Diethelm 2010; Atangana and Baleanu 2016; Caputo and 
Fabrizio 2015; Ilie et al. 2018a; 2018b; Alquran 2023; Alquran et al. 2020; Alquran and 
Jaradat 2019).

Because different researchers aim to preserve different features of the classical integer 
order derivative, the fractional derivative has been defined in various ways, each with its 
own advantages and disadvantages. Furthermore, these definitions do not generally coin-
cide and often do not lead to the same result, even for smooth functions. Due to these 
incompatible definitions, it is essential to explicitly state which definition is being used.

In 2015, Caputo and Fabrizio proposed a new fractional derivative without a singular 
kernel. The previously used singular power-law kernel in Riemann–Liouville and Caputo 
was replaced with a non-singular exponential kernel, which is the main advantage of this 
proposed approach (Rosales García et al. 2018).

The motivation for proposing this new definition with a regular kernel came from the 
need to describe a class of non-local systems that describe material heterogeneities and 
fluctuations of different scales which cannot be adequately modeled using classical local 
theories or fractional models with a singular kernel (Nchama et al. 2020). Further, using 
it has resulted in the ease of theoretical analysis, numerical calculations, and real-world 
applications (Rosales García et al. 2018).

The Newell–Whitehead–Segel equation is one of the most important amplitude 
equations which describes the appearance of the stripe pattern in two-dimensional sys-
tems. This equation, a specialized form of the reaction–diffusion equation, belongs to 
a broader class of mathematical models elucidating the interplay between chemical 

(1)Dnf(t) =
dn

dtn
f(t),
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reactions and diffusion processes (Elgazery 2020). Its applications span diverse systems 
such as Rayleigh–Benard convection, Faraday instability, nonlinear optics, chemical 
reactions, and biological systems (Ayata and Ozkan 2020; Prakash et al. 2019; Prakash 
and Kumar 2016; Elgazery 2020). Therefore, solving this equation is of paramount 
importance (Kanchana et al. 2020; Newell and Whitehead 1969; Latif et al. 2020).

The fractional model of the Newell–Whitehead–Segel equation is given by:

where α is a parameter that determines the order of the time-fractional derivative. When 
α = 1 , the fractional form of the equation reduces to the classical form shown below:

Here the constants c, d, k ∈ R , with r being a positive integer and  k > 0,  the first 
term on the left side, �U

�t
 , indicates the temporal variations of U(x, t) at a fixed location, 

while the first term on the right side, �
2U

�x2
 , represents the spatial variations of U(x, t) at a 

specific time. The remaining terms on the right side, cU − dUr , account for the influence 
of the source term. In this equation, U(x, t) is a function of the spatial variable variable 
x, where t ≥ 0, x ∈ R . The function U(x, t) can be interpreted as the (nonlinear) distribu-
tion of temperature in an infinitely thin and long rod or as the flow velocity of a fluid in 
an infinitely long pipe with a small diameter.

In conclusion, the Newell–Whitehead–Segel equation, within the realm of reac-
tion–diffusion equations, plays a crucial role in understanding various line patterns 
observed in natural phenomena. Its versatile applications span across mathematical, 
chemical, and mechanical physics, as well as in bioengineering and fluid mechanics.

Over the past few decades, various methods have been employed to investigate the 
classical Newell–Whitehead–Segel equation, including differential transform (Aasaraai 
2011), reduced differential transform (Keskin and Oturanç 2009), Adomian decomposi-
tion (Pue-on 2013), Homotopy perturbation (Singh and Kumar 2012), variational itera-
tion (Prakash et  al. 2019), finite difference scheme (Hilal et  al. 2020), and many oth-
ers. Furthermore, several analytical (Areshi et al. 2022) and approximate solutions have 
been proposed for solving this fractional equation.

In this study, we apply a method that consists of using Caputo–Fabrizio operator in 
combination with the Adomian decomposition method and the Laplace transform to 
solve the fractional form of the Newell–Whitehead–Segel equation. This new method 
overcomes the diffuculties of applying the methods on fractional terms. By the help 
of Laplace transformation, we don’t need any discretization or normalization functions. 
With contrast to other methods this procedure makes evaluations easier and more con-
venient. Combination of the Adomian polynomials and Laplace transformation gives 
us a great chance to get the semi analytical solutions of nonlinear fractional partial dif-
ferential equations. In general, this method can be used to find approximate analytical 
solutions for many linear and nonlinear fractional PDEs.

Definition 2.1 Let a, b, α ∈ R, b > a, a ∈ [−∞, t) , f ∈ H1(a, b), α ∈ [0, 1] (Al-Refai and 
Pal 2019). The Caputo–Fabrizio fractional derivative of order � respect to time variable is 
defined by

(2)𝜕αU

𝜕tα
= k

𝜕2U

𝜕x2
+ cU − dUr, 0 < α ≤ 1

(3)�U

�t
= k

�2U

�x2
+ cU − dUr,
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where N(α) is a normalization function such that N(0) = N(1) = 1 . This derivative will be 
zero if f(t) is constant, as in Caputo–Fabrizio fractional derivative, the kernel does not have 
a singularity for t = τ.

Definition 2.2 The Laplace transform of Caputo–Fabrizio derivative, is given as:

Hence, from the convolution property of the Laplace transform (Caputo and Fabrizio 
2015), we have:

2  Brief description of the considered method

Let us illustrate the main steps of this method on the following fractional PDE’s in general 
operator form

where CFDα

t
 is the Caputo–Fabrizio fractional differential operator of order α in t , Dn

x
 is the 

highest order linear classical derivative operator in x , respectively, R(u(x, t)), N(u(x, t)) cor-
responds to linear, nonlinear operator in x , and and g(x, t) is the non-homogenous term.

Applying the Laplace transform to Eq. (7) with respect to t , it becomes,

From the Laplace transformation of Caputo–Fabrizio fractional derivatives, Eq.  (8), 
yields the following equation:

If the above Eq. (9) is simplified, then

Taking inverse Laplace transform on both sides of Eq. (10), we get

(4)CFD
α

t
f(t) =

N(α)

1 − α∫
t

a

f
�

(τ)e
−

α(t−τ)

1−α dτ,

(5)L

[
CFD

α

t
f(t)

]
=

1

1 − α

∞

∫
0

e−st

t

∫
0

f
�

(τ)e
−

α(t−τ)

1−α dτdt.

(6)
L
[
CFD�

t
f(t)

]
=

1

1 − �
L
[
f�(�)

]
L

[
e
−

�t

1−�

]

=
sL[f(t)] − f(0)

s + �(1 − s)
.

(7)
CFD

α

t
u(x, t) + Dn

x
u(x, t) + R(u(x, t)) + N(u(x, t)) = g(x, t) t > 0, x > 0,

0 < α ≤ 1, u(x, 0) = h(x),

(8)L

[
CFD

α

t
u
]
= L

[
g(x, t)

]
− L

[
Dn

x
u
]
− L[R(u) + N(u)].

(9)
sL[u] − u(0)

s + α(1 − s)
= L

[
g(x, t)

]
− L

[
Dn

x
u
]
− L[R(u) + N(u)].

(10)L[u] =
1

s
u(x, 0) +

s + α(1 − s)

s

(
L
[
g(x, t)

]
− L

[
Dn

x
u
]
− L[R(u) + N(u)]

)
.
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Now, according to the ADM, we represent solution as an infinite series given below.

and the nonlinear part can be decomposed as

Here,

By substituting Eqs. (12)−(14) in Eq. (11), we have:

By comparing both sides of the Eq. (15), we get the following iterative algorithm

As it is seen from the brief description of the method, we don’t need any discretization 
or normalization for fractional term. This procedure makes calculations less complicated 
and we don’t make one more evaluation for reduction of fractional term.

Laplace decomposition method is used to get the solutions of nonlinear homogeneous and 
non-homogenous advection equations by Khan and Austin (Khan and Austin 2010). Jafari 
et al. (2011) employed Laplace decomposition method to achieve the solutions for fractional 
diffusion–wave equations. Also, Kumar et al. used (Kumar et al. 2014) modified version of 
Laplace decomposition method to get the exact solution of fractional Navier–Stokes equation. 
Numerous studies have been conducted to evaluate the utility and precision of this derivative 
(Caputo and Fabrizio 2015; Rosales García et  al. 2018; Kanchana et  al. 2020; Newell and 
Whitehead 1969; Latif et al. 2020; Ayata and Ozkan 2020; Prakash et al. 2019; Aasaraai 2011; 
Keskin and Oturanç 2009; Pue-on 2013; Singh and Kumar 2012; Hilal et  al. 2020; Areshi 

(11)

u(x, t) = L
−1
[
1

s
u(x, 0)

]
+ L

−1

[
s + α(1 − s)

s

(
L
[
g(x, t)

]
− L

[
Dn

x
u
]
− L[R(u) + N(u)]

)
]

.

(12)u(x, t) =

∞∑

m=0

um(x, t),

(13)N(u(x, t)) =

∞∑

m=0

Am.

(14)Am =
1

m!

dm

dλm

[

N

(
m∑

i=0

λiui

)]||||||λ=0

,m = 0, 1, 2, 3,…

(15)

∞∑

m=0

um = L
−1
[
1

s
u(x, 0)

]
+ L

−1

[
s + α(1 − s)

s
L
[
g(x, t)

]
]

− L
−1

[
s + α(1 − s)

s
L

[

Dn
x

∞∑

m=0

um

]]

− L
−1

[
s + α(1 − s)

s
L

[

R

(
∞∑

m=0

um

)

+

∞∑

m=0

Am

]]

.

(16)u0 = L
−1
[
1

s
u(x, 0)

]

(17)
um+1 = L

−1

[
s + α(1 − s)

s
L
[
g(x, t)

]
]

− L
−1

[
s + α(1 − s)

s
L
[
Dn

x
um

]
]

− L
−1

[
s + α(1 − s)

s
L
[
R
(
um

)
+ Am

]
]

, m = 0, 1, 2, 3,… .
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et al. 2022; Al-Refai and Pal 2019; Ilie et al. 2018a, 2018b; Eslami et al. 2021; Ali et al. 2019; 
Jaradat et al. 2018; Alquran et al. 2021, 2020; Alquran 2023; Alquran and Jaradat 2019; Cabré 
and Cinti 2014; Rahimkhani and Ordokhani 2020; Shatnawi et al. 2021; Khudair 2013; Jas-
sim 2015; Khan et al. 2019; Eltayeb and Mesloub 2020; Geng and Cui 2011; Nourazar et al. 
2013; Losada and Nieto 2015; Kanth and Garg 2018; Prakash and Kumar 2016). In order to 
enhance accuracy and convergence in solving equations, the literature encompasses various 
modifications and hybrid methods, incorporating different transforms. Examples include the 
conformable Laplace decomposition method (Ayata and Ozkan 2020), double Laplace (Khan 
et  al. 2019; Eltayeb and Mesloub 2020), a combination of reproducing kernel method and 
Adomian (Geng and Cui 2011), Fourier Transform Adomian decomposition (Nourazar et al. 
2013), and a combination of Adomian and reproducing kernel method (Geng and Cui 2011). 
In this study, we apply the Laplace transform in conjunction with the Adomian method to 
address linear and nonlinear fractional equations, with the aim of achieving improved results.

3  New application of the considered method

The effectiveness of this algorithm will be demonstrated by using some examples of linear 
and nonlinear version of fractional Newell–Whitehead–Segel equation.

Example 3.1 Consider the homogeneous time-fractional Newell–Whitehead–Segel equa-
tion below (Prakash and Verma 2019),

with initial condition

Applying the Caputo–Fabrizio fractional operator of order 0 < 𝛼 ≤ 1 , and taking the 
Laplace transform with respect to t,

Base on the Def. (2.2) about the Laplace transformation of Caputo–Fabrizio fractional 
derivatives, it turns into,

By simplifying the Eq. (21), it becomes,

Applying inverse Laplace transform for Eq. (22), we get

Now, by applying the Adomian Decomposition method, as explained in Eq.  (12), the 
Eq. (23) transforms into as follow.

(18)Dα
t
u(x, t) = D2

x
u(x, t) − 2u(x, t), 0 < α ≤ 1

(19)u(x, 0) = ex.

(20)L
[
CFDα

t
u(x, t)

]
= L

[
D2

x
(x, t)

]
− L[2u(x, t)].

(21)
sL[u(x, t)] − u(x, 0)

s(1 − α) + α
+ 2L[u(x, t)] = L

[
D2

x
(x, t)

]
.

(22)L[u(x, t)] =
ex

s(3 − 2α) + 2α
+

s(1 − α) + α

s(3 − 2α) + 2α
L
[
D2

x
(x, t)

]
.

(23)u(x, t) =
exe

−
2αt

3−2α

3 − 2α
+ L

−1

[
s(1 − α) + α

s(3 − 2α) + 2α
L
[
D2

x
(x, t)

]
]

.
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By comparing both sides and taking the iterative algorithm, in Eq. (16) and Eq. (17), it 
becomes:

Hence, the u(x, t) can be expressed as:

Example 3.2 Consider the following fractional Newell–Whitehead–Segel equation with 
quadric nonlinearity (Jassim 2015)

with the initial condition

where ρ is arbitrary constant, and Dα
t
 is the Caputo–Fabrizio fractional operator of order 0 

< α ≤ 1.

By applying the Laplace transform of Caputo–Fabrizio fractional Eq. (30),

(24)
∞∑

m=0

um =
exe

−
2αt

3−2α

3 − 2α
+ L

−1

[
s(1 − α) + α

s(3 − 2α) + 2α
L

[

D2
x

∞∑

m=0

um

]]

.

(25)u0 =
e
x−

2 αt

3−2α

3 − 2α
,

(26)u1 = t
e
x−

2 αt

3−2α

(3 − 2α)2
,

(27)u2 =
1

2!
t2

e
x−

2 αt

3−2α

(3 − 2α)3
,

(28)u3 =
1

3!
t3

e
x−

2 αt

3−2α

(3 − 2α)4
.

(29)

u(x, t) = u0 + u1 + u2 + u3 +…

=
e
x−

2 αt

3−2α

3 − 2α
+ t

e
x−

2 αt

3−2α

(3 − 2α)2
+

1

2!
t2

e
x−

2 αt

3−2α

(3 − 2α)3
+

1

3!
t3

e
x−

2 αt

3−2α

(3 − 2α)4
+…

=
e
x−

2 αt

3−2α

3 − 2α

[

1 +
t

3 − 2α
+

t2

2!(3 − 2α)2
+

t3

3!(3 − 2α)3
+ ...

]

=
1

3 − 2α
e
x−

2 αt

3−2α e
t

3−2α

=
e
x−

t(2α−1)

3−2α

3 − 2α
.

(30)Dα
t
u(x, t) = 5D2

x
u(x, t) + 2u(x, t) + u2(x, t), 0 < α ≤ 1.

(31)u(x, 0) = ρ,

(32)L
[
CFDα

t
u(x, t)

]
= L

[
5D2

x
(x, t)

]
+ L[2u(x, t)] + L

[
u2(x, t)

]
,
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while considering the initial condition Eq. (31), we obtain

By simplifying Eq. (33), we get

Taking inverse Laplace transform for Eq. (34), we get

Following the ADM method in Sect. (2.3), the following relation is obtained,

where Am(x) is transformed form of the nonlinear terms, u2(x, t) , and the first nonlinear 
terms are given as

and so on.
Now, applying the iterative algorithm in Eq. (16) and Eq. (17) for Eq. (36), it gives

Therefore, the series solution is given as

(33)
sL[u(x, t)] − u(x, 0)

s(1 − α) + α
= L

[
5D2

x
(x, t)

]
+ L[2u(x, t)] + L

[
u2(x, t)

]
.

(34)

L[u(x, t)] =
ρ

s(2α − 1) − 2α
+

5(s(1 − α) + α)

s(2α − 1) − 2α
L
[
D2

x
u
]
+

s(1 − α) + α

s(2α − 1) − 2α
L
[
u2(x, t)

]
.

(35)

u(x, t) =
ρe

2αt

2α−1

2α − 1
+ L

−1

[
5(s(1 − α) + α)

s(2α − 1) − 2α
L
[
D2

x
u
]
]

+ L
−1

[
s(1 − α) + α

s(2α − 1) − 2α
L[u2(x, t)

]

.

(36)

∞∑

m=0

um =
ρe

2αt

2α−1

2α − 1
+ L

−1

[
5(s(1 − α) + α)

s(2α − 1) − 2α
L

[

D2
x

∞∑

m=0

um

]]

+ L
−1

[
s(1 − α) + α

s(2α − 1) − 2α
L

[
∞∑

m=0

Am

]]

,

(37)

A0 = u2
0
,

A1 = 2u0u1,

A2 = 2u0u2 + u2
1
,

A3 = 2u0u3 + 2u1u2

(38)u0 = ρ
ρe

2αt

2α−1

2α − 1
,

(39)u1 = −
(
1

2

)
ρ2

e
2αt

2α−1

(2α − 1)3

[
(2α − 3)e

2αt

2α−1 + 1
]
,

(40)u2 =
(
1

2

)2

ρ3
e

2αt

2α−1

(2α − 1)5

[
(2α − 3)(4α − 5)e

4αt

2α−1 + 2((2α − 3))e
2αt

2α−1 + (2α − 1)
]
,

(41)

u3 = −
(
1

2

)3

ρ4
e

2�t

2α−1

(2α − 1)7

[
(2α − 3)(6α − 7)(10α − 13)

3
e

6�t

2α−1 + 3(2α − 3)(4α − 5) e
4�t

2α−1

+
(2α − 3)(10α − 13) + 30(α − 1)

3

]
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4  Results and discussion

In Table 1, the 4-order approximate solutions of the fractional Newell–Whitehead–Segel 
equation, the Ex. (3.1), are numerically compared with the exact solution in (Prakash 
et al. 2019) for α = 1 at x = 1.

Also, in Ex. (3.2) By letting α = 1 and ρ = 1 , the fifth and sixth the solutions are:

Then, in Table 2, the solution of our implemented method has been compared with 
the exact solution in (Singh and Kumar 2012) by considering α = 1 at ρ = 1.

The given tables show that the error values are in acceptable limits.
The graphs represent 3-step semi-analytical solutions of u(x, t) for various values of 

α.

(42)

u(x, t) = u0 + u1 + u2 + u3 +…

= �
e

2αt

2α−1

2α − 1
−
(
1

2

)
�2

e
2αt

2α−1

(2α − 1)3

[
(2α − 3)e

2αt

2α−1 + 1
]

+
(
1

2

)2

�3
e

2αt

2α−1

(2α − 1)5

[
(2α − 3)(4α − 5)e

4αt

2α−1 + 2(2α − 3)e
2αt

2α−1 + 2α − 1
]

−
(
1

2

)3

�4
e

2αt

2α−1

(2α − 1)7

[
(2α − 3)(6α − 7)(10α − 13)

3
e

6αt

2α−1 + 3(2α − 3)(4α − 5)e
4αt

2α−1

+
(2α − 3)(10α − 13) + 30(α − 1)

3

]

+…

(43)u4 =
e2t

16
−

e4t

4
+

3e6t

8
−

e8t

4
+

e10t

16

(44)u5 = −
e2t

32
+

5e4t

32
−

5e6t

16
+

5e8t

16
−

5e10t

32
+

e12t

32

Table 1  The numerical values of the Exact solution and 4-term semi-analytical solutions when x = 1 and 
α = 1

t By implemented method Exact solution |||
uexact − uexpressedmethod

|||

� = 1

0.01 2.691234471 2.691234472 1.1124 × 10
−9

0.02 2.664456224 2.664456241 1.7481 × 10
−8

0.03 2.637944372 2.637944459 8.6920 × 10
−8

0.04 2.611696203 2.611696473 2.6981 × 10
−7

0.05 2.585709012 2.585709659 6.4698 × 10
−7
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Figure 1, which pertains to Example (3.1), compares our semi analytical solution for 
α = 1 with the exact solution for Eqs. (18) at t = 1 . Additionally, Fig. 2 presents graphs 
comparing solutions for Eqs. (18) at x = 1.

Figure 3, related to Ex. (3.2), compares our semi analytical solution and exact solu-
tion for Eqs. (30) when α = 1 and ρ = 1.

These tables and figures assess the accuracy of the derived solution for u(x, t) through 
graphical validation and illustrate how the physical behavior of the solution is influ-
enced when orders of derivatives change. Additionally, they demonstrate that the exact 
solution obtained from (Prakash et al. 2019; Singh and Kumar 2012) and the semi-ana-
lytical results gained through this implemented method overlap with each other when 
� = 1 . This implies that as α converges to the first derivative, the obtained approximate 
solution seamlessly aligns with the exact solution.

Figure 4, related to Ex. (3.1), illustrates how the physical behavior of the solution is 
affected by changes in derivative orders. The graphs represent 3-step semi-analytical 
solutions of u(x, t) for various values of α . It indicates that obtained exact solution from 
(Prakash et  al. 2019) and gained semi-analytical results by this implemented method 
overlap with each other when α = 1.

Figure  5, related to Ex. (3.1), compares our semi analytical solution for α = 1 and 
exact solution for Eqs. (18) when x = 1 and α = 1

Table 2  The numerical values of the Exact solution and 4-term semi-analytical solutions when ρ = 1 and 
α = 1

t By implemented method Exact solution |
|
|
uexact − uexpressedmethod

|
|
|

� = 1

0.01 1.030611204 1.030611203 2.9250 × 10
−10

0.02 1.062491317 1.062491320 3.8813 × 10
−9

0.03 1.095714104 1.095714135 3.16191 × 10
−8

0.04 1.130359080 1.130359220 1.4010 × 10
−7

0.05 1.166512045 1.166512514 4.6910 × 10
−7

Fig. 1.  2D-Plots graphs of the 
3-term semi analytical solutions 
and exact solution for Eqs. (18) 
when t = 1
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Figure  6, related to Ex. (3.2), illustrates how the physical behavior of the solution is 
affected by changes in derivative orders. The graphs represent semi-analytical solutions of 
u(x, t) for α and ρ = 12 . It indicates that obtained exact solution from in (Singh and Kumar 
2012) and our semi-analytical results by this implemented method overlap with each other 
when α = 1.

Figure 7, related to Ex. (3.2), compares our semi analytical solution and exact solution 
for Eqs. (30) when α = 1 and ρ = 1 , 12.

5  Conclusion

In this work, Laplace transform with the Adomian Decomposition technique was success-
fully applied for solving fractional Newell–Whitehead–Segel equation. Indeed, the results 
show that using Caputo–Fabrizio derivative combined with Laplace transform and Ado-
mian is a powerful and easy mathematical tool for finding semi-analytical solutions which 
are accurate. The obtained solutions were compared with exact solutions and also with 
other existing solutions in the references. The performance of the approach showed the 
obtained solutions for the first four terms was very precise and converged rapidly to the 
exact solutions.

Fig. 2.  2D-Plots graphs of the 
3-term semi analytical solutions 
and exact solution for Eqs. (18) 
for x = 1

Fig. 3.  2D-Plots graphs of the 3-term semi analytical solutions and exact solution for Eqs. (30) for � = 1
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It assures us that the implemented technique is a reliable and promising method for 
solving other fractional PDEs that have been favored domains for scientists working on 
mathematical models arising in physics, biology, and other real-life phenomena.

Fig. 4.  3D-Plots graphs of the 3-term semi analytical solutions and exact solution for Eqs. (18)

Fig. 5.  2D-Plots graphs of com-
parison solutions of Eqs. (18) for 
x = 1 and � = 1

4 6 8 10
t

0.5

1.0
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2.0
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u
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As a future research direction, the utilized method can be further developed to han-
dle fractional order problems in various linear and nonlinear phenomena. We are keen 
on applying this method to other fractional equations, including equations of diffusion 
equations (Cabré and Cinti 2014), viscoelastic (Rahimkhani and Ordokhani 2020), 
oscillator (Shatnawi et al. 2021), Euler equations (Khudair 2013), and more.
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Fig. 6.  3D-Plots graphs of 
analytical solutions and exact 
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