
Received 8 December 2023, accepted 26 January 2024, date of publication 30 January 2024, date of current version 7 February 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3360217

Can There Be a Two Way Hash Function?
TIMUCIN KOROGLU 1 AND REFIK SAMET 2
1Computer Programming Department, Pamukkale University, 20600 Denizli, Turkey
2Department of Computer Engineering, Ankara University, 06830 Ankara, Turkey

Corresponding author: Timucin Koroglu (tkoroglu@pau.edu.tr)

ABSTRACT It is computationally impossible for one-way hash functions to obtain the original data again.
In this study, Two Way Hash Function (TWHF) is proposed which provides the security properties of one-
way hash functions. TWHF aims to hash/encrypt and decrypt input data of arbitrary length. This allows data
to be encrypted or decrypted regardless of its size. The proposed method uses iteration-key and secondary-
key to ensure confidentiality. In the study, strong hints were obtained that TWHF fulfils the security
properties of one-way hash functions. TWHF stores the original data as small bit sets in a generated decimal
number pattern. The last decimal number of the generated decimal number pattern is the hash code and
the encrypted data. The contribution of the work is to propose an original data change function, data/block
classification and workflow, and a functional method that has not yet been studied in the literature. The
results show that the hashing/encryption process works consistently and that on average 99.83% of the data
is decrypted smoothly in the decryption process.

INDEX TERMS Cryptology, hash functions, one way hash functions, steganography, two way hash
functions.

I. INTRODUCTION
The increasing number of internet users shows that internet
technology has become one of the most fundamental needs
of global society, especially in the areas of communication,
data storage, and data access. Today, when the number of
individual internet users in the world has reached 66%, the
amount of data generated in parallel with this has reached
very large dimensions [1]. Research shows that in the digital
world, where each person generates 17 megabytes of data
daily, the total amount of daily data generated is over
2.5 quintillion bytes [2]. This situation leads to problems in
data storage and transmission.

The first Parkinson’s law states that an increase in data
storage and transmission capacity doubles the need for
data storage and transmission. Technology and devices are
constantly being developed. Despite this development, they
cannot respond to the growth rate of data. Therefore, there
are problems with storing and transmitting big data with
high accuracy [3]. Numerous studies have been conducted
in the areas of data compression, hashing, and cryptography
to solve this problem. Partial solutions to existing problems

The associate editor coordinating the review of this manuscript and

approving it for publication was Derek Abbott .

were found in these study areas. However, a reversible
cryptographic hash function that combines the functions of
the three fields to digest and compress the original data to
bit levels has not yet been reported. The fact that a single
algorithm can fulfill these functions by combining them
is worth investigating. It is thought that a two-way hash
function may be the methodology that can solve the problems
mentioned here and the article focuses on this issue.

The current state of data compression, hash functions, and
cryptographic algorithms in the literature can be summarized
as follows:

Data compression algorithms aim to reduce the size of data
compared with their original size by exploiting patterns that
exist between data. Although data compression algorithms
are highly advanced, the relationship between the original
data length and the compressed data length is not the same as
that in hash functions. Gupta and Nigam [4], in their research
on popular lossless data compression algorithms, found that
these algorithms provide an average space saving of 65.21%.
These statistics indicate that the output lengths of lossless
compression algorithms are considerably larger than the
length of summary data provided by a hash function. In hash
functions, regardless of the size of the input data, the output
data are bit level and fixed length. In today’s world, where

18358

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-0674-8277
https://orcid.org/0000-0001-8720-6834
https://orcid.org/0000-0002-0945-2674

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

information is transformed into digital data, data security
has become an important problem because of the increase
in transmitted data and globalization of networks [5]. Unlike
encryption algorithms, which are two-way, hash functions are
one-way, and even if it is technically possible to hash a hash
code in the reverse direction, computational power makes
this impossible [6]. Therefore, the encryption and decryption
of data are performed using cryptographic algorithms. With
respect to the size of the input and output data in symmetric
cryptographic algorithms, the size of the encrypted data is
equal to that of the original data.

In this paper, it is aimed to convert a data of arbitrary
size into a bit-level and fixed-length encrypted data. In this
context, Two Way Cryptographic Hash Function, which can
have data summarization functions, such as hash functions,
and encryption functions, such as symmetric crypto algo-
rithms, is proposed, and the concepts, functions, operations,
limitations, and results of TWHF are presented.

TWHF is based on a decimal number model iteratively
generated using change and reduction functions. All the input
data to be hashed and encrypted are stored as small sets of bits
in the appropriate decimal numbers in the number pattern.
The length of the binary equivalents of the decimal numbers
forming the number pattern is 52 bits. This can be explained
as follows:

The decimal part of the decimal numbers can be a
maximum of 60 bits in Python language coded to test the
workflow of the proposed method and to provide statistical
data. The length of the decimal part required for the stable
operation of the system was determined to be 28 bits. The
relationship between the length of the integer part of the
decimal number and that of the decimal part is given by (3).
According to (3), when the decimal part is 28 bits, the integer
part must be 24 bits. In this case, the entire decimal data is
24+28 = 52 bits long.

In TWHF, the binary equivalent of the last decimal number
of the pattern is both the hash code and the ciphertext.
Accordingly, regardless of the input length, the output is
always 52 bits. In the decryption process, in which the last
decimal number is the initial data, the pattern is regained by
taking the inverse of the functions in the encryption/hash code
generation process, and a hidden message is extracted from
the pattern.

TWHF can be used in many fields such as data
compression, data storage, cryptology, data digestion, and
steganography. Considering only the function of the method
in image steganography, it can provide the function of
transmit large amounts of data with minimum distortion that
may occur in the cover image, thereby increasing the success
of data transmission with steganographic methods [7].

TWHF methodology includes several concepts, functions,
and operations. The change function, which is an important
element of the TWHF, was originally developed. The change
function can be used not only in the proposed method
but also in many other areas where pseudo-random data

generation is important. In this study, decimal data were
divided into four different data types according to their
functions and structures, and meanings were attributed to
each of them according to their functions. These types of
data can be evaluated in future studies in various fields.
In addition to the classification of the data, the data blocks
were classified according to their functions to ensure the
stable operation of the process. The block classification is
another contribution of this study to the literature. In addition,
it has been demonstrated by various tests that TWHF can have
the security properties of one-way hash functions.

The remainder of this paper is organized as follows.
Section II is described the background of this study. The
methods proposed in the literature on cryptographic hash
functions are evaluated in Section III. In Section IV,
definitions of the proposed methodology, functions used, and
operation of the method are described in detail. In Section V,
TWHF and one-way hash functions are compared in terms
of their security properties. Section VI describes the areas
of possible applications of TWHF. Test results are given in
Section VII and discussed in Section VIII. Conclusion is
presented in Section IX.

II. BACKGROUNDS
Data security refers to the processes used to protect data
throughout its lifecycle from modification and unauthorized
access [8].
Several technologies and methods have been developed for

ensuring security. Cryptography is one of the most secure
technologies for this purpose [9]. Cryptography is the art
of hiding text and dates back to Roman times and today.
Its aim is to secure information [10]. Cryptography uses
computer science and mathematics to fulfill these goals.
Fig. 1 shows how secure message transmission over an
insecure channel should occur against third-party attacks.
Alice and Bob are authorized to see the message content for
secure communication. Eve and Mallory are third parties and
are not authorized to see the content of the message.

FIGURE 1. Cryptography functioning block diagram.

VOLUME 12, 2024 18359

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

Currently, two different schemes, symmetrical and asym-
metrical, are accepted.

According to the symmetric scheme, Alice and Bob must
have the same keys to encrypt the messages. This key must
be exchanged over a secure channel before communication.
The asymmetric scheme originated in 1976 with Diffie–
Hellman’s concept of key exchange. According to this
scheme, Alice and Bob must have two keys, private and
public. A public key can be shared among anyone. Bob
encrypts the message sent by Alice by using a public key.
However, Alice can decrypt the message fromBob using only
her private key [11].

Cryptography has other functions besides encrypting and
decrypting data. These are listed below.

Authentication: This is the process of providing an identity
for private resources that only authorized persons can access
using a key.

Confidentiality: The main goal of cryptography. This
guarantees that the message reaches only authorized persons
using the key.

Data Integrity: This process of ensuring that data can only
be changed by groups or individuals who have access to it.
Consistency and accuracy of the data throughout the life cycle
were ensured.

Non-repudiation: This is the process by which both the
sender and the receiver confirm that the message they are
communicating has been transmitted and delivered by them.
In this case, the sender is obliged to acknowledge that
they have transmitted the message and that the receiver has
received it [12].

Fig. 2 shows the cryptography classification [13]. This
classification system comprises three main techniques. These
are the symmetric, asymmetric, and cryptographic hashing
algorithms, respectively.

FIGURE 2. Classification of cryptography.

Symmetric encryption algorithms such as the Data Encryp-
tion Standard (DES), Rivest Cipher 2 (RC2), RC4, Blowfish,
RC5, RC6, and Advanced Encryption Standard (AES) are
the oldest and simplest. The main disadvantage of these
algorithms is that the sender and receiver use a single
secret key for encryption and decryption, respectively. The
reason for this disadvantage is that attackers can eavesdrop
on the communication channel and it is possible to obtain
it when changing the secret key. Symmetric encryption

requires a secure communication channel, such that the key
can be exchanged. In contrast to symmetric encryption,
asymmetric encryption algorithms, such as the Digital
Signature Algorithm (DSA), Rivest-Shamir-Adleman (RSA),
and Elliptic Curve Cryptography (ECC) use two keys. These
are the public and private keys [14].

In encryption methods, the relationship between the key
and the encrypted data must be strong. Shannon’s theory
explains the importance of confusion and diffusion in this
relationship. Confusion refers to making it difficult to
estimate the statistical relationship between the original
data and encrypted data. Diffusion is the homogeneous
distribution of the original data to encrypted data [15]. The
strength of encryption is directly proportional to the success
of the confusion-diffusion complexity and randomness of
the keys. Hash functions are commonly used in encryption.
It plays an important role in converting keys to fixed lengths
and increasing security [16]. Hash algorithms transform
messages into irreversible forms by using mathematical
operations. The message used as input cannot be obtained
again using hash outputs [17].

A. SYMMETRIC ENCRYPTION
Symmetric cryptography covers two broad cryptography
families: block ciphers and stream ciphers. Both of these
are widely used in encryption schemes. However, their data-
encryption methods are quite different.

In stream cipher algorithms, each bit is separately
encrypted. There are two types of stream ciphers, syn-
chronous and asynchronous. In a synchronous stream cipher,
the output of the key-stream generator and plaintext data is
processed to produce ciphertext. If the output, shown by the
dotted lines in Fig. 3, is returned to the keystream generator
as input and participates in key generation, then the type of
encryption is asynchronous.

A block cipher encrypts data with fixed lengths of n
bits. The blocks are typically 64, 128, and 256 bits in
length. Block cipher algorithms are iterative algorithms that
convert plaintext data blocks into encrypted blocks of fixed
length. Block cipher algorithms are divided into two groups
according to their internal structure: Substitution Permutation
Networks (SPNs) and Feistel networks [18]. Some block
cipher algorithms in the literature are as follows.

FIGURE 3. Stream cipher working principle block diagram.

18360 VOLUME 12, 2024

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

DES is a typical example of a symmetric encryption
algorithms that use a 56-bit long key. The DES algorithm
uses two inputs. These are the plaintext and key data. The
plaintext and key lengths are 64 bits. However, 56 bits of keys
are used in the encryption functions. The remaining eight bits
are parity bits. Fig. 4 shows a block diagram of the DES
algorithm.

DES is not considered secure because of its short key
length. DES encryption algorithms have been replaced by
another symmetric encryption algorithm, AES [19].
The AES algorithm, which is not only secure, but also very

fast, can be used in both hardware and software applications.
AES completes the 128-bit data-encryption process in 10, 12,
or 14 cycles. The number of cycles depends on the length
of the key used. AES, which has successfully passed many
security tests, is used on different platforms, particularly
small devices [20].

FIGURE 4. Block diagram of DES algorithm.

The Blowfish symmetric encryption algorithm was devel-
oped by Schneier in 1993 to replace DES and the Inter-
national Data Encryption Algorithm (IDEA). The Blowfish
algorithm uses keys ranging in length from 32 bits to 448 bits.
It encrypts faster than the DES algorithm [21].

B. ASYMMETRIC ENCRYPTION
Asymmetric encryption algorithms use different keys for
both encryption and decryption. The public key is used
for encryption and the secret or private key is used for
decryption. In the encryption process, plaintext and ciphertext
must be encoded as integers. Similarly, during decryption,
an integer is converted into a message. The mathematical
functions shown in (1) and (2) are applied to these integers
for encryption and decryption.

Ciphertext,C = f (publickey,P). (1)

Plaintext,P = g(privatekey,C). (2)

Function f is used for encryption and function g is used for
decryption. Function f is a one-way function that prevents
attackers from decrypting and allows the receiver to securely
receive the message [22].

Some asymmetric encryption algorithms in the literature
are as follows.

In 1978, Rivest, Shamir, and Adleman designed one of the
best-known asymmetric cryptosystem algorithms, RSA. The
RSA is used for key exchange, digital signing, and encryption
of block data [23]. The Diffie-Helman algorithm was the first
asymmetric encryption algorithm. This model was designed
by Diffie and Hellman (1976). This algorithm is also known
as DH algorithm. The DH algorithm is often used in key
exchange applications for message encryption and decryption
in insecure communication networks [24].

C. HASH FUNCTIONS
A cryptographic hash function is a one-way function that
converts an input of arbitrary length into an output of fixed
length. The output is often referred to as a ‘‘hash value.’’ The
general scheme of the cryptographic hash function is shown
in Fig. 5 [25].

FIGURE 5. Block diagram of hash function.

Cryptographic hash functions are used in many impor-
tant applications such as digital signatures, data integrity,
password protection, random number generation, and authen-
tication protocols. An error in the hash functions used inmany
applications negatively affects the applications in which they
are used [26].

Applications are developed based on different properties of
hash functions. The three basic properties of a hash function
are as follows.

Pre-image resistance: Given code h as the output of a hash
function, it is computationally impossible to find any input x
using hash function H(x).

Second pre-image resistance: Given m as the input to
a hash function, the equation H(y)=H(m) should not be
computable for an input y different from m, which yields the
same output.

Collision resistance: When pairs of values (x,y) are
accepted as inputs, no input pair should provide equality
H(x) = H(y) [27].
A block diagram of the hash function security properties is

shown in Fig. 6. The common hash functions in the literature
are as follows.

The Merkle Damgard structure, designed by Merkle and
Damgard in 1989, is used by widely used hash functions
such as Message Digest 5 (MD5), Secure Hash Algorithm-1
(SHA-1), and Secure Hash Algorithm-2 (SHA-2). In the
Merkle Damgard structure, which uses an iterative compres-
sion function, a message is divided into fixed-length blocks.
The blocks are processed sequentially using the compression
function h [28]. The Merkle Damgard structure requires an

VOLUME 12, 2024 18361

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

FIGURE 6. Hash function security properties.

initial vector (IV). The initial data are used to process the
first block. The output of each block is processed in the next
block. After the last block of the message is processed, the
final output is obtained [29].

The MD5 algorithm was designed by Rivest et al. It
produces a 128-bit long hash output [30].

The SHA-1 hash algorithm was designed by the National
Institute of Standards and Technology (NIST) in 1995. The
biggest factor in the design of this algorithm is security
concerns regarding the SHA-0 algorithm. SHA-1 gives a
160 bit long hash output. This output is the result of 80 rounds
of processing functions in the SHA-1 structure [31].

SHA-2 hashing algorithms are classified into SHA-256
and SHA-512 variants, which operate with words of different
lengths. The SHA-256 algorithm accepts 32 bit long words
as input, whereas the SHA-512 algorithm accepts 64 bit
long words as input. Other differences were also observed
between the groups. These are the fixed parameters and
initialization values. There are four additional versions of
the SHA-2 family: SHA-224, SHA-384, SHA 512/224,
and SHA 512/256. These hashing algorithms differ in
their initialization and output length. However, their basic
structures are identical. According to this information, it can
be said that the SHA-2 hash algorithm family is based on the
SHA-256 and SHA-512 algorithm structures [32].

The SHA-3 algorithm was developed by Bertoni and his
team. In 2015, NIST announced this algorithm, which offered
a new structure. Unlike other members of the SHA family,
this algorithm, called Keccak, uses a sponge structure instead
of a Merkle Damgard structure [33].

III. RELATED WORKS
Today, it has become very important for researchers working
in the field of cyber security to offer solutions by investigating
ways to keep data safe against the increasing number of
cyber-attacks owing to the increasing use of communication
and data exchange over the Internet. Many effective methods
against attacks have been proposed and implemented. Related
work can be summarized as follows.

Rajeshwaran and Kumar [34] proposed a cellular-automata
based hashing algorithm in their study. They designed a
strong cryptographic hash function by providing diffusion
and confusion to hash code generated using the proposed
algorithm. Two basic properties of the hash function were
tested to demonstrate the effectiveness of the algorithm.
These are the avalanche effect and possibility of collision.
In this study, these two main features were tested using
two sentences containing only one different letter and

two different keys for the same sentence. According to
the obtained results, the avalanche impact characteristics
and collision probability were strengthened. However, the
evidence that these features were enhanced would be more
illustrative with the use of additional datasets.

Kheshaifaty and Gutub [35] presented a multilayered
system that combines captcha, cryptography, and hash
functions for strong authentication. After confirming the
captcha input, the password was encrypted and hashed using
AES algorithm. For login confirmation, the hash code of
the password must match the code stored in the system.
This study is based on the existing cryptographic algorithms
and hash functions. The proposed method contributes to the
literature by changing only the cryptographic algorithms and
hash function types. No original proposal has been presented
for intermediate layers.

Li and Ge [36] proposed a cryptographic hash function
based on cross-coupled map lattices to enhance the multime-
dia communication security. In this study, the initial values to
be input into the cross-coupled maps were generated using a
linear chaotic map and extended using a matrix to enhance
the correlation between the original message characteristics.
The intermediate hash values of the message blocks were
generated using a matrix, which is the input of the cross-
linked maps. To generate the final hash code, all message
blocks were processed in parallel and intermediate hash
values were processed logically. In this study, the generated
hash codewas tested for collision, confusion, and propagation
properties, which a hash code should have. The results
obtained were statistically better than those of the studies in
this field and only contributed to the improvement of existing
studies.

Ali and Farhan [37] presented an algorithm that strengthens
the MD5 algorithm against attacks by dynamically extending
the output of the MD5 algorithm, which fails against various
types of attacks owing to the small output length in the
range of 128-2,096 bits. The algorithm performs this function
with the help of a key generated using the Linear-Feedback
Shift Register (LFSR) for RNA encoding and the initial
permutation (IP) table of the DES algorithm. The key is
used to generate a random matrix. The results showed that
the MD5 algorithm increased its success against attacks
by increasing its output length. However, after the MD5
algorithm with 128 bit length was presented by Rivest in
1992, many hash functions were produced more successfully
than MD5. The authors did not compare their proposed
algorithm with other hash functions in the literature but only
with the original MD5 algorithm. This makes it unclear how
successful the proposed algorithm is compared with other
algorithms.

William et al. [5] aimed to increase the efficiency of
encryption and decryption using a hybrid algorithm compris-
ing AES, ECC, and SHA-256 algorithms. In the proposed
method, the message was encrypted using an encrypted key
with the ECC algorithm in the AES algorithm. The encrypted
message was summarized using the SHA-256 algorithm

18362 VOLUME 12, 2024

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

and prepared for the receiver. The proposed algorithm
was compared with other algorithms in the literature to
demonstrate that its efficiency was improved. Providing
details of the algorithms compared in this study would
provide a more accurate evaluation of efficiency. In addition,
instead of feeding the outputs of the algorithm directly
to other algorithms, the contribution level of the study
could have been increased by using uniquely developed
intermediate layers.

Abouchouar et al. [38] proposed a hash function that uses
a noniterative structure, which differs from classical hash
functions. The authors argued that classical hash functions in
the literature have the same design model and are vulnerable.
The main differences in the proposed method are that it
does not have an initialization vector and the transformation
operations in its internal structure are based on expansion
rather than compression. In this method, the data entered the
expansion function in parallel blocks. Each function output
was XORed with the output of the next function. The XOR
result of the last expansion function and previous expansion
function yields the final hash code. In this study, theoretical
information was provided that the proposed concept is more
resilient to attacks than the classical hash functions. The
properties of a hash function and its robustness against attacks
must be tested using datasets. The results obtained should
be compared with the hash functions in the literature based
on test data, and the effectiveness of the method should be
proven.

Abroshan [39] proposed a hybrid structure that combines
the Blowfish, EC, and MD5 algorithms with fast and
low memory consumption for cloud computing. Abroshan
encrypted the data with Blowfish and the key with the EC
while ensuring data integrity with MD5. Thus, they have
increased safety and performance in their study. The results
show that the proposed hybrid structure works slower than
the AES algorithm when the data size increases. However,
the resources shared in cloud computing are often extensive
large. In this context, the hybrid structure proposed by the
author needs to be developed.

Wang et al. [40] presented a chaotic image-encryption
algorithm using SHA-256 and an iterative shift. In this study,
a flat grayscale image of size W × H was used as the
input, and an encrypted color image was obtained as the
output. In the SHA-256 algorithm, where the original image
is used as the input, the output is used as the key. Using this
key, six initial values are generated as inputs to the linear
chaotic map. The image is encrypted at the pixel level using
a random sequence obtained from the chaotic map output
and other process operations. The authors developed an
algorithm that is robust to attacks by conducting experiments
and security analysis. However, the analyses showed that
the study produced statistical values close to those of other
algorithms in the literature.

Alotaibi et al. [41] proposed a hybrid structure that
combines a hash function, AES algorithm, and image
steganography techniques for authentication systems on

mobile devices. According to this structure, the hash code
of the password was encrypted using the AES algorithm
in which the username is used as the key. The encrypted
password hash code was embedded in a cover image using
the LSB stego technique. Tests of the proposed structure
were based on the embedding time of the password hash
code generated using different hash functions in the cover
image. However, a comparison of the proposed structure with
other studies in this field would provide better information
regarding the safety of the structure.

Koptyra and Ogiela [42] presented an imagechain structure
as a different type of blockchain. In the imagechain structure,
the block data were embedded in the images. The blocks
consists of JSON-formatted field and value pairs. The most
important element of a block is the hash code of images in the
chain. Each image stores the hash code of its previous image.
Forgery is detected if any of the images in the image chain
structure were removed or changed from the chain.

When the studies were analyzed, it was observed that the
proposed methods were aimed at improving the properties
of the existing cryptographic hash functions. The proposed
studies were aimed at improving collision, confusion and
propagation properties for hash functions, while aiming
at time efficiency, low memory consumption and security
enhancement for data security algorithms. To achieve these
goals, researchers have proposed hybrid systems that com-
bine algorithms from literature. They also made parametric
changes in the intermediate layers of existing primitives.
Most of the work done by researchers on cryptographic hash
functions is aimed at improving existing methods rather than
proposing new ones.

With the TWHF, an original method that has not yet been
studied in the literature is proposed. The proposed method
contains an original function, data classification concepts and
principles, and a workflow that combines them. The main
idea of this method is to generate the hash code of the data
and obtain it again from this hash code. With this feature,
the TWHF is suitable for use in many areas, ranging from
cybersecurity to data storage. The proposed method has the
potential to have a special place among other studies in
the literature with a different perspective on cryptographic
hash functions. The TWHF contributes as an original work,
in contrast to studies in the literature that aim to improve the
statistical values of existing algorithms.

IV. METHOD
In this section, the basic concepts of the TWHF, its functions,
and the operation of the method are explained using block
diagrams and algorithms. Fig. 7 shows the description
sequence diagram of the TWHFmethod. The block consisted
of two parts. The first is to hash and encrypt the original
data, and the second is to obtain the original data from the
encrypted hash code.

An overview of the TWHF method and its functions is
given in Sections IV-A and IV-B respectively. The details of
the functions are explained in Sections IV-C and IV-D. The

VOLUME 12, 2024 18363

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

FIGURE 7. TWHF method description sequence diagram.

four data classes that play an important role in the workflow
of the TWHF and their details are explained in Section IV-E.
After providing the basic information, the hashing/encryption
workflow and TWHF algorithm are detailed in Section IV-F.
The workflow and algorithm for obtaining original data from
the encrypted hash code are presented in Section IV-G.

A. OVERVIEW OF TWHF METHOD
In Fig. 8, data addition (DA), change function (CF), inverse
data change function (ICF), reduction function (RF) and
inverse data reduction function (IRF) are shown in the
general working diagram of the TWHF method. The TWHF
method generates a decimal number pattern that moves in two
directions and performs operations on this number pattern.
In this section, the binary equivalent of a decimal number is
defined as the decimal data.

FIGURE 8. TWHF general operating principle.

The TWHF encryption and hash code generation process
begins with a random decimal data. At this stage of the

process, the change function is applied until it finds a decimal
data that can be reduced according toHuffman encoding. This
part of the TWHF functions like a pseudorandom number
generator. If a appropriate decimal data is found, it is reduced
according to the Hufmann coding, and a portion of the
original data equal to the reduction amount is added to this
decimal data in the form of concatenation. Thus, the decimal
data reaches the original bit length. This process is repeated
until all the bits of the original data are hidden in the number
pattern. The last decimal of the pattern is the encrypted hash
code.

The decryption process of TWHF is implemented by
taking the inverse of the functions applied in the encrypted
hash code generation process. The first decimal data of
this process is the hash code, which is the last data of
the encryption and hash code generation processes. Thus,
the process moves in the opposite direction to that of the
encrypted hash code generation process. The aim is to retrieve
the number pattern and reveal all the bits of the original data
hidden in the pattern.

FIGURE 9. Overview of functions.

B. OVERVIEW OF FUNCTIONS
Fig. 9 details the data reduction, inverse data reduction
functions and data adding-solving operations. The change
function is included in the figure to find other reducible data
and to show that the pattern continues.

The figure assumes that the appropriate decimal data
entering the reduction function is reduced by two bits. The
resulting 2-bit gap is filled with bits d1d2 of the original data.
Thus, the data collection process is completed.

The data decoding process is also included in the figure.
To get the d1d2 data embedded in the decimal data, the inverse
exchange function is applied. At the output of the function,
the added data and the reducible data are obtained again.

C. DATA REDUCTION FUNCTION
Huffman coding is a lossless data compression algorithm
with better results and lower algorithm complexity than
other data compression algorithms [43]. In terms of effi-
ciency, coding-decoding time, compression ratio, etc., tests
conducted between RLE, Shannon-Fano, Huffman, LZW
and Arithmetic Coding lossless compression algorithms
determined that the best performance was achieved by the
Huffman coding algorithm [44]. Therefore, Huffman coding
was used in the TWHF methodology.

18364 VOLUME 12, 2024

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

The Huffman coding is based on a frequency table created
according to the Huffman coding tree. In the proposed
method, the bit sequences to be reduced are treated as groups
of two. In this case, the groups can take 22 = 4 values. These
are (00)2, (01)2, (10)2 and (11)2. Assigning symbols to these
values facilitates the use of a Huffman coding tree. Symbols
form letters. The associated codes and symbols are presented
in Table 1.

TABLE 1. Codes and letter symbols.

The symbolic representation of the data (00 00 00 00 00
10 10 11 01)2 divided into groups of two is ‘‘aaaaaccdb.’’
Huffman coding is effective for high-frequency data [45].
Success in reducing data length depends on the fact that long
data blocks within the data are described with few symbols,
and short data blocks with many symbols.

TABLE 2. Frequence table.

The frequency table in which the values obtained before
and after coding with the Huffman coding tree are matched
is shown in Table 2. According to this frequency table, the
higher the frequency of the two-bit long (00)2 bits in the data,
the greater is the amount of reduction.

1) DATA ADDITION
This process involves the addition of data with a length of y
bits to the data reduced from x bits to x-y bits using Huffman
coding. In this case, the data of length x-y reaches again a
length of x bits. A block diagram of the data-addition process
is shown in Fig. 10.

FIGURE 10. Block diagram of the data addition process.

An example of the implementation of the reduced and
added data functions is as follows.

Sample data: 24 bits (110001010010000111010000)2 =
(12 919 248)10.

The sample data were divided into 12 groups, each two
bits long, according to the frequency table. The two-bit
data in each group were matched with the code values in
the frequency table. The bit length of the new group of
12 obtained as a result of the matching must be less than
24 bits. The 22 bit long reduced data obtained after matching
is (0111000010101000110011)2 as shown in Fig. 11. In this
case, two bits of data must be added. In this example, the
data to be added were assumed to be (00)2. These data have
been added to the LSB side. Thus, the new 24 bit long data is
(011100001010100011001100)2 = (7 383 244)10.

FIGURE 11. Reduction function application example.

2) DATA SOLVING
It is the process of separating the data as reduced data+ added
data. This is performed using the inverse Huffman reduction
function f −1r (x). A block diagram of the data solving process
is shown in Fig. 12.

FIGURE 12. Data solving process block diagram.

Data to be extracted:
1) x-y bits length reduced data,
2) y bits of added data,
3) Original data x’, from which the data of length x-y are

reduced.

FIGURE 13. Data solving example.

An example of the inverse reduction function and data solving
application is as follows. An example of data solving is
shown in Fig. 13 for data (011100001010100011001100)2 =
(7 383 244)10 in the reduced data+ added data format. When

VOLUME 12, 2024 18365

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

implementing the inverse function, the data were grouped
based on bits (1)2, (00)2, (010)2, and (011)2 in the frequency
table. For the data to be considered ‘‘solvable,’’ the total bit
length in the 12 groupsmust be less than 24 bits. Accordingly,
if f −1r (x) is applied, then:
1) x-y = (0111000010101000110011)2,
2) y = (00)2,
3) x’ = (110001010010000111010000)2 = (12 919

248)10 is found as.

D. DATA CHANGE FUNCTION
Another function used in this method is the data change
function. This function was originally developed in this study.
Its purpose is to change the value of the data. Without
additional precautions, when the inverse of the output of the
exchange function based on fractional operations is taken,
the input data of the function cannot be obtained correctly.
This is because of the rounding. Rounding errors are a
troublesome problem in which every computer programmer
must pay close attention [46]. However, when the output of
the change function is the input of the inverse function, the
same data must be obtained. Otherwise, the number pattern
generated during the encryption process cannot be obtained
during the decryption process. This renders encrypted data
indecipherable.

1) MATHEMATICAL EXPRESSION OF THE DATA CHANGE
FUNCTION
The function that finds the number of digits of the integer part
of decimal data is shown in (3). The decimal data to be used
as input for the change function were normalised between 0-1
with the normalisation function given in (4). The error amount
function is given by (5) and is used to convert the error amount
into an integer. The data obtained at the output of the inverse
change function are not equal to the decimal data, which is
the input of the change function owing to rounding error. This
difference indicates the amount of the error.

The change function is the sum of the error and normaliza-
tion functions. This is shown in (6).
The data change function equation is as follows.
d data and d ∈ R.
dx : x. data in a set of n elements and n ∈ N.
dint : The bit length of the integer part of the decimal data;
{dint | 24 ≤ x ≤ 52, x ∈ Z}.
dpre: Precision of decimal parts of decimal data.
fnorm(dx): Function for normalising the data to the range

0-1.
ferr (dx): Error amount function.
fchange(x): Data change function.

dpre = ⌊log10(2
dint−1)⌋ + 2 (3)

fnorm(dx) = round(
x

(2dint − 1)
, dpre) (4)

ferr (dx) = [(fnorm(x)(2dint − 1)− x)(10dpre)]+ 2dint−1

(5)

fchange(dx) = ferr (x)+ fnorm(x) (6)

2) MATHEMATICAL EXPRESSION OF THE INVERSE DATA
CHANGE FUNCTION
The inverse change function is given by (7). The integer
part of the decimal data, which is the input of this function,
provides the error amount, and the decimal part provides the
normalized number. First, inverse normalization was applied
to the decimal parts of the data. However, the output from this
operation is inaccurate owing to rounding. Using the integer
part of the decimal data, where the error is stored, the original
data is obtained again without error.

f −1change(dx ′) = [(x − ⌊x⌋)(2dint − 1)]− [
⌊x⌋ − 2dint−1

10dpre
] (7)

An example was made for the inverse change function. In this
example, the length of the integer part of the decimal data
d = 195.00000000 was taken as 24 bits and the decimal part
was taken as 28 bits. The parameters and outputs of these
functions are listed in Tables 3 and 4, respectively.

E. CLASSIFICATION OF DATA
In the encryption and decryption processes in TWHF, pattern
generation is performed according to certain rules. These
rules are applied according to the type of decimal data used.
The data types are determined separately for integer and
decimal parts of the decimal data. The data types identified
in this study are divided into four classes. These are:

1) Reducible and Solvable,
2) Reducible and Unsolvable,
3) Irreducible and Solvable,
4) Irreducible and Unsolvable.

Two functions were used to identify data type. These are
the reduction and inverse-reduction functions. The reduction
function is first applied to determine the data type. For the
data to be considered reducible, it must be reduced by at least
one bit.

After this condition is satisfied, an inverse reduction
function is applied to the data. Two conditions must be
satisfied for the data to be considered solvable. In the first
condition, when the inverse reduction function is applied to
the data, the output of the function should be data bit length/2
groups according to the Huffman frequency table. The second
condition is that the total bit length of the group should be less
than that of the data.

Details of the data types defined within the scope of this
study are as follows.

RD = Reduced Data, AD = Added Data.

1) TYPE NO 1
This data can be reduced and solved. The reduction and
inverse reduction functions are applied separately to the data.
If the data can be reduced and solved, they are classified as
Type 1. The block diagram is shown in Fig. 14.

The bits of the data to be encrypted and hashed are added
to type-1 data. This is because their size can be reduced.
The data are reduced by the reduction process to bit lengths

18366 VOLUME 12, 2024

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

TABLE 3. Data change function example and results.

TABLE 4. Inverse data change function example and results.

FIGURE 14. Block diagram of data type 1.

that are smaller than the original bit length. Thus, plain-text
bits can be added to the reduced data based on the reduction
amount.

2) TYPE NO 2
These data exhibited reducible and unsolvable properties. The
block diagram is shown in Fig. 15.

FIGURE 15. Block diagram of data type 2.

Their numbers are very small compared to those of the
other types. Because this type of data can be reduced, plain
text data bits can be added to the type 2 data. However,
because their number is very small, they are categorized
as data types for which no data can be added. In the
cryptographic process, when such data are encountered,
a changing function is applied instead of a reducing function.

In the decryption process, the inverse change function is
applied.

3) TYPE NO 3
It is data that cannot be reduced and can be solved. The block
diagram is shown in Fig. 16.

This is the most numerous data type in the dataset used
in this study. Data bits cannot be added to this type of data.
This is because they cannot be reduced in size. Therefore,
the change function is applied. Type 3 data can be divided
into reduced and added data parts, because they are solvable.
These characteristics lead to uncertainty in the decryption
process. This uncertainty can be explained by the scenario
in which the block diagram is shown in Fig. 17. Different
functions can be applied to different data types. However, data
at the output of the function may be of the same type.

FIGURE 16. Block diagram of data type 3.

Let us consider the scenarios shown in Fig. 17. In the first
case, the data for Type 1 were reduced using the function
fr (x). Bit or bits equal to the reduction amount were added
to the reduced data at the function output. In the second case
of the same scenario, the change function was applied to
the Type 3 data. In both cases, the data type derived from
the function outputs was assumed to be Type 3. Because the
decryption process proceeds in the opposite direction of the
crypto process, in both cases of the scenario for the decryption
process, type 3 data at the output of the functions fr (x) and
fc(x) were encountered. Owing to the solvable nature of

VOLUME 12, 2024 18367

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

Type 3 data, in both scenarios, the perception of added data
within Type 3 data occurs.

FIGURE 17. Possibilities that may be encountered in the data solving
process.

In the first scenario, the LSB side of the Type 3 data bits
contained plain-text bits. Such added data are characterized
as ‘‘real.’’ In the second case, no data were actually added.
This is because type 3 data were obtained using the change
function. However, it behaves as if it were obtained using
a reduction function. In this case, it may contain data
characterized as ‘‘fake.’’ During decryption, ‘‘real’’ and
‘‘fake’’ data cannot be distinguished from each other unless
additional rules are established. In this study, the amount
of ‘‘fake’’ data was significantly reduced by adding control
data to the decimal part of the decimal data. However, this
situation has not yet been completely eliminated. Therefore,
an extra data block was created where ‘‘real’’ data is mapped
to (1)2 and ‘‘fake’’ data to (0)2. This data block is referred to
as ‘‘crypto raw data.’’

FIGURE 18. Block diagram of data type 4.

4) TYPE NO 4
These data, which are irreducible and irresolvable, are
characterized as Type 4. The block diagram is shown in
Fig. 18. No output is produced when the reduction function
and data-solving operations are applied to this type of data.
Therefore, only the change function is applied in the crypto
process. If such data are revealed during decryption, there is
no possibility of uncertainty.

5) STATISTICS OF DATA TYPES
Statistical data were obtained using a 24-bit dataset. In this
case, the dataset covers integers in the range 0-16 777 215.
The application was developed using Python. Integers in the
range [0 - (224-1)] were sent parametrically to the data-type
determination function, and the data type was obtained as

the return value. The number of data types varies depending
on the frequency table used. The frequency table used and
number of data types obtained are listed in Table 5.

TABLE 5. Classified counts of data types obtained based on 24-bit long
data.

F. HASHING/ENCRYPTION PROCESS
1) DATA LOADING FUNCTIONS AND CONDITIONS
CI: Integer part of changed decimal data, CD: Decimal part
of changed decimal data.

FIGURE 19. Functions and conditions used in the data loading block.

When encrypting data and generating hash codes, finding
the appropriate decimal numbers to which data can be added
is the most important stage of the process. The functions and
conditions required for this process are shown in Fig. 19.

Plain text bits are added to the integer part of the decimal
data, whereas the control data are added to the decimal part.

Condition 1 is as follows.
The first condition for adding data is that both the integer

and decimal parts of the decimal data must be Type 1. This is
because type 1 data are reducible.

Condition 2 is as follows.
The reduction function is applied to both the integer and

decimal parts of the decimal data. Data of length equal to
the length of the reduction are added to both sides of the
decimal data. The added data are at bit level and on the
LSB side. Consequently, both the integer and decimal parts
of the decimal data reached the original bit length. These
operations change the numerical values of the decimal data.
The second condition requires that the integer part of the
changing decimal data be of type 1 and the decimal part be

18368 VOLUME 12, 2024

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

of type 3. The data for types 2 and 4 cannot be included in
the second condition, because they are unsolvable. The data
for type 3 are approximately 6.8 times more than those for
Type 1. The ratio is shown in Table 5. According to this ratio,
conditioning the integer part of the data with type 3 instead
of type 1 leads to a considerable increase in the number of
‘‘fake’’ data blocks. For this reason, it was preferred that
the integer part be of Type 1. Type 3 was preferred for
conditioning the decimal parts. This preference facilitates
fulfilment of the second condition. Thus, the balance of
conditions for both parts of the decimal data is preserved.

Condition 3 is as follows.
The third condition is applied to the decimal data that

satisfies the second condition. For this purpose, an inverse
reduction function is applied. The output of the function is
decimal data. The integer part of these data must be type 3.
The decimal part can be of any type. The last condition is
intended to contribute to the minimization of ‘‘fake’’ data.

If one of the conditions is not satisfied, a change function
is applied to the decimal data, which are the initial data of the
block, instead of a reduction function. The number pattern
continued for the next block.

An example of data loading conditions:
The decimal data (8 479 184.15860065)10 which fulfills all

of the data loading conditions, and its values at the function
outputs are given in the block diagram in Fig. 20.

FIGURE 20. Data loading block for (8 479 184.15860065)10 data.

In the first step of the process, type determination
was performed for integer (8 479 184)10 and decimal
(15860065)10 parts of the decimal data. Because the type of
data is 1.1, the first condition was fulfilled. In the next step,
the reduction function was applied to both the integer and
decimal parts of the decimal data. Because the integer part
of the decimal data is reduced by four bits with the reduction
function, four bits from the plain text are added to the integer
part. The example assumed that the data to be added was
(0000)2. After adding the data, the bit length of the integer
part was 24 bits and the data were (5 777 712)10. By adding
the control data to the data at the output of the reduction
function, value (15860065)10 was converted to (7256105)10.
The new decimal data calculated using the reduction function
and data addition were (5 777 712.7256105)10. According

to the second condition, the integer part of the decimal
data generated must be of type 1 and the decimal part
must be of type 3. (5 777 712.7256105)10 fulfilled these
conditions. Finally, an inverse change function was applied
to the data. When the function was applied, decimal data
(12 173 723.39086646)10 were obtained. The integer part of
(12 173 723)10must be of type 3. This conditionwas satisfied.
The decimal part of (3908664646)10 can be any type. Thus,
all the conditions were fulfilled. The data addition process
ended with the addition of four bit long (0000)2 data to the
integer part of the data and one bit long (1)2 control data to
the decimal part of the data.

2) BLOCK TYPES
All the possible block types in the proposed structure are
presented in this section. Block types are determined by the
types of the integers and decimal parts of the starting and
ending decimal data of the block. The representation of the
data types is in the format ‘‘integer data type.decimal data
type.’’ Example formats are 1.1, 1.3, 3.1, 3.3, 3.4 etc.

Block types are classified as follows.
Block start type 1.1 - Block end type 1.3 properties are as

follows:
These blocks are data loading blocks. The block starts with

1.1 and ends with 1.3. There is no different data type between
these two blocks. The functions applied to the block initial
data (1.1) are the reduction function and data addition. The
block end data must be of type 1.3 as a result of functions and
operations. An inverse change function is applied to the end
block data (1.3). The type of result must be in the 3.x format.
The block diagram in Fig. 19, which shows the data loading
functions and conditions, belongs to this block structure.

The situations that can occur in blocks of type 1.1-1.3 are
listed below.

FIGURE 21. Block diagram for the case where the data of block
type 1.1-1.x does not fulfil the data loading rule - I.

Failure to fulfill condition 2: If one of the conditions is not
fulfilled, no data can be added to the type 1.1 block initial
data. One of them (condition 2) is that the data obtained
after adding data by applying the reduction function does
not satisfy the required type condition (1.3). In this case, the

VOLUME 12, 2024 18369

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

function to be applied is a change function. The decimal data
type to be obtained at the output of the change function can
be 1.x. Type 1.x data do not cause the problem of ‘‘fake’’
data. Of these data types, 1.1/1.2/1.4 do not satisfy the second
condition 1.3, so there is no possibility for ‘‘fake’’ data. The
data of type 1.3 satisfies the second condition and provide
the message that it contains added data. However, this is not
the case in reality. Because decimal data is the output of the
change function. In this case, the third condition prevents
the emergence of ‘‘fake’’ data. All these cases are shown in
Fig. 21.

Fulfilment of condition 2, non-fulfilment of condition 3:
When a reduction function and a data addition operation

are applied to the decimal data of type 1.1, the resulting
data may be of type 1.3. In this case, the second condition
is satisfied. However, if the third condition is not fulfilled,
the reduction function applied to type 1.1 decimal data is
cancelled and the change function is applied. The decimal
data at the output of the change function can be type 1.x.
In such a case, there is no ‘‘fake’’ data. This is because the
output of the function is of type 1.1 when the inverse change
function is applied. This case is illustrated in Fig. 22.

FIGURE 22. Block diagram for the case where the data of block
type 1.1-1.x does not fulfill the data loading rule - II.

If the output of the first change function applied to the data
with block start type 1.1 is one of the types 2.x/3.x/4.x; the
block with block start type 1.1, intermediate types 2.x/3.x/4.x
and end type 1.x should be defined. The properties of this
block are as follows:

Such blocks are those where ‘‘fake’’ data may occur. The
first condition for such a block to occur is that the initial block
type is 1.1, and one of the data-load conditions is not fulfilled.
Because data loading is not possible, a change function is
applied to the initial block data. The other condition for the
block to be formed is that the output of the first change
function applied must be of a data type other than 1.x. These
are 2.x/3.x/4.x types. This type of data does not terminate
the block. The block terminates when data of type 1.x are
obtained.

If the block terminates with one of the types 1.1, 1.2,
or 1.4, no ‘‘fake’’ data are output. However, terminating the
block in type 1.3 may cause ‘‘fake’’ data. When the inverse
change function is applied to these data, type 3.x data is
obtained, and if the control data condition is met, the block
is considered as a data loading block. This consideration
leads to the application of an inverse reduction function
instead of an inverse change function during the decryption
process. Applying the wrong function causes the pattern
to be generated incorrectly upwards from this block, and
the decryption process fails. The temporary solution to this
problem until the TWHF reaches its ideal operating state is
provided by ‘‘crypto raw data’’ as follows.

During encryption, blocks with ‘‘fake’’ data are mapped to
(0)2 and blocks with ‘‘real’’ data aremapped to (1)2. This map
is used in the decryption process. Thus, no errors were made
in the inverse functions, and cryptographic data are decoded.

FIGURE 23. General representation of rules and behaviour for blocks of
type 1.1-.2.x/3.x/4.x.-1.x.

Fig. 23 shows the behavior of the blocks with start
type 1.1, intermediate types 2.x/3.x/4.x, and end type 1.3.
The data loading conditions were not fulfilled in these
blocks. Therefore, in the process of encryption and hash code
generation, the change function was used in the blocks. The
block ends when the first data of type 1.x at the output of the
iteratively applied change function is found.

Fig. 24 shows that the end data of both blocks are of
type 1.3. Fig. 24 shows that one of the two blocks cannot
contain ‘‘fake’’ data, while the other block can contain ‘‘fake’’
data. It can be seen that the block without ‘‘fake’’ data has one
of the 2.x/4.x data types before its last data. When the inverse
change function is applied to the last data, the type 2.x/4.x

18370 VOLUME 12, 2024

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

cannot be equal to the type 3.x, so there is no ‘‘fake’’ data in
this block.

It is possible that the block on the left in Fig. 24 is ‘‘fake’’
data. This block fulfills the first two of the three conditions.
The first is that the end data of the block are of type 1.3 and
the second is that the data at the output of the function are
of type 3.x when the inverse change function is applied to
the end data of the block. If the control data loaded into the
decimal part of the type 1.3 data also satisfies the condition,
the type 1.3 data is ‘‘fake.’’ The control data is added to the
decimal part of the decimal data in the form of bit sequences
of (1)2 according to the amount of reduction. If all the control
bits obtained in the decryption process consist of (1)2 bits,
the condition related to the control bits is fulfilled. In this
case, the data is treated as ‘‘real’’ even though it is not. For
example, if the amount of reduction of the decimal part of the
data of type 1.3 is 3 bits, the control data must be (111)2. The
3-bit control data that does not provide this can be (000)2,
(001)2, (010)2, (011)2, (100)2, (101)2, and (011)2. If any of
this control data is accessed during the decryption process,
it is revealed that the data is not ‘‘real.’’ However, if the value
of (111)2 is obtained as the control data, type 1.3 is considered
‘‘fake.’’

FIGURE 24. Examples of the behaviour of blocks of
type 1.1-. . . 2.x/3.x/4.x. . . -1.3.

The last data types of the blocks shown in Fig. 25 are
1.1, 1.2, and 1.4. As the end types of these blocks are not
type 1.3, the second condition is not satisfied. Therefore,
‘‘fake’’ data does not occur in this block type. Because the
second condition is not fully satisfied, the third condition does
not need to be verified.

Block initial type 2.x/3.x/4.x and end type 2.x/3.x/4.x
specifications are as follows.

FIGURE 25. Example demonstrations of all behaviours for blocks with
1.1-..2.x/3.x/4.x..-1.1/2/4.

Blocks with block initial type 2.x/3.x/4.x are the most
produced blocks. They do not contain ‘‘fake’’ or ‘‘real’’ data
because they do not meet the conditions. All the functions
applied in such blocks are change functions. Similarly, all
the functions in the decryption process are inverse change
functions. Because there is no uncertainty in the functions,
the entire block is solved without error. A block whose initial
type is type 2.x/3.x/4.x must end with data of type 2.x/3.x/4.x.
An example of this block type is shown in Fig. 26.

3) BLOCK DIAGRAM DESCRIPTION OF THE ENCRYPTION
AND HASH CODE GENERATION PROCESS
A block diagram of the encryption and hash code generation
process of TWHF is shown in Fig. 27, and the algorithm used
is given in Algorithm 1.
The process begins by applying a change function to the

randomly selected decimal data. The data at the output of the
function are the initial data of the first block to be created.
The type of initial data determines whether the data can be
added to the block, the function of which is to be applied, the
block length, and the data type with which the block ends.
The initial data can have three different forms: These are data
types 1.1, 1.2/1.3/1.4, and 2.x/3.x/4.x. From these types, data
can only be added to blocks with initial data type 1.1.

All situations that may occur in the encryption and
hash code generation process of the model were explained
according to the block diagram in Fig. 27.

Flow-1 - Block initial data type 1.1 and providing all
conditions: The first type of data to be checked is 1.1. If the

VOLUME 12, 2024 18371

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

FIGURE 26. Example demonstration of rules and behaviours for
2.x/3.x/4.x-2.x/3.x/4.x block types.

data are of type 1.1, the reduction function is applied to
both the integer and decimal parts of the data. Plain text bits
are added to the integer part of the decimal data, whereas
the control data are added to the decimal part. The process
continues with the verification of the second and third data-
loading conditions. If these conditions are fulfilled, block
mapping is performed and the block is terminated. Since the
block ends with the addition of data, it is considered ‘‘real’’
and the data (1)2 is added to the map. Subsequently, the
workflow is redirected to Connection 1. A change function
is applied to the end data of the block to obtain the initial data
of the next block.

Flow 2 and Flow 2.1 - Block initial data type 1.1 and non-
compliance with the conditions:

First, a reduction function is applied. The data loading
conditions are then checked. If one of the conditions is not
fulfill, the reduction function applied to the initial block data
is cancelled and the change function is applied (Flow-2).
If the output of the change function is type 1.x, the block is
terminated. The flow continued from Connection Number 1.

If the output of the change function is not of type 1.x,
the block is not terminated and the flow is redirected to
Connection 2 (Flow-2.1). The application of the change
function continues until data of type 1.x are obtained. If data
of type 1.x are obtained, the block is terminated. If a block is
terminated in this manner, then two different situations arise.
If the block ends with one of the types 1.1, 1.2, or 1.4, the
workflow is redirected to Connection 1 to receive the next
block’s initial data and continues from this point.

If the block ends with type 1.3, it is checked for ‘‘fake.’’
If all conditions are fulfill, the block is characterized as
‘‘fake’’ and bit (0)2 is added to the map. If the conditions

Algorithm 1 TWHF Encryption and Hash Code Generation
Process
Input: Idd: Initial decimal data
pt: Plain text
Output: ch: Chiphertext and hashcode
Definitions:
fr : Reduction function
fc: Change function
ft : Type determination function
rd: Reduced data, cd: Changed data, cdt: Control data
dlc: data loading conditions
fds:fake data status

Set Initial Parameters: idd, pt while(length(pt)length(added data))
do

cd← fc(cd) Flow1 operations
if ft (cd) == 1.1 then

rd← fr (cd)
Add pt and ctd bits in rd
if (dlc == True) then

Mapping process ‘‘real’’
Else

Flow2 and Flow 2.1 operations
cd← fc(cd)
if ft (cd)! = 1.x) then

while(ft (cd)! = 1.x) do
cd← fc(cd)

End
if (fds==True) then

Mapping process ‘‘fake’’
End

End
End

Flow3 operations
else if (ft (cd) == 1.2 or ft (cd) == 1.3 or ft (cd) == 1.4) then

cd← fc(cd)
if (ft (cd) = 1.x) then

Flow3.1 operations
while(cd! = 1.x) do

cd← fc(cd)
End
if (fds == True) then

Mapping process ‘‘fake’’
End

End
Flow4 operations
else if (ft (cd) == 2.x or ft (cd) == 3.x or ft (cd) == 4.x) then

cd← fc(cd)
while(ft (cd)! = 2.x or ft (cd)! = 3.x or ft (cd)! = 4.x) do

cd← fc(cd)
End

End
End

for ‘‘fake’’ data are not fulfill, the workflow continues from
Connection 1.

Flow-3 and Flow 3.1-Block initial data type 1.2/1.3/1.4:
If the initial data of the block are of type 1.2/1.3/1.4, the

first condition for loading the data is not fulfill. The flow
continues with Connection number 2. In this case, a change
function is applied. If the output of the first applied change
function is of type 1.x, then the block is terminated (Flow-3).
If the block ends this way, there is no ‘‘fake’’ data. This is

18372 VOLUME 12, 2024

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

Algorithm 2 TWHF Decryption Process
Input: edd: End decimal data
Idd: Initial decimal data
Output: pt: Plain Text

Definitions:
f −1r : Inverse reduction function
f −1c : Inverse change function
ft : Type determination function
cd: Changed data
dlc: data loading conditions
rs: Real Status
Set Initial Parameters: edd
Idd←edd
cd← f −1c (edd)
while(cd! = Idd)) do

cd← f −1c (edd)
Flow1 and Flow 1.1 operations
if (ft (cd) == 1.3) then

if (dlc == True) then
if (rs == True) then

Add crypto data bit to pt
Else

cd← f −1c (cd)
while (ft (cd)! = 1.x)

cd← f −1c (cd)
End

End
Else

cd← f −1c (cd)
while(f −1t (cd)! = 1.x)
cd← f −1c (cd)

End
end Flow2 operations

else if (ft (cd) == 1.1 or ft (cd) == 1.2 or ft (cd) == 1.4) then
cd← f −1c (cd)

while(ft (cd)! = 1.x)
cd← f −1c (cd)

End
Flow3 operations
else if (ft (cd) == 2.x or ft (cd) == 3.x or ft (cd) == 4.x) then

cd← f −1c (cd)
while(ft (cd)! = 2.x or ft (cd) = 3.x or ft (cd)

= 4.x)
cd← f −1c (cd)

End
End

End

because the third condition is not fulfilled. After the block
is terminated, the flow is redirected to Connection 1 and
continues from this point. The block does not terminate
if the output of the first change function applied to it is
of type 2.x/3.x or 4.x. To terminate the block, the change
function is iteratively applied until data of type 1.x are
obtained. If one of the data types 1.1/1.2/1.4 is obtained at
the function output, the block terminates. ‘‘Fake’’ data does
not occur in this case. However, if type 1.3 are obtained at
the end of the iteration, the status ‘‘fake’’ data are checked.
If the conditions for ‘‘fake’’ data are satisfied, the process
continues with mapping. At this stage, bit (0)2 is added to

the map, indicating a ‘‘fake’’ state. If the condition ‘‘fake’’
data is not fulfill, the flow continues after Connection 1.

Flow 4 - Block initial data type 2.x/3.x/4.x:
If the block start type is not 1.x, the process is redirected

to flow-4. In this case, the initial data type of the block is one
of the data types 2.x/3.x or 4.x. The process continues with
iterative application of the change function. The condition for
terminating the block is that one of the 2.x/3.x or 4.x data
types be encountered for the first time. There is no possibility
of ‘‘fake’’ data in these blocks. When the block ends, the flow
continues from Connection 1.

The TWHF process is completed by loading the last
bit of plain text into the generated number pattern. The
final decimal data of the generated number pattern are the
encrypted data and hash codes.

G. DECRYPTION PROCESS
The flowchart of the decryption process was shown in Fig. 28
and its algorithm in Algorithm 2.

The flow direction is upward. The first decimal data
processed during decryption are the last decimal data of
the number pattern created during the encryption. In the
decryption process, the inverse of the change and reduction
functions is used. The goal is to generate the same numeric
pattern created during the encryption process.

All the situations that may occur in the decryption process
block diagram of the model and their descriptions are listed
below.

Flow-1 (Block 1.x-1.3 data decryption block) or Flow-1.1
(Block 1.x-1.3 or Block 1.x - 2.x/3.x/4.x - 1.3):

The decryption process uses the end data of the encryption
and hash code generation processes as initial data. The
process begins with the application of the first inverse change
function to this data. It is checked whether the type of the
changing data is of type 1.3. If this condition is fulfilled, it is
checked whether the other conditions are also fulfilled. The
first condition is that when the inverse reduction function is
applied to data of type 1.3, the resulting initial block data
are of type 1.1. Another condition is that, if the inverse
change function is applied to type 1.3, the output must be of
type 3.x. In addition, the control data in the decimal part of the
type 1.3 data must consist entirely of bit sequence (1)2. If all
the conditions are met, the ‘‘real/fake’’ status of the data is
determined by looking at the map. In the map, if the next data
are (1)2, it is treated as ‘‘real’’ data, and the plain text bits
loaded into the integer part of the type 1.3 data are parsed.
Thus, during the encryption process, a few bits of data from
plain text loaded into the block are obtained.

However, if the next data in the map are (0)2, the data are
considered ‘‘fake.’’ The inverse reduction function applied to
type 1.3 data is cancelled, and the process continues from
Connection 2 (Flow-1.1). From this point on, the inverse
change function is iteratively applied until it reaches data
of type 1.x. If data of type 1.x are obtained, the block is
terminated. For the next block of operations, the process
continues from Connection 1.

VOLUME 12, 2024 18373

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

According to the decryption direction, if the last data of
block (1.3) do not fulfill one of the data loading conditions,
the process continues from Connection 2 (Flow-1.1). For
type 1.3 data, the inverse change function is applied
iteratively instead of the inverse reduction function. The
iteration ends when data of type 1.x are reached. For
the next block of operations, the process continues from
Connection 1.

Flow-2 (Block 1.x – 1.1/1.2/1.4) or (Block 1.x –
2.x/3.x/4.x – 1.1/1.2/1.4):

According to the decryption direction, if the last data of
the block is not of type 1.3, it is checked whether the data are
of types 1.1, 1.2, or 1.4. If the condition is fulfilled for one
of these types, then the iteration in which the inverse change
function is applied begins. The iteration ends when data of
type 1.x are found, and the block is terminated. The process
continues from Connection 1.

Flow-3 (Block 2.x/3.x/4.x - 2.x/3.x/4.x):
According to the decryption direction, if the last data of the

block are of type 2.x/3.x/4.x, the process continues with the
iteration in which the inverse change function is applied. The
first data of type 2.x/3.x/4.x to be obtained at the output of
the inverse change functions terminates the block. After the
end of the block, the flow continued from Connection No. 1.

In Table 6, an example for the generation and decoding of
the encrypted hash code of (0011)2 data with TWHF is shown
by block types. Some abbreviations are used in this table.
These abbreviations are Fake/Real/Pass (F/R/P), Embedded
Data (ED), Crypto Raw Data (CRD), Data Embedding (DE)
and Situation (St). The RF/CF used in the table is used in
the encrypted hash code generation process and IRF/ICF in
the decryption process. Since the proposed method is two-
way, these functions were given together. When analyzing
the example, RF/CF is considered for encrypted hash code
generation and IRF/CF for decryption.

The decimal numbers forming the pattern are given in the
format ‘‘integer part type.decimal part type.’’ Thus, it was
easier to follow the pattern and flow. Each flow in the table
also represents a block type. The types of decimal data
between the beginning and end of the blocks were randomly
selected in accordance with the block types classified within
the scope of the study. For example, iterations 5-7 are given
by the ‘‘type sequence’’ 1.1-3.1-1.1. However, this ‘‘type
sequence’’ could have been 1.1-4.2-1.1 or 1.1-2.3-1.1 etc.
The flows in the table were chosen in an order that facilitates
the understanding of the method. Only the important iteration
intervals are described below.

In iterations 1-2, the data (0)2 on the MSB side of the
original data (0011)2 was embedded in the data of type 1.3.
In this block, it is understood that all conditions are satisfied,
and the reduction amount is one bit. In addition, mapping
was performed with a value of ‘‘1’’ for ‘‘crypto raw data.’’
In the 3rd and 4th iterations, because the conditions were not
met in the block starting with Type 1.1, the change function
was applied instead of the reduction function. In the range
of iterations 8-12, there is a possibility that the decimal data

in the 12th iteration is ‘‘fake’’ data because it has type 1.3.
In this example, it was accepted that the conditions for ‘‘fake’’
data were not met. Therefore, the block was characterized
as ‘‘pass’’ and no ‘‘0’’ was added to the ‘‘crypto raw data’’
bit sequence. In the range of the 21-27th iterations, the 27th
iteration is of type 1.3. There is a possibility of ‘‘fake’’ data
in this block. Here, it was accepted that the conditions for
being ‘‘fake’’ data were met and mapping was done with a
value of ‘‘0’’ for ‘‘crypto raw data.’’ Similarly, in the 33-36th
iteration interval, the data of type 1.3 in the 36th iteration was
considered ‘‘fake’’ andmappedwith ‘‘0.’’ The data at the 45th
and 46th iterations were assumed to meet the conditions and
the reduction amount was assumed to be two bits. Therefore,
the next data (01)2 of the original data was embedded in
this block and mapped with ‘‘1.’’ The last data embedding
block in the example is at iterations 53 and 54. The reduction
amount for this block was accepted as one bit. Therefore,
the last bit of the original data (1)2 was embedded here and
mapped to ‘‘1.’’ With the last iteration, the ‘‘crypto raw data’’
become (11001)2. There is no possibility of data embedding
and ‘‘fake’’ data in flows other than the described iterations.

The flow from iteration 1 to 54 of the table covers the
embedding of the original (0011)2 data into the generated
number pattern. The decimal data at the 54th iteration is
considered to be the encrypted hash code (root). In this
process, the undesired ‘‘crypto raw data’’ bit sequence has
also emerged.

The decryption process can also be explained using this
table. The decryption process starts from the last iteration
(iteration 54). The iteration direction is opposite to the
encryption/hash code generation process. Throughout the
process, the inverse of the change and reduction functions
is taken and the decimal number from the previous iter-
ation is always obtained. In this process, all blocks are
correctly solved by following the mapped ‘‘crypto raw
data.’’ When the 1st iteration is reached, the original data is
obtained.

According to the data in Table 6, several iterations of an
example decryption process can be explained as follows. The
decryption process starts with data of type 1.3 at iteration
54. Since this data is of type 1.3, there is a possibility
that it contains data. To determine this, the CRD value is
checked. A CRD value of (1)2 indicates that this data of
type 1.3 contains a few bits of the original data. The original
data is parsed. In the pattern, IRF is applied to find the data
that precedes the data of type 1.3. The output of the function
is the data of type 1.1 at iteration 53. If the data accessed
is of type 1.1, it indicates the start of a block. The process
continues by applying ICF to data of type 1.1. The output of
the function is data of type 3.1 at iteration 52. The process
continues until we reach the data in iteration 1.

V. TWHF AND ONE-WAY HASH FUNCTIONS
The data solving phase of the TWHF methodology resulted
in an average uncertainty of 0.17%. Uncertainty is the
situation of not being able to decide which function to apply

18374 VOLUME 12, 2024

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

FIGURE 27. Block flow diagram of TWHF encryption and hash code generation process.

VOLUME 12, 2024 18375

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

FIGURE 28. Block flow diagram of the TWHF decryption process.

to the active decimal data to reach the pattern’s previous
decimal data. These are inverse reduction and inverse change
functions. As a temporary solution for this situation, a so-
called ‘‘crypto raw data’’ was proposed. With this data
as a guide, the data decryption is successfully completed.
In a sense, ‘‘crypto raw data’’ expressing uncertainty is
undesirable for part of the study. For the future work of the
TWHF, the focus should be on removing the uncertainty and
thus the need for this data. In the block diagram in Fig. 29,
which shows the general operation of TWHF, this situation is
given as ‘‘Section I.’’
TWHF must have the security features of one-way

functions. For this purpose, the ‘‘iteration-key’’ and the
secondary key specified in Fig. 29 as Section II can be used.
‘‘Iteration-key’’ structure is shown in Fig 30. An example and
explanations about this structure are as follows.

In this study, the key is 256 bits long and divided into
32 groups. The key length and the number of groups can be
changed according to the needs of the application in which
the method is used. According to Fig. 30, the sample values
taken by the groups were accepted as (2 158 168 178 255
0 254 32 128 130 1 52 45 248 12 30 56 21 78 20 25 128
136 0 0 1 24 12 178 13 17 29)10. These values are the
iteration numbers. A sender who knows this key applies the
data replacement function starting from the root hash code.
The function repeats as many times as the numbers given
in the groups in ‘‘iteration-key.’’ According to the number
of iterations in the example, the hash code is obtained by
applying the data change function 2431 times starting from
the root hash code. Keeping the number of iterations low will
also shorten the implementation time of the methodology.
Malicious persons can decrypt the encrypted hash code by

18376 VOLUME 12, 2024

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

TABLE 6. An example of generating and decoding the encrypted hash code of (0011)2 data with TWHF.

trying the total number of iterations in the key with a brute
force attack without trying the iteration numbers one by

one. This can be prevented by XORing a secondary key of
the same length as the hash code generated at the end of

VOLUME 12, 2024 18377

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

FIGURE 29. The model required to make it possible for TWHF to take on
the properties of one-way functions.

FIGURE 30. Iteration-key and secondary key workflow block diagram.

each group iteration. This statement explains that the XOR
operation will be applied 32 times. By dividing the key into
32 groups, the total number of iterations was kept low, but the
number of possibilities for brute force attacks was increased.
This key logic, which is applied from the root hash code, can
also be applied in different ways. Currently, the proposed key
is sufficient to ensure that TWHF has the security properties
of one-way hash functions.

If the TWHF given in Section I is applied and the decimal
data in the last layer of the pattern is considered to be hash
code, there is no obstacle to obtaining the original data
from this data. However, the study also aims to ensure that

TWHF has the security properties of one-way hash functions.
For this purpose, after obtaining the root hash code of the
original data, the pattern should be continued as many times
as the number of iterations. In this case, the last layer of the
pattern is the hash code has the security properties of one-way
functions. This is because there is no meaningful relationship
between the obtained hash code and the original data and the
root hash code must be reached for the decryption process to
work. The key must be delivered to the recipient via a secure
communication channel in advance.

FIGURE 31. Use of current hash functions in digital signature workflow.

VI. TWHF POSSIBLE USAGE AREAS
A. DIGITAL SIGNATURE
Fig. 31 shows the current use of the digital signature
workflow with one-way hash functions [47]. The purpose of
a digital signature is to guarantee data integrity and authen-
tication. In digital signature applications, the encrypted hash
code of the original data is sent to the receiver along with
the original data. At the receiver side, the original data were
hashed again. The encrypted hash code is decrypted using
a public key and the hash code is obtained again. If the
results of the comparison of the hash codes are the same,
the authenticity and integrity of the data are confirmed.
The main process that enables authentication is encryption
of the hash code with the sender’s private key. Therefore,
encryption plays a significant role in authentication. The
hash function focuses more on the integrity of the data.
The transmission of the original data with hash code to the
receiver may have some disadvantages. One is the increased
use of internet bandwidth and the other is the compromise of
the confidentiality of the original data. For these reasons, it is
more convenient to send only hash code to the receiver.

Fig. 32 shows the possible use of the TWHF method in the
digital signature workflow. In a digital signature application
using TWHF, the original data are not sent. Only encrypted
hash code is sent to the receiving party. The original data can
be retrieved from the hash code because the hash function
is two-way. Thus, the confidentiality of the original data is
fully guaranteed. Authentication is achieved by encrypting
the hash code with the sender’s private key and decrypting
it with the public key, as in the current implementations.
The iteration key and secondary key in the TWHF method
can optionally be unused depending on the needs of the
application where TWHF is used.

18378 VOLUME 12, 2024

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

If the data arrives at the receiver altered for any reason,
it cannot be decrypted due to the mathematically inter-
connected number pattern of TWHF and data integrity is
determined to be corrupted. It can be said that TWHF will
contribute to less bandwidth utilization of networks in appli-
cations where data exchange is frequent and authentication is
required.

FIGURE 32. Use of TWHF in digital signature workflow.

FIGURE 33. The use of current hash functions in blockchain workflow.

B. BLOCK CHAIN APPLICATIONS
Fig. 33 shows the use of a blockchain workflowwith one-way
hash functions [49]. Transaction messages are the smallest
structures in the block system. Their role is to maintain
information and records. The purpose of using encrypted hash
functions in blockchain applications is to ensure data integrity
and authentication as in digital signature applications. Using
the hash function, the hash codes of the transaction messages
on the sender side are obtained and encrypted with the
sender’s private key. The process continues by appending
the original transaction messages to encrypted hash codes
and sending them to the receiver. Thus, transaction messages
are digitally signed. At the receiving end, the hash codes
of the encrypted transaction messages are obtained using
the public key. The authentication process continues by
hashing the original transaction messages coming to the
receiver side. If the hash codes obtained by the two different
processes match each other when compared, data integrity
and authentication are ensured. Upon authentication, the
transaction messages are added to the chain structure as a

FIGURE 34. TWHF-Blockchain usage.

new block. Fig. 34 shows the possible use of blockchain
workflow with TWHF. In a blockchain application using
TWHF, the process is as follows. The encrypted hash codes
of the transaction messages are obtained using TWHF. The
original transaction messages are not sent to the receiving
side, as is the casewith the current apps. In this phase, only the
encrypted hash codes of transaction messages are sent to the
receiver. This enables a more efficient use of the network’s
bandwidth and storage on the receiving side. Moreover, the
confidentiality of the original transaction messages is more
secure than that in traditional applications. This is because
the original transaction messages are not additionally sent to
the receiving side. The encrypted hash codes coming to the
receiver side are extracted using a public key and the data are
authenticated. The patterned nature of TWHF ensures data
integrity. In the possible blockchain implementation of the
TWHF method, the use of an iteration key and a secondary
key is optional.

FIGURE 35. Use of TWHF in image steganography.

C. STEGANOGRAPHY
In image steganography, the message to be sent to the receiver
is embedded in the image, which is called a cover object.
The data embedded in the image cause a change in the pixels
of the image. In other words, the original image is altered
and distorted. The goal of image steganography studies is
to minimize this distortion. Therefore, the more similar the
cover image is to the original image, the less likely it is to
attract third parties’ attention. When this occurs, the message
securely reaches its receiver. With the use of TWHF, the
intended goal of steganography is achieved in an optimized
way. This is because large amounts of bit-length data are
digested and converted into fixed-length data. With some
exceptions, the digestion of data is better than the output
obtained by using data compression algorithms. This way

VOLUME 12, 2024 18379

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

the cover image is obtained with the least possible distortion
and is more similar to the original image. In particular, better
results are obtained in direct proportion to the increase in bit
length. This is because the distortion of the image does not
change even if the bit length increases.

Fig. 35 shows the possible use of TWHF in image
steganography. In image steganography using TWHF, the
image and the two-way hash code are parsed when the cover
image reaches the receiver. The original message is then
obtained again at the receiver side using two-way hash code.
This is not possible with the hash functions that are currently
used.

FIGURE 36. TWHF and data Storage.

D. TWHF AND DATA STORAGE
One of the areas where TWFH will benefit the most is that
it will significantly reduce hardware costs by enabling data
to be stored in data storage devices to take up very little
space. Fig. 36 shows a scenario for the use of TWHF in data
storage devices. According to this scenario, not all data must
be stored using TWHF. Depending on the selection made by
the control unit, the parsed data can be stored in the form
of hash codes by applying the TWHF. Storing data in this
manner will significantly reduce hardware costs. In addition,
the reduced need for hardware devices contributes to the
reduction in electricity consumption.Moreover, in an Internet
environment, where data are exchanged intensively, the need
for bandwidth can drop significantly. This is due to the idea
that data travels through the network with hash codes rather
than the original bit lengths or bit lengths that have been
slightly reduced by other techniques.

VII. RESULTS
A. RESULTS OBTAINED IN THE ENCRYPTION/HASH CODE
GENERATION PROCESS FOR THE CHARACTER ‘‘A’’
In this study, the number of ‘‘fake’’ data, the number of
‘‘real’’ data, the length of encrypted data, the total number
of iterations, and other statistical data were obtained with an
applications in Python. For the statistical data, the character
‘‘A’’ was chosen as the plain text to be encrypted and hashed,
and the decimal data of (1 000 000.00000000)10 were chosen
as the initial data. Statistical data are shown in Table 7.
The numerical values of ‘‘real’’ and ‘‘fake’’ decimal

data are listed in Table 7. In the number pattern generated

to encrypt the character ‘‘A’’ whose binary equivalent is
(01000001)2 and to generate a hash code, 4 ‘‘real’’ and 12
‘‘fake’’ data were observed. The first ‘‘real’’ data was found to
be type 1.3 (463 078.30547297)10. For this data, the reduction
amount was one bit. Because the first bit of the character ‘‘A’’
is (0)2, this data bit was stored into the data ‘‘real’’, whose
value is (463 078.30547297)10. (12 652 818.13963791)10
decimal data was determined as the next ‘‘real’’ data. For this
data, the amount of reduction was determined to be 2 bit.
Because the next bits of character ‘‘A’’ are (10)2, the bits
loaded into the ‘‘real’’ data must be (10)2.
(4 199 888.77380527)10 decimal data was found to be the

3rd ‘‘real’’ data. The amount of reduction for this ‘‘real’’ data
is found to be one bits and the bit (0)2, which is the next data
of character ‘‘A,’’ was stored.

(5 621 825.95322159)10 was determined to be the last
‘‘real’’ data. The last data to be stored must be (0001)2.
The amount of reduction of the last ‘‘real’’ data is four bits.
Therefore, the remaining four bits of the character ‘‘A’’ were
stored to the end ‘‘real’’ data.

To avoid increasing the number of rows, the block data
characterized as ‘‘pass’’ were not included in Table 7.
Therefore, ‘‘real’’ and ‘‘fake’’ data were shown consec-
utively in Table 7. However, they were not ordered in
this way in the number pattern. In reality, these data
were positioned among the data characterized as ‘‘pass.’’
According to Table 7, the encrypted data/hash code was
found to be (100111000001000101111001000111111111
0100110101011000)2 and the crypto raw data was
(1010001001000000)2.

Additional statistical data obtained during the encryption
and hash code generation process for the character ‘‘A’’ was
shown in Table 8. As shown in Table, 7680 iterations were
performed to encrypt the character ‘‘A.’’ This number also
shows that 7680 decimal data were generated in the number
pattern. Four of these data were found to be ‘‘real’’ and
twelve were found to be ‘‘fake.’’ In this case, the sum of
‘‘real’’ and ‘‘fake’’ decimal numbers, i.e. the bit length of
the crypto raw data, was calculated as 16. The size of the
‘‘crypto raw data’’ was reduced to 15 bits using a reduction
function (Huffman). A total of 17 bits of data were added to
the four ‘‘real’’ decimals. It was determined that eight of the
added 17 bits belong to the plain text added to the integer part
of the decimal data, and the remaining nine bits are control
bits added to the decimal parts of the decimal data. Control
bits reduced the number of ‘‘fake’’ data by about 7.4 times,
from 89 to 12. Table 9 shows the statistical values obtained
for three different texts.

B. ANALYSING THE IMPACT OF CONDITIONS ON
METHODOLOGY
In the TWHF methodology, the number of ‘‘fake’’ data
changes when certain conditions are changed or removed.
Achieving the ideal operating state of the TWHF depends
on the complete elimination of ‘‘fake’’ data. Therefore, the
impact of certain conditions on the TWHF methodology was

18380 VOLUME 12, 2024

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

TABLE 7. ‘‘Real/fake’’ data values obtained during the encryption of the ‘‘A’’ character.

analyzed. For this purpose, the process of encryption and
hash code generation for the character ‘‘A’’ was performed
by removing and changing some conditions. The results are
shown in Table 10.

Condition 2 required a data load block to end at 1.3.
Condition 2 was changed such that the block was terminated
with type 1.1 instead of 1.3. When the process was operated,
the number of ‘‘fake’’ data points was obtained as 47 with
control data and 225 without control data. Compared to the
current situation, there is a 3.9-fold increase in the number of
‘‘fake’’ data compared to the situation with control data and
a 2.5-fold increase compared to the situation without control
data.

When the TWHF process was applied with the elimination
of Condition 3, the number of ‘‘fake’’ data was found
to be 27 with control data and 201 without control data.
In both cases, an increase of approximately 2.25 compared
to the current situation was observed. The data obtained
from Table 10 shows that the current situation yielded better
results. These results give clues that the number of ‘‘fake’’
data can be reduced or completely eliminated in future studies
on TWHF.

C. TWHF SECURITY ANALYSIS
Tests were performed to analyze the security of TWHF and
some one-way hash functions. In the first test, the hash
code generated for the word ‘‘crypto’’ was accepted as the
original hash code. Then, each bit of the word ‘‘crypto’’
which is 48 bits long, was changed starting from the MSB
side and 48 different hash codes were generated. The process
of changing the bits is ‘‘1’’ for ‘‘0’’ and ‘‘0’’ for ‘‘1’’. The
48 hash codes generated were compared with the original
hash code at the bit level. The differences of each hash code

compared to the original hash code in terms of percentage
ratio have been found. These values give the reflection of a
change in one bit of the original data in the generated hash
codes. The graph in Fig. 37 shows the avalanche effect of
hash functions.

The average difference was 50.57% for the 52-bit output
of the TWHF. The values found for other hash functions were
MD5 49.42%, SHA 256 49.70%, SHA 512 50.31%, Keccak
256 49.90% and Keccak 512 49.87%. In this test, TWHF
performed better than the one-way hash functions.

Another test for security analysis is the permutation test
for the word ‘‘crypto’’. For this purpose, a hash code
was first generated for the word ‘‘crypto.’’ This generated
code was accepted as the original hash code. Subsequently,
719 different words have been derived by changing the
letters of the word ‘‘crypto.’’ Some of these words can be
exemplified as ‘‘crypot,’’ ‘‘crytpo,’’ ‘‘crytop’’ etc. Hash code
was generated for each of the 719 derived words. These
hash codes were compared with the original hash code at
the bit level. As a result of the comparison, the percentage
of how much the hash codes of the derived words differ
from the original hash code was obtained. A graph drawn
according to these values is shown in Fig. 38. In addition, the
average difference values were obtained as TWHF 50.07%,
md5 49.77%, SHA 256 49.87%, SHA 512 49.91%, Keccak
256 49.63%, andKeccak 512 49.98%. TWHF, also performed
better in this test.

The randomness of TWHF and the randomness of some
one-way hash functions were measured by NIST tests. The
48 different hash codes generated for the avalanche effect test
were also used in the NIST tests. The results are shown in
Table 11. According to the table, all hash functions failed the
Maurer’s Universal Statistical test. The TWHF passed 14 of
the randomness tests.

VOLUME 12, 2024 18381

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

TABLE 8. Other statistics obtained during the encryption of ‘‘A’’ characters.

TABLE 9. Statistics for different texts.

TABLE 10. Impact of condition 2 and condition 3 on TWHF.

VIII. DISCUSSION
In this study, we investigated whether hash functions, which
are one-way in the literature, can be two-way. In this context,
the benefits of two-way hash functions and their ability to
fulfil the security features offered by one-way hash functions
are discussed. For this purpose, the TWHF methodology was
developed, which involves generating an encrypted hash code
from the original data and retrieving the original data from
the encrypted hash code. In the process of generating an
encrypted hash code, TWHF generates a pattern of decimal
numbers with a mathematical relationship between them and
stores the original data in the pattern in the form of small
bits. In the decryption process, the last decimal number of
the number pattern is taken as the hash code and the original
data is retrieved by utilising the mathematical relationships
between the decimals.

In this study, answers to some research questions were
obtained. These questions and the answers given according
to the results can be summarized as follows.

Can hash functions, which are today one-way, be two-
way? This study aims to make it possible to retrieve the
original data, which is impossible for one-way hash functions
in terms of computation time. The encrypted hash code
generation process of the proposed methodology was stable.
However, during the decryption process, an average of 0.17%
of ‘‘fake’’ data were observed according to the data in Table 9.
In other words, these data show that there is uncertainty
in the decoding of 0.17% of the number pattern. The
uncertainty was temporarily resolved by means of additional
data characterized as ‘‘crypto raw data’’ in the current state
of the study.

What is the purpose of providing two-way properties
to hash functions? Although the one-way nature of hash
functions provides an advantage in terms of security for
some applications, it may also have disadvantages. These
disadvantages can be explained by the fact that in addition
to the hash code, the original data must also be sent to
the recipient, or the recipient must have the original data

18382 VOLUME 12, 2024

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

FIGURE 37. Avalanche effect for ‘‘crypto’’ text.

FIGURE 38. Original data-hash code differences of permutation outputs derived from ‘‘crypto’’ data.

in advance. However, in a two-way hash function with the
security features of one-way hash functions, the original data
do not need to be sent to the receiver. This defines a higher
level of security.

What are the possible uses of the two-way hash functions?
What are the benefits of using two-way hash functions in
these areas compared with one-way hash functions? Two-
way hash functions can be used in digital signature and
blockchain applications where one-way hash functions are
used. When used in these areas, the original data do not need
to reach the recipient side and therefore offer a higher level
of security. In addition, the two-way nature of hash functions
allows them to be used for steganography and data storage.
In steganographic applications, distortion of the cover object
can be minimized. The fact that hash functions present the
data in the form of a summary and that the output length does
not change even if the bit length of the original data increases
makes it much more effective in steganography. The benefits

of keeping data summarized in storage areas and accessing
the original data losslessly when needed are incredible.

Can two-way hash functions provide the security prop-
erties of one-way hash functions? Whether the 52-bit
low-length output of the TWHF method has a significant
relationship with the input data is tried to be revealed by
the tests performed within the scope of the study. Graphs of
the tests performed for this purpose are shown in Fig. 37
and Fig. 38 In the first of the tests, the results of which
are visualised in Fig. 37 and show the avalanche effect of
TWHF, an average difference rate of 50.57% was obtained.
This result is better than the results obtained using some
common one-way functions. In the second test, which is
visualized in Fig. 38, the difference rate of the hash codes
of 719 different texts generated by permutation for the text
‘‘crypto’’ compared to the hash code of the original text
was found to be 50.07% on average. This average difference
percentage is slightly better than the average difference

VOLUME 12, 2024 18383

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

TABLE 11. NIST tests of hash codes generated by TWHF and one-way functions for ‘‘crypto’’ text - P Value.

percentage of one-way hash functions. The final security test
of the TWHF is the NIST randomness test, the results of
which are listed in Table 11. This test involves the randomness
of 48 different hash codes for 48 different data obtained
by replacing each bit of the 48-bit ‘‘crypto’’ text in turn.
According to this test, all hash functions including TWHF
fail Maurer’s Universal Statistical test. TWHF also failed the
approximate entropy test but passed the other 14 randomness
tests.

The test results strongly suggest that the TWHF can
provide the security properties of one-way hash functions.
However, due to its two-way nature, the ‘‘key’’ structure

should be included in the TWHF methodology. With this
key, the ‘‘root hash code’’ should be accessed first and the
process of decoding the original data should start from this
point. Otherwise, starting the decryption process without this
security phase may render the TWHF method unreliable.
A visual representation of this situation is shown in Fig. 29.

A. OPEN QUESTIONS
It can be said that TWHF can provide a private key in its
current methodology and only the owners of this key will
have access to the root hash code. However, it is necessary

18384 VOLUME 12, 2024

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

to find a solution for the average uncertainty of 0.17% that
occurs in the process after the root hash code. In the current
state of the TWHF, the uncertainty rate has been considerably
reduced under various conditions; however, it has not been
completely eliminated. The effects of the conditions on the
TWHFmethod are listed in Table 10. The fact that uncertainty
cannot be eliminated in the current situation has temporarily
revealed the existence of data characterized as ‘‘crypto raw
data.’’ If the need for these data is removed, the TWHF can
reach its ideal level of operation.

The security results of TWHF are similar to the results
given by existing one-way hash functions. However, in the
current state of TWHF, the operating speed is low compared
to one-way hash functions. This is because TWHF includes
operations to hide the original data as well as summarising the
original data. Therefore, researchers interested in this subject
should also conduct studies to increase the TWHF speed.

IX. CONCLUSION
All hash functions in the literature are one-way. The
contribution of this study to the literature is that it discusses
the concept of two-way hash functions and provides a
methodology for this. In this study, studies have been
conducted on the areas where two-way hash functions can be
used, whether they can have the security features of one-way
functions and their applicability.

TWHF combines the benefits of data compression, hash
functions, and cryptographic algorithms into a singlemethod-
ology with the originally developed functions, concepts, and
workflow. TWHF aims to express data of arbitrary length
with a hash code, and to obtain the original data from the
hash code when needed. With this feature, TWHF has the
potential to be used in many areas such as data storage, data
confidentiality, data integrity, digital signature applications,
blockchain, and steganography.

The strengths of the TWHF are derived from its method-
ology. In this context, a novel change function, data/block
classifications, and an original workflow integrating them
with Huffman coding are presented. The change function was
used to find the data suitable for Huffman encoding. Data
were divided into four main classes that contributed to the
literature. Another important contribution of this study is the
classification of blocks formed by data and their integration
into the workflow of the proposed method.

The analysis of TWHF and the results obtained can be
summarised as follows.

When the security test results of common one-way hash
functions are compared with TWHF, it can be said that the
results are satisfactory.

It is thought that TWHF can be used more effectively in
areas where one-way functions are used, owing to its two-
way feature. In addition, the two-way nature of the TWHF
method may make it possible to use in areas where one-way
hash functions cannot be used.

There are no problems with the TWHF encrypted hash
code generation process. During the decryption process,

uncertainty was detected in some data and these data were
characteried as ‘‘fake.’’ The uncertainty was reduced by
a factor of approximately 7.4 using some conditions and
control data.

This study is of an unsolved type of problem and is open to
further development. This paper discusses all aspects of two-
way hash functions, the existence of this function and aims
to provide guidance for its development. In the future, it is
extremely important to improve the methodology presented
in this study with the involvement of more researchers.
In addition, it is foreseen that publication of the study in this
formwill cause researchers interested in the subject to initiate
new research and thus obtain more effective results regarding
the methodology.

REFERENCES
[1] B. M. P. Waseso and N. A. Setiyanto, ‘‘Web phishing classification using

combined machine learning methods,’’ J. Comput. Theories Appl., vol. 1,
no. 1, pp. 11–18, Aug. 2023.

[2] R. Barman, S. Deshpande, N. Kulkarni, S. Agarwal, and S. Badade,
‘‘A review on lossless data compression techniques,’’ Int. J. Sci. Res. Eng.
Trends, vol. 7, no. 1, pp. 143–148, Feb. 2021.

[3] U. Jayasankar, V. Thirumal, and D. Ponnurangam, ‘‘A survey on data
compression techniques: From the perspective of data quality, coding
schemes, data type and applications,’’ J. King Saud Univ. Comput. Inf. Sci.,
vol. 33, no. 2, pp. 119–140, Feb. 2021.

[4] A. Gupta and S. Nigam, ‘‘A review on different types of lossless data
compression techniques,’’ Int. J. Sci. Res. Comput. Sci., Eng. Inf. Technol.,
vol. 7, pp. 50–56, Jan. 2021.

[5] P. William, A. Choubey, G. S. Chhabra, R. Bhattacharya, K. Vengatesan,
and S. Choubey, ‘‘Assessment of hybrid cryptographic algorithm for secure
sharing of textual and pictorial content,’’ in Proc. Int. Conf. Electron.
Renew. Syst. (ICEARS), Tuticorin, India, Mar. 2022, pp. 918–922.

[6] J. Verma, M. Shahrukh, M. Krishna, and R. Goel, ‘‘A critical review on
cryptography and hashing algorithm SHA-512,’’ Int. Res. J. Modern. Eng.,
vol. 3, no. 12, pp. 1760–1764, Dec. 2021.

[7] T. Koroglu and R. Samet, ‘‘Secure steganographic data transmission
method for periodically updated data,’’ J. Modern Tech. Eng., vol. 7, no. 3,
pp. 153–171, Dec. 2022.

[8] Z. Alqad, M. Oraiqat, H. Almujafet, S. Al-Saleh, H. Al Husban, and
S. Al-Rimawi, ‘‘A new approach for data cryptography,’’ Int. J. Comput.
Sci. Mob. Comput., vol. 8, no. 9, pp. 30–48, Sep. 2019.

[9] M. N. B. Anwar, M. Hasan, M. M. Hasan, J. Z. Loren, and S. T. Hossain,
‘‘Comparative study of cryptography algorithms and its’ applications,’’ Int.
J. Comput. Netw. Commun. Sec., vol. 7, no. 5, pp. 96–103, May 2019.

[10] F. Maqsood, M. Ahmed, M. Mumtaz, and M. Ali, ‘‘Cryptography:
A comparative analysis for modern techniques,’’ Int. J. Adv. Comput. Sci.
Appl., vol. 8, no. 6, pp. 442–448, 2017.

[11] M. Barakat and C. E. V. T. Hanke. (2018). An Introduction to
Cryptography. [Online]. https://agag-ederc.math.rptu.de/~ederc/
download/Cryptography.pdf

[12] O. G. Abood and S. K. Guirguis, ‘‘A survey on cryptography algorithms,’’
Int. J. Sci. Res. Publications (IJSRP), vol. 8, no. 7, pp. 495–516, Jul. 2018.

[13] M. N. Alenezi, H. Alabdulrazzaq, and N. Q. Mohammad, ‘‘Symmetric
encryption algorithms: Review and evaluation study,’’ Int. J. Commun.
Netw. Inf. Sec., vol. 12, no. 2, pp. 256–272, Aug. 2020.

[14] M. A. Al-Shabi, ‘‘A survey on symmetric and asymmetric cryptography
algorithms in information security,’’ Int. J. Sci. Res. Publications (IJSRP),
vol. 9, no. 3, pp. –589, Mar. 2019.

[15] D. R. I. M. Setiadi and N. Rijati, ‘‘An image encryption scheme combining
2D cascaded logistic map and permutation-substitution operations,’’
Computation, vol. 11, no. 9, p. 178, Sep. 2023, doi: 10.3390/computa-
tion11090178.

[16] E. Winarno, K. Nugroho, P. W. Adi, and D. R. I. M. Setiadi, ‘‘Combined
interleaved pattern to improve confusion-diffusion image encryption based
on hyperchaotic system,’’ IEEE Access, vol. 11, pp. 69005–69021, 2023,
doi: 10.1109/ACCESS.2023.3285481..

VOLUME 12, 2024 18385

http://dx.doi.org/10.3390/computation11090178
http://dx.doi.org/10.3390/computation11090178
http://dx.doi.org/10.1109/ACCESS.2023.3285481

T. Koroglu, R. Samet: Can There Be a Two Way Hash Function?

[17] A. Babalola, E. Bamidele, and O. Esther, ‘‘Cryptography: A review,’’ Int.
J. Adv. Eng. Manag. (IJAEM), vol. 3, no. 10, pp. 1385–1391, Oct. 2021.

[18] V. S. Shetty, R. Anusha, D. Kumar, and P. Hegde, ‘‘A survey on
performance analysis of block cipher algorithms,’’ in Proc. Int. Conf.
Inventive Comput. Technol. (ICICT), Feb. 2020, pp. 167–174.

[19] W. Yihan and L. Yongzhen, ‘‘Improved design of DES algorithm
based on symmetric encryption algorithm,’’ in Proc. IEEE Int. Conf.
Power Electron., Comput. Appl. (ICPECA), Shenyang, China, Jan. 2021,
pp. 220–223.

[20] B. Padmavathi and S. R. Kumari, ‘‘A survey on performance analysis of
DES, AES and RSA algorithm along with LSB substitution,’’ IJSR, India,
vol. 2, no. 4, pp. 170–174, Apr. 2013.

[21] S. Sharma, K. N. Patel, andA. Siddhath Jha, ‘‘Cryptography using blowfish
algorithm,’’ in Proc. 3rd Int. Conf. Adv. Comput., Commun. Control Netw.
(ICACN), Greater Noida, India, Dec. 2021, pp. 1375–1377.

[22] B. V. Nair, ‘‘Survey on asymmetric key cryptographic algorithms,’’ Int. J.
Sci. Res. Sci., Eng. Technol., vol. 2, pp. 404–408, Apr. 2020.

[23] R. Sood and H. Kaur, ‘‘A literature review on RSA, DES and AES encryp-
tion algorithms,’’ Emerg. Trends Eng. Manag., pp. 57–63, Feb. 2023, doi:
10.56155/978-81-955020-3-5-07.

[24] S. F. Yousif, ‘‘Secure voice cryptography based on Diffie–Hellman
algorithm,’’ in Proc. 2nd Int. Sci. Conf. Eng. Sci. Diyala, Iraq: Materials
Science and Engineering, Feb. 2021, Art. no. 012057, doi: 10.1088/1757-
899X/1076/1/012057.

[25] M. R. Anwar, D. Apriani, and I. R. Adianita, ‘‘Hash algorithm in
verification of certificate data integrity and security,’’ Aptisi Trans.
Technopreneurship (ATT), vol. 3, no. 2, pp. 65–72, Sep. 2021.

[26] B. Madhuravani and D. S. R. Murthy, ‘‘Cryptographic hash functions:
SHA family,’’ Int. J. Innov. Tech. Expl. Eng., vol. 2, no. 4, pp. 326–329,
Mar. 2013.

[27] A. A. Alkandari, I. F. Al-Shaikhli, and M. A. Alahmad, ‘‘Cryptographic
hash function: A high level view,’’ in Proc. Int. Conf. Informat. Creative
Multimedia, Kuala Lumpur, Malaysia, Sep. 2013, pp. 128–134.

[28] A. Zellagui, N. Hadj-Said, and A. Ali-Pacha, ‘‘Comparative study between
Merkle–Damgård and other alternative hashes construction,’’ in Proc. Sec.
Conf. Inf. App. Math., Guelma, Algeria, Jun. 2019, pp. 30–34.

[29] Z. Al-Odat and S. Khan, ‘‘Constructions and attacks on hash functions,’’
in Proc. Int. Conf. Comput. Sci. Comput. Intell. (CSCI), Las Vegas, NV,
USA, Dec. 2019, pp. 139–144.

[30] S. Debnath, A. Chattopadhyay, and S. Dutta, ‘‘Brief review on
journey of secured hash algorithms,’’ in Proc. 4th Int. Conf. Opto-
Electron. Appl. Opt. (Optronix), Kolkata, India, Nov. 2017, pp. 1–5, doi:
10.1109/OPTRONIX.2017.8349971.

[31] Z. Al-Odat, A. Abbas, and S. U. Khan, ‘‘Randomness analyses of the
secure hash algorithms, SHA-1, SHA-2 and modified SHA,’’ in Proc. Int.
Conf. Frontiers Inf. Technol. (FIT), Islamabad, Pakistan, Dec. 2019, p. 316.

[32] R. Martino and A. Cilardo, ‘‘A flexible framework for exploring,
evaluating, and comparing SHA-2 designs,’’ IEEE Access, vol. 7,
pp. 72443–72456, 2019, doi: 10.1109/ACCESS.2019.2920089.

[33] A. K. Sharma and S. K. Mittal, ‘‘Cryptography & network security hash
function applications, attacks and advances: A review,’’ in Proc. 3rd
Int. Conf. Inventive Syst. Control (ICISC), Coimbatore, India, Jan. 2019,
pp. 177–188.

[34] K. Rajeshwaran and K. Anil Kumar, ‘‘Cellular automata based hashing
algorithm (CABHA) for strong cryptographic hash function,’’ in Proc.
IEEE Int. Conf. Electr., Comput. Commun. Technol. (ICECCT), Coimbat-
ore, India, Feb. 2019, pp. 1–6, doi: 10.1109/ICECCT.2019.8869146.

[35] N. Kheshaifaty and A. Gutub, ‘‘Preventing multiple accessing attacks via
efficient integration of captcha crypto hash functions,’’ Int. J. Comput. Sci.
Netw. Secur. (IJCSNS), vol. 20, no. 9, pp. 16–28, Sep. 2020.

[36] Y. Li and G. Ge, ‘‘Cryptographic and parallel hash function based on cross
coupled map lattices suitable for multimedia communication security,’’
Multimedia Tools Appl., vol. 78, no. 13, pp. 17973–17994, Jan. 2019.

[37] A. Mohammed Ali and A. Kadhim Farhan, ‘‘A novel improvement with an
effective expansion to enhance the MD5 hash function for verification of
a secure E-document,’’ IEEE Access, vol. 8, pp. 80290–80304, 2020, doi:
10.1109/ACCESS.2020.2989050.

[38] A. Abouchouar, F. Omary, and K. Achkoun, ‘‘New concept for crypto-
graphic construction design based on noniterative behavior,’’ IAES Int. J.
Artif. Intell. (IJ-AI), vol. 9, no. 2, pp. 229–235, Jun. 2020.

[39] H. Abroshan, ‘‘A hybrid encryption solution to improve cloud computing
security using symmetric and asymmetric cryptography algorithms,’’ Int.
J. Adv. Comput. Sci. Appl., vol. 12, no. 6, pp. 31–37, 2021.

[40] X. Wang, S. Wang, N. Wei, and Y. Zhang, ‘‘A novel chaotic image
encryption scheme based on hash function and cyclic shift,’’ IETE Tech.
Rev., vol. 36, no. 1, pp. 39–48, Jan. 2019.

[41] M. Alotaibi, D. Al-Hendi, B. Alroithy, M. AlGhamdi, and A. Gutub,
‘‘Secure mobile computing authentication utilizing hash, cryptography and
steganography combination,’’ J. Inf. Secur. Cybercrimes Res., vol. 2, no. 1,
pp. 73–82, 2019.

[42] K. Koptyra and M. R. Ogiela, ‘‘Imagechain—Application of blockchain
technology for images,’’ Sensors, vol. 21, no. 1, p. 82, Dec. 2020, doi:
10.3390/s21010082.

[43] X. Liu, P. An, Y. Chen, and X. Huang, ‘‘An improved lossless image
compression algorithm based on Huffman coding,’’ Multimedia Tools
Appl., vol. 81, no. 4, pp. 4781–4795, Jun. 2021.

[44] M. A. Rahman andM. Hamada, ‘‘Lossless image compression techniques:
A state-of-the-art survey,’’ Symmetry, vol. 11, no. 10, p. 1274, Oct. 2019,
doi: 10.3390/sym11101274.

[45] R. Arshad, A. Saleem, and D. Khan, ‘‘Performance comparison of Huff-
man coding and double Huffman coding,’’ in Proc. 6th Int. Conf. Innov.
Comput. Technol. (INTECH), Dublin, Ireland, Aug. 2016, pp. 361–364.

[46] L. J. Paterson and C. A. Glasbey, ‘‘An illustration of rounding error on
computers,’’Math. Gazette, vol. 69, no. 448, pp. 128–131, Jun. 1985.

[47] S. Singh, M. Sarfaraz Iqbal, and A. Jaiswal, ‘‘Survey on techniques
developed using digital signature: Public key cryptography,’’ Int. J.
Comput. Appl., vol. 117, no. 16, pp. 1–4, May 2015.

[48] A. S. Rajasekaran,M.Azees, and F. Al-Turjman, ‘‘A comprehensive survey
on blockchain technology,’’ Sustain. Energy Technol. Assessments, vol. 52,
Aug. 2022, Art. no. 102039, doi: 10.1016/j.seta.2022.102039.

TIMUCIN KOROGLU received the B.Sc. degree
from the Department of Computer Systems Edu-
cation, Gazi University, and the M.Sc. degree
from the Department of Electrical and Electronics
Engineering, Pamukkale University, in 1995. He is
currently pursuing the Ph.D. degree with the
Department of Computer Engineering, Ankara
University. He is a Lecturer with the Department
of Computer Programming, Pamukkale Univer-
sity. His current research interests include cyber

security and web applications.

REFIK SAMET received the Ph.D. degree from the
Department of Fault-Tolerant Multicomputers and
Multiprocessor Systems, the Russian Academy of
Sciences, and the Institute of Control Sciences.
He is currently a Professor with the Department
of Computer Engineering, Ankara University.
He has published several papers in international
journals and conferences. His research interests
include parallel systems, cyber security, computer
forensics, machine-learning networks, and mobile
applications.

18386 VOLUME 12, 2024

http://dx.doi.org/10.56155/978-81-955020-3-5-07
http://dx.doi.org/10.1088/1757-899X/1076/1/012057
http://dx.doi.org/10.1088/1757-899X/1076/1/012057
http://dx.doi.org/10.1109/OPTRONIX.2017.8349971
http://dx.doi.org/10.1109/ACCESS.2019.2920089
http://dx.doi.org/10.1109/ICECCT.2019.8869146
http://dx.doi.org/10.1109/ACCESS.2020.2989050
http://dx.doi.org/10.3390/s21010082
http://dx.doi.org/10.3390/sym11101274
http://dx.doi.org/10.1016/j.seta.2022.102039

