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Performance evaluation of a deep 
learning model for automatic 
detection and localization 
of idiopathic osteosclerosis 
on dental panoramic radiographs
Melek Tassoker 1*, Muhammet Üsame Öziç 2 & Fatma Yuce 3

Idiopathic osteosclerosis (IO) are focal radiopacities of unknown etiology observed in the jaws. These 
radiopacities are incidentally detected on dental panoramic radiographs taken for other reasons. In 
this study, we investigated the performance of a deep learning model in detecting IO using a small 
dataset of dental panoramic radiographs with varying contrasts and features. Two radiologists 
collected 175 IO-diagnosed dental panoramic radiographs from the dental school database. The 
dataset size is limited due to the rarity of IO, with its incidence in the Turkish population reported 
as 2.7% in studies. To overcome this limitation, data augmentation was performed by horizontally 
flipping the images, resulting in an augmented dataset of 350 panoramic radiographs. The 
images were annotated by two radiologists and divided into approximately 70% for training (245 
radiographs), 15% for validation (53 radiographs), and 15% for testing (52 radiographs). The study 
employing the YOLOv5 deep learning model evaluated the results using precision, recall, F1-score, 
mAP (mean Average Precision), and average inference time score metrics. The training and testing 
processes were conducted on the Google Colab Pro virtual machine. The test process’s performance 
criteria were obtained with a precision value of 0.981, a recall value of 0.929, an F1-score value of 
0.954, and an average inference time of 25.4 ms. Although radiographs diagnosed with IO have a 
small dataset and exhibit different contrasts and features, it has been observed that the deep learning 
model provides high detection speed, accuracy, and localization results. The automatic identification 
of IO lesions using artificial intelligence algorithms, with high success rates, can contribute to the 
clinical workflow of dentists by preventing unnecessary biopsy procedure.
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Idiopathic osteosclerosis (IO) of the jaws are localized, non-expansive radiopacities of unknown  cause1. Other 
known names are bone scarring, dense bone island, enostosis, and focal periapical osteopetrosis. They are usu-
ally seen in the mandible and premolar-molar regions. IOs are non-encapsulated lesions with homogeneous 
internal structures, smooth outer borders, and no radiolucent  margins2. Their size can vary from 2–3 mm to 
1–2 cm. They can be seen in the roots of the teeth, between the roots, or in any area on the jaw arch independent 
of the  teeth3. Rarely, they may cause external root resorption in cases associated with the tooth’s root, but this 
is self-limiting, and the involved tooth is  vital4. Apart from the jaws, they can also be seen in the pelvis, femur, 
and other long  bones5. IO consists of mature vital bone, which histologically does not contain medullary spaces 
and does not contain inflammatory  infiltrate6. In the literature, studies conducted with panoramic, periapical 
radiographs and cone-beam computed tomography have reported a frequency of 0.10%6 to 31%7. Since IO 
lesions are asymptomatic, they are diagnosed incidentally on radiographs taken for different  reasons4. These 
lesions developing in the cancellous bone do not require treatment. Clinical follow-up is  sufficient8. However, 
they must be differentiated from radiopacities that require treatment due to inflammatory or systemic  disease2.
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The term "artificial intelligence (AI)" is used when a machine can carry out tasks typically associated with 
human minds, like "learning" and "problem-solving." Learning is a crucial element for machines, making machine 
learning a subset of AI. In recent years, substantial efforts have been dedicated to advancing machine learn-
ing, raising expectations for the capabilities of machines. Deep learning represents a step in this progression. 
Founded on artificial neural networks, deep learning is a subset of machine learning. These networks strive 
to replicate both the structure and functionality of the human brain, enabling them to autonomously acquire 
knowledge and make intelligent decisions without the need for explicit programming. In numerous applications, 
deep learning models exhibit superior performance compared to both shallow machine learning models and 
conventional approaches to data  analysis9,10. In image analyses using conventional machine learning methods, 
it is necessary to perform feature extraction and feature selection processes initially. Since there are numerous 
methods for these tasks, researchers repeatedly conduct experiments to find the most suitable procedure. Deep 
learning models, on the other hand, are highly advantageous in terms of cost compared to conventional machine 
learning methods because they autonomously extract and select features across layers. They can automatically 
learn and capture relevant features throughout the training process, eliminating the manual feature engineering 
procedures needed in conventional AI  methods11,12. Deep learning models generally encounter tasks such as 
segmentation, classification, pose estimation, and object detection in computer vision. For the widely used object 
detection task in computer vision, two main approaches are suggested: single-shot (e.g., Single Shot Multibox 
Detector, You Only Look Once) and two-shot (e.g., Region-based Convolutional Neural Network, Fast Region-
based Convolutional Neural Network, Faster Region-based Convolutional Neural Network, Region-based Fully 
Convolutional Networks, Mask Region-based Convolutional Neural Network). Two-shot approaches involve 
using a proposal network in the first stage to identify potential object locations on the image, followed by clas-
sifying and predicting the position of the identified proposal regions in the second stage. On the other hand, 
single-shot object detection approaches process the image in a single pass to perform both object localization 
and classification. Single-shot models offer advantages such as fast detection, lower parameter computation cost, 
reduced power consumption on resource-constrained devices, real-time performance with quick detection and 
low inference time, simple model structures, lower labeled image requirements, and efficient memory usage on 
constrained devices. You Only Look Once (YOLO), a Convolutional Neural Network (CNN)-based single-shot 
detector, analyzes a small number of labeled images in a single pass, showcasing many of the aforementioned 
advantages. Numerous studies have indicated its superiority in terms of both speed and accuracy over competi-
tors performing the same object detection task. The YOLO family has been successfully applied in various fields, 
including both industrial and medical  domains13–17.

As a result of the recommendation of deep learning algorithms to the literature,  detection18 and  classification19 
related to the diagnosis of diseases and segmentation of  organs20 can be performed using different medical 
images. These improvements can be overcome by the low inter-observer  reliability21. In recent years, deep learn-
ing research has gained momentum in oral  radiology22. Age  estimation23, diagnosis of  caries24, evaluation of peri-
odontal bone  loss25, mental  foramen26 and mandibular canal  segmentation27, diagnoses of jaw cysts and  tumors28, 
detection of pulpal  calcification29, detection of maxillary sinus  lesions30 and classification of  osteoporosis31 are 
some of the studies in this field. In computer-aided diagnosis (CAD) studies, imaging methods such as periapi-
cal, panoramic, cephalometric, and cone-beam computed tomography are used to detect and classify  diseases32. 
Panoramic radiographs help examine large areas of the  jaws3. However, panoramic radiographs inherently dem-
onstrate complexity. These radiographs may include artifacts, indistinct boundaries within bony structures, 
irregular shapes and borders of the mental foramen, as well as jawbones characterized by irregular curvatures 
and density variations. Furthermore, irregularities in tooth alignment or missing tooth fragments, the presence 
of implants and fillings, digital noise, and fluctuations in contrast levels are commonly observed features in pano-
ramic  radiographs33. Therefore, the developed CAD systems need to work adaptively with all complex panoramic 
radiographs. Since IO shows a hyperdense and radiopaque appearance, it is essential to distinguish it from other 
radiopaque lesions that can be viewed on different panoramic images. Knowing the imaging characteristics of 
IO on panoramic radiographs is stated to prevent unnecessary biopsy  procedures6. Considering the highlighted 
advantages and disadvantages of panoramic radiographs, automatic detection of IO on panoramic images using 
an artificial intelligence-based deep learning model could help dentists as a computer-assisted clinical decision 
support system. Exceptionally few studies perform automatic IO detection with deep learning  models34. This 
study investigated the automatic detection and localization success of IO on panoramic radiographs with differ-
ent features and a small dataset, utilizing the single-shot YOLOv5 algorithm, a popular model within the YOLO 
family, which possesses the advantages mentioned above. The hypothesis of this study was that the model’s ability 
to identify focal radiopacities of unknown etiology in the jaws would showcase its potential as a valuable tool for 
incidental detection during routine dental panoramic radiographic examinations.

Materıals and methods
The study design and sampling
This study was carried out retrospectively through panoramic radiographs taken for various diagnostic reasons 
at the Faculty of Dentistry, Department of Oral and Maxillofacial Radiology. The study protocol was approved 
by Necmettin Erbakan University, Faculty of Dentistry, Ethics Committee for Non-Drug and Medical Device 
Research (No:17-127) and conducted in accordance with the principles defined in the Declaration of Helsinki, 
including all revisions. Informed consent is not required for retrospective studies by the Necmettin Erbakan 
University, Faculty of Dentistry, Ethics Committee for Non-Drug and Medical Device Research. The current 
standards for diagnosing IO included the following characteristics: a clearly outlined radiopaque area exceeding 
3mm in size associated with normal bone, exhibiting a round, elliptical, or variably irregular shape, and lacking 
a surrounding radiolucent  rim35,36. Based on these criteria, the study included panoramic radiographs from 
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175 patients of both genders aged 18 and older, all exhibiting at least one radiopaque lesion consistent with the 
definition of idiopathic osteosclerosis.

The exclusion criteria included lesions exhibiting the following characteristics:

• Connection with persistent inflammation characterized as condensing osteitis.
• Lesions displaying a combination of radiopaque and radiolucent features, such as diffuse sclerosing osteo-

myelitis.
• Hypercementosis, cementoblastoma, odontoma, non-malignant fibro-osseous conditions like periapical 

cemento-osseous dysplasia and focal cemento-osseous dysplasia.
• Discernible remnants of deciduous or permanent teeth.
• Individuals diagnosed with Gardner’s syndrome, familial polyposis of the colon, and other conditions involv-

ing bone metabolic disturbances (as per patient file information).
• Images with insufficient image quality and artifacts that prevent the diagnosis of IO.

Image acquisition and radiographic evaluation
All panoramic radiographs reviewed were taken by a single device and acquired with a 2D Veraviewpocs (J 
MORITA MFG corp, Kyoto, Japan) digital panoramic X-ray device with 70 kVp, 5 mA, and 15 s irradiation time 
in accordance with the exposure protocols determined by the manufacturer. Two oral and maxillofacial radiolo-
gists with experience of 11 years (MT) and three years (FY) conducted the examinations through i-Dixel (J Morita 
MFG Corp., Kyoto, Japan) software. Inter- and intra-observer agreements were evaluated using Cohen’s Kappa 
statistics and showed excellent consistency in defining the IO (0.81–0.99). Localized well-defined radiopacities 
in different sizes associated with normal bone, without radiolucency in the periphery, were defined as  IO35. All 
lesions in both the upper and lower jaws were examined.

Dataset and image pre-processing
One hundred seventy-five panoramic radiographs diagnosed with IO from the Dental School database. Since 
panoramic radiographs were in different image extensions such as *.png, *.gif, *.tiff, *.jpg, and *.jpeg, they 
were all converted to *.jpg format. Due to variations in pixel sizes among panoramic images, a consistent size 
of 1930 × 1024 was applied to all radiographs through the use of the bilinear interpolation method. IOs show 
pattern changes close to the mandibular bone areas. For this reason, the dimensions were kept at the maximum 
level so that the region was not distorted in the resizing process. For data augmentation, all images were flipped 
horizontally. Thus, the number of data was increased to 350 radiographs. The fillings, implants, tooth loss, differ-
ent tone levels, and different contrast levels in the radiographs provided richer data. An original and horizontally 
flipped panoramic radiograph is given in Fig. 1.

Image annotation
The bounding boxes of IO in the resized and augmented images were annotated using the free browser-based 
makesense application (https:// www. makes ense. ai/). Since IOs are a condition that causes excessive hardening 
of bones, increases in bone density are observed in the areas where lesions are seen on panoramic radiography 
(Figs. 2, 3). Therefore, radiologists have conducted the annotation process by considering criteria such as density, 
consistency, location, and exclusion of other lesion types in cases where an increase in bone density is observed. 
As seen in Figs. 2 and 3, radiographs with different contrasts and patterns have been carefully annotated by 
drawing bounding boxes, as they tend to exhibit color tones closely resembling the pattern of the mandibular 
lesion region. After the annotating process, the label information was downloaded as a separate *.txt file for each 
image in YOLO format. These files contain the bounding box coordinates of the IOs. Figures 2 and 3 show the 
bounding boxes of the lesion regions and the pattern changes at close range in high and low-contrast panoramic 
radiographs, respectively.

Figure 1.  (a) Original panoramic radiograph. (b) Horizontally flipped panoramic radiograph.

https://www.makesense.ai/
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Figure 2.  Two annotated IO on high-contrast panoramic radiography and their zooming for close monitoring 
of pattern changes.

Figure 3.  Two annotated IO on low-contrast panoramic radiography and their zooming for close monitoring of 
pattern changes.
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YOLOv5 deep learning algorithm
YOLO is a powerful and fast real-time object detection method based on a regression method using CNN. This 
architecture transforms the problem into a regression solution to obtain the location and classification informa-
tion of the object according to the loss  function37,38.  YOLOv239,  YOLOv340,  YOLOv441, and  YOLOv542 versions 
of YOLO algorithms have been presented to the literature since 2016. Shortly after YOLOv4 was introduced to 
the literature in April  202041, YOLOv5 was released by Glen et al.42. YOLOv4 generates high-size weight files after 
training using the high-performance DarkNET framework. YOLOv5 offers easier usage compared to DarkNET 
in the Pytorch environment, and the weight file of the model has been reduced by approximately 90% compared 
to YOLOv4. The YOLOv5 algorithm has different architectures as nano (n), small (s), medium (m), large (l), 
and Xlarge (x) according to model and parameter size (https:// github. com/ ultra lytics/ yolov5). In this study, the 
m version of the YOLOv5 algorithm, the medium model in terms of the number of parameters and network 
size, was used to detect  IO42. The YOLOv5 architecture consists of four main components: Input: pre-processing 
component, Backbone: CSPDarknet component, Neck: PANet component, and Head: Prediction or YOLO Layer 
component. Different methods such as mosaic data augmentation, auto-learning bounding box, the cross-stage 
partial network, pooling, convolutions, spatial pyramid network, and concatenate function have various tasks in 
components in the architecture. The components that create the architecture are explained below  respectively43–45.

Input (first component)
The input terminal performs pre-processing on the image data, such as adaptive anchor, mosaic data augmenta-
tion, and adaptive image scaling. YOLOv5 integrates the adaptive anchor frame calculation module, which allows 
the initial anchor frame size to be adjusted automatically when the incoming dataset changes. Images used in 
experiments can have different row and column sizes. Input images are automatically scaled to speed up training 
and inference times and reduce training parameters.

Backbone (second component)
The pre-processed images serve as input to the Backbone module, which is the second element responsible for 
extracting features in the architecture. The DarkNET-based backbone module uses a cross-stage partial network 
(CSP)46 and spatial pyramid pooling (SPP)47 to extract feature maps of different sizes from the input image. 
Multiple convolutions and pooling operations are performed to obtain the feature maps. The SSP structure 
extracts features from the same feature map at different scales and performs procedures to improve detection 
accuracy. The BottleneckCSP structure reduces the computational load and increases the inference speed in the 
detection process.

Neck (third component)
Within the neck module, the integration of PANet (Pixel Aggregation Network)48 and FPN (Feature Pyramid 
Network)49 is implemented. PANet is structured upon the FPN topology, facilitating the transfer of features rich 
in semantic information from the top to the bottom. Thus, the PANet structure can localize high-power feature 
maps, which take precedence over low-feature maps. PANet and FPN structures are tightly interconnected. 
Backbone fusion leverages features from different network layers to the Neck module to further enhance sensing 
capability. These approaches strengthen the location accuracy of the target object.

Head (fourth component)
The Head module, alternatively known as the YOLO Layer or Prediction Layer, represents the final component 
of the architecture. Within the YOLO Layer module, the operations necessary for object recognition output are 
executed, encompassing parameters such as size, score, class, location, and bounding box information. The head 
output estimates target objects of different sizes from the feature maps obtained in the previous step. A schematic 
representation of the YOLOv5 architecture is given in Fig. 4.

For this study, we downloaded the YOLOv5 library from the GitHub repository published by Glen et al.42. 
This library has pre-trained models with the COCO dataset, which outputs eighty classes. To use pre-trained 
weights in this study, fine-tuning and transfer learning processes were performed. The model outputs were set for 
IO detection only and loaded into the library. The YOLOv5 algorithm locates a bounding box by detecting many 
candidate regions where it detects objects as a result of training and testing. Then, the non-maximum suppression 
technique was applied to prevent the over-detection problem to ensure that the bounding box with the highest 
confidence score remained on the image. Figure 5 shows the process from the entry of annotated panoramic 
radiographs into the YOLOv5 model until the application of the last-stage non-maximum suppression.

Model training and testing
The YOLOv5m model was trained and tested with a Linux-based cloud computer provided by the Pro version 
of the Google COLAB product (TESLA P100, 32GB RAM). The model parameters were determined as epoch 
number 600, mini-batch size 4, and optimization method Stochastic Gradient Descent (SGD). Other parameters 
were left as default. The dataset was randomly divided into 245 training (≌ 70%), 53 validation (≌ 15%), and 52 
test (≌ 15%). As a result of the training process, the system gave a weight file named “last.pt”. Then, 52 panoramic 
images the system had not seen before were tested using the “last.pt” weight file, bounding boxes were drawn 
to the coordinates of the IO-detected on the images, and confidence scores were written. By applying the non-
maximum suppression technique, bounding boxes under a confidence score of 0.25 were suppressed.

https://github.com/ultralytics/yolov5
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Performance criteria
The performance criteria of the model were evaluated in two stages: training and testing. The Weights & Biases 
(https:// wandb. ai/ site) platform was integrated with COLAB, and the training process was monitored in real time. 
The performance of the training process was examined with precision, recall, F1-score, mean Average Precision 
(mAP) values, loss values, and graphical representations. Loss values are a performance criterion obtained due 
to minimizing the loss function in the training process. If these values are close to zero, the training is successful. 
The Average Precision (AP) is defined as the area under the precision-recall curve. The mean Average Precision 
score is expressed by calculating the mean AP over all classes [Eq. (1)]. High AP and mAP values show that the 
training with the deep learning algorithm is so successful [Eq. (2), k: number of classes]. Training performance 
criteria were obtained automatically by running the YOLOv5 algorithm on the COLAB platform. Fifty-two test 
images were passed from trained model weights, taking into account the parameters of confidence score > 0.25 
and IoU > 0.45 (default values of YOLOv5), and bounding boxes determined by the non-maximum suppression 
were drawn on the images. During this process, the average inference time was calculated. Two radiologists 

Figure 4.  The YOLOv5  architecture45.

https://wandb.ai/site
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evaluated these test images, and the results were scored as True Positive (Radiologists detect there is, the algo-
rithm detects there is), False Positive (Radiologists detect there is no, the algorithm detects there is), False 
Negative (Radiologists see there is but the system cannot find). Precision [Eq. (3)], recall [Eq. (4)], and F1-score 
[Eq. (5)] values were calculated using True Positive (TP), False Positive (FP), and False Negative (FN). The Preci-
sion value shows how well true positives are predicted in all the bounding boxes the algorithm detects. The Recall 
value, on the other hand, shows how well the true positives are detected for all regions the radiologist saw as IO. 
Recall and precision are generally inversely proportional to each other. F1-score is the harmonic average of the 
recall and precision value. Figure 6 shows the flow chart for dividing the data, training, and testing processes.

(1)APk =

1∫

0

Pk(Rk)dRk

(2)mAP =
1

k

k∑
i=1

APi

(3)precision =
TP

TP + FP
=

TP

allDetections

Figure 5.  The process from the entry of annotated panoramic radiographs into the YOLOv5 model until the 
application of the last-stage non-maximum suppression.
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Ethics approval
This study was conducted at the Faculty of Dentistry, Necmettin Erbakan University, Department of Dentomaxil-
lofacial Radiology, with the approval of the Necmettin Erbakan University, Faculty of Dentistry, Ethics Committee 
for Non-Drug and Medical Device Research (No. 17/127) and was performed according to the stipulations laid 
out by the Declaration of Helsinki.

Informed consent
Not Applicable. Informed consent is not required for retrospective studies by the Necmettin Erbakan University, 
Faculty of Dentistry, Ethics Committee for Non-Drug and Medical Device Research.

Conference presentation
This study was presented as an oral presentation at the 26th TDB International Dental Congress, on 8–11 Sep-
tember 2022, Istanbul, TURKEY.

Results
Model training and testing results
The training process took 1.285 h on the COLAB platform. Parameter input has been set for the network to 
train for 600 epochs. However, since the system did not significantly improve in the last 100 epochs, it was 

(4)recall =
TP

TP + FN
=

TP

allGroundTruths

(5)F1− score = 2 ∗
Precision ∗ Recall

Precision+ Recall

Figure 6.  The flow chart of dividing the data, training, and testing processes.
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automatically terminated at the 397th epoch (early stopping). As a result of the training process, in which 
20,852,934 parameters were calculated, a weight file of 42.1 Megabytes was obtained. The weights were given the 
default threshold parameters of the YOLOv5m “detect.py” Python script (IoU > 0.45 and confidence score > 0.25). 
Out of 56 IOs in 52 test images, 52 IOs were correctly detected. However, one region was detected incorrectly, 
and 4 IOs could not be detected. The performance criteria results of the training and testing processes are given 
in Table 1. In Fig. 7, graphs of different loss and accuracy values are given according to epoch progression.

Results of localization and visualization
Visualization and localization were performed using the weights obtained from 52 panoramic test radiographs. 
In the evaluation made by the radiologists, it was observed that the borders of the IOs on the image could be 
taken into the bounding box exactly. In each image, IOs have different sizes, environmental irregularities, con-
trast, and pixel tone levels. At the same time, each dental panoramic radiograph has distinct contrast, pixel tone 
levels, tooth shapes, and jaw structures. Despite the mentioned negative features of both IOs and panoramic 
radiographs, the trained model accurately and rapidly detected and localized the vast majority of data it had 
never seen. Figure 8 shows the automatic IO detection and localization of the YOLOv5 deep learning model on 
ten panoramic test images with different characteristics.

Discussion
Artificial Intelligence (AI) applications in radiological images are hot topics frequently studied in the literature 
recently. Especially, computer-aided decision support systems, capable of automatically analyzing radiological 
images through deep learning algorithms, assist medical doctors and dentists in their diagnostic processes. These 

Table 1.  Results of performance criteria of training and testing processes.

Training (validation) Testing

Radiographs 53 52

IO 59 56

Precision 0.902 0.981

Recall 0.932 0.929

F1-score 0.917 0.954

mAP 0.939 –

Box loss 0.023 –

Class loss 0.000 –

Obj loss 0.006 –

Average inference time – 25.4 ms

Figure 7.  Graphs of different loss and accuracy values according to the epoch progression.
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applications can accelerate the diagnosis and treatment processes and increase patient welfare. As different deep 
learning models are proposed in the literature, there is an increase in segmentation, recognition, classification, 
and detection studies on radiological tooth images. However, there are still many issues to be studied in the 
AI-based prediction of many dental diseases and cases. Panoramic radiographs are X-ray-based images, and it 
is the most widely used medical imaging technique in dental clinics, which provides a panoramic view of many 
structures. Thus, a single image can analyze structures such as jaw bones, teeth, pathological formations, cysts, 
tumors, impacted teeth, caries, and fillings. However, panoramic radiographs are inherently very complex due 
to the different mouth structures of individuals and other differences in medical image acquisition (Figs. 1, 2, 
3, 8). Panoramic radiographs may include the following complex formations: artifacts, indistinct boundaries in 
bone structures, jawbones with irregular curvatures and density levels, irregular shapes and borders of the mental 
foramen, irregular tooth alignments, missing tooth fragments, implants, fillings, digital noises, and varying levels 

Figure 8.  Automatic IO detection and localization of the YOLOv5 deep learning model on ten different 
panoramic test images with different characteristics.
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of  contrast33. AI-based CAD systems designed for panoramic radiographs are expected to be adaptive decision 
support systems that can provide successful results in all images, considering the abovementioned complex 
situations. It has been reported that deep learning-based CAD systems performed on panoramic images give 
successful results. Tooth segmentation and  numbering50,51, impacted tooth  detection52, residual  tooth53, den-
tal  calculus53,  filling53, and  caries54 are some of the studies presented in the literature. This study proposes an 
approach that performs automatic detection and localization of IO with the YOLOv5m deep learning algorithm 
on panoramic radiographs.

IO lesions are non-expansive localized bone radiopacities and do not pose a health  risk6. IO’s internal struc-
ture, usually seen as radiopaque masses in the mandible and premolar-molar region, has a homogeneous pat-
tern. Its external structure consists of elliptical, rounded, and irregular borders (Figs. 2, 3, 8). Radiographic 
evaluation of the morphological features of IO and its relationship with anatomical structures is essential for 
pre-surgical planning in clinical interventions such as maxillofacial trauma and  implants55. In addition, knowing 
the radiological features is very important to prevent unnecessary biopsy procedures for the  patient6. Detailed 
radiological evaluations are an essential guide for distinguishing from other radiopaque lesions such as condens-
ing osteitis, cemental dysplasia, ossifying fibroma, osteoma, osteoblastoma, cementoblastoma, and odontoma 
that may need  treatment56. In a study performed on 6154 panoramic images, the incidence of IO in the Turkish 
population was 2.4%57. In another study, the incidence of other radiopaque lesions was lower in percentage than 
 IO58. Therefore, the clinical collection of many panoramic images with radiopaque masses is a long and laborious 
process. Routine use of computed tomography for imaging and diagnosis of IO was not  recommended36. For 
these reasons, the performance of the deep learning model for the presence and localization of IO of different 
shapes and sizes in panoramic radiographs, which is relatively more common than other radiopaque masses, 
was evaluated on a small data set.

In this study, training, validation, and testing processes for automatic detection and localization of IO in 
panoramic images were carried out using Google’s paid COLAB Pro product, which allows the use of a power-
ful Linux-based virtual computer. In 53 validation images with 59 annotated regions, precision of 0.902, recall 
of 0.932, F1-score 0.917, mAP 0.939, box loss value 0.023, class loss value 0.0, and obj loss 0.006 were obtained 
(Table 1). The fact that the performance values were very close to one shows that the IO detection in training was 
carried out successfully, and the loss values close to zero indicate that the loss function was ideally minimized. 
When the accuracy and loss graphs were examined according to the epoch number, it was observed that the 
training process was successful (Fig. 7). Using the YOLOv5 weights obtained by training and then applying the 
non-maximum technique, IO lesions in 52 test images were automatically identified, as shown in Fig. 8. Of 56 
IO regions in 52 test images, 52 were correctly detected. One area was seen incorrectly, and four lesions could 
not be detected. High success values were obtained with 0.981 precision, 0.929 recall, 0.954 F1-score, and an 
average inference time of 25.4 ms test performance criteria. Rapid and accurate detection was performed despite 
the large image size.

Despite the different contrast values in the radiographic images taken from the X-ray device (Figs. 2, 3), 
there has been high success in detecting IOs. While artifacts, such as the superpositions of the hyoid bone 
or cervical vertebrae onto the mandibular anterior region, can introduce bias to the algorithm and cannot be 
eliminated from panoramic images, the algorithm has demonstrated a high level of accuracy in the localization 
process. The IO lesion exhibited similar pattern features to the mandibular trabecular structure in certain test 
images (refer to Figs. 2 and 3), yet the success rate remained high. The diagnostic capabilities of deep learning 
have been extensively studied in the context of identifying radiolucent or mixed radiolucent-radiopaque jaw 
lesions. However, there is currently a lack of adequate data pertaining to radiopaque lesions such as odontoma, 
osteoma, and IO. Yang et al. identified 1602 radiolucent jaw lesions on panoramic radiographs using YOLO v2 
and classified them as dentigerous cysts, odontogenic keratocysts, and  ameloblastoma59. The diagnostic accu-
racy of YOLO v2 resulted in 0.663, the precision value was 0.707, and the recall was 0.680. Kwon et al. classified 
jaw cysts and tumors as dentigerous cysts, periapical cysts, odontogenic keratocysts, and ameloblastoma with 
YOLO v3 on 1282 panoramic radiographs and obtained 78.2% sensitivity, 93.9% specificity, 91.3% accuracy, 
and 0.86 AUC  values32. In another deep-learning study that used cone-beam computed tomography, the reli-
ability of correctly detecting a radiolucent periapical lesion was found to be 92.8%60. Previous studies conducted 
with YOLO  v259 and YOLO  v332 have successfully diagnosed radiolucent or mixed radiolucent-radiopaque jaw 
lesions. The YOLOv5 algorithm, on the other hand, has faster, more practical, and smaller weight files than its 
competitors in real-time image processing  models42. IO lesions are continuous with the surrounding trabecular 
bone without a  capsule2 and sometimes do not appear as very prominent opacities. In addition, rapid diagnosis 
using panoramic radiographs with complex structures and different contrast levels may vary according to the 
dentist’s experience. In this study, it was seen that the YOLOv5 deep learning algorithm could detect IO with high 
accuracy, even in such lesions and panoramic images. As a result of our intensive literature research, one study 
detects IO with deep learning. Yesiltepe et al. performed IO detection in the GoogLeNet Inception V2 Faster 
R-CNN deep learning model using 493 panoramic radiographs. The employed Faster R-CNN structure in this 
study operates as a two-shot model, engaging in the region proposal first and subsequently performing object 
detection and classification. It does not possess many of the advantages previously mentioned for single-shot 
models like YOLOv5. The recall (sensitivity), precision, and F1-Score values of 52 test images were obtained as 
0.88, 0.83, and 0.86, respectively. When the results were examined, our study gave higher results in terms of test 
performance  criteria34.

The Inception V2 (a faster R-CNN architecture) and YOLO models are employed to identify objects within 
images or video frames. A study comparing YOLO and faster R-CNN in the detection and classification of breast 
cancer in mammography images revealed that the modified YOLO v5x demonstrated higher accuracy than YOLO 
v3 and Faster R-CNN  models61. The study concluded that YOLO v5 holds promise in distinguishing between 
benign and malignant breast tumors. Unlike faster R-CNN, the YOLO network can simultaneously perform 
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classification and bounding box regression, resulting in faster  processing62. The speed of the algorithm, as well 
as its accuracy, is important in a busy dental workflow. Yesiltepe et al. did not report the inference time; however, 
the average inference time in the present study was 25.4 ms. YOLO examines the entire bone radiograph in a 
single pass, enabling it to simultaneously detect and classify bone lesions across the entire radiographic field. 
YOLO, which was preferred in this study, has important advantages. Firstly, it operates swiftly for detection and 
classification tasks without the need for a complex pipeline. Secondly, the YOLOv5 variant incorporates a self-
adapting anchor, enhancing its capability to detect small  objects63.

Apart from the jaws, Xiong et al.64 differentiated osteoblastic bone metastasis and bone island using the 
ResNet-18 deep learning model in their study conducted with chest and abdomen CT scans of 728 patients. The 
accuracy, sensitivity, and specificity were found to be 0.854, 0.731, and 0.987, respectively. Osteoblastic bone 
metastases might exhibit a resemblance to a bone island, potentially leading to an initial misdiagnosis. This 
misidentification could result in a delay in the treatment of osteoblastic bone metastases in individuals with 
tumors. Those two bone lesions are distinguished by features such as thorny radiation, periosteal reaction, soft 
tissue involvement, and bone destruction. These characteristics are absent in bone islands, and the deep learning 
algorithm can likely make accurate determinations by learning the absence of these features. As a limitation of 
our study, different opaque lesions (such as a cemento-osseous dysplasia or an odontoma) were not compared. 
In such a study design, the deep learning algorithm is expected to learn by extracting the different radiological 
features (radiodensity, location, expandability, periphery) of lesions that may have radiopaque characteristics 
and to detect the lesion correctly. IO is nonexpansile and non-capsulated. On the other hand, odontomas may be 
expansile and show a low-attenuation halo. Both cementoblastoma and cemento-osseous dysplasia are periapical 
lesions with a sclerotic, well-defined margin and a low-attenuation halo. However, cementoblastoma directly 
merges with the tooth root, whereas cemento-osseous dysplasia does not fuse to the tooth  root65. As a result of 
training deep learning algorithms with such different radiological diagnostic features, it is possible to successfully 
detect different pathologies on the same image. In another study, Park et al.66 employed deep learning models 
to classify bone tumors (benign, malignant, or no tumor) in the proximal femur based on plain radiographs. 
The diagnostic accuracy of the model (0.853) was found to be significantly higher than that of the four doctors 
and the researchers concluded that AI-driven technology has the potential to decrease the likelihood of mis-
diagnosis among non-specialist doctors in the field of musculoskeletal oncology. Typically, human physicians 
employ "pattern recognition" to diagnose bone tumors, considering factors such as the tumor’s location, shape, 
size, density, and margin. Features utilized for diagnosing bone tumors in radiographs, such as shape, matrix, 
density, and transition zone, are deemed appropriate for integration into the deep learning algorithm. Similarly, 
it appears possible to distinguish features enabling the recognition of IO from other radiopaque lesion features 
through algorithmic detection.

The first limitation of this study is the small number of data. The IO is a rare  lesion67 and is not seen in every 
panoramic radiograph. For this reason, training and testing were done with less data than many deep-learning 
studies, but high-performance results were obtained. At this stage, the dataset was augmented twofold through 
data augmentation. Subsequently, the images provided to the YOLOv5 input undergo mosaic data augmentation, 
inherent to the model’s structure. Mosaic images are automatically generated through random scaling, rotation, 
positioning, and cropping operations on the data, thereby enhancing the model’s generalization ability by expos-
ing it to more complex and diverse inputs. By means of these two processes, attempts have been made to over-
come data limitations through the utilization of various image manipulation techniques. The second limitation is 
the absence of central lesions (such as ossifying fibroma, odontoma, etc.) that may require differential diagnosis 
with IO in the panoramic images included in the study. While the incidence of IO in the Turkish population is 
2.7%, the incidence of other radiopaque lesions is  lower57,58. Therefore, collecting other radiopaque lesions for 
such a study requires a long time. However, if such a data set can be collected, the deep learning application 
performed in this study is a good resource for future studies with high success results.

Conclusıon
In this study, automatic detection and localization of IO on panoramic images with the YOLOv5 deep learning 
algorithm were successfully performed. For advanced research, this study may provide a perspective for the 
simultaneous detection and classification of radiolucent and radiopaque lesions with deep learning algorithms. 
It is expected technology in the future artificial intelligence-based medical image analysis systems will be embed-
ded in hospital PACS systems and brought to doctors and dentists as preliminary information for diagnosis.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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