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Enhancing combinatorial optimization with
classical and quantum generative models

Javier Alcazar1,2, Mohammad Ghazi Vakili 1,3,4, Can B. Kalayci 1,5 &
Alejandro Perdomo-Ortiz 1

Devising an efficient exploration of the search space is one of the key chal-
lenges in the design of combinatorial optimization algorithms. Here, we
introduce the Generator-Enhanced Optimization (GEO) strategy: a framework
that leverages any generativemodel (classical, quantum, or quantum-inspired)
to solve optimization problems. We focus on a quantum-inspired version of
GEO relying on tensor-network Born machines, and referred to hereafter as
TN-GEO. To illustrate our results, we run these benchmarks in the context of
the canonical cardinality-constrained portfolio optimization problem by con-
structing instances from the S&P 500 and several otherfinancial stock indexes,
and demonstrate how the generalization capabilities of these quantum-
inspired generative models can provide real value in the context of an indus-
trial application. We also comprehensively compare state-of-the-art algo-
rithms and show that TN-GEO is among the best; a remarkable outcome given
the solvers used in the comparison have been fine-tuned for decades in this
real-world industrial application. Also, a promising step toward a practical
advantage with quantum-inspired models and, subsequently, with quantum
generative models

Along with machine learning and the simulation of materials, combi-
natorial optimization is one of top candidates for practical quantum
advantage. That is, the moment where a quantum-assisted algorithm
outperforms the best classical algorithms in the context of a real-world
application with a commercial or scientific value. There is an ongoing
portfolio of techniques to tackle optimization problemswith quantum
subroutines, ranging from algorithms tailored for quantum annealers
(e.g., refs. 1,2), gate-based quantum computers (e.g., refs. 3,4) and
quantum-inspired (QI) models based on tensor networks (e.g., ref. 5).

Regardless of the quantum optimization approach proposed to
date, there is a need to translate the real-world problem into a poly-
nomial unconstrained binary optimization (PUBO) expression – a task
which is not necessarily straightforward and that usually results in an
overhead in terms of the number of variables. Specific real-world use
cases illustrating these PUBO mappings are depicted in refs. 6 and 7.

Therefore, to achieve practical quantum advantage in the near-term, it
would be ideal to find a quantum optimization strategy that can work
on arbitrary objective functions, bypassing the translation and over-
head limitations raised here.

In ourwork,weoffer a solution to these challenges by proposing a
generator-enhanced optimization (GEO) framework which leverages
the power of (quantum or classical) generative models. This family of
solvers can scale to large problems where combinatorial problems
become intractable in real-world settings. We present the main results
where we highlight the different features of GEO by performing a
comparison with alternative solvers, such as Bayesian optimizers, and
generic solvers, like simulated annealing. In the case of the specific
real-world, large-scale application of portfolio optimization, we com-
pare against the state-of-the-art (SOTA) optimizers and show the
competitiveness of our approach.
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Results
Preliminaries
Here are more salient highlights that make the proposed approach
advantageous over other available solvers:

• It leverages the power of generative models: The essence of the
solver is that it is aiming to unveil non-obvious structure in the
data, and once it has captured those correlations, it suggests new
candidates with features similar to the top ones seen until that
iteration phase (see Fig. 1).

• The entire approach is data-driven: Thismeans that the availability
of more data, whether from previous attempts to solve the pro-
blemor fromother state-of-the-art solvers, is expected to enhance
performance. In the example of GEO as a booster, we used data
explored by Simulated Annealing (SA) but if we had previous
observations fromany ormany other solvers,we could combine it
and give it as a starting point to GEO.

• Themodel is cost function agnostic, i.e., it is a black box solver. This
is paramount since any cost function can be solved with our
approach. Most of the proposals for quantum or quantum
inspired optimization require the cost function of the problem to
be mapped to a quadratic or polynomial expression. This opens
the possibility to tackle any discrete optimization problem,
regardless of how complicated or expensive it is to compute the
cost function. This is possible since the only informationpassed to
the generative model are the bitstrings who have been explored
and their respective cost value.

• Versatility and Strategic Focus on Portfolio Optimization: This fol-
lows from the item above. The main motivation for selecting the
cardinality-constrained portfolio optimization as the NP-hard
problem for our studywas the availability of concrete benchmarks

and an extensive literature of solvers which have been fine-tuned
over the past decades. Every time a new metaheuristic is
proposed, chances are portfolio optimization is used to bench-
mark. Other recent independent works have considered other
real-world applications of GEO8,9. For example, the authors in
ref. 8 considered an industrial case related to a floor planning NP-
hard problem. This black-box feature is one of the most
prominent ones that render our approach advantageous com-
pared to other quantum heuristics, such as the quantum
approximate optimization algorithm (QAOA)3,4, which relies on
the cost function to be a polynomial in terms of the binary
variables.

Although other proposals leveraging generative models as a
subroutine within the optimizer have appeared recently since the
publication of our manuscript (e.g., see GFlowNets10 and the varia-
tional neural annealing11 algorithms), our framework offers the cap-
ability for both: handling arbitrary cost functions (i.e., a blackbox
solver) and the possibility to swap the generator for a quantum or
quantum-inspired implementation. GEO also has the enhanced feature
that the more data is available, the more information can be passed
and used to train the (quantum) generator.

As shown in Fig. 1, depending on the GEO specifics we can
construct an entire family of solvers whose generative modeling
core range from classical, QI or quantum circuit (QC) enhanced,
or hybrid quantum-classical model. These options can be realized
by utilizing, for example, Boltzmann machines12 or Generative
Adversarial Networks (GAN)13, Tensor-Network Born Machines
(TNBM)14, Quantum Circuit Born Machines (QCBM)15 or Quantum-
Circuit Associative Adversarial Networks (QC-AAN)16 respectively,

Fig. 1 | Scheme for our generator-enhanced optimization (GEO) strategy. The
GEO framework leverages generative models to utilize previous samples coming
from any quantum or classical solver. The trained quantumor classical generator is
responsible for proposing candidate solutions which might be out of reach for
conventional solvers. This seed data set (step 0) consists of observation bitstrings
fxðiÞgseed and their respective costs fσðiÞgseed. To give more weight to samples with
low cost, the seed samples and their costs are used to construct a softmax function
which serves as a surrogate to the cost function but in probabilistic domain. This
softmax surrogate also serves as a prior distribution from which the training set
samples are withdrawn to train the generative model (steps 1–3). As shown in the
figure between steps 1 and 2, training samples from the softmax surrogate are
biased favoring those with low cost value. For the work presented here, we

implemented a tensor-network (TN)-based generative model. Therefore, we refer
to this quantum-inspired instantiation of GEO as TN-GEO. Other families of gen-
erative models from classical, quantum, or hybrid quantum-classical can be
explored as expounded in the main text. The quantum-inspired generator corre-
sponds to a tensor-network Bornmachine (TNBM) model which is used to capture
the main features in the training data, and to propose new solution candidates
which are subsequently post-selected before their costs fσðiÞgnew are evaluated
(steps4-6). Thenew set ismergedwith the seeddata set (step 7) to formanupdated
seeddata set (step 8)which is to beused in the next iteration of the algorithm.More
algorithmicdetails for the twoTN-GEOstrategies proposed here, as a boosteror as a
stand-alone solver, can be found in the main text and in Supplementary
Note 1.F and 1.G.

Article https://doi.org/10.1038/s41467-024-46959-5

Nature Communications |         (2024) 15:2761 2



to name just a few of the many options for this probabilistic
component.

QI algorithms come as an interesting alternative since these allow
one to simulate larger scale quantum systems with the help of efficient
tensor-network (TN) representations. Depending on the complexity of
the TN used to build the quantum generative model, one can simulate
from thousands of problem variables to a few tens, the latter being the
limit of simulating anuniversal gate-basedquantumcomputingmodel.
This is, one can control the amount of quantum resources available in
the quantum generative model by choosing the QI model.

Therefore, from all quantum generative model options, we chose
to use a QI generative model based on TNs to test and scale our GEO
strategy to instances with a number of variables commensurate with
those found in industrial-scale scenarios. We refer to our solver here-
after as TN-GEO. For the training of our TN-GEO models we followed
the work of Han et al.17 where they proposed to use Matrix Product
States (MPS) to build the unsupervised generative model. The latter
extends the scope fromearly successes of quantum-inspiredmodels in
the context of supervised ML18–21.

In thiswork, wewill discuss twomodes of operation for our family
of quantum-enhanced solvers:

• In TN-GEO as a “booster" we leverage past observations from
classical (or quantum) solvers. To illustrate this mode we use
observations from simulated annealing (SA) runs. Results are
presented in this section and simulation details are provided in
Supplementary Note 1.F.

• In TN-GEO as a stand-alone solver all initial cost function evalua-
tions are decided entirely by the quantum-inspired generative
model, and a random prior is constructed just to give support to
the target probability distribution the MPS model is aiming to
capture. Results are presented in this section and Simulation
details are provided in Supplementary Note 1.G.

Both of these strategies are captured in the algorithm workflow dia-
gram in Fig. 1 and described in more detail in Supplementary Note 1.

To illustrate the implementation for both of these settings, we
tested their performance on an NP-hard version of the portfolio opti-
mization problem with cardinality constraints. The selection of opti-
mal investment on a specific set of assets, or portfolios, is a problem of
great interest in the area of quantitative finance. This problem is of
practical importance for investors, whose objective is to allocate
capital optimally among assets while respecting some investment
restrictions. The goal of this optimization task, introduced by
Markowitz22, is to generate a set of portfolios that offers either the
highest expected return (profit) for a defined level of risk or the lowest
risk for a given level of expected return. In this work, we focus in two
variants of this cardinality constrained optimization problem. The first
scenario aims to choose portfolioswhichminimize the volatility or risk
given a specific target return (more details are provided in Supple-
mentaryNote 1.A.) To comparewith the reported results from the best
performing SOTA algorithms, we ran TN-GEO in a second scenario
where the goal is to choose the best portfolio given a fixed level of risk
aversion. This is the most commonly used version of this optimization
problem when it comes to comparison among SOTA solvers in the
literature (more details are provided in Supplementary Note 1.B).

The following results are broken into three subsections, each
highlighting different features from GEO. First, we focus on GEO as a
booster and how it can build from results obtained with other solvers.
Second, we focus on GEO as a standalone and compare its perfor-
mance to SA and the Bayesian optimization library GPyOpt23. In the
final subsection, we focus on a bencmark comparison of GEO with
state-of-the-art solvers. While in TN-GEO as a booster and as a stand-
alone solver we implemented and fine-tuned each solver, and in the
final benchmark, we leveraged the state-of-the-art results from nine
other solvers reported in the last two decades. In the latter case, each

non-GEO solver was thoroughly fine-tuned by the researchers of each
reference. This portfolio optimization problem is so canonical that
when a new solver is proposed, researchers can compare their results
by taking the results from the new proposed solver, as long as the
benchmark problems are run in identical conditions. This was one of
themainmotivations for us to choose this well-established benchmark
problem. The “rules of the game" for reporting eachmarket index and
performance indicator are reported in Supplementary Note 1.B. In
contrast, for the other two subsections, the criteria of evaluation are
different, and it emphasizes the performance of GEO when one
imposes a limit on the total wall-clock time (e.g., as in the booster
mode subsection) and when there is a limited number of calls to the
cost function (e.g., as in the stand-alone subsection). The latter is a
potential scenario when the bottleneck or expensive step is the cost
function evaluation itself (e.g., as it is the case of drug discovery where
each evaluation (each candidate molecule) might require synthesis in
the lab and an expensive and long process towards its Food and Drug
Administration (FDA) approval). Note the desirable condition of the
cost function being expensive is only ideal to offset the typical longer
time incurred in the steps training the generative model. As shown in
teh following subsection, this condition can be significantly relaxed
when we use GEO as a booster, since a hybrid strategy where GEO is
initialized with previous solutions from other solvers can yield an
advantage as well for GEO, even in scenarios where the evaluation of
the cost function is inexpensive.

TN-GEO as a booster for any other combinatorial
optimization solver
In Fig. 2 we present the experimental design and the results obtained
from using TN-GEO as a booster. In these experiments we illustrate
how using intermediate results from simulated annealing (SA) can be
used as seed data for our TN-GEO algorithm. As described in Fig. 2A,
there are two strategies we explored (strategies 1 and 2) to compare
with our TN-GEO strategy (strategy 4). To fairly compare each strategy,
we provide each with approximately the same computational wall-
clock time. For strategy 2, this translates into performing additional
restarts of SA with the time allotted for TN-GEO. In the case of strategy
1, where we explored different settings for SA from the start compared
to those used in strategy 2, this amounts to using the same total
number of number of cost functions evaluations as those allocated to
SA in strategy 2. For our experiments this number was set to 20,000
cost function evaluations for strategies 1 and 2. In strategy 4, the TN-
GEO was initialized with a prior consisting of the best 1,000 observa-
tions out of the first 10,000 coming from strategy 2 (see Supplemen-
tary Note 1.F for details). To evaluate the performance enhancement
obtained from the TN-GEO strategy we compute the relative TN-GEO
enhancement, η, which we define as

η=
Ccl
min � CTN�GEO

min

Ccl
min

× 100%: ð1Þ

Here, Ccl
min is the lowest minimum value found by the classical

strategy (e.g., strategies 1–3) while CTN�GEO
min corresponds to the lowest

value foundwith thequantum-enhanced approach (e.g., withTN-GEO).
Therefore, positive values reflect an improvement over the classical-
only approaches, while negative values indicate cases where the clas-
sical solvers outperform the quantum-enhanced proposal.

As shown in the Fig. 2B, we observe that TN-GEO outperforms on
average both of the classical-only strategies implemented. The
quantum-inspired enhancement observed here, aswell as the trend for
a larger enhancement as the number of variables (assets) becomes
larger, is confirmed inmany other investment universes with a number
of variables ranging from N = 30 toN = 100 (see Supplementary Note 3
formore details). Althoughwe show an enhancement compared to SA,
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similar results could be expected when other solvers are used, since
our approach builds on solutions found by the solver and does not
compete with it from the start of the search. Furthermore, the more
data available, the better the expected performance of TN-GEO is. An
important highlight of TN-GEO as a booster is that these previous
observations can come from a combination of solvers, as different as
purely quantum or classical, or hybrid.

The observed performance enhancement compared with the
classical-only strategy must be coming from a better exploration of
the relevant search space, i.e., the space of those bitstring config-
urations x representing portfolios which could yield a low risk value
for a specified expected investment return. That is the intuition
behind the construction of TN-GEO. The goal of the generative
model is to capture the important correlations in the previously
observed data, and to use its generative capabilities to propose
similar new candidates.

Generating new candidates is by nomeans a trivial task in ML and
it determines the usefulness and power of the model since it measure
its generalization capabilities. In this setting of QI generative models,
one expects that the MPS-based generative model at the core of TN-
GEO is not simply memorizing the observations given as part of the
training set, but that it will provide new unseen candidates. This is an
idea which has been recently tested and demonstrated to some extent
on synthetic data sets (see e.g., refs. 24–26). In Fig. 3 we demonstrate
that our quantum-inspired generative model is generalizing to new
samples and that these add real value to the optimization search. This
demonstrates the generalization capabilities of quantum generative
models in the context of a real-world application in an industrial scale
setting, and corresponds to one of the main findings in our paper.

Note that our TN-based generative model not only produces
better minima than the classical seed data, but it also generates a rich
amount of samples in the low cost spectrum. This bias is imprinted in
the design of our TN-GEO and it is the purpose of the softmax surro-
gate prior distribution shown in Fig. 1. This richness of new samples
could be useful not only for the next iteration of the algorithm, but
theymay also be readily of value to the user solving the application. In
some applications there is value as well in having information about
the runners-up. Ultimately, the cost function is just a model of the
system guiding the search, and the lowest cost does not translate to
the best performance in the real-life investment strategy.

Generator-enhanced optimization as a stand-alone solver
Next, we explore the performance of our TN-GEO framework as a
stand-alone solver. The focus is in combinatorial problemswhose cost
functions are expensive to evaluate and where finding the best mini-
mum within the least number of calls to this function is desired. In
Fig. 4 we present the comparison against four different classical opti-
mization strategies. As the first solver,we use the random solver,which
corresponds to a fully random search strategy over the 2N bitstrings of
all possible portfolios, where N is the number of assets in our invest-
ment universe. As second solver, we use the conditioned random sol-
ver, which is a more sophisticated random strategy compared to the
fully random search. The conditioned random strategy uses the a
priori information that the search is restricted to bitstrings containing
a fixed number of κ assets. Therefore the number of combinatorial

possibilities is M =
N
κ

� �
, which is significantly less than 2N. As expec-

ted, when this information is not used the performance of the random
solver over the entire 2N search space is worse. The other two com-
peting strategies considered here are SA and the Bayesian optimiza-
tion library GPyOpt23. In both of these classical solvers, we adapted
their search strategy to impose this cardinality constraint with fixed κ
as well (details in Supplementary Note 1.E). This raises the bar even
higher for TN-GEOwhich is not using that a priori information to boost
its performance. Specific adaptions of theMPSgenerativemodel could
be implemented to conserve the number of assets by construction,
borrowing ideas from condensed matter physics where one can
impose MPS conservation in the number of particles in the quantum
state. As explained in Supplementary Note 1.G, we only use this
information indirectly during the construction of the artificial seed
data set which initializes the algorithm (step 0, Fig. 1), but it is not a
strong constraint during the construction of the QI generative model
(step 3, Fig. 1) or imposed to generate the new candidate samples
coming from it (step 4, Fig. 1). Post selection can be applied a posteriori
such that only samples with the right cardinality are considered as
valid candidates towards the selected set (step 5, Fig. 1).

In Fig. 4 we demonstrate the advantage of our TN-GEO stand-
alone strategy compared to any of these widely-used solvers. In par-
ticular, it is interesting to note that the gap between TN-GEO and the
other solvers seems to be larger for larger number of variables.
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Fig. 2 | TN-GEO as a booster. A Shows the schematic representation, strategies 1–3
correspond to the current options a user might explore when solving a combina-
torial optimization problem with a suite of classical optimizers such as simulated
annealing (SA), parallel tempering (PT), generic algorithms (GA), among others. In
strategy 1, the user would use its computational budget with a preferred solver. In
strategy 2-4 the user would inspect intermediate results and decide whether to
keep tryingwith the same solver (strategy 2), try a new solver or a newsetting of the
same solver used to obtain the intermediate results (strategy 3), or, as proposed
here, to use the acquired data to train a quantum or quantum-inspired generative
modelwithin aGEO framework such as TN-GEO (strategy 4).BThe results show the
relative TN-GEO enhancement from TN-GEO over either strategy 1 or strategy 2.
Positive values indicate runs where TN-GEO outperformed the respective classical
strategies (see Eq. (1)). The data represents bootstrapped medians from 20 inde-
pendent runs of the experiments and error bars correspond to the 95% confidence
intervals. The two instances presented here correspond to portfolio optimization
instances where all the assets in the S& P 500 market index where included
(N = 500), under two different cardinality constraints (κ = 30 and κ = 50). This
cardinality constraint indicate the numberof assets that canbe included at a time in

valid portfolios, yielding a search space of M =
N
κ

� �
, with M ~ 1069 portfolios can-

didates for κ = 50.
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Comparison with state-of-the-art algorithms
Finally, we compare TN-GEO with nine different leading SOTA opti-
mizers covering a broad spectrum of algorithmic strategies for this
specific combinatorial problem, based on and referred hereafter as: (1)
GTS27, the genetic algorithms, tabu search, and simulated annealing;
(2) IPSO28, an improved particle swarm optimization algorithm28; (3)
IPSO-SA29, a hybrid algorithm combining particle swarm optimization
and simulated annealing; (4) PBILD30, a population-based incremental
learning and differential evolution algorithm; (5) GRASP31, a greedy
randomized adaptive solution procedure; (6) ABCFEIT32, an artificial
bee colony algorithm with feasibility enforcement and infeasibility
toleration procedures; (7) AAG33, a hybrid algorithm integrating ant
colony optimization, artificial bee colony and genetic algorithms; (8)
VNSQP34, a variable neighborhood search algorithm combined with

quadratic programming; and, (9) ABC-HP35, a rapidly converging arti-
ficial bee colony algorithm. (10) Additionally, we included a classical
version ofGEO, basedon theNeural AutoregressiveDensity Estimation
(NADE)36 model as the generator; We refer to this implementation as
NADE-GEO.

The test data used by the vast majority of researchers in the lit-
erature who have addressed the problem of cardinality-constrained
portfolio optimization come from OR-Library37, which correspond to
the weekly prices between March 1992 and September 1997 of the fol-
lowing indexes: Hang Seng in Hong Kong (31 assets); DAX 100 in Ger-
many (85 assets); FTSE 100 in the United Kingdom (89 assets); S&P 100
in the United States (98 assets); and Nikkei 225 in Japan (225 assets). It is
important to note that with the exception of NADE-GEO and TN-GEO,
each of these nine solvers has been fine-tuned by the authors in the
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Fig. 3 | Generalization capabilities of our quantum-inspired generative model.
The blue histogram represents the number of observations or portfolios obtained
from the classical solver (seed data set), corresponding to an investment universe
with N = 50 and N = 100 assets. In orange we represent samples coming from our
quantumgenerativemodel at the coreof TN-GEO. The green dash line is positioned

at the best risk value found in the seed data. This mark emphasizes all the new
samples obtained with the quantum generative model and which correspond to
lower portfolio risk value (better minima) than those available from the classical
solver by itself. The number of samples in the case of N = 50 is equal to 31, while
349 samples were obtained from the MPS generative model in the case of N = 100.

Conditioned
Random

Simulating
Annealing GPyOpt TN-GEORandom

Fig. 4 | TN-GEO as a stand-alone solver. In this comparison of TN-GEO against four
classical competing strategies, investment universes are constructed from subsets
of the S&P 500with a diversity in the number of assets (problem variables) ranging
from N = 30 to N = 100. The goal is to minimize the risk given an expected return
which is one of the specifications in the combinatorial problem addressed here.
Error bars and their 95% confidence intervals are calculated from bootstrapping

over 100 independent random initializations for each solver on each problem. The
main line for each solver corresponds to the bootstrapped median over these 100
repetitions, demonstrating the superior performance of TN-GEO over the classical
solvers considered here. As specified in the text, with the exception of TN-GEO, the
classical solvers use to their advantage the a priori information coming from the
cardinality constraint imposed in the selection of valid portfolios.
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respective reference. In each, the authors have reported their best
results to succeed in this canonical benchmark problem, and those are
the values that we report and compare against the two versions of GEO
implemented here. Details for the hyperparameter fine-tuning of TN-
GEO and NADE-GEO can be found in Supplementary Note 1.H.

Although the full comparison involves the ten algorithms stated
above, in this section, we will concentrate on presenting a reduced
version of the full results focusing only the current state-of-the-art
optimizers, i.e., excluding the metaheuristics from the early 2000’s,
and including NADE-GEO. In particular, the selected algorithms whose
results are presented in this section are GRASP, ABCFEIT, AAG, VNSQP,
ABC-HP and NADE-GEO. Full results are presented in Supplemen-
tary Note 3.

Therefore, here we present the results obtained with TN-GEO and
its comparison with NADE-GEO and five of the different SOTA meta-
heuristic algorithms mentioned above whose results are publicly
available in the literature. Table 1 shows the results of those algorithms
and all performance metrics for each of the five index data sets (for
more details on the evaluation metrics, see Supplementary Note 1.B).

Each algorithm corresponds to a different column, with TN-GEO in the
rightmost column. The values are shown in italic entities if the TN-GEO
algorithm performed better or equally well compared to the other
algorithms on the corresponding performancemetric. The numbers in
bold mean that the algorithm found the best (lowest) value across all
algorithms.

From all the entries in this table, 67% of them correspond to italic
entries, where TN-GEO either wins or draws, which is a significant
percentage giving that these optimizers are among the best reported
in the last decades.

In Table 2 we show a pairwise comparison of TN-GEO against each
of the six selected SOTA optimizers. This table reports the number of
times TN-GEO wins, loses, or draws compared to results reported for
theother optimizer, across all the performancemetrics and for all the 5
different market indexes. Therefore, we report in the same table the
overall percentage of wins plus draws in each case. We see that this
percentage is greater than 50% in all the cases.

Furthermore, in Table 2, we use the Wilcoxon signed-rank test 38,
which is a widely used nonparametric statistical test used to evaluate

Table 1 | Detailed comparison with SOTA algorithms for each of the five index data sets and on seven different performance
indicators described in Supplementary Note 1.B

Data Set Performance indicator GRASP31 ABCFEIT32 AAG33 VNSQP34 ABC-HP35 NADE-GEO TN-GEO

Hang Seng Mean 1.0965 1.0953 1.0965 1.0964 1.0873 1.1007 1.0958

Median 1.2155 1.2181 1.2181 1.2155 1.2154 1.2170 1.2181

Min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Max 1.5538 1.5538 1.5538 1.5538 1.5538 1.5538 1.5538

MEUCD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

VRE 1.6400 1.6432 1.6395 1.6397 1.6342 1.6429 1.6392

MRE 0.6060 0.6047 0.6085 0.6058 0.5964 0.6079 0.6082

DAX100 Mean 2.3126 2.3258 2.3130 2.3125 2.2898 2.3125 2.3142

Median 2.5630 2.5678 2.5587 2.5630 2.5629 2.5630 2.5660

Minimum 0.0059 0.0023 0.0023 0.0059 0.0059 0.0059 0.0023

Maximum 4.0275 4.0275 4.0275 4.0275 4.0275 4.0275 4.0275

MEUCD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

VRE 6.7593 6.7925 6.7806 6.7583 6.8326 6.7591 6.7540

MRE 1.2769 1.2761 1.2780 1.2767 1.2357 1.2765 1.2763

FTSE100 Mean 0.8451 0.8481 0.8451 0.8453 0.8406 0.8647 0.8445

Median 1.0841 1.0841 1.0841 1.0841 1.0841 1.0841 1.0841

Minimum 0.0016 0.0047 0.0006 0.0045 0.0016 0.0016 0.0047

Maximum 2.0576 2.0638 2.0605 2.0669 2.0670 2.3718 2.0775

MEUCD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

VRE 2.4350 2.4397 2.4350 2.4349 2.4149 2.4713 2.4342

MRE 0.3245 0.3255 0.3186 0.3252 0.3207 0.3235 0.3254

S&P100 Mean 1.2937 1.2930 1.2930 1.2649 1.3464 1.3314 1.2918

Median 1.1420 1.1369 1.1323 1.1323 1.1515 1.1420 1.1452

Minimum 0.0009 0.0000 0.0000 0.0000 0.0009 0.0009 0.0000

Maximum 5.4551 5.4422 5.4642 5.4551 5.4520 6.7448 5.4422

MEUCD 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

VRE 2.5211 2.5260 2.5255 2.5105 2.5364 2.5975 2.5269

MRE 0.9063 0.8885 0.7044 0.9072 0.8858 0.9064 0.9117

Nikkei Mean 0.5782 0.5781 0.5781 0.5904 0.5665 1.0391 0.5793

Median 0.5857 0.5856 0.5854 0.5857 0.5858 0.6500 0.5855

Minimum 0.0000 0.0000 0.0000 0.0000 0.0000 0.2270 0.0000

Maximum 1.1606 1.1606 1.1607 1.1606 1.1606 7.4928 1.1606

MEUCD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

VRE 0.8359 0.8396 0.8191 0.8561 0.8314 1.6873 0.8353

MRE 0.4184 0.4147 0.4233 0.4217 0.4042 0.4256 0.4229

Entries in italic correspond to cases where TN-GEO performed better or tied compared to the other algorithm. Entries in bold, corresponding to the best (lowest) value, for each specific indicator.
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and compare the performance of different algorithms in different
benchmarks 39. Therefore, to statistically validate the results, a Wil-
coxon signed-rank test is performed to provide a meaningful com-
parison between the results from TN-GEO algorithm and the selected
SOTA metaheuristic algorithms. The Wilcoxon signed-rank test tests
the null hypothesis that the median of the differences between the
results of the algorithms is equal to 0. Thus, it tests whether there is no
significant difference between the performance of the algorithms. The
null hypothesis is rejected if the significance value (p) is less than the
significance level (α),whichmeans that one of the algorithmsperforms
better than the other. Otherwise, the hypothesis is retained.

As can be seen from the table, the null hypotheses are accepted at
α = 0.05 for the TN-GEO algorithm over these recent SOTA algorithms
except for NADE-GEO, that is rejected, meaning that TN-GEO performs
significantly better than NADE-GEO. Thus, in terms of performance on
all metrics combined, the results show that there is no significant dif-
ference between TN-GEO and the five selected SOTA optimizers
(GRASP, ABCFEIT, AAG, VNSQP, and ABC-HP).

In particular, TN-GEO isonparwith themost competitive of all the
solvers, referred to here as ABC-HP. The authors of ref. 35 attribute the
success of this recent ant bee colony solver to a good balance of
diversification (good exploration of the search space) and intensifica-
tion (search around regions in the neighborhood of local minima).
Since GEO generates its candidates from the correlations learned from
the data, it is not restricted to local search but can be considered a
global search solver, which is a difficult property to include in most of
the solvers, which usually only exploit the local neighborhood of the
best intermediate solutions. Overall, the results confirm the competi-
tiveness of our quantum-inspired proposed approach against SOTA
metaheuristic algorithms. This is remarkable, considering that these
metaheuristics have been explored and fine-tuned for decades.

Discussion
Compared to other quantum optimization strategies, an important
feature of TN-GEO is its algorithmic flexibility. As shown here, unlike
other proposals, our GEO framework can be applied to arbitrary cost
functions, which opens the possibility of new applications that cannot
be easily addressed by an explicit mapping to a polynomial uncon-
strained binary optimization (PUBO) problem. Our approach is also
flexible with respect to the source of the seed samples, as they can
come from any solver, possibly more efficient or even application-
specific optimizers. The demonstrated generalization capabilities of
the generative model that forms its core, helps TN-GEO build on the
progress of previous experiments with other state-of-the-art solvers,
and it provides new candidates that the classical optimizer may not be
able to achieve on its own.We are optimistic that thisflexible approach
will open up the broad applicability of quantum and quantum-inspired

generative models to real-world combinatorial optimization problems
at the industrial scale.

Although we have limited the scope of this work to tensor
network-based generative quantum models, it would be a natural
extension to consider other generative quantum models as well. For
example, hybrid classical-quantum models such as quantum circuit
associative adversarial networks (QC-AAN) 16 can be readily explored
to harness the power of generative quantum models with so-called
noisy intermediate-scale quantum (NISQ) devices 40. In particular, the
QC-AAN framework opens up the possibility of working with a larger
number of variables and going beyond discrete values e.g., variables
with continuous values as those found in Mixed Integer Programming
(MIP) optimizationproblems 41 or42. Both quantum-inspired andhybrid
quantum-classical algorithms can be tested in this GEO framework in
even larger problem sizes of this NP-hard version of the portfolio
optimization problem or any other combinatorial optimization pro-
blem. As the number of qubits in NISQ devices increases, it would be
interesting to explore generative models that can utilize more quan-
tum resources, such as Quantum Circuit Born Machines (QCBM)15: a
general framework to model arbitrary probability distributions and
perform generative modeling tasks with gate-based quantum
computers.

The question of whether a significant advantage can be obtained
from GEO by using quantum devices is an active research topic cur-
rently being explored. One proposal to reach a more systematic and
incremental enhancement from the best quantum-inspired solution to
an enhanced quantum-hardware realization was recently proposed in
ref. 43. There, one starts from the best available quantum-inspired
tensor-network solution and maps it to a quantum circuit. This can be
subsequently modified by adding gates beyond those from the
decomposition to increase the plausible correlations beyond those
accessible with the quantum-inspired tensor-network-based solution.
The access to longer-range correlations enhances, in turn, the
expressibility of the quantum generative model while taking it beyond
the capabilities of classical simulation. In thatwork, the specific case of
generative models was illustrated, and therefore, these recent
decomposition techniques can be directly applied to extend the cap-
abilities of TN-GEO explored here, and, as the technologiesmature and
the level of noise is reduced, explore these enhanced models directly
on quantum devices. Additionally, in ref. 44 a comparison of quantum
generative models with state-of-the-art classical generative models,
such as Transformers and Recurrent Neural Networks, was presented,
and the results were very encouraging in the data sets studied.

Increasing the expressive power of the quantum-inspired core of
MPS to other more complex but still efficient QI approaches, such as
tree-tensor networks45, is another interesting research direction.
Although we have fully demonstrated the relevance and scalability of
our algorithm for industrial applications by increasing the perfor-
manceof classical solvers on industrial scale instances (all 500assets in
the S&P 500market index), there is a need to explore the performance
improvement that could be achieved by more complex TN repre-
sentations or on other combinatorial problems.

Although the goal of GEOwas to show good behavior as a general
black-box algorithm without considering the specifics of the study
application, it is a worthwhile avenue to exploit the specifics of the
problem formulation to improve its performance and runtime. In
particular, for the portfolio optimization problem with a cardinality
constraint, it is useful to incorporate this constraint as a natural MPS
symmetry, thereby reducing the effective search space of feasible
solutions from the size of the universe to the cardinality size. While
imposing such constraints is possible with tensor-networks construc-
tions as recently demonstrated in ref. 46, there does not seem to be a
nativeway to add such common constraints in canonical deep learning
models based on neural-network units.

Table 2 | Pairwise comparison of TN-GEO against each of the
SOTA optimizers

TN-GEO vs Other: GRASP ABCFEIT AAG VNSQP ABC-HP NADE-GEO

Wins(+) 12 10 11 11 8 8

Loss( − ) 12 9 11 12 16 18

Ties 11 16 13 12 11 9

(Wins+Ties)/Total 66% 74% 69% 66% 54% 77%

Asymptotic sig-
nificance (p)

0.247 0.888 0.363 0.594 0.110 0.003

Decision Retain Retain Retain Retain Retain Reject

The asymptotic significance is part of theWilcoxon signed-rank test results. The null hypothesis
that the performance of the two algorithms is the same is tested at the 95% confidence level
(significance level:α = . 05). Results show that TN-GEO is onparwith all the SOTAalgorithms.We
also report the count for TN-GEO wins, losses, and ties, compared to each of the other
algorithms.
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Beyond the strategy of GEO as a booster, another way to use GEO
in conjunction with classical solvers is to use it as the optimization
subroutine for the smaller subproblems originating from decomposi-
tion ormultilevel techniques [see for e.g., refs. 47–49] used tomitigate
the limitation in the number of qubits in NISQ devices.

Usually, these subproblems are solved with gate-based quantum
optimization heuristics such as the Quantum Approximate Optimi-
zation Algorithm (QAOA)3 or D-wave annealing devices, but one
could implement a quantum-circuit version of GEO, for example,
using QCBM as the generative models, to solve these smaller sub-
problems and assist the solution of the larger problem via the hybrid
quantum-classical decomposition approach. The general question of
the hardware requirements needed to prove quantum advantage is a
challenging one, and it is beyond the scope of this work, but we
think GEO opens the possibility to start exploring this question in
more realistic scenarios and in more general cost functions than
those that can be natively considered with other approaches such
as QAOA.

Finally, our thorough comparison with SOTA algorithms, which
have been fine-tuned for decades on this specific application, shows
that our TN-GEO strategy manages to outperform a couple of these
and is on par with the other seven optimizers. This is a remarkable feat
for this approach and hints at the possibility of finding commercial
value in these quantum-inspired strategies in large-scale real-world
problems, as the instances considered in this work. Also, it calls for
more fundamental insights towards understanding when and where it
would be beneficial to use this TN-GEO framework,which relies heavily
on its quantum-inspired generative ML model. For example, under-
standing the intrinsic bias in these models, responsible for their
remarkable performance, is another important milestone on the road
to practical quantum advantage with quantum devices in the near
future. The latter can be asserted given the tight connection of these
quantum-inspired TN models to fully quantum models deployed on
quantum hardware. And this question of when to go with quantum-
inspired or fully quantum models is a challenging one that we are
exploring in ongoing future work.

Data availability
The data generated in this study is available at: https://doi.org/10.5281/
zenodo.10668479

Code availability
The code used to generate the data in this study has been deposited at:
https://doi.org/10.5281/zenodo.10668479. Your access to and use of
the downloadable code (the “Code”) contained in this Section is sub-
ject to a non-exclusive, revocable, non-transferable, and limited right
to use the Code for the exclusive purpose of undertaking academic,
governmental, or not-for-profit research. Use of the Code or any part
thereof for commercial or clinical purposes is strictly prohibited in the
absence of a Commercial License Agreement from Zapata AI.
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