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Abstract
Air pollution is one of the influential problems threatening the environment and human health today. Therefore, it is critical

to develop predictive systems for proactive decisions in solving this problem. Since the prediction of air pollution depends

on several complicated factors such as the accuracy of meteorology reports, air pollution accumulation, traffic flow, and

industrial emissions, the contribution of historical or real-time predictions to the solution of the problem is limited. To

address the existing limitations, we propose a novel AI-powered and Fog-based predictive complex event processing

system (CepAIr) for the prediction of future air pollution rates. CepAIr predicts the future air quality of pollutant gases

using RNN, LSTM, CNN, and SVR models. Then, it sends the prediction results to decision-makers in an understandable

format, enabling them to take proactive actions. Finally, we evaluate the performance of the CepAIr with SVR and DL

models. Additionally, we examine CepAIr in terms of end-to-end network delay and measure its impact on the network.

The extensive simulation results demonstrate that the CepAIr predicts future pollutant gas concentrations with DL models

(especially with CNN) with a high success rate while guaranteeing minimum end-to-end network delay.

Keyword Air pollution � Deep learning � Internet of things (IoT) � Fog computing � Complex event processing (CEP)

1 Introduction

Air pollution is a serious environmental problem that

attracts worldwide attention due to its adverse effects on

human health and sustainable development [1]. With the

rapid development of industrialization, urbanization, and

the economy, many developing countries suffer from heavy

air pollution [2]. The main sources of air pollution are

particulate matters (PM2.5 and PM10) and pollutant gases

(O3, NO2, SO2, CO) [3]. A remarkable and constant

increase in concentrations of these substances directly

reduces air quality and causes the air pollution problem. It

also poses a major threat to health, economy, ecology, and

climate in the long run [4]. According to the World Health

Organization (WHO), seven million people die every year

from air pollution. These deaths are largely due to many

acute and chronic health issues caused by air pollution such

as strokes, heart disease, asthma, obstructive pulmonary

disease, lung cancer, and respiratory infection [5]. Air

pollution is divided into three categories: indoor, outdoor,

and general. It means that the air pollutants can be found at

home, in the workplace, and also outdoors [6]. We face

increasing levels of air pollution that can be a challenging

issue to solve for governments. The limits of the air pol-

lutant gases are exceeded in many megacities that have

emerged as a problem and have to be managed by

authorities in urban management. To prevent air pollution

in cities, many urban managers use predictive system to

inform and supply the right information about air pollution

to the citizens [7]. This predictive system not only provides

air pollution information to citizens but also enables

measurements to be made to prevent air pollution.
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This information shows that air pollution is one of the

major challenges for governments and decision-makers to

protect human health and the environment. Therefore, it is

necessary to predict the pollutant gas concentrations and

keep the air quality at an appropriate level in order to take

precautions against air pollution [8].

Air pollution prediction has attracted the attention of

researchers for years. Traditional methods are applied to

solve the air pollution prediction problem. The traditional

methods use statistical and mathematical methods. How-

ever, it has some deficiencies as limited accuracy, cut-offs

and complex mathematical calculations [9]. On the other

hand, the conventional methods use data mining algorithms

for predicting air pollutants that use regression, classifica-

tion, clustering and association mining algorithms [6].

There is a huge attention to artificial intelligence by

researchers that use these algorithms to predict air pollu-

tants. AI models use artificial neural networks, support

vector machines and other deep learning algorithms. Due to

the limitations of these algorithms, hybrid approaches are

proposed to solve the problem of air pollutant prediction.

[10]. Moreover, big data analytics models are used for air

pollutant prediction with better accuracy results [9].

Complex Event Processing (CEP) is a framework that is

used for detecting complex events from atomic events in

real time. With the help of real-time operations, CEP is

capable of detecting emerging issues about the given rules

from the CEP framework. The atomic events can be rep-

resented as a stream of sensors that come together to form

complex events. The complex events are detected via

predefined rules which are mostly defined by domain

experts [11].

However, both predicting pollutant gas concentrations

and evaluating prediction results are complex processes.

The complexity of the process arises from the real-time

processing, analysis and correlation of data streams from

different gas sensors [12]. Therefore, there is a need for a

sophisticated system to detect complex events in real-time

data streams [13, 14]. At this point, Event-Driven Archi-

tectures (EDAs), which enable the processing of events in

the data stream at the time they are received and with

minimum delay, have an effective solution potential [15].

CEP system that lies under EDAs allows us to process and

analyze a large number of heterogeneous data streams to

detect relevant or critical situations for a particular domain.

In this way, it becomes possible to extract events in real-

time and evaluate their consequences. On the other hand,

CEP systems lack the predictive power of machine learning

and statistical data analysis methods [16]. For this reason,

the CEP system alone is insufficient in developing a pre-

dictive environmental impact assessment system and early

warning system that can be a solution to air pollution

[17, 18].

In this context, the main motivation of this paper is to

present a conceptual CEP system model for air pollution

early warning system combining Deep Learning (DL) and

traditional machine learning methods. In this system

model, we synthesize the predictive power of DL models

and the effective data and event processing power of the

CEP system. Herein, we design a system structure con-

sisting of the prediction unit, the rule engine, the CEP

engine and the decision unit components. Then, we deploy

the designed system in accordance with the fog computing

concept. With its aforementioned innovative features, the

proposed system is the first study to jointly address DL and

CEP concepts in solving the air pollution problem.

The main contributions of this paper are summarized as

follows

• We propose a novel predictive CEP system (CepAIr)

that detects air pollution events by predicting the future

values of air pollutants real time. In CepAIr, each

pollutant concentration is predicted separately, and

simple/complex pollution events are determined by

jointly evaluating the future concentration levels.

• We propose LSTM, RNN, and CNN-based DL models

to predict the future concentration levels of six air

pollutants (PM2.5, PM10, O3, NO2, SO2, CO) in the

predictive unit of the CepAIr.

• We present a system structure that detects comprehen-

sive future air pollution events by combining the

strengths of the proposed DL models and the proposed

CEP engine. The system conveys the alarm level of

detected events to decision-makers in an understandable

format.

The remainder of this paper is organized as follows. Sec-

tion 2 briefly presents related works and background.

Section 3 introduces the details of the proposed AI-pow-

ered and fog-based CEP (CepAIr) system. Section 4 pre-

sents the experimental results and performance evaluations.

Finally, Sect. 5 concludes the paper.

2 Background and related works

In this subsection, we present related works, background

information, and abbreviations (see Table 1) used in the

paper.

2.1 Related works

In recent years, DL has drawn widespread attention in

many domain-specific applications. In the literature,

although many studies predict air quality based on DL and

statistical methods, the issue of predictive CEP is not

addressed in these studies. Therefore, in this section, we
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summarize current papers that examine traditional machine

learning and CEP system together in different fields.

Fülöp et al. [19] propose a conceptual framework to

show efficiency of the combining predictive analysis and

the CEP system. The framework uses BFtree, decision tree

and J48 for predictive analyses. Furthermore, the predic-

tion performance is evaluated in terms of precision, recall,

and F-measure metrics Schwegmann et al. [20] propose an

architecture to combine predictive process analytics and

CEP. The authors design a predictor unit that uses regres-

sion and classification algorithms. The prediction unit,

which acts as an event producer, make prediction with the

predictor metrics. They evaluate the architecture in terms

of MSE and classification accuracy metrics. Cabanillas

et al. [21] propose a framework that integrates predictive

analysis with CEP in business process management. The

authors employ the SVM algorithm on air flight data by

integrating Esper CEP. Wang et al. [22] propose a method

that uses the Bayesian network to predict future events by

integrating probabilistic complex event processing com-

ponents into architecture. Similarly, Wang et al.[23] pro-

pose a predictive event processing agent to send predictive

complex events to decision support systems. They employ

the Bayesian model to predict future events. The proposed

model shows that accuracy values increase when the win-

dow size increases in the road traffic domain. Nechifor

et al. [24] propose a framework that predicts the temper-

ature of parcels in the supply chains. In the framework, the

authors use time series prediction in the CEP system with a

multilayer perceptron model. However, the evaluation of

the prediction step is not clearly given in the paper. Christ

et al.[25] present an architecture to integrate predictive

analysis component within the CEP system. In this study,

the predictive component feeds the CEP engine using

Conditional Density Estimation algorithms. However, the

prediction performance is not evaluated. Akbar et al. [12]

present an architecture that performs accurate predictions

in CEP system for IoT data. In this study, they combine the

power of real-time and historical data processing using

CEP and ML. Furthermore, they use an adaptive moving

window regression algorithm called (AMWR) for predic-

tion. The architecture provides early warnings for traffic

events with high accuracy on traffic dataset. In [26], the

authors employ Logistic Regression and Naive Bayes to

predict the network fault in CEP-PA system. They evaluate

the model in terms of prediction metrics. Xing et al. [27]

propose a framework that integrates the concepts of deep

learning models with complex event processing engines.

Furthermore, the authors use DL to tag the primitive events

which provide semantic meaning on a video stream.

Yadav et al. [28] propose a framework to predict traffic

using deep learning techniques on camera video streams.

Furthermore, the framework is evaluated in terms of real-

time latency and F-score metrics. The results show that

multidimensional analyses are made by integrating the DL

methods to CEP architecture.

Diaz et al. [29] propose an Intelligent Transportation

System model based on Complex Event Processing and

Colored Petri Nets (CPNs) to make decisions about traffic

regulations to reduce air pollution levels in large cities. In

the same context, the authors in another study [30] propose

an approach, MEdit4CEP-CPN, which extends the Priori-

tized Colored Petri Net (PCPN) formalism to support the

modeling, simulation, analysis, and both syntactic and

semantic validation of complex event-based systems. The

suggested approach has been validated through a case

study on air quality level detection to demonstrate its

Table 1 List of abbreviations

Abbreviations Definition

AMWR Adaptive Moving Window Regression

AQI Air Quality Index

CEP Complex Event Processing

CNN Convolutional Neural Network

CO Carbon Monoxide

DL Deep Learning

DT Decision Tree

EDA Event-Driven Architecture

EM Expectation Maximization

EPA Environmental Protection Agency

GMM Gaussian Mixture Model

IoT Internet of Things

LR Logistic Regression

LSTM Long Short Term Memory

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MLP Multilayer Perceptron

MSE Mean Squared Error

NB Naive Bayes

NO2 Nitrogen Dioxide

O3 Ozone

PCPN Prioritized Colored Petri Net

PM Particule Matter

RMSE Root Mean Square Error

RNN Recurrent Neural Network

SO2 Sulfur Dioxide

SVM Support Vector Machine

SVR Support Vector Regressor

SWR Semantic Web Rule

VEQL Video Event Query Language

WHO World Health Organization
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benefits in the modeling, simulation, analysis, and semantic

validation of complex event-based systems. Semsali et al.

[31] have developed a software architecture called SAT-

CEP-Monitor that supports decision-makers by performing

complex event processing on remote sensing data based on

satellite sensors. The architecture has been validated on

several regions of Morocco and Spain based on ground

station and satellite data. Brazález et al. [32] have proposed

a decision support system named FUME that can provide

daily recommendations based on reference air pollution

standards. FUME aims to improve the decision-making

process by suggesting actions for pollution sources in

traffic, industrial, domestic, and agricultural areas, utilizing

fuzzy logic and CEP technologies. In FUME, CEP con-

ducts real-time analysis based on information collected

from different stations and weather forecast data, providing

notifications accordingly. Fuzzy logic, on the other hand,

has facilitated working with linguistic variables and

uncertain data by relying on the knowledge of the domain

expert. In a similar study, Macia et al. [33] have proposed a

methodology supporting the action plan for air pollution in

cities based on Complex Event Processing (CEP) and

Fuzzy Logic. Liu et al. [34] have introduced a new CEP

rule auto-extraction framework named LAD, which com-

bines a two-layer LSTM with attention mechanism and

decision tree data mining approach. In this framework, the

authors leverage deep learning in two phases: filtering and

labeling abnormal data, and focusing on the extraction of

pattern rules with high accuracy. Experimental results

showed that the framework effectively extracts meaningful

CEP rules, supports real-time air quality monitoring, and

contributes to air pollution prediction and regulatory

strategies. Yemson et al. [35] proposed a CEP framework

for indoor air quality prediction based on ontologies in the

semantic web domain. The proposed framework takes

inputs of particulate matter, carbon dioxide, humidity and

temperature and provides notification and warning for

complex event and anomaly detection. In the study, a rule-

based approach is used for complex event and anomaly

detection.

Table 2 Summary of related works

References Application Domain Research Focus/Problem Used Method/Technique Query

Language

Schwegmann et al.

[20]

Business Predictive Process

Analytics

DT, SVM, Rule model, Regression NA

Cabanillas et al. [21] Business Process Management SVM Esper - EPL

Christ et al [25] Business Process Management Conditional Density Estimation Rule-based

Liu et al. [34] Energy Air Pollution LSTM, DT Custom

Semsali et al. [31] Environment Monitoring Air Pollution NA Esper - EPL

Fülöp et al. [19] Generic Predictive Analytics Btree, DT, J48 Esper - EPL

Yemson et al. [35] Healthcare Air Quality LSTM, BiLSTM, GRU SWR

Wang et al. [22] Intelligent Transportation

System

Proactive Event Processing Markov Decision Process (MDP) NA

Diaz et al. [29] Intelligent Transportation

System

Air Pollution Colored Petri Nets (CPNs) Esper - EPL

Diaz et al. [30] Intelligent Transportation

System

Air Quality Prioritized Colored Petri Net

(PCPN)

Esper - EPL

Nechifor et al. [24] Logistic Cold Chain Monitoring MLP, ARIMA NA

Xing et al [27] Physical Security Human Activity

Recognition

YOLOv3 Custom

Akbar et al. [12] Road Traffic Predictive Analytics Adaptive Moving Window

Regression

Esper - EPL

Macia et al. [33] Smart City Air Quality Fuzzy Logic Rule-based

Emerson et al. [26] Telecommunication Fault Prediction Logistic Regression, Naive Bayes NA

Brazalez et al. [32] Traffic, Industry,

Domestic, Agricultural

Air Pollution Fuzzy Logic Esper - EPL

Wang et al. [23] Transportation/Road Traffic Predictive Event

Processing

Bayesian Network (GMM and EM) NA

Yadav et al. [28] Transportation/Road Traffic Traffic Prediction DNN, YOLOv3 VEQL

NA not available

Cluster Computing

123



In the existing literature, predictive CEP has found

applications in various fields, but there is a noticeable gap

in its exploration in the IoT environmental monitoring

domain. Moreover, widespread studies are predominantly

based on traditional ML models. In this context, it becomes

necessary to incorporate advanced deep learning models to

achieve high accuracy levels in CEP systems. In addition,

the architectural and computing aspects of the proposed

CEP systems are largely unaddressed. This paper aims to

address these shortcomings by presenting a novel CEP

system based on DL models and utilizing a fog computing

approach for air pollution monitoring. This study aims to

contribute to the existing body of knowledge by reducing

the identified gaps in the existing literature (Table 2).

2.2 Background

In this subsection, we provide background information on

the DL models used in this study.

2.2.1 Recurrent neural network (RNN)

RNN has a simple structure including input, output and

hidden layers. One of the prominent achievements of RNN

is its superiority in time convergence [36]. Besides, it can

easily learn the temporal dependencies with its simpler

structure. The RNN structure can be mathematically for-

mulated as follows:

hðtÞ ¼ fHðWIHxðtÞ þWHHhðt � 1ÞÞ ð1Þ

yðtÞ ¼ fOðWHOhðtÞÞ ð2Þ

where x(t) is a sequence of time series data. fH and fO are

the hidden and output unit activation functions. h(t) is

defined as a hidden layer. It is computed by input x and

previous hidden layer hðt � 1Þ. WIH , WHH , and WHO are the

weight matrices. y is an output value which is calculated by

Eq. 2.

2.2.2 Long short term memory (LSTM)

LSTM is a special Recurrent Neural Network (RNN)

structure that was proposed for learning long-term depen-

dencies by Hochreiter and Schmidhuber [37]. The main

innovation of the LSTM is a memory cell that preserves the

state of information in a hierarchical structure [38, 39].

Furthermore, the memory blocks contain input, output, and

forget gates that regulate the flow of information from cell

to cell [40]. The LSTM blocks can be formulated as

follows:

ft ¼ rðWf � ½ht�1; xt� þ bf Þ ð3Þ

it ¼ rðWi � ½ht�1; xt� þ biÞ ð4Þ
~Ct ¼ tanhðWc � ½ht�1; xt� þ bcÞ ð5Þ

Ct ¼ ft � Ct�1 þ it � ~Ct ð6Þ

ot ¼ rðWo � ½ht�1; xt� þ boÞ ð7Þ

ht ¼ ot � tanhCt ð8Þ

where xt is input vector and ht output vector. t is expressed

as a time. ~Ct and Ct are the old and new cell state. it; ft and

ot are the input, forge,t and output gates respectively,

respectively.Wf ;Wi;Wc;Wo are the input weights matrices,

bf ; bi; bc; bo are the bias vectors. rð�Þ is a the logistic sig-

moid function, i.e rðxÞ ¼ 1
1þe�x and tanh ð�Þ are the hyper-

bolic tangent function.

2.2.3 Convolutional neural network (CNN)

CNN is popular with image recognition and is used as a

powerful technique in spatial data processing [41]. There

are three types of dimensionality in CNN architecture

including one, two, and three-dimensional. CNN one-di-

mensional is mostly used in time series data. Because the

vector of the time series can be represented as one-di-

mensional. On the other hand, CNN two and three-di-

mensional are used image or video data because the image

has two or three-dimensional [42]. CNN has two layers

including pooling and convolutional. In the pooling layer,

the input or out of the previous layer dimensions is reduced

which is called subsampling. In the convolutional layer,

smaller feature maps are inferred from the input data with

the help of the sliding process of convolutional matrix

[43, 44].

The calculation methods of the CNN are represented as

follows [45].

wout ¼ ðWin� FÞ=sþ 1 ð9Þ

wout ¼ ðWinþ 2 � p� FÞ=sþ 1 ð10Þ

Sigmoidfunction : f ðzÞ ¼ 1=ð1þ e�zÞ ð11Þ

where win and wout are input and output feature map, F is

the convolution kernel size, s represents the convolution

step size, and p is expressed as a the number of pixels.

2.2.4 Support vector regression (SVR)

SVR is a special type of support vector classification [46].

It is used as a regression technique in many problems[47]

that the algorithm is used as predicting intervals. Further-

more, it uses statistical learning theory to minimize error

[48]. The regression formula is formulated as follows [49].
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f ðxÞ ¼ ðW ;OðxÞÞ þ b ð12Þ

where w and b are regression parameters, x is represented

as a vector of input, O is the kernel operator.

3 Proposed AI-powered and fog-based
predictive CEP system (CepAIr)

In this section, we explain our network model and formu-

lation. Then, we present our AI-powered and Fog-based

Predictive CEP system (CepAIr), the proposed DL models,

and optimization parameters.

3.1 Network model and formulation

As shown in Fig 1, we consider a fog-based IoT network

that consists of physical devices (pollution sensing sensors,

clients, end devices, etc.), fog server and cloud servers. We

assume that the sensors in the physical layer are placed in

groups in different geographic regions. In network model,

P is the set of n pollutant sensors for each region (R), where

P ¼ p1; p2; :::::::; pnf g, R ¼ r1; r2; :::::::; rnf g. lupef , l
up
fc are the

uplinks and ldowncf , ldownfe are the downlinks between the

layers, where e is physical device, f is fog device. We use

Ddown
r to denote the input data size that is transmitted from

fog/cloud servers to the physical devices. We use Dup
r to

denote the output data size of n pollutant sensors. In

addition Bup and Bdown denote the total uplink bandwidth

and downlink bandwidth respectively.

Based on the notations above, we formulate the com-

putational delay and transmission delays below to evaluate

the performance of the CepAIr in the network model.

Therefore, uplink and downlink transmission delays can be

given as shown in Eqs. 13 and 14.

Tup
lef =lfc

¼ Dup
r

Bup
ð13Þ

Tdown
lcf =lfe

¼ Ddown
r

Bdown
ð14Þ

Thus, we can get an approximate end-to-end transmission

delay (Ttrans
e2e ) for each packet by summing all uplink and

downlink transmission delays.

Ttrans
e2e ¼ Tup

le;f
þ Tup

lf ;c
þ Tdown

le;f
þ Tdown

lf ;c ð15Þ

Next, we model the CepAIr processing delay (Tproc
CepAIr).

Herein, we assume the delay times in the prediction unit,

CEP engine, and decision unit as Tpred
pu , Tproc

ce and Tproc
du ,

respectively. Specifically, the prediction delay of the pre-

diction unit can be given by

Tpred
pu ¼ Dup

r

f cc
ð16Þ

where f ccis the computing capability of fog server. Thus,

we obtain the CepAIr processing delay by summing up the

prediction and processing delays in all system units.

Tproc
CepAIr ¼ Tpred

pu þ Tproc
ce þ Tproc

du ð17Þ

Finally, the total network delay for N packets transmitted to

the network from each region can be given as follows.

Tnetwork
total ¼

XN

n¼1

ðTproc
CepAIr þ Ttrans

e2e Þ

Fig. 1 Overall Network model (Left) and CepAIr Process Flow (Right)
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3.2 Proposed CepAIr system

In this paper, we address the air pollution problem that

threatens human health as a major problem worldwide. It is

known that this problem varies according to the country,

city and even specific location. Therefore, potential solu-

tions to this problem should be location-based and dis-

tributed due to the nature of the problem. Based on this

information, we perform air pollution monitoring, analysis

and prediction processes based on fog computing approach,

which provides the opportunity to perform distributed, fast

and effective. Therefore, we propose a system called

CepAIr, which includes a prediction unit, a rule engine, a

CEP engine, and a decision unit. Then, we explain the

functions of these units and the position of the system in

the IoT architecture in detail below.

Specifically, CepAIr provides an architectural concept

for dealing with air pollution in smart cities using CEP.

This system concept is designed according to the fog

computing approach in a three-tiered IoT architecture. In

the physical layer, the concentration values of ozone, par-

ticulate matter, carbon monoxide, sulfur dioxide, and

nitrogen dioxide gases that cause air pollution are detected

and sent to the closest fog server in the coverage area. In

the fog layer, the proposed CepAIr system is distributed

over fog servers. Fog servers process the incoming data and

put it into the CepAIr system. CepAIr performs future

prediction of local air quality by using the prediction values

of each pollutant gas. Then it sends the results to the clients

directly or via the cloud in interpretable form. As shown in

Fig. 1, the proposed CepAIr consists of four major com-

ponents, namely the prediction unit, CEP engine, rule

engine, and decision unit. These components are compre-

hensively explained below.

• Prediction Unit: This unit predicts future pollution

concentrations for each gas using developed DL models

and SVR. The models take each gas value and predict

the next gas values. Then, it sends the predicted

pollution values to the CEP engine. In this unit, future

values of pollutant gases are predicted through the

developed RNN, LSTM, CNN, and SVR models. The

best algorithm is selected after evaluating by prediction

performance in each other.

• Rule Engine: The rule engine determines the class rules

used in the detection of events according to the expert

guides or referenced standards and sends them to the

CEP engine. In our case, the rule engine creates many

simple and complex rules regarding air pollution

according to the US Environmental Protection Agency

(EPA) reference AQI values and classes [50] shown in

Fig 2.

Based on this reference AQI values, our rule engine

provides the rules for the three main health concern levels

shown in Table 3. More specifically, the rule engine con-

siders 0-50, 51-100, and 101-500 AQI values for good,

moderate, and unhealthy levels, respectively. The rules as

named normal, warning, and critical are deployed to the

CEP engine to detect complex events.

• CEP Engine: CEP engine processes and analyzes large

amounts of pollutant gas data by using the rules created

by rule engine to detect simple, complex, and com-

posite events. Specifically, the CEP engine in CepAIr

provides the detection of simple and complex events for

future air pollution by taking the pollutant gas values

predicted by DL models and predefined rules in the rule

engine. Then it sends the detected events to the decision

unit. To perform all these operations, we use the

ESPER framework [51] that you can build CEP engine

with Java coding and it can be embedded into Java

applications.

• Decision Unit: The decision unit evaluates all events

and functions as an early warning system. It categorizes

and labels the alarm level of all events as Normal,

Warning, and Critical in advance and sends it to

decision-makers in an understandable format.

To better understand the process flow of the proposed

system and the functions of the units given above, we

present the whole process flow of DeepFog CEP step by

step in Algorithm 1. To explain in detail, the first step is

collecting data from sources. In particular, the data is air

pollution data which can be deployed in different areas in

the urban area. After the data collection step, the pollutant

gases next point is predicted via the selected best algorithm

comparison to each other. The next step is expressed as

getting rules from Rule Engines which is defined as taking

care of the level of health concern. Next, The CEP engine

detects the complex events via predefined rules and sends

the complex events to the decision unit. Lastly, Future

alarm levels are determined and sent to the decision-

Fig. 2 EPA air quality index levels [50]
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makers to take precautions or inform to the citizens in

smart cities.

Algorithm 1 CepAIr process flow

3.3 Proposed DL models, optimization
and parameters

We tuned the all used models with different parameters to

get more accurate results. Numerous experiments are

conducted to get the best prediction performance. In deep

learning algorithms, we adopt many to one strategy to

predict the ozone, particulate matter, sulfur dioxide, and

nitrogen dioxide. The model takes sensor values as inputs

and predicts the next sensor value. We have tested the

RNN and LSTM models under different numbers of layers

as 1,2,3 and hidden units as 128, 256, and 512. We have

also tested different numbers of epochs sizes as 50, 100,

200, 300, 400, 500. We adopt the dropout regularization

technique to strengthen the prediction accuracy of the

models. In CNN, we have tested different numbers of fil-

ters as 128, 256, and 512, and different numbers of epochs

size as 50, 100, 200, 300, 400, 500. Similarly, SVR takes

each sensor’s values to predict the next value. We adopt the

grid search technique to find the optimum hyper-parame-

ters. Therefore, the hyper-parameters which are shown in

Table 4 are obtained from numerous experiments to build

the best structure.

In the prediction unit, we used the TensorFlow [52],

Keras framework [53], and Sklearn [54] to implement all

algorithms. In the CEP engine, We use the eclipse platform

to use ESPER CEP library [55] which is written in Java.

Thanks to these frameworks, the models are trained offline

on a desktop computer equipped with an Intel i7-7700HQ

CPU, 16-GB RAM, and GTX 1060TI GPU with 6 GB

RAM.

4 Experimental results

4.1 Dataset

In this study, we use the air pollution gases collected in the

City Pulse EU FP7 Project [56]. The dataset consists of

eight features including nitrogen dioxide, ozone, particu-

late matter, sulfur dioxide, carbon monoxide, longitude,

latitude, and timestamp [57]. Furthermore, the data stream

of each gas is continuous and timely annotated and col-

lected at five-minute intervals for 60 days. Table 5 presents

the descriptive statistics of the polluted gases.

Additionally, some information on the pollutant gases

used in this data set and their effects on human health are

presented below [58].

Table 3 Used AQI levels and rule formats

AQI

values

Level of health

concern

Alarm

label

CEP rule format

0-50 Good Normal Select * from AirQualityEvent match recognize ( measures A as temp1’’pattern (A) define A as

A.pollutantGas � 50

51-100 Moderate Warning Select * from AirQualityEvent match recognize ( measures A as temp1’’pattern (A) define A as

A.pollutantGas[50 and A.pollutantGas � 100)

101-

500

Unhealty

(Hazardous)

Critical Select * from AirQualityEvent match recognize ( measures A as temp1’’pattern (A) define A as

A.pollutantGas[100 )

Table 4 Model hyper-parameters

Models Parameters

CNN Epoch: 100, Filter size: 256, Max pooling

LSTM Epoch: 100, Hidden Layers:1, Batch Size: 6, Units:128

RNN Epoch: 100, Hidden Layers:1, Batch Size: 6, Units: 128

SVR C=1.0, Epsilon=0.2
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4.1.1 Ozone (O3)

O3 is a pollutant that increases as a result of chemical

reactions between sunlight, nitrogen oxides from vehicle

emissions and volatile organic compounds. High ozone

levels can irritate the respiratory tract, increase asthma

symptoms, adversely affect lung function, affect the car-

diovascular system and contribute to general health

problems.

4.1.2 Particule matter (PM)

PM consists mainly of primary pollutants from smoke-

stacks, construction sites, fires, or volcanoes and secondary

pollutants from power plants, factories, and vehicles. PM is

respirable and can accumulate in the lungs, blocking the

airways, increasing respiratory problems and increasing the

risk of heart disease.

4.1.3 Carbon monoxide(CO)

CO is an odorless, invisible gas produced by incomplete

combustion. The most important sources of this gas are

automobile emissions, fires, and industrial processes.

Exposure to carbon monoxide in high concentrations and

for long periods can lead to serious health problems such as

chest pain, vision problems, and reduced physical and

mental abilities.

4.1.4 Sulfur dioxide(SO2)

SO2 is a colorless pollutant gas with a suffocating odor

emitted from sources such as electricity generation, fossil

fuel combustion, industrial processes, and automobile

emissions. In terms of health effects, SO2 can cause

inflammation in the respiratory tract, increasing respiratory

problems and damaging the cardiovascular system.

4.1.5 Nitrogen dioxide(NO2)

NO2 is a pungent and irritating pollutant gas that is pro-

duced by automobile emissions, electricity generation and

industrial processes. Prolonged exposure to NO2 can cause

respiratory symptoms (such as coughing, wheezing or

difficulty breathing).

4.2 Performance evaluation of the prediction
models

In the prediction unit, we employ four algorithms including

SVR, LSTM, RNN, and CNN. We evaluate these predic-

tion models that were developed for use in the prediction

unit in terms of mean square error(MSE), root mean square

error (RMSE), mean absolute error (MAE), mean absolute

percentage error (MAPE), and R-squared (R2) metrics[59].

The mathematical formulas for the evaluation metrics are

given The mathematical formulations of RMSE and MAE

metrics are given in Eqs. 18–22.

MSE ¼ 1

n

Xn

i¼1

ðyi � ŷiÞ2 ð18Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ2
s

ð19Þ

MAE ¼ 1

n

Xn

i¼1

jyi � ŷij ð20Þ

MAPE ¼ 1

n

Xn

i¼1

yi � ŷi
yi

����

����� 100 ð21Þ

R2 ¼ 1�
Pn

i¼1ðyi � ŷiÞ2Pn
i¼1ðyi � �yÞ2

ð22Þ

In these equations, n represents the number of data points,

yi represents the true value, and ŷi represents the predicted

value. The overall average results of the prediction per-

formance are presented in Table 6.

The prediction results of the NO2, CNN is slightly better

than the LSTM, RNN models. On the other hand, SVR in

test evaluation shows worse prediction performance in

comparison to the other models. According to the O3

prediction results, CNN, LSTM, and RNN models show

similar prediction results when evaluating R2. The other

RMSE, MAE, and MAPE metrics results show the CNN

performed better in predicting in compare to the other

models. When we evaluate the PM prediction results, it is

observed that CNN gives better results, when we evaluate

Table 5 Statistical description

of the Dataset
Parameters Ozone Particule matter Carbon monoxide Sulfur dioxide Nitrogen dioxide

Sample Size 17568 17568 17568 17568 17568

Min 15 15 15 15 15

Max 215 215 215 215 215

Mean 111.04 124.90 98.13 116.59 107.100

Standart Deviation 55.04 54.04 49.70 54.61 54.09
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all metrics. The SVR model showed lower prediction

performance compared to other models. When we consider

to the SO2 prediction results, CNN outperforms the other

models. But, RNN and LSTM models show very close

performance in the prediction results. On the other hand,

SVR model shows the worst performance in comparison to

the other models. Lastly, when evaluating CO prediction

results in terms of all metrics given in Table, CNN per-

forms better, followed by LSTM, RNN and SVR models.

As seen in Table, the most successful models in terms of

all evaluation metrics are CNN, LSTM, RNN, and SVR,

respectively. Here, it is seen that CNN models stand out

significantly from the other models. This is because CNN

can create higher-level representations of sequence data

and capture spatial feature dimensions. Based on these

results, we use the predicted data obtained by CNN algo-

rithms for detecting future complex events in the CEP

engine.

4.3 Classification results of the prediction
models for each pollutant gas

In this subsection, we present the classification results of

alarm levels in terms of prediction metrics according to the

prediction results of the prediction unit. Thus, we

demonstrate the success of the decisions made regarding

air pollution in the decision unit. The comparative classi-

fication results for all gases are presented in Tables 7, 8, 9,

10 and 11. From the comparison of all algorithms in

Table 7, we can see that CNN outperforms the other

algorithms in comparison to all rule types.

According to Table 7, these scoresshown that CNN-

based model outputs have a very good performance in

detecting complex events for all rule types as normal,

warning, and critical. Then, LSTM, RNN, and SVR models

follow the CNN model in order of success.

According to Table 8, experimental results reveal that

the CNN algorithm shows above 90% classification per-

formance, except normal rule types, in terms of F1-score

and accuracy metrics. However, the SVR algorithm shows

underperformance when compared to the other algorithms.

Next, we give the results of the particulate matter gases

in Table 9, according to this table, it is seen that all algo-

rithms achieve more than 90% classification performance

for critical rule types. However, the CNN model performed

better for normal and warning rule types. This result shows

that the predicted values of the CNN model achieve a

higher classification result in the CEP engine.

According to Table 10, all algorithms show above 94%

classification performance for critical rule types. However,

Table 6 Performance comparisons of the prediction models

Features Models Train

MSE

Test

MSE

Train

RMSE

Test

RMSE

Train

MAE

Test

MAE

Train

MAPE

Test

MAPE

Train

R2

Test

R2

NO2 SVR 262.91 172.66 16.21 13.14 13.99 10.83 0.20 0.21 0.92 0.86

RNN 185,23 74,87 13,61 8,65 11,82 7,16 0,14 0,12 0,95 0,94

LSTM 176,07 56,52 13,27 7,52 11,32 6,23 0,12 0,11 0,95 0,95

CNN 137,45 35,22 11,72 5,93 9,53 4,87 0,09 0,07 0,96 0,97

O3 SVR 306.67 384.09 17.51 19.60 15.00 17.52 0.19 0.41 0.89 0.79

RNN 70,33 110,32 8,39 10,5 6,92 9,15 0,10 0,22 0,97 0,94

LSTM 64,93 83,71 8,06 9,15 6,70 7,98 0,09 0,19 0,98 0,95

CNN 42,05 43,89 6,48 6,63 5,42 5,72 0,06 0,11 0,98 0,98

PM SVR 348.98 361.81 18.68 19.02 16.53 17.24 0.19 0.25 0.88 0.88

RNN 189,42 212,12 13,76 14,56 12,64 13,43 0,16 0,21 0,93 0,93

LSTM 124,76 145,30 11,17 12,05 9,44 10,24 0,13 0,18 0,96 0,95

CNN 99,24 102,28 9,96 10,11 9,05 9,31 0,11 0,13 0,96 0,97

SO2 SVR 327.11 262.21 18.09 16.19 15.50 13.91 0.27 0.11 0.90 0.87

RNN 73,45 46,08 8,57 6,79 7,30 5,63 0,14 0,06 0,98 0,98

LSTM 94,14 59,36 9,70 7,70 8,39 6,45 0,16 0,07 0,97 0,97

CNN 50,08 38,56 7,08 6,21 6,16 5,25 0,10 0,05 0,98 0,98

CO2 SVR 330.10 349.94 18.17 18.71 16.09 17.02 0.25 0.32 0.87 0.81

RNN 251,53 287,38 15,86 16,95 13,34 15,08 0,23 0,29 0,90 0,85

LSTM 130,76 159,24 11,44 12,62 9,63 11,36 0,16 0,22 0,95 0,91

CNN 110,21 3,4 10,50 8,5 8,11 6,64 0,09 0,10 0,96 0,96

Bold values highlight the best results
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all algorithms show below 70% classification performance

for normal and warning rule types. But CNN slightly out-

performs the other algorithms for warning rule types.

We evaluate Table 11, CNN shows above 89% classi-

fication performance for warning and critical rules in the

CEP engine. It is seen that the normal rule-type outputs are

not as good as the others. But CNN outperforms the other

algorithms in terms of F-score and accuracy metrics. We

can clearly infer that the prediction output of the CNN

shows great performance in the CEP engine of the models

to detect complex events with given rules. The CNN model

obtains more accurate results than other models in complex

event detection according to the three rule types considered

for all pollutant gases. To compare more clearly the

Table 7 The classification results of the nitrogen dioxide (NO2)

CNN LSTM RNN SVR

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Normal 1,000 0.741 0.852 1,000 0.502 0.669 1,000 0.103 0.186 0 0 0

Warning 0.891 0.988 0.937 0.835 0.983 0.903 0.747 0.955 0.838 0.714 0.879 0.788

Critical 0.984 0.959 0.972 0.977 0.973 0.975 0.942 0.987 0.964 0.859 0.996 0.923

Avarage 0.942 0.937 0.935 0.913 0.899 0.889 0.747 0.955 0.838 0.646 0.774 0.704

Table 8 The classification results of the ozone (O3)

CNN LSTM RNN SVR

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Normal 1,000 0.774 0.852 1,000 0.503 0.670 1,000 0.184 0.311 0 0 0

Warning 0.891 0.988 0.937 0.739 0.949 0.831 0.627 0.928 0.749 0.562 0.866 0.681

Critical 0.984 0.959 0.972 0.920 1,000 0.958 0.890 0.999 0.941 0.812 1,000 0.896

Avarage 0.942 0.937 0.935 0.864 0.829 0.815 0.806 0.723 0.667 0.457 0.641 0.532

Table 9 The classification results of the particulate matter (PM)

CNN LSTM RNN SVR

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Normal 1,000 0.551 0.711 1000 0.011 0.021 1000 0.234 0.379 0 0 0

Warning 0.643 0.790 0.709 0.422 0.706 0.529 0.506 0.767 0.610 0.446 0.786 0.569

Critical 0.942 1000 0.970 0.921 1000 0.959 0.937 1,000 0.967 0.941 1000 0.970

Avarage 0.898 0.880 0.875 0.843 0.767 0.710 0.869 0.819 0.795 0.680 0.780 0.721

Table 10 The classification results of the sulfur dioxide (SO2)

CNN LSTM RNN SVR

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Normal 1,000 0.526 0.690 0 0 0 1,000 0.533 0.695 0 0 0

Warning 0.923 0.812 0.864 0.787 0.528 0.632 0.912 0.690 0.786 0.831 0.733 0.779

Critical 0.953 1,000 0.976 0.890 1.000 0.942 0.925 1,000 0.961 0.934 0.999 0.965

Avarage 0.948 0.948 0.945 0.843 0.876 0.852 0.924 0.924 0.918 0.887 0.916 0.900
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obtained results, we present the average F1-scores of all

pollutant gases in Fig. 3.

4.4 Computational complexity evaluation
of the CepAIr

The computational complexity of the CepAIr can be

summarized by the cost of the prediction unit and CEP

engine unit. In the prediction unit, different types of ML

are used. In this step, the complexity of the ML changes

according to the selected algorithm. The parameters of the

model affect the cost of the selected algorithms. Therefore,

we assume the worst case complexity which is defined as

Oðn2 þ m � nÞ per execution for prediction step [37, 60]. In

the complexity of the model, n is defined as the number of

input samples, and m is defined as the number of input

neurons/unit number of the hidden layer. In the CEP

engine, detecting complex events takes O(n) times which

can be seen in Algorithm 1. Consequently, the total com-

putational cost of the model can be expressed as

Oðn2 þ m � nþ nÞ.

4.5 End-to-end network delay performance
of CepAIr

In this subsection, we evaluate the end-to-end delay per-

formance of the proposed CepAIr on a real-time system

based on our previous study [61]. Therefore, we use three

widely used network metrics in literature: i) the transmis-

sion delay, ii) the CepAIr processing delay and iii) the end-

to-end total network delay. At this point, we use the

transmission delay times of our previous study to theoret-

ically demonstrate the performance of the CepAIr system

on the network. We then measure the processing time of

the CepAIr separately according to all models and combine

it with the transmission delays in our previous study. Thus,

we theoretically obtain the network performance of the

proposed system as shown in Table 12. In addition, we give

all results according to 95% confidence interval to ensure

the statistical soundness of the obtained results.

From Table 12, we see that the average processing delay

at each time step t of the proposed CepAIr is measured

approximately as 2.8, 4.3, 2.9, and 1.7 ms for the CNN,

LSTM, RNN, and SVR models, respectively. At this point,

the SVR revealed the least processing delay as it is able to

predict without depending on previous data dependencies.

When considering the processing delays of CepAIr toge-

ther with the transmission delays in [61], it can be seen that

running CepAIr with LSTM and RNN models caused rel-

atively less network delay. However, when CepAIr is run

with CNN and SVR, it reveals higher total network delay

compared to LSTM and RNN algorithms. To express in

numbers, the total delay times of the network according to

the LSTM, RNN, CNN and SVR models are measured as

approximately 270, 267, 2,71 and 271 ms, respectively.

Table 11 The classification results of the carbon monoxide (CO)

CNN LSTM RNN SVR

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Normal 1000 0.687 0.814 1000 0.105 0.191 1000 0.035 0.068 0 0 0

Warning 0.867 0.990 0.924 0.684 0.905 0.779 0.676 0.944 0.788 0.644 0.843 0.730

Critical 0.981 0.987 0.984 0.842 1000 0.914 0.900 0.997 0.946 0.765 1000 0.867

Average 0.928 0.918 0.914 0.800 0.741 0.675 0.810 0.743 0.659 0.523 0.685 0.593

Fig. 3 Average F1-Score of all models

Table 12 End-to-end network

delay comparison (ms)
Tup
lef

Tup
lfc

Tdown
lfc

Tdown
lfc

Ttrans
e2e Tproc

CepAIr Tnetwork
total

CNN 77.611 119.693 56.100 15.620 269.024 ±2,22 2.840 ±0.05 271.864 ± 14.46

LSTM 75.062 119.541 56.249 15.748 266.600 ±1,20 4.365 ±0.02 270.965 ± 15.39

RNN 73.112 119.641 55.988 16.028 264.769 ±2.03 2.918 ±0.02 267.687 ± 18.66

SVR 76.196 121.949 55.377 16.035 269.557 ±2,75 1.715 ±0.01 271.272 ± 15.08
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Based on overall results, the proposed system increased the

average network delay by only 1.1%.

5 Conclusion

In this paper, we propose a new fog-based predictive CEP

system (CepAIr) that can be a solution to air pollution. The

predictive system enables us to inform citizens in urban

and rural areas. CepAIr aims to allow decision-makers to

take proactive actions by predicting pollutant gas concen-

trations that cause air pollution. The placement and appli-

cability of CepAIr is illustrated over the three-tiered IoT

network model. CepAIr is tested separately in experiments

with CNN LSTM, RNN, and SVR models, and the air

pollution prediction success and network performance of

the CepAIr are separately evaluated. The models takes

each pollutant gas and predicts the next pollutant gas level.

The experimental results showed that the CNN model has

the highest prediction success among the prediction models

used in the system. The CEP engine detects the complex

events with a boost of prediction unit and sends to alarm

label to the decision-makers. On the other hand, when

CepAIr’s performance on the network is examined in terms

of delay, it is seen that it adds only 1.1% additional load to

the total network delay. Considering the success of the

proposed system in air pollution prediction, the delay rate

is considered to be tolerable. As a result, the proposed

CepAIr offers a powerful alternative to decision-makers to

solve the air pollution problem.
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İbrahim Kök received his MSc

and PhD degrees in Computer

Science from Gazi University in

2015 and 2020, respectively. He

is currently an Assistant Pro-

fessor at the Department of

Computer Engineering, Pamuk-

kale University, Denizli. His

current research interests

include the Internet of Things

(IoT), Deep Learning, AI-en-

abled IoT, Explainable AI, and

Data Analytics.
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