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Quite recently, Bor {J. Math. Anal. Appl. 163 (1992), 220-226] proved a result
on the local property of |N, p,|, summability of factored Fourier series, which
includes some known results. In this paper we extend his result to more general
cases by taking normal matrices instead of weighted mean matrices. © 1994 Academic

Press, Inc.

1. INTRODUCTION

Let 2a, be a given infinite series with the partial sums (s,), and let
A = (a,,) be a normal matrix, i.e., a lower triangular matrix of nonzero
diagonal entries. Then A defines the sequence-to-sequence transformation,
mapping the sequence s = (s,) to As = (A,(s)), where

A,(s)

nevu e

a,,s n=20,1,...
0

The series .4, is said to be summable |A|., k = 1, if (see [13, 14])

s

D la,l' HA, ) — A, ()]f <.

n=

In the special_case when A = (N, p,) (resp., k = 1), |A|, summability is
reduced to |N, p,|; (N, p,| is equivalent to |R, P,, 1]) summability [5].
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Also, if we take A = (C, a) with « > —1, |A|, summability is the same
as |C, a, (@ — 1)1 — 1/k)|, in Flett’s notation (see [7]).
We use the notations

Ac, = Cn = Cpysy and A(.nu = Chp T Cpogpy €0 = 0

forn,v =201, ...

Let f be a periodic function with period 27, integrable (L) over (—m,
). Without any loss of generality we may assume that the constant term
in the Fourier series of fis zero, so that

f fiyde =0

and
fly~ (a,cosnt + b,sinnt) = C,(1).
n=1 n=1

It is well known that the convergence of the Fourier series at t = x is a
local property of f (i.e., depends only on the behaviour of fin an arbitrarily
small neighbourhood of x), and so the summability of the Fourier series
at t = x by any regular linear summability method is also a local property
of f. Mohanty [12] demonstrated that the summability |R, log n, 1| of the
factored Fourier series

2 (log n)~'C, (1) n

at any point is a local property of f. Matsumoto [10] improved this result
by replacing the series (1) by

2 (log log n)=*C,(1), p> 1.

Bhatt [3] showed that the factor (log log n) =% in the above series can be
replaced by the more general factor vy, log n where (y,) is a convex
sequence such that 2» ~ 'y, is convergent. Borwein [6] generalized Bhatt’s
result by proving that (A,) is a sequence for which

x x

2 <= and X ]AN[<wx,

n=1%n n=|
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then the summability |R, P,, 1] of the factored Fourier series

> A, C(0) (2)
n=1

at any point is a local property of f. On the other hand, Mishra [11] proved
that if (y,) is as above, and if

Pn = O(npn) and PnApn = O(pnpll+l)’

the summability |N, p,| of the series

2} YuP,(np,)~'C, (1)

at any point is a local property of f. Bor [4] showed that |N, p,|in Mishra’'s
result can be replaced by a more general summability method |N, p,,|;-
However, Baron [1, 2] established that the summability |A| of the series
(2) by certain triangular matrix methods is a local property of f, which
includes some results mentioned above. Quite recently, Bor [5] introduced
the following theorem on the local property of the summability |N, p,|,
of the factored Fourier series, which generalizes most of the above results
under more appropriate conditions than those given in them.

THEOREM A. Let the positive sequence (p,) and a sequence (\,) be
such that

AX, = O(1/n)

5, n U XS <
'21 (X5 + D]AN,| <
where X, = (np,)”'P,. Then the summability [N, p,|, (k = 1) of the series
"2 A, X, C,(1)

at any point is a local property of f.
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2

In this paper, taking a normal matrix instead of a weighted mean matrix,
we prove an analog of Theorem A. Before stating the main theorem we
must first introduce some further notation.

Given a normal matrix A = (a,,), we associate two lower semimatrices

A =(a,)and A = (d,,) as follows:

l
|

n
o = Zam-, nv=01 ..,
1=v

and
(imzdm=am,d"U=Aanv, n= 1,2,...

It may be noted that A and A are the well-known matrices of series-to-
series and series-to-sequence transformations, respectively. Now we have

A(s) =D ans, = 2, apa, and  AA(s) = D dna,. (3)
v=0_ v=0

v=0

With this notation we have the following.

THEOREM. Suppose that A = (a,,) is a positive normal matrix such
that

a,_1, = a, for n=zv+1 4)
do=1 n=01.., (5)
n-1
Z avuaﬁn‘vfl = 0((1""), (6)
v=1

AX, = O(1/n), 7

where X, = (na,,)”". If a sequence (\,) holds for k = 1 and the follow-
ing conditions,

Z] n_l{l)\n‘k + l}‘n+l|k}Xﬁ—1 <® (8)

> XA+ DjAN,| <=, 9)
n=1
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then the summability |A|, of the series

2 MX,CL(0 (10)
n=1
at any point is a local property of f.

Remark. The elements 4,, = 0 for each v, n. In fact, it is easily seen
from the positiveness of the matrix, (4) and (5), that dy = 1,

v— 1
= o — By + 20 (@, 1 — ay,)
P

v—1
>, ;- a)=0
i=0

for 1 = v = n, and equal to zero otherwise.
We use the following lemma in the proof of the theorem.

LEMMA. Suppose that the matrix A and the sequence (\,) satisfy the
conditions of the theorem, and that (s,) is bounded. Then the series

> AX,a, (1h)

n=1
is summable |A|;, k = 1.

Proof. Let (T,) be an A-transform of the series (11). Then we have,
by (3),
AT, = D duhX,, (x =0).
v=1

Applying Abel’s transformation to this sum we get

n—1
AT, = D Al A\ X,)s, + @k, X,s,-
v=1

By the formula for the difference of products of sequences (see [8, p.
129]) we have

A(aAnv)\vXu) = )‘uXvAdnu + A()‘vXu)dn,er]
= MNXAa,, + GAN, + AX A, ), sy s
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and so

n—1 n~-1 n—1

KTn = 2 aAn.v+leA}‘vsu + Z dmu# I)‘U+IAXUSU + Z Kanv)\v‘xvusv
v=1 v=1 v=1
+ a, M X,s, = T,(1)+ T,(2) + T,(3) + T,(4),

say. For the proof of the lemma, by Minkowski’s inequality, it suffices
to show that

> an kT k<=,  forr=1,2,3,4.
n=1

It now follows from Holder’s inequality,

3

(Stval) = (St e
SISO I

that
m+1 m+1 n—t k
AN =S el S Kkl
n=2 n=2 v=1
m+1 n—1 k
= 0(1) Z arlm_k{z drzu+lXU|A}\vl}
n=2 v=1
m+in-1 n-1 k-1
= 0(1) E dn,u+IX5’A)‘UI ' {an_nl 2 aAn,u+]|A)‘v|}
n=2uv=1 v=1

Taking account of (4) and (5) we have, forl =v =n — 1,

n v
notl T Z (anr - an*l.r) = 2 (an—l,r - anr)
r=0

r=v+l

[N

IA

n-1

20 (an-l,r - anr) = an—l,o - En() + App = Ayp s
r=

which implies

n-1 n-1
2} dpyiilBN| = a,, X |AN| = O(a,,)
v= v=1

409/188:1-9
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by (9). On the other hand, it is seen from the positiveness, (4), and (5) that

for 0 < v < m, and zero otherwise. Thus,

m+1 n+1n—
> ab KT (D = o) 2 Z Gy XE|AN|
2 =2 =

n=

m+1

o) Z XMAN) - D dppe

n=v+1

m+ 1

0<1)2X*|A>~| Z @nyi1 =3, )

O(l) 2 X |A)\ |am+lu+l - O(I) Z XﬁIA}\U|
v=1

o)

as m — , by virtue of (9). Note that from (7) follows that AX, = O(a,, X,).
It is also seen from the Hoélder inequality that, as in 7,(1), by (6) we have

IA

n=2 n=2

m+1 m+1 n—1 k
AT,k = S, S dun 8K s}

n-1 k
= 0(1) 22 a},;‘{z dn,u+ll)‘u+llavvxv}
n= v=1
m+ln—1 n—1 k-1
= O(l) drl.u+ll)\u+l|kavvxﬁ'{an_nl Z avudn,u+l}
n=2v=1 v=1
m+1n—1
= 0(D) 22 2, dnuilhoni['an Xy
m+1
= O(l) Z avuXAt}‘LMIIA E | nu+1
n=uv+

o) 3 v™'Ih,.fxt! = o)

as m — o, by (8).



|Al, SUMMABILITY OF FOURIER SERIES 125

m+1 m+1 n-1 _ k
AT =S { a5
n=2 n=2 v=1
m+ln-1 n-1 k-1
-0’3 S [Bay| IAU!‘Xﬁ-{an‘n‘ S !Aanul} .
n=2v=1 v=1

On the other hand, since, by (4) and (5),

n-1 n-1
Zl |Aanu| = Z] (an—l.u - anv) = Zin*l.O - EnO +ay, - ap_10 + a,,
v= v=

= Qo — dy-10 t Ay =au,,

we have
m+1 m+ln-1
al T, = o) 3 > [Ba,,) [\ X%
n=2 n=2uv=1
m m+1
= 0() X, A Jxs (@1, = an)
v=1 n=v+

1

o) Y |al* Xta,,
v=1

o) Y v A JXET = 0(1)
v=1

as m — %, by (8).
Finally,

%

> al M T,@F = o) X N )fXEa,, = O() Y n A XA - <
n=1 n=1

n=1]

by (8), which completes the proof of the lemma.

Proof of the Theorem. Since the convergence of the Fourier series at
a point is a local property of its generating function f, the theorem follows
by formula (7.1) from Chapter II of the book [15] and from the lemma.

3

Applications. We now apply the Theorem to the weighted mean in
which A = (a,,) is defined as a,, = p,P, ! when 0 < v < n, where P, =
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pg + - + p,; therefore, it is well known that
am):Pn—l(Pn_Pufl) and dn.v+l :(PnPn—l)AlpnPu'

One can now easily verify that the conditions of the theorem reduce to
those of Theorem A.

We may now ask whether there are some examples (other than weighted
mean methods) of matrices A that satisfy the hypotheses of the theorem.
For this, apply the theorem to the Cesaro method of order a with 0 <
a =< | in which A is given by a,, = A2~ !/A2. Itis well known that (see [9])

n—-u

a, =A% JA* and  d,, = vA2_l/(nA?).
It is now seen by taking account of AY ~ n*/I'(@ + 1) that conditions
(4)-(7) are satisfied. Therefore the above theorem is the same as the
following result.

COROLLARY. Letk = | and 0 < a = 1. If a sequence (\,) holds for
the following conditions,

x

2 N+ N0 <,

n=1

S (AN, <,

n=1

then the summability |C, a, (@« — 1)(1 — 1/k)|, of the series (10) with
X, = A%/n at any point is a local property of the generating function f.
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