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Abstract: This study analyzes drought conditions in the Aegean region using monthly precipitation
data from nine stations between 1972 and 2020. The Standardized Precipitation Index (SPI) was
calculated for 1-, 3-, 6-, 9-, and 12-month periods to evaluate drought conditions at different timescales
and station-specific conditions. The results indicate that short-term droughts are more frequent but
shorter in duration, while longer periods exhibit fewer but more prolonged droughts. The relative
frequency of drought across all periods ranges between 9% and 27%. The İzmir and Denizli stations
were highlighted due to their representation of coastal and inner regions, respectively. The findings
show that coastal stations, like İzmir, experience more frequent wet years compared to inner stations
like Denizli, which have more dry years. Time series linear autoregressive (AR) models, using
SPI-12 data, were developed to represent long-term drought trends and forecasts. The best-fitting
models were determined using AIC, AICC, FPE, and Var(e) criteria, with AR(2) generally being the
most suitable, except for Denizli. This integrated analysis of SPI and AR models provides a robust
basis for understanding regional precipitation regimes and predicting future droughts, aiding in
the development of effective drought mitigation strategies and water resource management. Future
research is anticipated to extend this analysis to encompass all of Turkey and explore various time
series models’ applicability.

Keywords: drought variability; standardized precipitation index; AR models; Aegean Region

1. Introduction

Drought, a natural disaster, profoundly impacts living beings, occurring at any time
due to a significant decrease or imbalance in local precipitation. Its severity escalates due
to the influence of other climatic factors such as elevated temperatures, high wind speeds,
and low humidity [1–3]. It damages agriculture and vegetation, humans, and wildlife [4–6].
Drought can have long-term negative impacts on the environment and water resources. As
the severity and intensity of drought increases, impacts ranging from climate conditions
and vegetation degradation to human mortality can occur [7]. Drought negatively affects
the ecosystem, agriculture, and the environment. To prevent drought, detailed analysis and
monitoring of the region is necessary. The Aegean region evaluated in this study has been
the subject of many previous studies in the literature.

The future projections of drought characteristics in Greece indicate a significant in-
crease in severity and duration, particularly under the RCP8.5 scenario, as evaluated using
the Standardized Precipitation Index and the Standardized Precipitation–Evapotranspiration
Index at a high resolution of 5 km [8]. This trend is corroborated by another study projecting
a substantial decrease in annual precipitation and an increase in consecutive dry days under
both the RCP4.5 and RCP8.5 scenarios [9]. The Mediterranean islands of Mykonos, Naxos,
and Kos are experiencing significant increases in mean annual temperatures, which likely
exacerbate water scarcity and drought conditions despite stable precipitation trends [10].
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Similarly, the Ceyhan River Basin in Turkey has seen variable rainfall patterns and signif-
icant warming, leading to severe drought events [11]. In contrast, a Mediterranean oak
forest ecosystem study revealed a shift towards wetter conditions, although more intense
drought events were observed in the recent decade [12]. The Büyük Menderes Basin in
Turkey has also experienced significant drought periods, emphasizing the importance of
understanding regional drought patterns for effective water management [13]. Historical
trends in the Aegean region of Turkey show significant increases in both temperature and
precipitation, necessitating adaptive measures to mitigate climate impacts [14]. Enhanced
drought modeling accuracy in this region, using hybrid boost regression models, further
supports the need for precise and advanced drought monitoring techniques [15]. The use
of ERA5 reanalysis data has proven valuable for assessing spatial variability and trends in
drought severity across Greece, highlighting significant regional differences [16]. Finally,
spatiotemporal assessments of drought in vulnerable agroecosystems, like those in Thessaly,
underscore the critical need for resilience measures in agriculture [17]. Also, recent studies
have provided significant insights into hydrological analyses using various probability
distributions and parameter estimation methods [18–20]. These studies collectively un-
derscore the relevance of using advanced statistical techniques and tailored probability
distributions to improve the accuracy and reliability of hydrological analyses, particularly
in regions susceptible to significant risks [21–23].

Researchers have used different drought severity parameters (e.g., Palmer, Erinch,
Standardized Precipitation Indices, De Martonne, or Thornthwaite methods) to describe
the interactions between hydrological events and drought. In addition, entropy, trend
analysis, and statistical/stochastic evaluations are also used in drought analysis [24]. One
of the sets of indices that is commonly used is the Standardized Precipitation Indices (SPIs).
The calculation of this is dependent on the amount of precipitation and can be performed
by taking into account different time intervals. The frequencies of drought events are
consistent, because the SPI is normally distributed [25]. It is important to evaluate the SPI
values of annual and monthly time scales.

In the literature, various stochastic models are applied to simulate and forecast the
SPI series. Liu et al. [26] utilized the SPI-9 method to assess drought conditions at five
monitoring stations across Shandong Province, located within the North China Plain. To
address heteroskedasticity in the residuals of the ARMA model, they employed the GARCH
model, ultimately combining both models into what they referred to as the ARMA–GARCH
model. Rezaiy and Shabri [27] used SPI in 3-, 6-, 9-, 12-month time scales, and the results
were analyzed. SPI12 time series was performed using a hybrid Wavelet ARIMA (W-
ARIMA) model. Singh and Sharma [28] utilized the SPI to gauge drought severity in India.
They applied the ARIMA model to forecast rainfall, assessing its performance against
observed data. After comparing several candidate models, ARMA(2,0) emerged as the
optimal choice based on maximum likelihood estimation and Mean Squared Error (MSE).
The estimated rainfall’s drought severities aligned with those of observed rainfall. Mishra
and Desai [29] used linear statistical models to forecast droughts in the Kansabat river of
India. Nirmala and Sundaram [30] and Durdu [31] used Seasonal ARIMA and ARIMA
models. Durdu developed predictive algorithms for forecasting droughts in Turkey, using
the SPI series as a drought indicator. Moreira et al. [32] conducted a Fourier analysis to
assess drought in the SPI time series in Portugal. Salahi et al. [33] predicted precipitation
and future droughts in the Mashhad Plain of Iran using stochastic time series and SPI.
Habibi et al. [34] investigated drought patterns in North Algeria’s Chéliff–Zahrez basin
using SPI and Markov chain models, revealing a significant impact on agriculture, especially
in semi-arid to arid regions.

As is evident in the literature review, there are few studies on drought assessment
conducted on the Aegean region. This region is of great importance in terms of agricultural
production and food security as it hosts important agricultural areas of Turkey. For this
reason, it is very important to make a detailed drought analysis of the Aegean region
and to provide recommendations that will guide decision makers in critical areas such as
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agriculture, water resources, and ecosystem management. Therefore, this study analyses
drought dynamics in the Aegean region in detail using region-specific meteorological data.
In this context, SPI values are calculated for different periods, such as 1-, 3-, 6-, 9- and
12-month periods, using monthly precipitation data from nine meteorological stations
in the Aegean region (Afyonkarahisar, Aydın, Denizli, İzmir, Kütahya, Manisa, Muğla,
Uşak, and Yatağan) for the period 1972–2020. The obtained SPI values are evaluated
in detail on station-by-station basis, and drought analyses are performed. In addition,
time series linear autoregressive (AR) models are constructed using SPI-12 data since they
better represent long-term drought trends and predictions. In order to determine the
most appropriate model, methods such as Adjusted Akaike Information Criterion (AICC),
Akaike Information Criterion (AIC), Final Prediction Error Criterion (FPE), and Minimum
Residual Variance (Var(e)) information criterion are used. As a result of these analyses, the
aim is to contribute to the operational studies of the water structures in the region and to
help optimize water storage and distribution strategies.

This study holds significant originality by enhancing our understanding of the pre-
cipitation regime in the Aegean region and predicting future precipitation. In doing so,
it contributes to important issues such as the planning and improvement of agricultural
production, the sustainability of water resources, and the reduction in drought risk.

The Study Area and Available Data

Turkey’s diverse topography leads to varying climates across its regions. The Aegean
region extends over an area of approximately 79,000 km2 (Figure 1). The Aegean region
benefits from a notably mild climate along its coastal plain due to perpendicular mountains
and valleys, which allow the maritime climate to penetrate inland [35].
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Figure 1. Aegean region.

This study examines long-term precipitation data from nine meteorological stations
in Turkey’s Aegean Anatolia regions from 1972 to 2020. Monthly precipitation data were
used to calculate SPI drought indices. Table 1 presents the geographical coordinates of
stations located in the Aegean regions. The data on precipitation and temperature for the
time span between 1972 and 2020 are obtained from the DMI. Table 2 presents the statistical
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parameters of the data for the stations from 1972 to 2020. It shows that the average monthly
precipitation ranges from 35.6 to 96.2 mm.

Table 1. Statistical parameters of monthly precipitation series (data period from 1972 to 2020).

Station Latitude Height (m)
Annual Mean
Precipitation

(mm)

Annual
Mean

Temperature

Afyonkarahisar 38.5 1007.0 418.3 11.1
Aydın 37.5 65.0 657.9 19.6
Denizli 41.0 420.0 555.4 16.0
İzmir 38.3 0.0 680.0 17.8

Kütahya 39.3 970.0 560.0 10.7
Manisa 38.4 50.0 726.5 16.9
Muğla 37.1 660.0 1170.5 15.0
Uşak 37.1 907.0 536.7 12.4

Yatağan 37.2 367.0 642.9 19.0

Table 2. Statistical data of stations.

Station Mean S. Deviation Skewness Kurtosis Maximum Minimum

Afyonkarahisar 35.6 26.9 1.0 1.5 170.5 0.0
Aydın 52.8 55.8 1.5 2.4 344.1 0.0
Denizli 46.7 43.6 1.4 2.7 288.8 0.0
İzmir 58.7 67.8 1.6 3.0 411.6 0.0

Kütahya 45.9 35.8 1.3 2.8 255.8 0.0
Manisa 59.9 64.4 1.7 3.9 401.9 0.0
Muğla 96.2 106.7 1.6 2.7 645.3 0.0
Uşak 44.2 36.9 1.1 1.0 211.7 0.0

Yatağan 53.6 56.6 1.5 2.5 340.8 0.0

2. Methods
2.1. The Standardized Precipitation Index (SPI)

The SPI is widely used to describe meteorological drought. In the study of Mckee
et al. [36], precipitation data were transformed into a standard normal probability distribu-
tion function with a mean of zero and a standard deviation of 1 over a specific period.

SPI =
xi − x̄i

σ
(1)

The SPI is derived for the assessment of drought duration, severity, and intensity [37,38].
The SPI classification is presented in Table 3.

Table 3. Classification of SPI Values.

SPI Drought Category

2 or more Extremely wet
1.5 to 1.99 Very wet
1 to 1.49 Moderately wet
0.99 to 0 Normal

0 to −0.99 Near normal
−1 to −1.49 Moderately dry
−1.5 to −1.99 Severely dry
−2 and less Extremely dry
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The data sets are organized for 1-, 3-, 6-, 9-, 12-month time periods. Suppose x is
the cumulated monthly precipitation in the time period under investigation which fits a
gamma probability density function g(x) as follows:

g(x) =
1

βαΓ(α)
xα−1ex/β for x > 0 (2)

where x is the precipitation amount, Γ(α) is the Gamma function, and α and β are the
shape and scale parameter, respectively.

α =
1

4A

(
1 +

√
1 +

4A
3

)
(3)

β =
x̄
α

(4)

A = ln(x̄)− ∑ ln(x)
n

(5)

n is the number of precipitation observations. The cumulative probability distribution
function is defined as follows:

G(x) =
∫ x

0
g(x)dx =

1
βαΓ(α)

∫ x

0
xα−1e−x/βdx (6)

The Gamma function is not defined for x = 0, and the precipitation distribution can
include values of zero. When this is the case, the cumulative probability distribution H(x)
is defined as follows:

H(x) = q + (1 − q)× (x) (7)

where q represents the probability for a value of zero [36,39].
The principal strength of the SPI is that it can be calculated and compared for any

geographical location and any number of time scales, as it is expressed in units of standard
deviation from the long-term mean. Furthermore, the normalization of the SPI ensures
its efficacy in analyzing both wet and dry cycles, providing a comprehensive approach to
drought analysis. The simplicity of the SPI indicator, based on a single input parameter,
distinguishes it from other drought indicators, including the Palmer Drought Severity
Index, which incorporates changes in temperature, soil moisture, and evapotranspiration.

2.2. Time Series Modeling

In hydrologic time series analysis, the goal is to accurately describe the temporal evo-
lution of a given quantification. A systematic approach to hydrologic time series modeling
may consist of the following main phases: (1) identifying the model; (2) identifying the
model type; (3) identifying the model form; and (4) evaluating uncertainties.

Linear AR Models

The general expression of Markov or linear AR models of order p, denoted by AR(p)
can be defined as follows:

xt = µ +
p

∑
j=1

φj
(
xt−j − µ

)
+ εt (8)

The equation represents a model where xt represents the precipitation in the tth year,
φj represents the autoregressive coefficients (model parameters), εt represents a normally
distributed random variable that is an independent process with a mean of zero, µ = 0,
and a variance of σ2

ε (noise, error term), and p represents the order of the model. The
pth order Markov model, often known as the AR(p) or simply AR model, represents the
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dependence of the precipitation in a given year on the precipitation data from the preceding
p years [40,41].

The AR(p) model consists of (p + 2) unidentified parameters (µ, ∅1, ∅2 and σ2
ε ),

which need to be estimated from the available data [41–43]. The AR(1) and AR(2) models,
which are first and second order Markov models, are commonly employed in hydrology [44].

2.3. Test of Goodness of Fit Criterion

The suitability of the model for the observed series is assessed with statistical tests,
and the decision to accept or not to accept the model is then made. The testing of goodness
of fit in stochastic models was accomplished by using various methods.

2.3.1. Akaike Information Criterion

The AIC, introduced by Akaike [45], is a mathematical formulation that incorpo-
rates the principle of parsimony [40]. To compare AR models, Akaike suggests using the
following equation:

AIC = N × ln(σ̂2
ε

)
+ 2 × k (9)

where σ̂2
ε is the maximum likelihood estimate of the residual variance, p is the number

of AR coefficients, N is the sample size, and k is the number of distribution parameters
(k = p). The model which yields the minimum AIC number is the one to be selected.

2.3.2. Corrected Akaike Information Criterion

Hurvich and Tsai [46] proposed an adapted form of the AICC using Kullback–Leibler
information alongside unbiased estimators. The formulation of this criterion is as follows:

AICC = N × ln(σ̂2
ε ) +

(
2(k + 1)× N

N − k − 2

)
(10)

It is best to use the model that shows the lowest AICC value.

2.3.3. Final Prediction Error Criterion

Another method for determining the order in AR modeling is the FPE developed by
Akaike [47]. The fundamental concept is straightforward. The FPE Criterion is described
as follows:

FPE = σ̂2
ε

N + k
N − k

(11)

It is best to use the model that shows the lowest FPE value.

2.3.4. Minimum Residual Variance

The Minimum Residual Variance test assesses the accuracy of the model by calculating
the value of Var(e), which is determined as follows:

e = XSi − XMi (12)

where XSi is the observed data, and XMi is the estimated data for each model. The minimum
value of the variance (Var(e)) helps in determining the appropriate model [48].

Akaike put forward several procedures aimed at adjusting the criterion to achieve a
consistent estimator and identify its field of application. All criteria suggested by Akaike,
including the AIC and AICC, are asymptotically equivalent [49–51]. The flow chart of the
best model selection analysis with SPI and time series modeling is provided in Figure 2.
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3. Results
3.1. SPI Analysis Assessment

SPI values were calculated for 1-, 3-, 6-, 9-, and 12-month time scale conditions for the
stations in the region. In the following, drought periods are determined by analyzing SPI
values of 1-, 3-, 6-, 9-, and 12-month periods for each station.

3.1.1. SPI-1 Analysis

• Afyonkarahisar station: 1973–1979, 1985–1989, 1990–2012, and 2014–2019;
• Aydın station: 1972–1973, 1989–1992, 2001–2004, 2006, 2008, and 2016;
• Denizli station: 1977, 1989–1990, 2001, 1997, 2007–2008, 2001–2005, and 2014–2016;
• İzmir station: 1973–1974, 1977–1979, 1983–1984, 1987–1989, 1991, 1992, 2001–2008, and

2012–2018;
• Kütahya station: 1972–1974, 1982–1984, 1986–1989, 1990–1995, 1997–2001, 2002–2008,

and 2013–2016;
• Manisa station: 1976–1984, 1986–1989, 1990–1993, 1995–2000, 2002–2006, 2010–2014,

and 2016–2018;
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• Muğla station: 1973–1976, 1981–1985, 1989–1992, 1995–2004, 2010–2016, and 2017;
• Uşak station: 1983–1992, 2001–2004, 2008–2011, 2014–2019, and 2020;
• Yatağan station: 1973–1974, 1977, 1984–1989, 1990–1995, 2000–2004, 2014–2020.

When these results are examined, it is seen that dry periods are observed more
frequently, considering that the SPI period is 1-month. Due to the short analysis period,
these results are not recommended for use in long-term planning of water structures. But it
is effective in planning agricultural activities and short-term water management strategies.

3.1.2. SPI-3 Analysis

• Afyonkarahisar station: 1972–1975, 1983–1986, 1989–1994, 2000–2007, 2011–2012, and
2014–2017;

• Aydın station: 1972–1973, 1976–1978, 1986–1990, 1999, 2001, 2004, 2010–2016, and 2020;
• Denizli station: 1972–1977, 1982–1986, 1988–1989, 1994–1996, 2005–2008, and 2016–2018;
• İzmir station: 1972–1974, 1977, 1981–1984, 1987–1989, 1991–1992, 2004–2005, 2007–2010,

2012–2013, and 2017–2018;
• Kütahya station: 1973, 1978–1979, 1982–1986, 1990–1993, 1999–2008, and 2010–2014;
• Manisa station: 1973, 1979–1984, 1988–1994, 1999–2004, 2007–2008, 2012, and 2014;
• Muğla station: 1972–1973, 1977–1978, 1981–1989, 1990–1992, 1999–2004, and 2007–2012;
• Uşak station: 1978, 1986–1989, 1990–1993, 2001–2011, 2014–2019, and 2020;
• Yatağan station: 1973–1974, 1976–1977, 1985–1992, 1998–2004, 2014–2015, 2020.

The results show that the frequency of dry periods decreases according to SPI-1
analysis. These results can be used in planning more seasonal activities such as agricultural
planning and management of water reservoirs.

3.1.3. SPI-6 Analysis

• Afyonkarahisar station: 1973–1975, 1983–1989, 1994, 2005–2007, and 2014–2017;
• Aydın station: 1972–1973, 1987–1992, 1999, 2004, 2007–2008, 2014, and 2016;
• Denizli station: 1974–1975, 1977, 1980–1983, 1986–1989, 1994–1997, 2002, 2005, 2007–2008,

and 2014–2018;
• İzmir station: 1972–1977, 1981–1983, 1987–1992, 1999–2005, 2007–2008, and 2017–2018;
• Kütahya station: 1982–1985, 1988–1989, 2000–2006, 2007–2008, and 2012–2014;
• Manisa station: 1972–1973, 1984–1992, 1999–2004, and 2007–2008;
• Muğla station: 1973–1974, 1981, 1989–1992, 2000–2004, 2007–2010, and 2016–2017;
• Uşak station: 1988–1989, 1992–2001, 2004–2007, 2014–2017, and 2020;
• Yatağan station: 1973–1974, 1977, 1984–1992, 1999–2001, 2000–2004, 2020.

These results are suitable for assessing medium-term climate anomalies and water
resources trends. It can be used in seasonal planning and water resources strategies.

3.1.4. SPI-9 Analysis

• Afyonkarahisar station: 1973–1975, 1983, 1989–1994, 2005, and 2017;
• Aydın station: 1973, 1976, 1988–1992, 1999, and 2016;
• Denizli station: 1974–1977, 1983–1989, 1991–1993, 2002–2005, 2008–2010, 2013–2014,

and 2016–2019;
• İzmir station: 1972–1974, 1977, 1982–1984, 1987, 1990–1993, 2000, and 2005–2008;
• Kütahya station: 1982–1986, 1989–1992, 2001, 2005–2008, and 2013–2014;
• Manisa station: 1972–1973, 1986–1992, 2001–2008, and 2020;
• Muğla station: 1973–1974, 1989–1992, 2000–2008, 2010, and 2017;
• Uşak station: 1988–1989, 1992–2001, 2004–2005, 2014–2017, and 2020;
• Yatağan station: 1973–1974, 1988–1992, 1999–2000, 2020.

3.1.5. SPI-12 Analysis

• Afyonkarahisar station: 1973–1975, 1989, 1994, 2005, and 2017;
• Aydın station: 1973, 1990–1992, 2005, and 2007;
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• Denizli station: 1973–1975, 1982–1997, 2002–2003, 2007–2008, 2010–2017, and 2018–2019;
• İzmir station: 1973–1974, 1978, 1983–1984, 1989–1993, 2000–2001, 2004–2007, and

2008–2009;
• Kütahya station: 1982–1989, 1990–1993, 2001–2008, and 2013–2014;
• Manisa station: 1985–1992, 2001–2007, 2008, and 2018;
• Muğla station: 1973–1974, 1989–1992, 2000–2001, 2007–2008, and 2017;
• Uşak station: 1988–1989, 2001–2005, 2019, and 2020;
• Yatağan station: 1973–1974, 1990–1992, and 2020.

These periods indicate significant drought events at each respective station. These
results are important for monitoring long-term water resources and climate trends. They
are used in long-term water management and climate change strategies.

The relative frequencies of the nine stations in the Aegean region for 1-, 3-, 6-, 9-, and
12-month time periods vary between 6% and 14% for moderate drought, 2% and 7% for
severe drought, 1% and 6% for extreme drought, 26% and 40% for near-normal drought,
29% and 47% for normal drought, 7% and 17% for moderate wetness, 2% and 7% for
precipitation, and 0% and 3% for extreme wetness.

Due to their locations in the Aegean region, the SPI values of İzmir station representing
the coastal Aegean and Denizli station representing the inner Aegean for the periods of
1-, 3-, 6-, 9-, and 12-months are presented in Figures 3–12. From the short-term period
graphs (1 and 3 months) presented in Figures 3, 4, 8, and 9, it is seen that droughts occur
more frequently but their duration is shorter. As the duration of droughts increases, their
frequency decreases. Likewise, the length of wet periods also decreases over these time
periods. For the longer time periods presented in Figures 6, 7, 11, and 12, i.e., periods of 9-
and 12-months, the length of both wet and dry periods increases. The duration of these
intervals can be extended using various methods depending on the intended use and water
consumers. Especially in the analyses of SPI-6, SPI-9, and SPI-12; it is observed that the
number of wet years is higher in İzmir station. In Denizli station, on the other hand, it is
observed that the number of dry years is higher and wet years are less frequent compared
to İzmir. These results reflect the climatic differences of the coastal and inner Aegean
regions and the differences between these two stations provide important information for
regional water management and agricultural planning. The spatial analysis of drought
equips decision-makers with the necessary insights to optimize natural resource planning
by evaluating the spatial sensitivity to drought conditions. This process identifies varying
levels of regional susceptibility to drought, thus aiding in the formulation of strategic
approaches for water resource management and agricultural practices. Consequently,
it serves as a crucial instrument for mitigating spatial drought risks and promoting the
sustainable utilization of resources.
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In addition, Tables 4 and 5 present the relative frequencies for Denizli and İzmir
stations for 1-, 3-, 6-, 9-, and 12-month time periods. An analysis of the results pre-
sented in Tables 4 and 5 reveals that the cumulative relative frequencies of the drought
classes—Moderately Dry, Severely Dry, and Extremely Dry—at both stations increase as
the SPI periods extend. Given that the 9- and 12-month SPI periods reflect long-term effects,
this observation suggests a tendency toward increasing drought conditions in the region
where these two stations are located.

Table 4. Relative frequencies for 1-, 3-, 6-, 9-, and 12-month time periods: Denizli.

Denizli
Months

1 3 6 9 12

Extremely wet 0.01 0.02 0.01 0.02 0.02
Very wet 0.04 0.05 0.05 0.03 0.04

Moderately wet 0.11 0.10 0.10 0.12 0.12
Normal 0.37 0.35 0.36 0.33 0.32

Near normal 0.37 0.31 0.32 0.31 0.32
Moderately dry 0.07 0.11 0.10 0.10 0.09

Severely dry 0.03 0.04 0.05 0.06 0.07
Extremely dry 0.02 0.02 0.02 0.02 0.01

Table 5. Relative frequencies for 1-, 3-, 6-, 9-, and 12-month time periods: İzmir.

İzmir
Months

1 3 6 9 12

Extremely wet 0.03 0.02 0.01 0.01 0.01
Very wet 0.03 0.05 0.05 0.03 0.03

Moderately wet 0.08 0.08 0.12 0.16 0.17
Normal 0.47 0.36 0.33 0.29 0.30

Near normal 0.28 0.32 0.33 0.33 0.31
Moderately dry 0.06 0.10 0.10 0.12 0.14

Severely dry 0.03 0.04 0.03 0.03 0.03
Extremely dry 0.02 0.02 0.03 0.03 0.02

3.2. Time Series Analysis Assessment

During the process of establishing mathematical models for hydrological time series,
the precise parameters of the model are often unknown and need to be estimated from
a limited set of observed data. The population model that is produced as a consequence
is only an estimate. Therefore, choosing the model that provides the greatest fit among
several possibilities is the main difficulty in stochastic hydrology.

In this study, 12-month SPI drought index results (1972–2020) from nine stations
were modeled. AR(1), AR(2), and AR(3) model parameters were obtained. The statistical
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properties of the observed data show that the probability distribution can be considered as
normal. AIC, AICC, FPE, and Var(e) methods, which are commonly used as information
criterion methods in stochastic models, were used. Goodness of fit test results were
calculated for all stations. The results of the goodness of fit test parameters for the Denizli
and İzmir stations are presented in Tables 6 and 7. As can be seen from the goodness of
fit results, the AR(2) model is considered appropriate for most of the stations. The results
show that the AR(3) model is the best fitting model for the Denizli station, while the AR(2)
model is the best fitting model for all other stations. This information is shown in Table 8.
In addition to the fact that the model result is AR(2) throughout the region, the fact that
the result for the Denizli station, another station in the region, is AR(3) reinforces the
importance of spatial analyses instead of regional studies.

Table 6. The best-fit model according to testing the goodness of fit methods (Denizli).

Denizli VAR(e) AIC AICC FPE

AR(1) 0.89 −136.04 −138.03 0.79
AR(2) 0.86 −172.85 −176.84 0.74
AR(3) 0.84 −191.57 −197.56 0.72

Table 7. The best-fit model according to testing the goodness of fit methods (İzmir).

İzmir VAR(e) AIC AICC FPE

AR(1) 0.88 −139.68 −141.67 0.79
AR(2) 0.83 −213.34 −217.33 0.69
AR(3) 0.85 −178.34 −184.33 0.73

Table 8. The results of goodness of fit for 12 monthly SPI series of all stations.

Station VAR(e) AIC AICC FPE

Afyonkarahisar AR(2) AR(2) AR(2) AR(2)
Aydın AR(2) AR(2) AR(2) AR(2)
Denizli AR(3) AR(3) AR(3) AR(3)
İzmir AR(2) AR(2) AR(2) AR(2)

Kütahya AR(2) AR(2) AR(2) AR(2)
Manisa AR(2) AR(2) AR(2) AR(2)
Muğla AR(2) AR(2) AR(2) AR(2)
Uşak AR(2) AR(2) AR(2) AR(2)

Yatağan AR(2) AR(2) AR(2) AR(2)

4. Discussion

The results of this study provide a comprehensive understanding of drought dynamics
in the Aegean region, particularly through the application of the SPI and AR models. The
temporal analysis across different SPI periods (1-, 3-, 6-, 9-, and 12-months) reveals a
significant contrast in drought frequency and duration between short-term and long-term
scales. This is consistent with the findings of previous studies, such as those by Laimighofer
and Laaha [52], which emphasize the importance of observational period and distribution
in meteorological drought modeling.

Short-term droughts, while more frequent, tend to be of shorter duration, reflecting the
region’s responsiveness to immediate climatic variability. In contrast, long-term droughts,
though less frequent, are more prolonged, indicating the persistent and possibly more
severe impacts of climatic changes on the region. The variability observed between coastal
stations like İzmir and inner stations like Denizli highlights the influence of geographic
and climatic factors on drought characteristics. Coastal areas, with more frequent wet
years, contrast sharply with the inner regions that experience more prolonged dry periods,
aligning with the broader climatic differences between these zones.
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The application of AR models, specifically using SPI-12 data, has proven to be an
effective method for capturing long-term drought trends and providing reliable forecasts.
The selection of AR(2) as the most suitable model for most stations, except Denizli, under-
scores the model’s robustness in representing the autocorrelation present in the time series
data. However, it is important to note a limitation in our study: the observation period of
1972–2020 spans less than 60 years. According to Carbone et al. [53], models based on data
spanning more than 30 but fewer than 60 years tend to exhibit greater uncertainty, while
periods longer than 60 years significantly reduce this uncertainty. Therefore, applying this
model to regions with more than 60 years of data could yield more reliable predictions
with reduced uncertainty.

The implications of these findings are significant for regional water resource man-
agement and drought mitigation strategies. The precise modeling of drought conditions
enables more informed decision-making, which is crucial in the context of the increasing
variability and unpredictability of climate conditions. The alignment of this study with
the broader discourse on drought prediction, as suggested by Aghakouchak et al. [54],
emphasizes the need for models that improve forecasting accuracy by incorporating the
inherent randomness of climate events.

This study’s use of SPI and AR models, based on an observation period from 1972 to
2020, provides a robust methodological foundation for future research. The findings not
only enhance our understanding of drought behavior in the Aegean region but also offer a
framework applicable to other areas facing similar climatic challenges. As climate change
complicates drought prediction, integrating data fusion techniques or multiple model-
ing approaches could improve accuracy. Future research should extend these methods
across Turkey and continue exploring diverse models to address the spatial and temporal
complexities of drought prediction under changing climate conditions.

5. Conclusions

In this study, drought analysis was conducted with monthly precipitation data from
nine stations located in the Aegean region between 1972 and 2020. For this purpose, SPI
values were calculated for periods of 1-, 3-, 6-, 9-, and 12-months to contribute to the
evaluation of drought conditions at different time scales for the region- and station-specific
drought conditions. Throughout the region, drought is more frequent and of shorter
duration in the short time periods. As the analyzed time period duration increases, the
duration of drought increases but the frequency decreases. In all provinces, the total relative
frequency of drought for the 1-, 3-, 6-, 9-, and 12-month periods varies between 9% and 27%.
The graphs for the İzmir and Denizli stations are presented in the results section since they
represent the Aegean region in two sections, namely inner and coastal. According to the
short-term graphs, it can be seen that droughts occur more frequently but their duration is
shorter. As the duration of droughts increases, their frequency decreases. Likewise, the
length of rainy periods also decreases in these time periods. For longer periods, the lengths
of both the wet and dry periods increase. The duration of these intervals can be extended
using various methods depending on the intended use and water consumers. Especially in
the long-period SPI analyses, it is determined that the number of wet years is higher for
the İzmir station. It is observed that the number of dry years is higher and wet years are
less frequent in the inner Aegean stations compared to the coastal Aegean stations. These
results are in parallel with the climatic differences between the coastal and inner regions.

Time series linear AR models were constructed using SPI-12 data as they better
represent long-term drought trends and forecasts. The models that best represent the
stations were determined by using AIC, AICC, FPE, and Var(e) methods. The values of the
information criterion methods are presented for Denizli and İzmir. The most appropriate
models selected for all stations are presented. According to Var(e), AIC, AICC, and FPE,
AR(2) is the best of all the models analyzed for all the stations except for Denizli. This study,
in which SPI and autoregressive models are analyzed in combination, can provide a basis
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for future research by enabling us to understand the precipitation regime and drought in
the region and to predict future precipitation.

These results provide an important finding for accurately modeling autocorrelation
in time series data and more accurately predicting future drought trends. In addition
to the short- and long-term drought results obtained in the SPI analysis, the parameters
determined via the AR models allow more precise decisions to be made on issues such as
drought mitigation strategies and water resources management. These results provide an
important scientific basis for the development and implementation of drought reduction
strategies at the regional level. Also, in future studies, it is envisaged that this drought
analysis conducted for the Aegean region will be extended to cover the entire territory
of Turkey. Furthermore, it is planned to investigate the applicability of various time
series models.
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