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We introduce the concept of an EADS module, defined such that for any decomposition M = A& B and any ec-complement C of
A in M, the module satisfies M = A® C. This study explores the properties of EADS modules and examines their relationships
with other established properties. We particularly investigate the behavior of EADS modules concerning direct sums and direct
summands. In addition, we present applications, including matrix rings over a right EADS ring.

1. Introduction

In this paper, we consider rings to be associative with
identity, and R denotes such a ring. All modules discussed
are unital right R-modules. Fuchs [1] defined a module M as
ADS if for every decomposition M = X @Y, any comple-
ment Z of X ensures M = X @ Z. This ADS notion has been
extensively studied (see [2-6]). Every quasicontinuous
module is ADS, but not vice versa. A module is termed
extending (CS) or satisfying the (C,) condition if every
submodule is essential in a direct summand. Several gen-
eralizations have been examined (see [7]). Yiicel and Tercan
in [8] introduced ECS modules as a generalization of CS
modules. A module M is ECS if every ec-closed submodule
of M is a direct summand. An ec (-closed) submodule N of
M is one that contains essentially a cyclic submodule, i.e.,
there exists x € N such that xR is essential in N.

This paper investigates a module M for which every
decomposition M = A® B and every ec-closed C of A, we
have M = A@C. Such modules are called EADS modules.
Notably, ADS modules and quasicontinuous modules are
EADS, but not necessarily the other way around. A ring R is
called right EADS if Ry is an EADS module.

The paper is structured as follows: Section 2 discusses
fundamental properties of ec-submodules. Section 3

examines the connections between EADS conditions and
various other conditions, including proving a counterex-
ample to show that EADS and ADS modules are not
identical. We also explore the behavior of EADS modules
with respect to direct sums and summands, identifying
conditions under which the direct sum of EADS modules is
also an EADS module. Section 4 examines extension rings of
EADS rings and provides applications to matrix rings over
a right EADS ring.

Definitions and notations used throughout the paper are
as follows: Let R be a ring and M a right R-module. If X € M,
then X <M, X < M, and r (X) denote that X is a submodule
of M and X is an essential submodule of M, the right
annihilator of X, respectively. For R, M,, (R) symbolizes the
ring of m-by-m full matrices over R.

Given X <M, by a complement submodule of X in M,
we mean a submodule Y of M, maximal with respect to
the property Y N X = 0 (see [8]). This definition originally
appears as intersection complement in Kasch’s book (see
[9]). Following [10], a module M is quasicontinuous if it
satisfies (C,) and (C;) conditions: The sum of two direct
summands of M with zero intersection is again a direct
summand of M. For two modules M, and M,, the module
M, is M;j-ec-injective if every homomorphism
¢: K — M,, where K is an ec-closed submodule of M,
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can be extended to a homomorphism 8: M; — M, (see
[8]). Additional terminology and notation can be found
in [7, 10-14].

2. Basic Results

Ec-complement submodules are fundamental in establishing
EADS modules. Therefore, we start this section by noting
some basic properties about them.

Lemma 1. Let N and K be submodules of M and
¢: N — K is an isomorphism. Any submodule of N is an ec-
closed if and only if its image is an ec-closed submodule of K.

Proof. Suppose X is an ec-closed submodule of N. This
implies that xR < X for some x € X.Let0#Y < ¢ (X). Then,
¢ (Y)NxR#0. So YN$(x)R+0. Hence, ¢ (x)R< ,¢(X).
Since closed modules are invariant under isomorphism,
¢(X) is an ec-closed submodule of K. The converse is
similarly proved. O

Lemma 2. Let M be a module, L, N <M, and N be an ec-
submodule of M with NNL =0. Then, there exists an ec-
complement C of L in M such that N cC.

Proof. Let S={Xisanec—submoduleof M: N<X, Xn
L = 0}. Then, N € S and S#0. The result can be obtained by
Zorn’s Lemma. O

Lemma 3. Let M be an R-module, K be a submodule of M,
and X be a submodule of K. Then, K is an ec-submodule of M
if and only if K/X is an ec-submodule of M/X.

Proof. Let K be an ec-submodule of M. This implies that
there exists k € K such that kR< ,K. Let X<N <K, 0#N,
and 0+ N/X <K/X. Then, kRN N #0. So there exists r € R
such that kr € N. Therefore, (k+ X)r =kr + X € N/X and
(N/X)n (k+ X)R#0. Hence, (k+X)R<,K/X, so that
K/X is an ec-submodule of M/X. The converse is proved
similarly. O

Proposition 4. Let M = &;.; M, for some ec-submodules M;
of M. Then,

(i) Let N be an R-module. If N is an M-ec-injective, then
N is an M;-ec-injective for every i € I.
(ii) Let K be an R-module. Then, M is a K-ec-injective if
and only if M; is a K-ec-injective for every i € I.
(iii) M (I —1i) is an M;-ec-injective for every i € I if and
only if M; is an M j-ec-injective for all i+ j € I.

Proof.

(i) Assume that N is an M-ec-injective. Since M; are
ec-closed submodules of M for all i € I, N is an
M;-ec-injective by [[7], Proposition 2.19].
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(ii) Assume that M is a K ec-injective. Let N be an ec-
closed submodule of K and ¢: N — M, be a ho-
momorphism for all i € I. Then, iep: N — M
homomorphism, where i: M; — M homomor-
phism, can be extended to 0: K — M by as-
sumption. Therefore, the homomorphism ;e 6
extends to ¢. Hence, M, is a K-ec-injective for every
i € I. The converse is proved similarly.

(iii) It is a consequence of property (ii). O

3. EADS Modules

In this section, we first present some equivalent conditions
for EADS modules, then derive structural properties, and
finally investigate the direct sums and summands of EADS
modules. We begin with a useful proposition for verifying
the EADS property of a module.

Proposition 5. A module is an EADS module if and only if
for any decomposition M = A® B, A and B are mutually ec-
injective.

Proof. Suppose M is an EADS and U is an ec-submodule of
A with ¢:U— B as a homomorphism. Define
X ={u—-¢(u): u e U}. Then, XNB = 0. Let 7, denote the
projection M — A. The restriction n, to X is an iso-
morphism between X and 7, (X), and since m,(X) =U,
7,4 (X) is an ec-submodule of A. By Lemma 1, X is an ec-
submodule of M. Hence by Lemma 2, there exists an ec-
complement C of B in M containing X. By the hypothesis,
M = CoB. Let nz: M — B be the projection with kernel
C, and 0: A — B be the restriction of 7z to A. Then, for
0+ueU, O(u) = g (u) = mg(u—@(u) + ¢ (u) = ¢ (u).
Thus, 0 extends ¢, making B an A-ec-injective.

Similarly, it can be proved that A is a B-ec-injective.
Conversely, let M = A® B and C be an ec-complement of B.
Since C N B = 0, the restriction of 77, to C is an isomorphism
between C and 7, (C). By Lemma 1, m,(C) is an ec-
submodule of A. This implies that 7, (C) is an ec-
complement of A. Let a: 7, (C) — B be the homomor-
phism defined by a(x)=mg(my, | C)_1 (x), where
x € 7, (C). By the hypothesis, « extends to homomorphism
0: A— B. Define T ={a+0(a): a € A}. Clearly, T is
a submodule of M and M =T@®B. For any ceC,
Om, (c) = amy (c) = mg(c), so that c =m,(c) +O0my(c) € T.
Hence, C<T. Since C is an ec-complement of B, Cé B< M
and so C <, T. This implies that C = T and M = C® B, and
thus, M is an EADS module. O

Proposition 6. Let M = A®B be an R-module and X =
KN B for every K complement of A in M. If M/X is an EADS
module, then M is an EADS module.

Proof. Let M = A® B, K be an ec-complement of A in M
and X =KnNB. It can be shown that M/X = (A& X)/
X@®B/X. By Lemma 3, K/X is an ec-submodule of M/X.
Observe that K/X is complement of (A® X)/X in M/X. It
follows from the hypothesis that M/X = (A& X)/X e K/X.
Thus, M = A® K which implies that M is an EADS module.
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Now, we locate the EADS condition with respect to
several known generalizations of the quasicontinuous
property. O

Proposition 7. Let M be a module. Let us consider the
following conditions:

(i) M is quasicontinuous
(ii) M is ADS
(iii) M is EADS
Then, (i) = (ii) = (iii). In general, the reverse im-
plications do not hold.

Proof. (i) = (ii) and (ii) = (iii) are straightforward.
(ii) = (i) Let F be a field and V a vector space over F
with dim (V) = 2. Let R be the trivial extension of F with V,

ie.,
R = EV = fV F 174 1
_[o F]_{ Of]fe Ve } W

then Ry is an ADS because it is indecomposable. Since Ry is
not uniform, Ry is not quasicontinuous.

(iii) = (ii), let p be a prime integer and M = Q@& Z/Zp,
a Z-module. It follows that Q is a Z/Z p-injective, but Z/Z p
is not Q-injective which implies that M, is not an ADS
module (see [[5], Example 2.4]). Since Q and Z/Zp are
uniform modules, they are relatively ec-injective. Hence, M,
is an EADS module. O

Proposition 8. Let M be a module. For the following con-
ditions, quasicontinuous, ADS and EADS modules are
equivalent:

(i) M is a uniform module
(ii)) M is a CS and an ec-module

Proof.

(i) Let M be a uniform and an ADS module. From [[15],
Proposition 3.1], M is a quasicontinuous module.
The converse follows from Proposition 7. Let M be
a uniform and be an EADS module. Suppose M =
A®B and C is a complement of A in M. Then, for
each ¢ € C, we must have that cR < ,C. Hence, Cis an
ec-complement of A. By the hypothesis, M = A& C
and so M is an ADS module. The converse follows
from Proposition 7.

(ii) Let M be a CS and an ADS module. From [[15],
Proposition 3.1], M is a quasicontinuous module.
The converse follows from Proposition 7. Let M be
a CS, an ec and an EADS module. Assume M =
A®B and C is a complement of A in M. By [[16],
Lemma 3.16], every closed submodule of M is an ec-
complement submodule of M. Since M is an EADS
module, M = A®C. Hence, M is an ADS module.

The next result provides a characterization of EADS
modules. O

Theorem 9. Let M be a module. The following conditions are
equivalent:

(i) M is EADS

(ii) For any direct summand M, and an ec-submodule
M, having zero intersection with M,, the projection
map m;: M, ®M, — M; (i = 1,2) can be extended
to an endomorphism (indeed a projection) of M

(iii) If M = M, @ M,, then M, and M, are mutually ec-
injective

(iv) For any decomposition M = A® B, the projection
m: M — B is an isomorphism when it is restricted
to any ec-complement C of A in M

Proof. (i)= (ii) Let M be an EADS module. By Lemma 2,
there exists an ec-complement M, of M, containing M,.
Then, M = M,®M,. Hence, the canonical projection
n: My®M, — M, and m,: M, ® M, — M, are clearly
extensions of 7; and 7,.

(ii) = (i) Let M = A® B and C be an ec-complement
of A in M. We must show that M = AeC. By the hy-
pothesis, the projection 7: A®@C — C can be extended to
an endomorphism f: M — M. We claim f (M) cC.
Since A@ C is essential in M, for any 0 #m € M, there exists
an essential right ideal E of R such that 0 #mE ¢ A& C. This
gives f (m)E = n(mE) c C. Since C is closed in M, we must
have that f (m) € C which proves our claim. We also remark
that f2=f, M=ker(f)®im(f), and kerf={m- f
(m) | m € M}. Now, we have to show that ker(f) = A. For
any a€ A, clearly a=a- f(a) € Ker(f) and hence
A c Ker(f). Now, let 0#m — f (m) € Ker(f). There exists
r € R such that 0# (m— f(m))r € AeC. This implies
flm—f(m)yr] = f (mr)— f(f(mr)) = f(mr)— f(mr)=
0. Since f extends 7, it follows that 0+ (m — f (m))r €
Ker () = A. Since A is a complement in M, then A = ker ( f)
which proves the result.

(i) & (iii) This is clear from Proposition 7.

(i) & (iv) Let M be an EADS module and C an ec-
complement of A in M. Then, M = A& C and n(C) = B.
Since Ker (71|) = 0, we must have that 7|-: C — B is an
isomorphism. Conversely, let 77|~ be an isomorphism. Since
mlc(C)=B, M =A®B=Aa&C. Hence, M is an EADS
module.

The following proposition gives that EADS modules are
closed under ec-direct summand. O

Proposition 10. Let M be a module. If M is an EADS
module, then every ec-direct summand of M is an EADS
module.

Proof. Let N be an ec-direct summand of M and
N = N,;®N, where N|,N, <N. Then, there exists T <M
such that M =N®T. So M =N,®N,a®T. By the hy-
pothesis, N, is an N, ® T-ec-injective. Since N is an ec-
closed submodule of M, N, is an ec-complement submodule
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of N. Hence, by Proposition 4, N, is an N,-ec-injective.
Therefore, N is an EADS module.

The direct sum of EADS modules need not to be an
EADS module. For example, let M = (Z;® Z;),. Then, Z,
and Z, are EADS modules. Since Z; is not Z4-ec-injective,
we must have that M is not an EADS module. O

Proposition 11. Let M = &, M; be a module where M; is
a uniform module for all i € 1. Then, M is an EADS module if
and only if M; is an EADS module.

Proof. Easy to check.
We now state conditions for which the direct sum of
EADS modules is an EADS module. O

Proposition 12. Let M, and M, be EADS modules such that
r(My)®r(M,) = R. Then, M, ® M, is an EADS module.

Proof. Let D be a direct summand of M, & M,. Then, there
exists a submodule D' such that M;®M, = De&D'. By
[[17], Proposition 3.9], D=D;®D, and D' =D ®D,,
where D,, D; and D,, D, are submodules of M, and M,,
respectively. Let C be an ec-complement of D. So
C=M;®M, for some ec-submodule M;<M, and
M, < M,. Hence, M|N D, = 0and M,N D, = 0. So that M
and M, are ec-complement of D; and D,, respectively. By
the hypothesis, M; = D, ® M, and M, = D, ® M. There-
fore, M,®M, = (D,eM;)® (D,®M,)=DaC. Thus,
M, &M, is an EADS module. O
Proposition 13. Let N be an EADS module and N = M.
Then, M is an EADS module.

n

Proof. Suppose M = A® B for some A, B are submodules of
M and f: M — N is an isomorphism. Since N is an EADS
module, f(A) is an f(B)-ec-injective. Let ¢: Y — A be
a homomorphism, where Y is a nonzero ec-closed sub-
module of B. Then, iof: Y — f(B) is an isomorphism. By
Lemma 1, f (Y) is an ec-closed submodule of f (B). Since N
is an EADS module, f¢f! can be extended to
B: f(B) — f(A). Then, f'Bf: B— A is a homomor-
phism and for every yeVY, flBf(y)=f"'fof!
(f(y)) =@ (y). This implies that A is a B-ec-injective.
Therefore, M is an EADS module O

4. Extensions

This section explores the behavior of the EADS condition

concerning various extensions of matrices in both ring and

module contexts. A ring R is termed a right EADS ring if Ry

satisfies the EADS module criterion. Consider, for instance,

the 2 x 2 upper triangular matrix ring over integers, denoted
zZZ

asR = 0 7| Here, Ry decomposes into M, & M,, where

Mlz[f %] andMZZ[g ;].BOthMl anszbeing

uniform modules, as per Proposition 11, affirm Ry as an
EADS module.
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Now, let us commence with the subsequent ring
extension.

Theorem 14. Let R and S be two rings and M be an
S-R-bimodule. Assume that T = [g A;] is a right EADS
ring. Then,

(i) R is a right EADS ring
(ii) If SM = 0, then My is an EADS module

Proof.

(i) Let Ry = X @Y, K be an ec-complement submodule
of X and f: K— Y be an R-homomorphism.

|00 r | S M
Suppose X_[OX]’ Y_[OY]’ and

[oo
oK

' . 00 0 0
fine 0: K' — Y via 0([0 r])z[Of(r)]'

Then, 6 is a T-homomorphism and K' is an ec-
complement submodule of X' in T;. By the hy-
pothesis, there exists a T-homomorphism
¢: X' — Y’ such that ¢ is an extension of 6. For

any x € X, ¢([8 2])=[8 Y;] where s €S,

m e M, and y € Y. We consider the R-homomor-

phism a: X — X' given by a(x) = [8 g and

K' . It is clear that Ty = X' @Y. We de-

Y — Ygivenbyn([g 1;]) = ¥.So da is an

extension of f. Then, Y is an X-ec-injective.
Therefore, Ry is an EADS module and R is an
EADS ring.
(ii) Let My = M, ®M,, N be an ec-complement sub-
module of M, and f: N — M, is an R-homo-
_| 0 M

morphism.  Assume M, = o o | M, =
S M, , JonN I
[0 R ],andN = [0 0 ].Then,TT—MIEBM2

and N' is an ec-complement of M,. We define
X i . 0n _ 0 f(?’l) .
0: N —>M2V1a0([00])—[0 0 .Sofis
a T-homomorphism. By the hypothesis, there exists
a T-homomorphism M; — M, which is an ex-
tension of 6. We consider a: M, — M, via

a(m,) = [O m,

0 0 ] and m M,— M, via

n( [ S HZZ ] ) = m,. Then, a¢m is an extension of f.

So M, is an M, -ec-injective. Hence, M, is an EADS
module.
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The following example shows that the converse of
Theorem 14 is not true in general. O

Example 1. For case (i), let T be the trivial extension of Z,
Z, 27,
0 2z,
that Z, is an EADS module, so we have T = X ®Y where

[z, 2z, fo o
X_[O 0] and Y_[O 24]. Let

with the Z,-module 27, ie., T = ] It is obvious

N = {[ g ;z ]: ce 24}. Then, N is an ec-complement of

X. Since T # X @ N, T is not an EADS module.
27, 27,
0 z,

27, is an EADS module. Using the same submodule N given
above, we can easily see that Ty is not an EADS module.

For case (ii), let T = [ ] It can be shown that

Lemma 15. Let M be a right R-module and L be a submodule
of M, where R = ReR for some ¢* = e € Rand S = eRe. Then,

(i) N< Mgy if and only if Ne<,(Me)g
(ii) N is an ec-submodule of My, if and only if Ne is an ec-
submodule of (Me)g

Proof.

(i) It follows from [[7], Proposition 2.77(i)].

(ii) Suppose that N is an ec-submodule of M. Then,
nR<,N for some ne€ N. This implies that
nReR< ,N. By (i), nRe<Ne. So Ne is an ec-
submodule of (Me),. Conversely, suppose that Ne
is an ec-submodule of (Me)s. Then, neS <, (Ne)g for
some ne € Ne so neRe<,(Ne)s. By (i), neR<,N.
Since neR<nR< N, nR<,N. Hence, N is an ec-
submodule of M. O

Lemma 16. Let R be a ring where R = ReR for some e* =

e € Rand S = eRe. Let N be a right S-module. Then, K is an
ec-submodule of N if and only if (KR)y is an ec-submodule
of (NR)g.

Proof. Suppose that Kg is an ec-submodule of Ng. Then,
kS<,K for some ke K and so keRe<,KRe. By [[7],
Proposition 2.77], we obtain keR <, KR. Since ke € KR,
(KR)y is an ec-submodule of (NR),. Conversely, suppose
that (KR)g is an ec-submodule of (NR)g. Then, krR< KR
for some k€K and r€R so krReR<,KR. Hence,
krReRe < ,KRe. This implies that krReeRe < ,KRe. Since
K =KRe, we must have that krReS<,K. Hence,
krRe € KRe = K which implies that K is an ec-submodule
of N. O

Proposition 17. Let M be a right R-module, where R = ReR
for some e* = e € R and S = eRe.

(i) My is an EADS module if and only if (Me)g is an
EADS module
(ii) R is a right EADS ring if and only if (Re)g is an EADS
module
(iii) (eR)y is an EADS module if and only if S = eRe is
a right EADS ring

Proof.

(i) Let M be an EADS module, Me = Le® Ke and He
be an ec-complement of Ke in (Me)s. By [[7],
Proposition 2.77(iii)], we obtain M = L& K. From
Lemma 15 (ii) and [[7], Proposition 2.77(iii)], H is
an ec-complement of K in M. By the hypothesis,
M = H®oK. So Me = He® Ke. Hence, (Me)g is an
EADS module. The converse is similarly proved.

(ii) Take M = R in (i).
(iii) Take M =eR in (i). O

Theorem 18. Let R be any ring. Then, M,, (R) is a right
EADS ring, if and only if the free right R-module R™ is
an EADS.

Proof. It is clear that M,, (R) = M,, (R)eM,, (R), where e is
the matrix unit with 1 in the (1,1) th position and zero
elsewhere. The result now follows from Proposition 17 (ii).

We conclude with the following open question: In-
vestigate whether the EADS property remains invariant
under Morita equivalence. O
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