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We introduce the concept of an EADS module, defned such that for any decomposition M � A⊕B and any ec-complement C of
A in M, the module satisfes M � A⊕C. Tis study explores the properties of EADS modules and examines their relationships
with other established properties. We particularly investigate the behavior of EADS modules concerning direct sums and direct
summands. In addition, we present applications, including matrix rings over a right EADS ring.

1. Introduction

In this paper, we consider rings to be associative with
identity, and R denotes such a ring. All modules discussed
are unital right R-modules. Fuchs [1] defned a module M as
ADS if for every decomposition M � X⊕Y, any comple-
ment Z of X ensures M � X⊕Z. Tis ADS notion has been
extensively studied (see [2–6]). Every quasicontinuous
module is ADS, but not vice versa. A module is termed
extending (CS) or satisfying the (C1) condition if every
submodule is essential in a direct summand. Several gen-
eralizations have been examined (see [7]). Yücel and Tercan
in [8] introduced ECS modules as a generalization of CS
modules. A module M is ECS if every ec-closed submodule
of M is a direct summand. An ec (-closed) submodule N of
M is one that contains essentially a cyclic submodule, i.e.,
there exists x ∈ N such that xR is essential in N.

Tis paper investigates a module M for which every
decomposition M � A⊕B and every ec-closed C of A, we
have M � A⊕C. Such modules are called EADS modules.
Notably, ADS modules and quasicontinuous modules are
EADS, but not necessarily the other way around. A ring R is
called right EADS if RR is an EADS module.

Te paper is structured as follows: Section 2 discusses
fundamental properties of ec-submodules. Section 3

examines the connections between EADS conditions and
various other conditions, including proving a counterex-
ample to show that EADS and ADS modules are not
identical. We also explore the behavior of EADS modules
with respect to direct sums and summands, identifying
conditions under which the direct sum of EADS modules is
also an EADS module. Section 4 examines extension rings of
EADS rings and provides applications to matrix rings over
a right EADS ring.

Defnitions and notations used throughout the paper are
as follows: Let R be a ring and M a right R-module. If X⊆M,
then X≤M, X≤ eM, and r(X) denote that X is a submodule
of M and X is an essential submodule of M, the right
annihilator of X, respectively. For R, Mm(R) symbolizes the
ring of m-by-m full matrices over R.

Given X≤M, by a complement submodule of X in M,
we mean a submodule Y of M, maximal with respect to
the property Y∩X � 0 (see [8]). Tis defnition originally
appears as intersection complement in Kasch’s book (see
[9]). Following [10], a module M is quasicontinuous if it
satisfes (C1) and (C3) conditions: Te sum of two direct
summands of M with zero intersection is again a direct
summand of M. For two modules M1 and M2, the module
M2 is M1-ec-injective if every homomorphism
φ: K⟶M2, where K is an ec-closed submodule of M1,
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can be extended to a homomorphism θ: M1⟶M2 (see
[8]). Additional terminology and notation can be found
in [7, 10–14].

2. Basic Results

Ec-complement submodules are fundamental in establishing
EADS modules. Terefore, we start this section by noting
some basic properties about them.

Lemma 1. Let N and K be submodules of M and
ϕ: N⟶ K is an isomorphism. Any submodule of N is an ec-
closed if and only if its image is an ec-closed submodule of K.

Proof. Suppose X is an ec-closed submodule of N. Tis
implies that xR≤ eX for some x ∈ X. Let 0≠Y≤ ϕ(X).Ten,
ϕ−1(Y)∩xR≠ 0. So Y∩ ϕ(x)R≠ 0. Hence, ϕ(x)R≤ eϕ(X).
Since closed modules are invariant under isomorphism,
ϕ(X) is an ec-closed submodule of K. Te converse is
similarly proved. □

Lemma 2. Let M be a module, L, N≤M, and N be an ec-
submodule of M with N∩ L � 0. Ten, there exists an ec-
complement C of L in M such that N⊆C.

Proof. Let S � X is an ec − submodule of M: N≤X,{ X∩
L � 0}. Ten, N ∈ S and S≠ 0. Te result can be obtained by
Zorn’s Lemma. □

Lemma 3. Let M be an R-module, K be a submodule of M,
and X be a submodule of K. Ten, K is an ec-submodule of M

if and only if K/X is an ec-submodule of M/X.

Proof. Let K be an ec-submodule of M. Tis implies that
there exists k ∈ K such that kR≤ eK. Let X≤N≤K, 0≠N,
and 0≠N/X≤K/X. Ten, kR∩N≠ 0. So there exists r ∈ R

such that kr ∈ N. Terefore, (k + X)r � kr + X ∈ N/X and
(N/X)∩ (k + X)R≠ 0. Hence, (k + X)R≤ eK/X, so that
K/X is an ec-submodule of M/X. Te converse is proved
similarly. □

Proposition 4. Let M � ⊕i∈IMi for some ec-submodules Mi

of M. Ten,

(i) LetN be an R-module. IfN is anM-ec-injective, then
N is an Mi-ec-injective for every i ∈ I.

(ii) Let K be an R-module. Ten, M is a K-ec-injective if
and only if Mi is a K-ec-injective for every i ∈ I.

(iii) M(I − i) is an Mi-ec-injective for every i ∈ I if and
only if Mi is an Mj-ec-injective for all i≠ j ∈ I.

Proof.

(i) Assume that N is an M-ec-injective. Since Mi are
ec-closed submodules of M for all i ∈ I, N is an
Mi-ec-injective by [[7], Proposition 2.19].

(ii) Assume that M is a K ec-injective. Let N be an ec-
closed submodule of K and φ: N⟶Mi be a ho-
momorphism for all i ∈ I. Ten, i ∘φ: N⟶M

homomorphism, where i: Mi⟶M homomor-
phism, can be extended to θ: K⟶M by as-
sumption. Terefore, the homomorphism πi ∘ θ
extends to φ. Hence, Mi is a K-ec-injective for every
i ∈ I. Te converse is proved similarly.

(iii) It is a consequence of property (ii). □

3. EADS Modules

In this section, we frst present some equivalent conditions
for EADS modules, then derive structural properties, and
fnally investigate the direct sums and summands of EADS
modules. We begin with a useful proposition for verifying
the EADS property of a module.

Proposition 5. A module is an EADS module if and only if
for any decomposition M � A⊕B, A and B are mutually ec-
injective.

Proof. Suppose M is an EADS and U is an ec-submodule of
A with φ: U⟶ B as a homomorphism. Defne
X � u − φ(u): u ∈ U􏼈 􏼉. Ten, X∩B � 0. Let πA denote the
projection M⟶ A. Te restriction πA to X is an iso-
morphism between X and πA(X), and since πA(X) � U,
πA(X) is an ec-submodule of A. By Lemma 1, X is an ec-
submodule of M. Hence by Lemma 2, there exists an ec-
complement C of B in M containing X. By the hypothesis,
M � C⊕B. Let πB: M⟶ B be the projection with kernel
C, and θ: A⟶ B be the restriction of πB to A. Ten, for
0≠ u ∈ U, θ(u) � πB(u) � πB(u − φ(u) + φ(u)) � φ(u).
Tus, θ extends φ, making B an A-ec-injective.

Similarly, it can be proved that A is a B-ec-injective.
Conversely, let M � A⊕B and C be an ec-complement of B.
Since C∩B � 0, the restriction of πA to C is an isomorphism
between C and πA(C). By Lemma 1, πA(C) is an ec-
submodule of A. Tis implies that πA(C) is an ec-
complement of A. Let α: πA(C)⟶ B be the homomor-
phism defned by α(x) � πB(πA ∣ C)−1(x), where
x ∈ πA(C). By the hypothesis, α extends to homomorphism
θ: A⟶ B. Defne T � a + θ(a): a ∈ A{ }. Clearly, T is
a submodule of M and M � T⊕B. For any c ∈ C,
θπA(c) � απA(c) � πB(c), so that c � πA(c) + θπA(c) ∈ T.
Hence, C≤T. Since C is an ec-complement of B, C⊕B≤ eM

and so C≤ eT. Tis implies that C � T and M � C⊕B, and
thus, M is an EADS module. □

Proposition 6. Let M � A⊕B be an R-module and X �

K∩B for every K complement of A in M. If M/X is an EADS
module, then M is an EADS module.

Proof. Let M � A⊕B, K be an ec-complement of A in M

and X � K∩B. It can be shown that M/X � (A⊕X)/
X⊕B/X. By Lemma 3, K/X is an ec-submodule of M/X.
Observe that K/X is complement of (A⊕X)/X in M/X. It
follows from the hypothesis that M/X � (A⊕X)/X⊕K/X.
Tus, M � A⊕K which implies that M is an EADS module.
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Now, we locate the EADS condition with respect to
several known generalizations of the quasicontinuous
property. □

Proposition 7. Let M be a module. Let us consider the
following conditions:

(i) M is quasicontinuous
(ii) M is ADS
(iii) M is EADS

Ten, (i)⟹ (ii)⟹ (iii). In general, the reverse im-
plications do not hold.

Proof. (i)⟹ (ii) and (ii)⟹ (iii) are straightforward.
(ii) ⇏ (i) Let F be a feld and V a vector space over F

with dim(VF) � 2. Let R be the trivial extension of F with V,
i.e.,

R �
F V

0 F
􏼢 􏼣 �

f v

0 f
􏼢 􏼣f ∈ F, v ∈ V􏼨 􏼩, (1)

then RR is an ADS because it is indecomposable. Since RR is
not uniform, RR is not quasicontinuous.

(iii) ⇏ (ii), let p be a prime integer and M � Q⊕Z/Zp,
a Z-module. It follows thatQ is a Z/Zp-injective, but Z/Zp

is not Q-injective which implies that MZ is not an ADS
module (see [[5], Example 2.4]). Since Q and Z/Zp are
uniformmodules, they are relatively ec-injective. Hence, MZ

is an EADS module. □

Proposition 8. Let M be a module. For the following con-
ditions, quasicontinuous, ADS and EADS modules are
equivalent:

(i) M is a uniform module
(ii) M is a CS and an ec-module

Proof.

(i) Let M be a uniform and an ADSmodule. From [[15],
Proposition 3.1], M is a quasicontinuous module.
Te converse follows from Proposition 7. Let M be
a uniform and be an EADS module. Suppose M �

A⊕B and C is a complement of A in M. Ten, for
each c ∈ C, we must have that cR≤ eC. Hence, C is an
ec-complement of A. By the hypothesis, M � A⊕C

and so M is an ADS module. Te converse follows
from Proposition 7.

(ii) Let M be a CS and an ADS module. From [[15],
Proposition 3.1], M is a quasicontinuous module.
Te converse follows from Proposition 7. Let M be
a CS, an ec and an EADS module. Assume M �

A⊕B and C is a complement of A in M. By [[16],
Lemma 3.16], every closed submodule of M is an ec-
complement submodule of M. Since M is an EADS
module, M � A⊕C. Hence, M is an ADS module.

Te next result provides a characterization of EADS
modules. □

Theorem  . Let M be a module. Te following conditions are
equivalent:

(i) M is EADS
(ii) For any direct summand M1 and an ec-submodule

M2, having zero intersection with M1, the projection
map πi: M1 ⊕M2⟶Mi (i � 1, 2) can be extended
to an endomorphism (indeed a projection) of M

(iii) If M � M1 ⊕M2, then M1 and M2 are mutually ec-
injective

(iv) For any decomposition M � A⊕B, the projection
π: M⟶ B is an isomorphism when it is restricted
to any ec-complement C of A in M

Proof. (i)⟹ (ii) Let M be an EADS module. By Lemma 2,
there exists an ec-complement M2′ of M1 containing M2.
Ten, M � M1 ⊕M2′. Hence, the canonical projection
π1′: M1 ⊕M2′ ⟶M1 and π2′: M1 ⊕M2′⟶  M2′ are clearly
extensions of π1 and π2.

(ii)⟹ (i) Let M � A⊕B and C be an ec-complement
of A in M. We must show that M � A⊕C. By the hy-
pothesis, the projection π: A⊕C⟶ C can be extended to
an endomorphism f: M⟶M. We claim f(M) ⊂ C.
Since A⊕C is essential in M, for any 0≠m ∈M, there exists
an essential right ideal E of R such that 0≠mE ⊂ A⊕C. Tis
gives f(m)E � π(mE) ⊂ C. Since C is closed in M, we must
have that f(m) ∈ C which proves our claim.We also remark
that f2 � f, M � ker(f)⊕ im(f), and kerf � m − f􏼈

(m) ∣ m ∈M}. Now, we have to show that ker(f) � A. For
any a ∈ A, clearly a � a − f(a) ∈ Ker(f) and hence
A ⊂ Ker(f). Now, let 0≠m − f(m) ∈ Ker(f). Tere exists
r ∈ R such that 0≠ (m − f(m))r ∈ A⊕C. Tis implies
f[m − f(m)r] � f (mr) − f(f(mr)) � f(mr)− f(mr) �

0. Since f extends π, it follows that 0≠ (m − f(m))r ∈
Ker(π) � A. Since A is a complement in M, then A � ker(f)

which proves the result.
(i)⟺ (iii) Tis is clear from Proposition 7.
(i)⟺ (iv) Let M be an EADS module and C an ec-

complement of A in M. Ten, M � A⊕C and π(C) � B.
Since Ker(π|C) � 0, we must have that π|C: C⟶ B is an
isomorphism. Conversely, let π|C be an isomorphism. Since
π|C(C) � B, M � A⊕B � A⊕C. Hence, M is an EADS
module.

Te following proposition gives that EADS modules are
closed under ec-direct summand. □

Proposition 10. Let M be a module. If M is an EADS
module, then every ec-direct summand of M is an EADS
module.

Proof. Let N be an ec-direct summand of M and
N � N1 ⊕N2 where N1, N2 ≤N. Ten, there exists T≤M

such that M � N⊕T. So M � N1 ⊕N2 ⊕T. By the hy-
pothesis, N1 is an N2 ⊕T-ec-injective. Since N is an ec-
closed submodule of M, N2 is an ec-complement submodule
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of N. Hence, by Proposition 4, N1 is an N2-ec-injective.
Terefore, N is an EADS module.

Te direct sum of EADS modules need not to be an
EADS module. For example, let M � (Z3 ⊕Z6)Z. Ten, Z3
and Z6 are EADS modules. Since Z3 is not Z6-ec-injective,
we must have that M is not an EADS module. □

Proposition 11. Let M � ⊕ i∈IMi be a module where Mi is
a uniform module for all i ∈ I. Ten, M is an EADS module if
and only if Mi is an EADS module.

Proof. Easy to check.
We now state conditions for which the direct sum of

EADS modules is an EADS module. □

Proposition 12. Let M1 and M2 be EADS modules such that
r(M1)⊕ r(M2) � R. Ten, M1 ⊕M2 is an EADS module.

Proof. Let D be a direct summand of M1 ⊕M2. Ten, there
exists a submodule D′ such that M1 ⊕M2 � D⊕D′. By
[[17], Proposition 3.9], D � D1 ⊕D2 and D′ � D1′ ⊕D2′,
where D1, D1′ and D2, D2′ are submodules of M1 and M2,
respectively. Let C be an ec-complement of D. So
C � M1′ ⊕M2′ for some ec-submodule M1′ ≤M1 and
M2′ ≤M2. Hence, M1′ ∩D1 � 0 and M2′ ∩D2 � 0. So that M1′
and M2′ are ec-complement of D1 and D2, respectively. By
the hypothesis, M1 � D1 ⊕M1′ and M2 � D2 ⊕M2′. Tere-
fore, M1 ⊕M2 � (D1 ⊕M1′)⊕ (D2 ⊕M2′) � D⊕C. Tus,
M1 ⊕M2 is an EADS module. □

Proposition 13. Let N be an EADS module and N � M.
Ten, M is an EADS module.

Proof. Suppose M � A⊕B for some A, B are submodules of
M and f: M⟶ N is an isomorphism. Since N is an EADS
module, f(A) is an f(B)-ec-injective. Let φ: Y⟶ A be
a homomorphism, where Y is a nonzero ec-closed sub-
module of B. Ten, iof: Y⟶ f(B) is an isomorphism. By
Lemma 1, f(Y) is an ec-closed submodule of f(B). Since N

is an EADS module, fφf−1 can be extended to
β: f(B)⟶ f(A). Ten, f−1βf: B⟶ A is a homomor-
phism and for every y ∈ Y, f−1βf(y) � f−1fφf−1

(f(y)) � φ(y). Tis implies that A is a B-ec-injective.
Terefore, M is an EADS module □

4. Extensions

Tis section explores the behavior of the EADS condition
concerning various extensions of matrices in both ring and
module contexts. A ring R is termed a right EADS ring if RR

satisfes the EADS module criterion. Consider, for instance,
the 2 × 2 upper triangular matrix ring over integers, denoted

as R �
Z Z

0 Z
􏼢 􏼣. Here, RR decomposes into M1 ⊕M2, where

M1 �
Z Z

0 0􏼢 􏼣 and M2 �
0 0
0 Z

􏼢 􏼣. Both M1 and M2 being

uniform modules, as per Proposition 11, afrm RR as an
EADS module.

Now, let us commence with the subsequent ring
extension.

Theorem 14. Let R and S be two rings and M be an

S-R-bimodule. Assume that T �
S M

0 R
􏼢 􏼣 is a right EADS

ring. Ten,

(i) R is a right EADS ring
(ii) If SM � 0, then MR is an EADS module

Proof.

(i) Let RR � X⊕Y, K be an ec-complement submodule
of X and f: K⟶ Y be an R-homomorphism.

Suppose X′ �
0 0
0 X

􏼢 􏼣, Y′ �
S M

0 Y
􏼢 􏼣, and

K′ �
0 0
0 K

􏼢 􏼣. It is clear that TT � X′ ⊕Y′. We de-

fne θ: K′ ⟶ Y′ via θ 0 0
0 r

􏼢 􏼣􏼠 􏼡 �
0 0
0 f(r)

􏼢 􏼣.

Ten, θ is a T-homomorphism and K′ is an ec-
complement submodule of X′ in TT. By the hy-
pothesis, there exists a T-homomorphism
ϕ: X′ ⟶ Y′ such that ϕ is an extension of θ. For

any x ∈ X, ϕ 0 0
0 x

􏼢 􏼣􏼠 􏼡 �
s m

0 y
􏼢 􏼣 where s ∈ S,

m ∈M, and y ∈ Y. We consider the R-homomor-

phism α: X⟶ X′ given by α(x) �
0 0
0 x

􏼢 􏼣 and

π: Y′ ⟶ Y given by π s m

0 y
􏼢 􏼣􏼠 􏼡 � y. So πϕα is an

extension of f. Ten, Y is an X-ec-injective.
Terefore, RR is an EADS module and R is an
EADS ring.

(ii) Let MR � M1 ⊕M2, N be an ec-complement sub-
module of M1 and f: N⟶M2 is an R-homo-

morphism. Assume M1′ �
0 M1
0 0􏼢 􏼣, M2′ �

S M2
0 R

􏼢 􏼣, and N′ �
0 N

0 0􏼢 􏼣. Ten, TT � M1′ ⊕M2′

and N′ is an ec-complement of M1′. We defne

θ: N′ ⟶M2′ via θ
0 n

0 0􏼢 􏼣􏼠 􏼡 �
0 f(n)

0 0􏼢 􏼣. So θ is

a T-homomorphism. By the hypothesis, there exists
a T-homomorphism M1′⟶M2′ which is an ex-
tension of θ. We consider α: M1⟶M1′ via

α(m1) �
0 m1
0 0􏼢 􏼣 and π: M2′ ⟶M2 via

π s m2
0 r

􏼢 􏼣􏼠 􏼡 � m2. Ten, αϕπ is an extension of f.

So M2 is an M1-ec-injective. Hence, M2 is an EADS
module.
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Te following example shows that the converse of
Teorem 14 is not true in general. □

Example 1. For case (i), let T be the trivial extension of Z4

with the Z4-module 2Z4, i.e., T �
Z4 2Z4
0 Z4

􏼢 􏼣. It is obvious

that Z4 is an EADS module, so we have TT � X⊕Y where

X �
Z4 2Z4
0 0􏼢 􏼣 and Y �

0 0
0 Z4

􏼢 􏼣. Let

N �
0 2c

0 2c
􏼢 􏼣: c ∈ Z4􏼨 􏼩. Ten, N is an ec-complement of

X. Since TT ≠X⊕N, TT is not an EADS module.

For case (ii), let T �
2Z4 2Z4
0 Z4

􏼢 􏼣. It can be shown that

2Z4 is an EADSmodule. Using the same submodule N given
above, we can easily see that TT is not an EADS module.

Lemma 15. LetM be a rightR-module and L be a submodule
of M, where R � ReR for some e2 � e ∈ R and S � eRe. Ten,

(i) N≤ eMR if and only if Ne≤ e(Me)S

(ii) N is an ec-submodule of MR if and only if Ne is an ec-
submodule of (Me)S

Proof.

(i) It follows from [[7], Proposition 2.77(i)].
(ii) Suppose that N is an ec-submodule of MR. Ten,

nR≤ eN for some n ∈ N. Tis implies that
nReR≤ eN. By (i), nRe≤Ne. So Ne is an ec-
submodule of (Me)S. Conversely, suppose that Ne

is an ec-submodule of (Me)S. Ten, neS≤ e(Ne)S for
some ne ∈ Ne so neRe≤ e(Ne)S. By (i), neR≤ eN.
Since neR≤ nR≤N, nR≤ eN. Hence, N is an ec-
submodule of MR. □

Lemma 16. Let R be a ring where R � ReR for some e2 �

e ∈ R and S � eRe. Let N be a right S-module. Ten, K is an
ec-submodule of N if and only if (KR)R is an ec-submodule
of (NR)R.

Proof. Suppose that KS is an ec-submodule of NS. Ten,
kS≤ eK for some k ∈ K and so keRe ≤ eKRe. By [[7],
Proposition 2.77], we obtain keR≤ eKR. Since ke ∈ KR,
(KR)R is an ec-submodule of (NR)R. Conversely, suppose
that (KR)R is an ec-submodule of (NR)R. Ten, krR≤ eKR

for some k ∈ K and r ∈ R so krReR≤ eKR. Hence,
krReRe≤ eKRe. Tis implies that krReeRe≤ eKRe. Since
K � KRe, we must have that krReS≤ eK. Hence,
krRe ∈ KRe � K which implies that K is an ec-submodule
of N. □

Proposition 17. Let M be a right R-module, where R � ReR

for some e2 � e ∈ R and S � eRe.

(i) MR is an EADS module if and only if (Me)S is an
EADS module

(ii) R is a right EADS ring if and only if (Re)S is an EADS
module

(iii) (eR)R is an EADS module if and only if S � eRe is
a right EADS ring

Proof.

(i) Let M be an EADS module, Me � Le⊕Ke and He

be an ec-complement of Ke in (Me)S. By [[7],
Proposition 2.77(iii)], we obtain M � L⊕K. From
Lemma 15 (ii) and [[7], Proposition 2.77(iii)], H is
an ec-complement of K in M. By the hypothesis,
M � H⊕K. So Me � He⊕Ke. Hence, (Me)S is an
EADS module. Te converse is similarly proved.

(ii) Take M � R in (i).
(iii) Take M � eR in (i). □

Theorem 18. Let R be any ring. Ten, Mm(R) is a right
EADS ring, if and only if the free right R-module Rm is
an EADS.

Proof. It is clear that Mm(R) � Mm(R)eMm(R), where e is
the matrix unit with 1 in the (1, 1) th position and zero
elsewhere. Te result now follows from Proposition 17 (ii).

We conclude with the following open question: In-
vestigate whether the EADS property remains invariant
under Morita equivalence. □
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