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Abstract
Many packing, routing, and knapsack problems can be expressed in terms of integer linear
programming models based on set covering. These models have been exploited in a range of
successful heuristics and exact techniques for tackling such problems. In this paper, we show
that integer linear programming models based on set covering can be very useful for their use
within an algorithm called “Construct, Merge, Solve & Adapt”(CMSA), which is a recent
hybrid metaheuristic for solving combinatorial optimization problems. This is because most
existing applications of CMSA are characterized by the use of an integer programming solver
for solving reduced problem instances at each iteration. We present applications of CMSA
to the variable-sized bin packing problem and to the electric vehicle routing problem with
time windows and simultaneous pickups and deliveries. In both applications, CMSA based
on a set covering model strongly outperforms CMSAwhen using an assignment-type model.
Moreover, state-of-the-art results are obtained for both considered optimization problems.

Keywords Construct, Merge, Solve & Adapt · Set covering models · Bin packing · Routing

1 Introduction

Construct, Merge, Solve & Adapt (CMSA) (Blum et al., 2016) is a hybrid metaheuristic for
solving combinatorial optimization problems. It is an iterative approach based on solving a
subinstance of the considered problem instance at each iteration. In this context, note that
the search space (set of feasible solutions) of a sub-instance is a subset of the search space
of the original problem instance. In other words, every feasible solution to a subinstance is
also a feasible solution to the original problem instance. Today’s existing CMSA variants
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Fig. 1 General framework of any
CMSA approach

are all covered by the algorithmic framework shown in Fig. 1. After generating an initial
subinstance—which is empty in the simplest case—any CMSA algorithm executes four
different steps at each algorithm iteration. First, in the Construct step, valid solutions to
the considered problem instance are generated in some way. Then, in the Merge step, the
solution components found in these solutions are added to the incumbent subinstance,which is
hereby extended. The incumbent subinstance is solved in the third step, the Solve step. Note,
in this context, that it is not necessarily the case that the subinstance is solved to optimality.
Finally, an aging mechanism is employed in the Adapt step to adapt the subinstance based
on the outcome of the Solve step. This adaptation reduces the incumbent subinstance by
removing some of the solution components identified by the aging mechanism.

While the Merge and Adapt steps are implemented in the same way in today’s existing
CMSA variants, the Construct and Solve steps offer a rather large degree of freedom. In
the case of the Construct step, valid solutions to the considered problem instance might,
for example, be generated by using a probabilistic greedy heuristic. A second option consists
of feeding the incumbent subinstance of CMSA with solution components from solutions
generated by a metaheuristic approach run in parallel, for example. Concerning the Solve
step, an integer linear programming (ILP) solver might be used to solve the incumbent
subinstance if the considered optimization problem can be expressed by means of an ILP
model. Other options include using specialized exact techniques and short runs of an available
metaheuristic for the tackled problem.

In this paper, we study different ways of solving the incumbent subinstance in the Solve
step of the CMSA framework. We do so in the context of the application of CMSA to com-
binatorial optimization problems whose goal is the partitioning of a finite set of items into
disjoint subsets. This problem type comprises large families of important problems such as
bin packing problems, multiple knapsack problems, assembly line balancing problems, and
vehicle routing problems, just to mention a few. ILP solvers such as CPLEX and Gurobi
find it generally difficult to solve standard assignment-type ILP models of these problems.
Therefore, the Operations Research community has developed specialized exact techniques
based on set covering models for solving them. Concerning exact techniques, set covering
models are especially useful in the context of column generation methods; see, for exam-
ple, (Barnhart et al., 1998; Desrochers & Soumis, 1989; Parker & Ryan, 1993). However,
the transformation of vehicle routing and packing problems to set covering problems has
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also been exploited in the context of heuristic methods; see, for example, (Monaci & Toth,
2006; Cacchiani et al., 2014; Machado et al., 2021). In this paper, we show that replac-
ing the standard assignment-type ILP models with set covering formulations for solving
subinstances within CMSA algorithms may often result in high-performance techniques. In
addition, these set-covering-based, high-performance CMSA techniques are, in contrast to
column generation techniques, rather easy to program.

1.1 Literature Review

As mentioned above, different CMSA variants—that is, different instantiations of the frame-
work shown in Fig. 1—have been proposed in the related literature. The most-utilized CMSA
variant to date is a generic CMSA based on probabilistically constructing solutions in the
Construct step and using an ILP solver for solving subinstances in the Solve step. First,
this algorithm has been applied to the minimum covering arborescence problem and the
minimum common string partition problem (Blum et al., 2016). More recent applications
include the ones to prioritized pairwise test data generation in software product lines (Ferrer
et al., 2021), the maximum happy vertices problem (Thiruvady & Lewis, 2022), and the max
tree coverage problem (Zhou & Zhang, 2024). A more recent CMSA variant is self-adaptive
CMSA, proposed in Akbay et al. (2022). This CMSA variant is characterized by the fact
that the values of important algorithm parameters are handled in a self-adaptive way and
that the probabilistic generation of valid solutions in the Construct step is biased towards
the best-found solution. Existing applications of this CMSA variant include the one to the
multi-dimensional multi-way number partitioning (Djukanović et al., 2023) and the two-
echelon electric vehicle routing problem with simultaneous pickup and deliveries (Akbay et
al., 2023). Finally, it is worth mentioning that CMSA has already been applied to complex,
practical problems such as the optimization of refueling andmaintenance planning of nuclear
power plants (Dupin & Talbi, 2021).

Next, we reviewworks from the literature based on ideas similar to CMSA’s. The core con-
cept of CMSA closely aligns with that found in large neighborhood search (LNS) (Pisinger
& Røpke, 2010). Like CMSA, LNS is based on iteratively solving subinstances of the tack-
led problem instance. The main difference is in the way in which these subinstances are
generated and adapted from one iteration to the next. Applegate et al. (1999) and Cook and
Seymour (2003) solved the classical traveling salesman problem (TSP) as follows. Initially,
in a preliminary phase, they employ a metaheuristic to generate a collection of high-quality
TSP solutions. Subsequently, these solutions are merged to create a subinstance, which is
then solved by an exact solver. In other words, their algorithm applies one iteration of CMSA
(without the execution of the Adapt step). A similar approach is used in (Cavaliere et al.,
2022) for the capacitated vehicle routing problem (CVRP). Another example of work related
to CMSA can be found in (Nepomuceno et al., 2007), where the so-called generate-and-
solve (GS) framework is proposed. A recent application of this framework is presented in (Sá
Santos & Nepomuceno, 2022). The method known as kernel search (Angelelli et al., 2010)
employs a heuristic strategy that involves identifying a limited set of solution components
likely to be present in optimal solutions (the kernel) and then utilizing an ILP solver to find
the best solutions that contain the kernel; see (Lamanna et al., 2022) for a recent application.
Another approach related to CMSA worth mentioning is merge search (MS) (Kenny et al.,
2018). Like CMSA,MS creates a subinstance in each iteration and attempts to solve it with an
exact solver. However, the key difference lies in how these subinstances are formed. CMSA
focuses on identifying a set of variables with fixed values in high-quality solutions, shifting
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optimization to the remaining variables. In contrast, MS groups variables with consistent val-
ues across good solutions, although the exact values within these groups are still optimized.
An example of MS application can be found in Thiruvady et al. (2020).

1.2 Our Contribution

The contribution of this work is twofold. First, we provide a conceptual contribution and
show that—in the context of problems that can be modeled both by means of standard
assignment-type ILPmodels and by set-covering-based ILPmodels—the use of set-covering-
based models for solving subinstances within CMSA may significantly outperform the use
of standard assignment-type models. This is shown both for a problem from the bin packing
field and for a complex problem from the field of electric vehicle routing. The paper’s second
contribution is to be found in the state-of-the-art results that our algorithms obtain for both
considered problems. In fact, in the case of the variable-sized bin packing problem, new
best-known solutions are found in 68 out of 150 cases. Furthermore, in the context of the
electric vehicle routing problem, we compare to our previous work in which this complex
problem was introduced and we are able to show that the results obtained by our new CMSA
variant significantly outperform previous results.

2 CMSA: construct, merge, solve & adapt

In this section, we describe the generic CMSA algorithm variant, which will be used in
our first application example concerning the variable-sized bin packing problem. The first
action that needs to be taken for applying CMSA to a combinatorial optimization problem
is defining the set C of solution components, that is, those components of which solutions
to the considered problem are composed. Later we will provide specific examples for such
a definition. For the moment, however, let C = {c1, . . . , cn} be a generic set of solution
components. Moreover, any valid solution S ∈ S to our problem—whereS is the set of all
valid solutions—can be expressed as a subset of C , that is, S ⊆ C for all S ∈ S . Finally, let
f : S �→ N

+ for the following discussion be the objective function to be minimized, and
let f (∅) := ∞.

Algorithm 1 provides the pseudo-code of our generic CMSA. The algorithm starts by
initializing both the best-so-far solution Sbsf and the subinstanceC ′, which is always a subset
of C , to the empty set. Furthermore, the so-called age values of all solution components are
initialized to zero, that is, age[c] := 0 for all c ∈ C . The main loop of the CMSA algorithm
consists of four actions, as already shown in the general CMSA framework from Fig.1. First,
in the Construct step of CMSA, a number of na valid solutions to the considered problem
are probabilistically generated (see line 8 of Algorithm 1). Second, in the Merge step of
CMSA, the current subinstance C ′ is updated with the solution components found in these
na solutions (see lines 10–13). Third, in the Solve step of CMSA, an ILP solver is applied
in order to find the best possible solution that only contains components from subinstance
C ′, within a time limit of tILP CPU seconds (see line 15). Fourth, in the Adapt step of
CMSA, subinstance C ′ is adapted based on the solution SILP returned by the ILP solver (see
line 17). These four steps are iterated until a given CPU time limit is reached. The output of
the algorithm is Sbsf , the best solution found during the whole process.

Note that the Construct step and the Solve step of CMSA are problem-dependent. In
particular, for the Construct step of the algorithm, generally, a greedy heuristic for the
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Algorithm 1 Pseudo-code of a generic CMSA
1: input 1: Complete set of solution components C
2: input 2: values for CMSA parameters na, agemax, and tILP
3: Sbsf := ∅
4: C ′ := ∅
5: age[c] := 0 for all c ∈ C
6: while CPU time limit not reached do
7: for i := 1, . . . , na do
8: S := ProbabilisticSolutionConstruction(C)
9: if f (S) < f (Sbsf ) then Sbsf := S endif
10: for all c ∈ S and c /∈ C ′ do
11: age[c] := 0
12: C ′ := C ′ ∪ {c}
13: end for
14: end for
15: SILP := SolveSubinstance(C ′, tILP)
16: if f (SILP) < f (Sbsf ) then Sbsf := SILP end if
17: Adapt(C ′, SILP, agemax)
18: end while
19: output: Sbsf

tackled problem is used in a randomized way, and the Solve step depends on the availability
of an ILPmodel for the tackled problem.Moreover, the way in which an ILPmodel is exactly
generated based on subinstance C ′ leaves room for variation. In contrast, the Merge step
and theAdapt step are problem-independent. In theMerge step, those solution components
that (1) are found in at least one of the na constructed solutions and (2) do currently not
form part of C ′, are added to C ′ and their age value is set to zero. Finally, the Adapt step
consists in the application of function Adapt(C ′, SILP, agemax), which adapts subinstance C

′
in the following way. First, the age values of all components in C ′ \ SILP are incremented
by one. Second, the age values of all components in SILP are set to zero. The final action
in the Adapt step removes all those components from C ′ whose age value has reached the
maximum allowed age (agemax). This is done in order to prevent components that never
appear in SILP from slowing down the ILP solver in subsequent CMSA iterations. Note that
the age value age[c] of a solution component c ∈ C , at any time, indicates the number of
consecutive CMSA iterations for which c has formed part of subinstance C ′ without having
been included in the ILP-solution to the subinstance C ′.

3 Application to variable-sized bin packing

The variable-sized bin packing problem (VSBPP) can technically be described as follows.
Given is a set S = {1, . . . , n} of n items, and each item i ∈ S has a weight wi > 0. Also
given is a set B = {1, . . . ,m} of m bin types. Hereby, a bin type k ∈ B is characterized by
a capacity Wk > 0 and a cost Ck . We henceforth assume, without loss of generality, that
W1 < . . . < Wm . The goal of the VSBPP is to pack the n items into a number of bins such
that sum of the costs of the utilized bins is minimized. Note that there is no restriction on the
number of times a bin type may be used.
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3.1 Assignment-Type ILP Model of the VSBPP

The VSBPP can be modeled in the following way as an assignment-type integer linear
program; see also (Haouari&Serairi, 2009). Thismodel is henceforth denoted byILPVSBPP

std :

min
n∑

j=1

m∑

k=1

Ck · y jk

s.t.
n∑

j=1

xi j = 1 for i = 1, . . . , n

m∑

k=1

y jk ≤ 1 for j = 1, . . . , n

n∑

i=1

wi · xi j ≤
m∑

k=1

Wk · y jk for j = 1, . . . , n

xi j ∈ {0, 1} for i, j = 1, . . . , n

y jk ∈ {0, 1} for j = 1, . . . , n and k = 1, . . . ,m

(1)

(2)

(3)

(4)

(5)

(6)

This ILP model makes use of two sets of binary variables. A setting of xi j = 1, for example,
means that item i is placed in bin j . Moreover, a setting of y jk = 1 means that bin j has
bin type k. Note also that the number of used bins can safely be limited to n, which is
the number of items. Constraints (2) make sure that each item is assigned to exactly one
bin. In a similar way, constraints (3) enforce that each used bin has exactly one bin type. In
addition, constraints (4) ensure that bin capacities are respected. Finally, note that the VSBPP
is NP-hard due to being a generalization of the one-dimensional bin packing problem. For
an example of a small VSBPP problem instance, see Fig. 2.

3.2 Literature Review Concerning theVSBPP

We focus on the original version of the VSBPP, where—as mentioned above—the number
of bins available per bin type is unlimited. Crainic et al. (2011) derived lower bounds and
developed heuristics for the more general version of the VSBPP with explicit limits on
the number of bins per bin type. Haouari and Serairi (2009) introduced a range of greedy
heuristics, in addition to a genetic algorithm. Finally, Hemmelmayr et al. (2012) proposed a
rather sophisticated variable neighborhood search (VNS) algorithm for solving the VSBPP.
The results presented in (Hemmelmayr et al., 2012) have not improved since then. Instead,
researchers have focused on the VSBPPwith additional constraints. Recent examples include
the VSBPP with time windows (Fleszar, 2023) and the VSBPP with conflicts (Ekici, 2023).

3.3 Set-Covering Based ILPModel of the VSBPP

An alternative, set-covering-based ILP model for the VSBPP is obtained as follows. Let B
be the set of all possible bins with respect to their content. Hereby, a bin b ∈ B is defined
by the set of items it contains. The weight wb of a bin b ∈ B is defined as the sum of the
weights of the items assigned to that bin. Moreover, the cost cb of a bin b ∈ B is defined as
the cost of the lowest-cost bin type possible for accommodating all the items assigned to b.
Finally, letBi ⊂ B be the set of bins that contain item i . After introducing a binary variable
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Fig. 2 An example instance with n = 3 items and m = 3 different bin types. The item weights are provided
in (a) while the bin type capacities and costs are indicated in (b). c shows a valid solution in which item 3
is assigned to a bin of type 2 (and cost 4), while items 1 and 2 are assigned to a bin of type 3 (and cost 5).
Therefore, the solution in (c) has value 4+ 5 = 9. (d) shows the optimal solution where item 1 is assigned to
a bin of type 1 (and cost 3), while items 2 and 3 are assigned to a bin of type 3 (and cost 5). The cost of the
optimal solution is, therefore, 3 + 5 = 8

xb for each bin b ∈ B, the set-covering-based ILP model for the VSBPP, henceforth denoted
as ILPVSBPP

setcov , can be stated as follows.

min
∑

b∈B
cb · xb

s.t.
∑

b∈B i

xb ≥ 1 for i = 1, . . . , n

xb ∈ {0, 1} for all b ∈ B

(7)

(8)

(9)

Note that an exact correspondence between ILPVSBPP
std and ILPVSBPP

setcov would be obtained
by replacing the“≥”symbol in constraints (8) by the equality symbol (“=”). However, every
optimal solution obtained with the“≥” symbol is easily transformed into an optimal solution
of the model with the“=”symbol by removing duplicate items from all bins apart from one.
Moreover, according toBarnhart et al. (1998), the linear programming relaxation of themodel
when using the “≥”symbol is numerically far more stable and thus easier to solve, which
facilitates solving the ILP by means of ILP solvers such as CPLEX or Gurobi.

3.4 Application of standard CMSA to theVBSPP

First, we applied CMSA in the following standard way to the VBSPP. This algorithm
variant is henceforth labeled Adapt-Cmsa- Std. As ILP model for solving subinstances,
Adapt-Cmsa- Std uses model ILPVSBPP

std from Sect. 3.1. A generic way of defining the
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set of solution components is as follows. For each binary variable of the model, exactly
two solution components are introduced: one component that corresponds to setting the
variable to zero, and another component that refers to setting the variable to one. In
the case of model ILPVSBPP

std , this means that C consists of solution components cx0i j
and cx1i j for all binary variables xi j (i, j,= 1, . . . , n), and of solution components cy0jk
and cy1jk for all binary variables y jk ( j = 1, . . . , n; k = 1, . . . ,m). Hereby, cx0i j ,

for example, corresponds to xi j = 0, while cx1i j corresponds to xi j = 1. Moreover,

C = {cx011, . . . , cx0nn, cx111, . . . , cx1nn, cy011, . . . , cy0nm, cy111, . . . , cy
1
nm} is the complete set

of 2n2+2nm solution components. Any valid solution S is a subset ofC with |S| = n2+nm
because, for each binary variable, a solution S contains exactly one of the two corresponding
solution components.

3.4.1 Probabilistic Solution Construction

For the following discussion, a bin b is a set of items, that is, b ⊆ {1, . . . , n}. Moreover, a
bin b is always characterized by three well-defined measures:

1. bload: the load of a bin b is defined as the sum of the weights of the items it contains, that
is, bload := ∑

i∈b wi

2. btype: the type of a bin b is defined as the lowest-cost bin type that is able to accommodate
the load of the bin, that is, btype := k such that Ck < Cr for all r ∈ {1, . . . ,m} with
Wr ≥ bload.

3. bcost: the cost of a bin is defined as the cost of its type, that is, bcost := Cbtype .

4. bratio: the ratio between the cost and the load of a bin, that is, bratio := bcost
bload

In addition, letmaxload be defined as themaximumcapacity of all bin types, that is,maxload :=
max{Wj | j = 1, . . . ,m}. For the probabilistic construction of a solution, the following
simple procedure is applied; see also Algorithm 2. First, the n items are randomly ordered;
see line 3. Then, the set of bins B is initialized by placing the first item from the list in
a new bin, whose load, type, cost and ratio is determined as defined above. Then, in the
pre-determined order, the remaining items are placed into bins. In particular, in probability,
among all options to place an item, the one resulting in a bin with a lower ratio is preferred
over the others. This is encapsulated in function ChooseOption(O , drate, lsize) (see line 16),
where O is the current set of options. The working of this function is as follows. First, a
number z is chosen uniformly at random from [0, 1]. In case z ≤ drate, the chosen option is
the one with the lowest ratio. Otherwise, the max{|O|, lsize} options with the lowest ratios
are pre-selected from O , and the chosen option is randomly determined among those. When
all items are placed into bins, the set of bins is sorted by bin ratio (from small to large); see
function Sort(B) in line 22. As a tie-breaking criterion, we utilized the smallest item index
of a bin (preferring smaller ones). Finally, the constructed solution is transformed into the
corresponding set S of solution components in function ExtractSolutionComponents(B);
line 23. In the case of the set of solution components outlined above, this works as follows.
If the first bin (after sorting B) is of type k, then cy11k is added to S. Moreover, all cy01r (with
r = k ∈ {1, . . . ,m}) are added to S. The same is done for all other bins in B. Similarly, for
each item i in the first bin (after sorting B), component cx1i1 is added to S. Moreover, all cx0ir
(with r = 2, . . . , n) are added to S. The same is done for the items of all other bins from B.
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Algorithm 2 Probabilistic construction of a valid VSBPP solution
1: input: values for solution construction parameters drate, lsize
2: Let (i1, . . . , in) be a randomly ordered list of all n items
3: binit := {i1} #Comment: binit is the first bin that is initialized
4: B := {binit}
5: for l := 2, . . . , n do
6: i := il
7: O := ∅
8: for b ∈ B do
9: if bload + wi ≤ maxload then
10: be := b ∪ {i}
11: O := O ∪ {be}
12: end if
13: end for
14: if O is non-empty then
15: be := ChooseOption(O , drate, lsize)
16: B := B \ {b} ∪ {be}
17: else
18: bnew := {i} #Comment: a new bin bnew containing item i is created
19: B := B ∪ {bnew}
20: end if
21: end for
22: Sort(B)
23: S := ExtractSolutionComponents(B)
24: output: S

3.4.2 Subinstance generation and solving

In the solve step, we first generate a reduced problem instance on the basis of C ′, which is
done by adding—for all i = 1, . . . , n—the following constraints to model ILPVSBPP

std before
applying an ILP solver:

1. For all i, j = 1, . . . , n:

• If cx0i j ∈ C ′ and cx1i j /∈ C ′: add constraint xi j = 0 to ILPVSBPP
std

• If cx0i j /∈ C ′ and cx1i j ∈ C ′: add constraint xi j = 1 to ILPVSBPP
std

2. For all j = 1, . . . , n and k = 1, . . . ,m:

• If cy0jk ∈ C ′ and cy1jk /∈ C ′: add constraint y jk = 0 to ILPVSBPP
std

• If cy0jk /∈ C ′ and cy1jk ∈ C ′: add constraint y jk = 1 to ILPVSBPP
std

In other words, whenever subinstance C ′ only contains one of the two solution components
corresponding to a variable, the value of this variable is fixed to the corresponding value. As
a consequence, the more such constraints are added to the original ILP model, the smaller
becomes the search space to be explored by the ILP solver for solving the subinstance.

3.5 Application of set-covering based CMSA to theVSBPP

The ILPmodel for solving subinstances in this variant of CMSA—henceforth labeled Adapt-
Cmsa- SetCov—ismodelILPVSBPP

setcov fromSect. 3.3. In this case, the complete set of solution
components C consists of a component cb for each valid bin b fromB (see Sect. 3.3), that is,
C := {cb | b ∈ B}. Any subset S ⊂ C such that each item i ∈ {1, . . . , n} appears in exactly
one bin b such that cb ∈ S is a valid solution to the tackled VSBPP problem instance.
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The probabilistic construction of solutions works exactly in the same way as outlined in
Sect. 3.4.1. The only difference lies in the implementation of function ExtractSolutionCom-
ponents(B) that assembles the solution components corresponding to a set of bins B. Here,
this function simply adds for each b ∈ B the corresponding solution component cb to S.

The ILPmodel solved in the solve step of this CMSA variant is obtained by exchangingB
in model ILPVSBPP

setcov by C ′, that is, by replacing the set of all possible valid bins with the set
of those bins that form part of the current subinstance C ′. The solution S obtained from the
ILP solver after tILP CPU seconds is then checked for duplicate occurrences of items. If this
happens, duplicate items are randomly removed from the bins in S until each item appears
exactly once in the bins of S.

Finally, extracting the solution components corresponding to the bins in set B in function
ExtractSolutionComponents(B) in line 23 of Algorithm 2 consists simply in adding for each
b ∈ B the corresponding solution component cb to S.

3.6 Experimental evaluation

The proposed algorithms were implemented in C++ and the experiments were conducted
using a cluster of machines equipped with Intel® Xeon® 5670 CPUs having 12 cores of
2.933 GHz and at least 32 GB of RAM. To solve the respective subinstances within both
versions of CMSA, we used CPLEX version 22.1 in one-threaded mode.

3.6.1 Problem instances

The used set of problem instances was introduced in (Haouari & Serairi, 2009). In this set, the
number of bin types (m) is 7 and bin capacities are defined asW1 = 70,W2 = 100,W3 = 130,
W4 = 160, W5 = 190, W6 = 220 and W7 = 250. Moreover, item weights are randomly
drawn from [1, 250]. In fact, this benchmark set is composed of three different classes of
instances. In particular, class B1 is characterized by a linear bin cost function Ci = Wi

(i = 1, . . . , 7), class B2 has a concave cost function Ci = �10√Wi� (i = 1, . . . , 7), and
class B3 has a convex cost function Ci = �0.1Wi

3/2� (i = 1, . . . , 7). There are 10 problem
instances for each combination of n ∈ {100, 200, 500, 1000, 2000} (number of items) and
bin cost function class. This makes a total of 150 problem instances. Optimal solutions to
these instances are not known.

3.6.2 Parameter tuning

Both Cmsa- Std and Cmsa- SetCov require well-working parameter values. In fact, the
same five parameters as shown in the first column of Table 1 must be tuned in both cases. The
domains that we allowed for these parameters are indicated in the second column of the same
table. Parameter tuning was conducted with the irace tool (López-Ibáñez et al., 2016).
Each algorithm variant was tuned separately for each instance class, with a budget of 2000
runs. Moreover, each run was limited to 150 CPU seconds, as in (Hemmelmayr et al., 2012).
The obtained parameter values, as shown in Table 1, were used for the final experimentation.

3.6.3 Numerical results

The results of the current state-of-the-art technique (VNS) from (Hemmelmayr et al.,
2012), Cmsa- Std, and Cmsa- SetCov are provided in Table 2 (instances of class B1),
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Table 1 Parameter settings for Cmsa- Std and Cmsa- SetCov for the three classes of instances

Table 2 Results for the 50 instances of class B1 (linear cost function)
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Table 3 Results for the 50 instances of class B2 (concave cost function)

Table 3 (instances of class B2), and Table 4 (instances of class B3). The first two columns of
these tables indicate the number of items (n) and the instance number (#), respectively. For
each problem instance (table row), the results of the three algorithms are provided in terms
of the best solution found over 10 runs, the average of the best solutions from the 10 runs,
and the average times at which these solutions were found within the time limit of 150 CPU
seconds per run. The following observations can be made:

• First, Cmsa- SetCov clearly outperforms both Cmsa- Std and VNS. Only in two out
of 150 cases, Cmsa- Std is able to find a solution of the same quality as the one found
by Cmsa- SetCov. Moreover, while Cmsa- SetCov and VNS perform comparably for
rather small problem instanceswith n ∈ {100, 200} items,Cmsa- SetCov clearly outper-
forms VNS in the context of larger problem instances (especially for n ∈ {1000, 2000}).
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Table 4 Results for the 50 instances of class B3 (convex cost function)

• Cmsa- SetCov is able to find new best-known solutions in 68 out of 150 cases. In
particular, Cmsa- SetCov finds 27 new best-known solutions in the case of the 50 B1
instances, 26 new best-known solutions in the case of the 50 B2 instances, and 15 new
best-known solutions in the case of the 50 B3 instances.

• Only in 7 out of 150 cases, the best solution found by Cmsa- SetCov is slightly worse
than the one found by VNS.

In order to test the statistical relevance of these results we produced so-called critical
difference (CD) plots with the scmamp toolkit Calvo and Santafe (2016) of the R statisti-
cal language, which implements the procedure recommended in García and Herrera (2008)
for the comparison of multiple algorithms over multiple problem instances. The horizon-
tal axis of such a CD plot shows the range of algorithm ranks, while each of the vertical
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Fig. 3 Criticial difference (CD) plots showing the statistical significance of the results

lines represents the average rank of the corresponding algorithm for the considered instance
group. Bold horizontal lines connecting algorithm markers indicate that the corresponding
algorithms perform statistically equivalent–i.e. the critical difference is not greater than the
significance level of 0.05. Note also that, in the context of these plots, we added the results of
the GA approach from (Crainic et al., 2011). The plot from Fig. 3a shows that–from a global
point of view–Cmsa- SetCov outperforms all other algorithms with statistical significance.
When considering the instances from the three classes separately, no statistically significant
difference between Cmsa- SetCov and VNS can be detected in the context of the B3 class
(see Fig. 3d).

3.6.4 Performance Difference Between the two VSBPP ILP Models

Finally, we aim to showwhyCmsa- SetCov outperformsCmsa- Std so clearly. For this pur-
pose, we generate subinstances of different sizes, translate them both into models ILPVSBPP

std
and ILPVSBPP

setcov , and solve them with CPLEX. In particular, we generated 10 subinstances
by probabilistically constructing five, respectively, 20 solutions and by merging their solu-
tion components in order to obtain subinstances. This was done for one B1 instance with
n = 100 items and for another B1 instance with n = 2000 items. Figure4 shows radar
charts that present the obtained results in the four different cases. Each radar chart provides
four different measures, averaged over 10 runs: (1) the number of variables in the models
of the subinstances (top), (2) the relative MIP gap after termination of CPLEX (right), (3)
the computation time required by CPLEX (bottom), and (4) the absolute improvement when
comparing the result of solving the subinstance with the best individual solution that was
used to generate the subinstance. Note that the time limit for CPLEX was set to 20 CPU
seconds in all cases. In this context, a model is promising if the improvement (left) is large,
and the number of variables (top), the relative MIP gap (right) and the required time (bottom)
are low. The four radar plots indicate that this is indeed the case for model ILPVSBPP

setcov , while
the opposite is actually the case for model ILPVSBPP

std . Obviously, the results become more
pronounced with growing problem instance size.
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Fig. 4 Radar charts concerning the comparison of the two ILP models applied to a B1 instance with 100 items
(see (a) and (b)), and to a problem instance with 2000 items (see (c) and (d))

4 Application to an electric vehicle routing problem

As mentioned before, another large family of problems where standard ILP models can
be replaced by set-covering-based ILP models is vehicle routing. In recent years, due to
environmental concerns, many researchers have focused on vehicle routing problems (VRPs)
concerned with electric vehicles, so-called electric vehicle routing problems (EVRPs). In this
section, with the aim of presenting a second example for the benefits of using set-covering-
based ILPmodelswithinCMSAalgorithms,we consider the so-called electric vehicle routing
problem with time windows and simultaneous pickups and deliveries (EVRP-TW-SPD). In a
preliminarwork (Akbay et al., 2023), we already presented the application of a CMSAvariant
called Adapt-CMSA based on the standard assignment-type ILP model of the problem. In
this section, we present an improved algorithm version together with the variant that makes
use of the set-covering-based ILP model.

The standard ILP model of the EVRP-TW-SPD is an extension of the model for the
EVRP-TW-PR problem proposed in (Keskin & Çatay, 2016), which—in turn—is a modified
variant of the model for the EVRP-TW problem proposed in (Schneider et al., 2014). In
particular, we extend the model further in order to consider SPD constraints. When dealing
with SPD constraints in the context of vehicle routing problems, it is important to note that
each customer’s demandmay consist of two distinct requirements: (1) delivering goods to the
demand point, known as the “delivery demand”, and (2) collecting goods from the demand
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Fig. 5 Illustration of an EVRP instance and its solution. a presents a map showing the locations of a depot,
five customers, and three charging stations based on Cartesian coordinates. Gray dashed lines indicate a fully
connected graph connecting each pair of nodes. b shows a valid solution to the given instance on the same
map, with two distinct tours represented by arrows with different colors. Both routes begin and end at the
depot, passing through various customers and charging stations

point, known as the “pickup demand”. It is necessary to satisfy both demands simultaneously
when a vehicle visits a particular customer.

We adopt the same notation as in the previous works to maintain consistency with the
existing literature. In particular, the EVRP-TW-SPD problem involves a set of N customers,
denoted by V = {1, . . . , N }, and a set of charging stations, denoted by F .

As we will model the EVRP-TW-SPD by means of a two-index ILP model, which allows
the visit of each node (customers and charging stations) exactly once, we enable multiple
visits (possibly by different vehicles) to each charging station by defining a set F

′
that

contains multiple copies of each charging station from F . Note that the utilization of such
dummy nodes in the context of two-index ILP models is already known from the related
literature (Bard et al., 1998; Erdoğan & Miller-Hooks, 2012). However, determining the
appropriate number of copies for each charging station is non-trivial. Insufficient replication,
which leads to restricting the number of permissible visits to the same charging station,
may exclude an optimal solution from the search space. Conversely, an excessive number of
replicas could inflate the model size, leading to prolonged execution times for ILP solvers.
The way in which the utilized number of charging station copies was determined for each
problem instance will be described in Sect. 4.6.3.

The depot is represented by nodes 0 and N + 1, where node 0 is the starting point and
node N + 1 is the ending point for each route. Note that both 0 and N + 1 refer to the same
depot. The set V

′ = V ∪ F
′
contains all customers and dummy charging stations. Moreover,

sub-indexes 0, N + 1, or both, added to a node-set, indicate the inclusion of the respective
depot instances to that set. For example, V0 is the node set that contains all customers and
the instance 0 of the depot. Based on the above notations, we define the following sets:

1. F
′
0 := F

′ ∪ {0}
2. V

′
0 := V

′ ∪ {0}
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3. V
′
N+1 := V

′ ∪ {N + 1}
4. V

′
0,N+1 := V

′ ∪ {0} ∪ {N + 1}
Following established sets and notations, the EVRP-TW-SPD can be defined on a complete,
directed graph G(V

′
0,N+1, A). A = {(i, j)|i, j ∈ V

′
0,N+1, i = j} is the set of arcs where

each arc has a corresponding distance di j and travel time ti j . Note that both distances and
travel times are symmetric, that is, it always holds that di j = d ji and ti j = t j i . The energy
consumed per unit distance traveled by an electric vehicle (EV) is denoted by a constant h.
A fleet of electric vehicles with identical loading capacity EVcap and battery capacity Bcap

is stationed at a depot to satisfy delivery demand qi > 0 and pickup demand pi > 0 of each
customer i simultaneously. Each vertex i ∈ V

′
0,N+1 is only allowed to be visited within a

time window [ei , li ] that indicates the earliest and latest possible visiting times. Moreover,
each customer i ∈ V has a service time si , which refers to the time an electric vehicle spends
visiting a customer.When an EV visits a charging station, its battery is charged as determined
by a parameter g > 0, which indicates the units of time required to charge one unit of energy.
Note that this way of fixing the charging speed is very usual in EVRPs; see, for example,
(Schneider et al., 2014; Keskin & Çatay, 2016).

The following decision variables are used to formulate the problem’s ILP model. The
binary decision variable xi j takes a value of 1 if the arc ai j is included in the route and 0
otherwise. The starting time of the service for each customer visited by the electric vehicle is
monitored by the decision variable τi . Moreover, to keep track of the battery’s state of charge
upon arrival and departure at each vertex i ∈ V

′
0,N+1, the decision variables yi and Yi are

employed, respectively. Furthermore, the remaining cargo to be delivered to the customers
of the route and the amount of cargo already collected (picked up) at the previously visited
customers are represented by the variables ui j and vi j , respectively. ILP model ILPEVRP

std is
technically described as follows.

Min
∑

i∈V ′
0 , j∈V ′

N+1

di j xi j +
∑

j∈V ′
N+1

Mx0 j (10)

s.t.
∑

j∈V ′
N+1,i = j

xi j = 1 ∀i ∈ V (11)

∑

j∈V ′
N+1,i = j

xi j ≤ 1 ∀i ∈ F
′

(12)

∑

i∈V ′
0 ,i = j

xi j −
∑

i∈V ′
N+1,i = j

x ji = 0 ∀ j ∈ V
′

(13)

τi + (ti j + si )xi j − l0(1 − xi j ) ≤ τ j ∀i ∈ V0, j ∈ V
′
N+1, i = j (14)

τi + ti j xi j + g(Yi − yi ) − (l0 + gBcap)(1 − xi j ) ≤ τ j ∀i ∈ F
′
,∀ j ∈ V

′
N+1, i = j (15)

e j ≤ τ j ≤ l j ∀ j ∈ V
′
0,N+1 (16)

0 ≤ u0 j ≤ EVcap ∀ j ∈ V
′
N+1 (17)

v0 j = 0 ∀ j ∈ V
′
N+1 (18)

∑

i∈V ′
0 ,i = j

ui j −
∑

i∈V ′
N+1,i = j

u ji = q j ∀ j ∈ V
′

(19)

∑

i∈V ′
N+1,i = j

v j i −
∑

i∈V ′
0 ,i = j

vi j = p j ∀ j ∈ V
′

(20)
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ui j + vi j ≤ EVcapxi j ∀i ∈ V
′
0, j ∈ V

′
N+1, i = j (21)

0 ≤ y j ≤ yi − (hdi j )xi j + Bcap(1 − xi j ) ∀i ∈ V ,∀ j ∈ V
′
N+1, i = j (22)

0 ≤ y j ≤ Yi − (hdi j )xi j + Bcap(1 − xi j ) ∀i ∈ F
′
0,∀ j ∈ V

′
N+1, i = j (23)

yi ≤ Yi ≤ Bcap ∀i ∈ F
′
0 (24)

xi j ∈ 0, 1 ∀i ∈ V
′
0, j ∈ V

′
N+1, i = j (25)

The distance-based objective function from (Keskin&Çatay, 2016) is extended in order to
prioritize solutions that utilize fewer vehicles, even if the total distance traveled in such cases
is greater than in other solutions. This is done by introducing an additional cost parameter
M > 0 per vehicle utilized. Note that the number of vehicles used in a solution corresponds to
the variables on outgoing arcs of the depot (0) that have a value of 1. In this line, the objective
function (10) minimizes the total travel and vehicle cost. Constraints (11) ensure that each
customer is visited by an electric vehicle, while constraints (12) allow vehicles to visit a
charging station only when required. Constraints (13) guarantee that each vehicle that visits
a particular node must also depart from the corresponding node. The arrival and departure
times are calculated using constraints (14) and (15), which consider the service and battery
charging times. Constraints (16) permit vehicles to visit each node within the corresponding
time windows. At the same time, constraints (14)-(16) prevent sub-tours. Constraints (17)–
(21) ensure that the delivery and pickup demands of customers are simultaneously met.
Finally, constraints (22)-(24) are related to the battery state of charge. For an example instance
together with a solution, see Fig. 5.

4.1 Literature Review Concerning the EVRP-TW-SPD

In response to mounting environmental concerns and the consequent need for alternative fuel
sources in logistics, recent research has focused on developing routing strategies that optimize
the transportation of goods while also considering the limited driving range and en-route
charging necessities associatedwith electric vehicles. These problems are commonly referred
to as EVRPs or, more broadly, Green Vehicle Routing Problems. Recent, comprehensive
surveys of research on EVRPs can be found in (Asghari & Mirzapour Al-e-Hashem, 2021;
Moghdani et al., 2021). As the main focus of our work is on the methodology for solving
certain types of problems instead of specific problem variants, we refer the interested reader
to these survey papers for further reference.

Instead, we point out the differences between the EVRP-TW-SPD with existing problems
from the literature. Apart from time window constraints, our problem also considers simulta-
neous pickup and delivery (SPD) constraints regarding customer deliveries. This practice is
commonly associated with reverse logistics. Nevertheless, despite the pivotal role of reverse
logistics in promoting sustainability, the number of publications that examine variants of the
EVRP-SPD is very limited. So far, only (Yilmaz & Kalayci, 2022) have considered SPD
constraints within the scope of EVRPs. Finally, in conventional EVRP models, electric vehi-
cle batteries are assumed to be fully charged upon visiting a charging station. However, our
problem considers a more realistic scenario by allowing for partial recharging.

4.2 Set-Covering Based ILPModel of the EVRP-TW-SPD

Assignment-type ILP models such as the one presented above for the EVRP-TW-SPD gen-
erally do not allow to derive good lower bounds (see, for example, (Angelelli & Mansini,
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2002)). In addition, experiments reported in (Akbay et al., 2023) showed that finding any
feasible solution to the corresponding model within reasonable execution times for CPLEX
becomes difficult, even in the context of small-sized subinstances of the original problem
instances.

In a way similar to the one presented for the VSBPP in Sect. 3.3, the EVRP-TW-SPD can
be modeled in terms of a set-covering-based ILP in the following way. LetT be the set of all
possible (and feasible) tours, where a tour is defined as the trip of one single vehicle returning
to the depot from which it originally left. Each tour Tr ∈ T is evaluated by the total distance
traveled dr , that is, the sum of the distances of all arcs on the tour. Finally, let Ti ⊂ T be
the set of tours that serve customer i ∈ V . With these definitions, the set-covering-based ILP
model for the EVRP-TW-SPD, henceforth denoted as ILPEVRPsetcov, can be stated as follows.

min
∑

Tr∈T
dr xr + M

∑

Tr∈T
xr (26)

s.t.
∑

Tr∈T i

xr ≥ 1 ∀ i ∈ V (27)

xr ∈ {0, 1} ∀ Tr ∈ T (28)

The objective functionminimizes the total travel and vehicle costs and constraints (27) ensure
that each customer is visited at least once. Note that the set-covering-based formulation is
generally used as a post-optimization method in the VRP literature. In (Rochat & Taillard,
1995), following the termination of their algorithm, the authors suggest aggregating all tours
from the solutions generated by their algorithm into a set. They then attempt to find an even
better solution by resolving the set-covering model based on the tours contained in this set.
In contrast, our results will show that CMSA provides a suitable algorithmic framework for
iteratively applying heuristics and exact components.

4.3 Application of standard Adapt-CMSA to the EVRP-TW-SPD

In the case of the EVRP-TW-SPD problem, we apply the Adapt-CMSA variant from (Akbay
et al., 2022). In particular, we first develop anAdapt-CMSA version based on the assignment-
type ILP model—that is, model ILPEVRP

std —to the EVRP-TW-SPD. This version of Adapt-
CMSA is henceforth labeled Adapt-Cmsa- Std. In the context of Adapt-Cmsa- Std, the
complete set of solution components consists of a component ci j for each arc ai j from
A = {(i, j)|i, j ∈ V

′
0,N+1, i = j}. Consider the following example. The vector I comprises

all the node indexes for a small problem instance involving three charging stations and five
customers. Nodes indexed with 0 and 6 denote the depot.

I = ( 0,
︸︷︷︸
depot

1, 2, 3, 4, 5,
︸ ︷︷ ︸

customers

6,
︸︷︷︸
depot

7, 8, 9
︸ ︷︷ ︸

charging stations

)

Now consider a solution consisting of two tours T1 and T2, where T1 =< 0 9 1 4 6 >

and T2 =< 0 2 8 3 7 5 6 >. In the context of Adapt-Cmsa- Std, this solution is rep-
resented by S = {c0,9, c9,1, c1,4, c4,6, c0,2, c2,8, c8,3, c3,7, c7,5, c5,6}, that is, a solution S in
Adapt-Cmsa- Std is kept in terms of the list of solution components representing the arcs
used in any of the tours of S.
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Algorithm 3 Pseudo-code of Adapt-CMSA for the EVRP-TW-SPD
1: input 1: values for CMSA parameters tprop, tILP
2: input 2: values for solution construction parameters αLB, αUB, αred
3: Sbsf := GenerateGreedySolution()
4: αbsf := αUB

5: Initialize(na, lsize)
6: while CPU time limit not reached do
7: C ′ := Sbsf

8: for i := 1, . . . , na do
9: S := ProbabilisticSolutionConstruction(Sbsf , αbsf , lsi ze)
10: LocalSearch1(S)

11: for all c ∈ S and c /∈ C ′ do C ′ := C ′ ∪ {c} end for
12: end for
13: (SILP, tsolve) := SolveSubinstance(C ′, tILP) {This function returns two objects: (1) the obtained

solution (SILP), (2) the required computation time (tsolve)}
14: LocalSearch2(SILP)

15: if tsolve < tprop · tILP and αbsf > αLB then αbsf := αbsf − αred end if
16: if f (SILP) < f (Sbsf ) then
17: Sbsf := SILP

18: Initialize(na, lsize)
19: else
20: if f (SILP) > f (Sbsf ) then
21: if na = ninit then αbsf := min{αbsf + αred

10 , αUB} else Initialize(na, lsize) end if
22: else
23: Increment(na, lsize)
24: end if
25: end if
26: end while
27: output: Sbsf

4.4 The Adapt-CMSA-STD Algorithm

The pseudo-code presented in Algorithm 3 is common to Adapt-Cmsa- Std and Adapt-
Cmsa- SetCov. It describes the general algorithmic framework of Adapt-CMSA for the
EVRP-TW-SPD. First, a feasible solution is generated by calling function Generate-
GreedySolution() to initialize the best-so-far solution Sbsf . More precisely, this function
applies an insertion heuristic which is further explained in Sect. 4.4.1. Following that, in
lines 4 and 5, parameters αbsf , na , and lsize are given initial values. How these variables are
managed within the algorithm will be explained below.

During each iteration of Adapt-Cmsa- Std, a subinstance C ′ of the original problem
instance is created. Similar to the solution representation, a subinstance is also a set of solu-
tion components, that is, C ′ ⊆ C , where C ′ is initialized to the best solution found so far
(Sbsf ) at the beginning of each iteration. Subsequently, a probabilistic solution construction
process shown in lines 8–12 probabilistically generates na solutions using function Proba-
bilisticSolutionConstruction(Sbsf , αbsf , lsi ze). This function takes two additional parameters
apart from Sbsf . These are the parameter αbsf (0 ≤ αbsf < 1), which biases the creation
of new solutions towards the best-so-far solution, and the parameter lsi ze, which determines
the number of options considered at each solution construction step. Note that higher values
of αbsf lead to an increase of similarity between the constructed solutions and Sbsf . On the
contrary, a higher value of lsi ze results in the construction of more diverse solutions and,
consequently, contributes to forming a larger subinstance.
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After constructing a solution S by calling the above-mentioned function in line 9 of
Algorithm 3, each tour of S undergoes a local search process, as indicated in line 10. This
local search procedure applies well-known intra-route operators such as relocation, swap,
and two_opt in sequential order. Moreover, the best-improvement strategy is adopted in the
context of the applied operators. The so-called relocation operator sequentially extracts each
node from its existing positionwithin a route and repositions it at an alternative location inside
the same route. On the other hand, the swap operator works by interchanging the positions
of a pair of selected nodes belonging to the same route. Lastly, the two_opt neighborhood
explores every feasible combination of choosing two non-adjacent nodes in the same route
and then reverses the arrangement of the nodes situated between the chosen pair of nodes.

Upon the application of local search, the so-called merge step is executed in line 11 in the
same way as in any other CMSA algorithm. After probabilistically constructing na solutions
and forming the subinstanceC ′, the subinstance is solved by first generating a corresponding
ILP model based on model ILPEVRP

std and then solving the model with a CPU time limit of
tILP seconds with CPLEX in function SolveSubinstance(C ′, tILP). In order to generate this
model, the following constraints are added to ILPEVRP

std :

xi j = 0 for all ci j ∈ C \ C ′ (29)

In other words, if an arc ai j has not been used in any of the solutions that were merged
into C ′, using this arc is forbidden by fixing the value of xi j to zero. It is important to
note that incorporating more constraints into the original ILP reduces the search space of
the resulting ILP model, thereby facilitating CPLEX’s ability to generate a high-quality
solution or even the optimal one for the corresponding subinstance. However, note that—due
to the employed CPU time limit for each application of CPLEX—the output of function
SolveSubinstance(C ′, tILP), denoted as SILP, is not necessarily an optimal solution to the
subinstance. In any case, SILP is subject to the application of a local search method different
from the one described before. In particular, this local search procedure utilizes inter-tour
neighborhoods such as exchange (1,1) and shift (1,0). The exchange (1,1) neighborhood
investigates all potential two-customer swaps not part of the same tour, whereas the shift
(1,0) neighborhood examines every option for removing a customer from its existing tour
and placing it at any possible location in other tours. As is done within LocalSearch1(S),
operators used by LocalSearch2(S) employ the best-improvement search strategy.

The self-adaptive nature ofAdapt-Cmsa- Std can be found in the dynamical adjustment of
the values of parametersαbsf ,na, and lsize. The value of the dynamic parameterαbsf is bounded
from below by αLB and from above by αUB. Both αLB and αUB are input parameters of the
algorithm. Moreover, the value of a step size parameter αred is employed for systematically
reducing the αbsf ’s value, if needed. Initially, the value of αbsf is set to the highest possible
value, αUB, as shown in line 4.1 If the resulting ILP is solved within a computation time
tsolve that is below a proportion tprop of the maximum possible computation time tILP—that
is, if tsolve ≤ tprop · tILP—αbsf ’s value is reduced by αred, as seen in line 15. The reasoning
behind this step is as follows. If the resulting ILP can be easily solved to optimality for the
respective subinstance, the search space is too small, owing to a relatively low number of
free variables. To increase the number of free variables in the ILP, solutions produced in
ProbabilisticSolutionConstruction(Sbsf , αbsf , lsi ze) should differ more from Sbsf , which is
achievable by lowering the value of αbsf .

1 Remember that solutions constructed with a high value of αbsf will be rather similar to the best-so-far
solution Sbsf .
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The adjustment of parameters na and lsize follows a similar scheme as the one described
above. Their initial values are set as follows: na := ninit and lsize = l initsize, which is done in the
Initialize(na, lsize) function. This function can be called under three distinct circumstances:
(1) at the beginning of the algorithm (line 5), (2) when solution SILP is strictly better than
Sbsf (line 18), and (3) when solution SILP is strictly worse than Sbsf while na concurrently
exceeds ninit (line 21). On the other hand, when SILP and the Sbsf have the same objective
function value, the algorithm has the capacity to create larger subinstances, leading to an
increase in the values of the three parameters in Increment(na, lsize) function. Specifically,
na is increased by ninc, and lsize is increased by l incsize.

4.4.1 Probabilistic Solution Construction

The call of function ProbabilisticSolutionConstruction(Sbsf , αbsf , lsi ze) invokes the execu-
tion of one of two heuristics: either (1) a version of the Clarke & Wright (C&W) savings
algorithm (Clarke & Wright, 1964), or (2) a variant of the insertion algorithm. The choice
of a heuristic is done uniformly at random. Both heuristics exclusively generate feasible
solutions. In the following, both construction algorithms and their variants are described in
detail.

Probabilistic C&W savings algorithm. Similar to the original C&W approach, our algo-
rithm variant begins by generating a set of direct routes, denoted as R = {(0 i (N + 1)) |
i ∈ V }. Next, the algorithm initializes a savings list L consisting of pairs of nodes (i, j),
where i and j represent customers and charging stations. The savings value σi j for each pair
is computed using the following equation:

σi j := d0i + d0 j − λdi j + μ|d0i − d0 j | (30)

Here, λ and μ are the so-called route shape and asymmetry scaling parameters, respec-
tively. The route shape parameter λ prioritizes the selection of nodes based on their distance
from each other (Yellow, 1970); parameter μ, on the other hand, scales the asymmetry
between nodes i and j (Paessens, 1988). Well-working values for these parameters are iden-
tified through a parameter tuning procedure described in Sect. 4.6.2. It is important to note
that L only includes pairs of nodes (i, j) that satisfy two conditions: (1) i and j are part of
two different tours, and (2) both i and j must be adjacent to the depot in the tour of which
they form part. Moreover, solution construction will not only be influenced by the savings
values of node pairs (i, j) but also by the fact whether or not arc ai j appears in the current
best-so-far solution Sbsf . For this purpose, an additional value, qi j , is calculated for each
entry (i, j) ∈ L:

qi j :=
{

(σi j + 1) · αbsf if ci j ∈ Sbsf

(σi j + 1) · (1 − αbsf ) otherwise
(31)

The algorithm performs the following sequence of steps until the savings list L is empty.

1. After computing qi j for all entries in L , the list is sorted in non-increasing order with
respect to the qi j values, and a reduced list Lr is created, containing the first lsi ze elements
of L .

2. Next, an entry (i, j) is chosen from Lr with respect to the following probabilities:

p(i, j) := qi j∑
( i ′, j ′) ∈Lr qi ′ j ′

∀ ( i, j) ∈ Lr (32)

Note that the higher the value of αbsf , where 0 ≤ αLB ≤ αbsf ≤ αUB ≤ 1, the higher the
probability of selecting arcs that are part of the best-so-far solution Sbsf .
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3. Then, the chosen tours corresponding to nodes i and j are merged. Themerging process is
determined by one of the following four possible cases, depending on the direct connection
of nodes i and j to the depot:

(a) Case 1:
• T1 :< 0 i . . . N + 1 >, T2 :< 0 j . . . N + 1 >

• Merging: Reverse T1, rev(T1), and concatenate with T2
• Result: Tm :< 0 . . . i j . . . N + 1 >

(b) Case 2:
• T1 :< 0 i . . . N + 1 >, T2 :< 0 . . . j N + 1 >

• Merging: Reverse both T1 and T2,rev(T1), rev(T2), and concatenate
• Result: Tm :< 0 . . . i j . . . N + 1 >

(c) Case 3:
• T1 :< 0 . . . i N + 1 >, T2 :< 0 j . . . N + 1 >

• Merging: Concatenate T1 and T2
• Result: Tm :< 0 . . . i j . . . N + 1 >

(d) Case 4:
• T1 :< 0 . . . i N + 1 >, T2 :< 0 . . . j N + 1 >

• Merging: Reverse T2,rev(T2), and concatenate with T1
• Result: Tm :< 0 . . . i j . . . N + 1 >

Depending on the positions of nodes i and j in the tour, it may be required to reverse
one or both of the tours selected to ensure a direct connection from i to j . In such a case,
the reversed form of tour T1 is represented by rev(T1). Subsequently, the feasibility of
the merged tour Tm is checked in terms of vehicle loading capacity and time windows. If
the obtained route violates vehicle capacity and/or time window constraints, it is deemed
infeasible and eliminated from the savings list. A new candidate is then chosen following
the procedure already outlined above. In the event that the merged tour is not feasible due
to battery constraints, a charging station is inserted into the tour. Determining the optimal
charging station location involves identifying the first node in the tour to which the electric
vehicle has arrived with a negative battery level. Then, a charging station is inserted
between this node and the previous node. After determining the insertion position, the
charging station that results in theminimum amount of increase in the overall tour distance
is selected and placed into the predetermined position. If the tour remains infeasible, then
the same procedure is applied to the previous arcs. In those cases in which the infeasibility
persists even after attempting to insert charging stations, the merged tour is discarded, and
the associated nodes are taken out of the savings list. Then, the next candidate, pair of
nodes, is selected from the savings list following the procedure described above. The
tour merging process is repeatedly executed until the saving list is exhausted. Once the
merging phase is complete, some of the previously added charging stations may no longer
be necessary. Therefore, redundant charging stations are first identified and then removed
from the constructed tours.

4. Finally, the savings list L is updated as described above.

As a last step, the final set of tours is converted into its corresponding set of solution compo-
nents.

Probabilistic Insertion Algorithm.Our second constructive heuristic operates by insert-
ing customers into available tours in a sequential manner until all customers are visited. The
first customer to be inserted into the tour is chosen based on the distance from the depot or
the latest possible visiting time. In particular, the initial tour is established by inserting the
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customer with either the greatest distance from the depot or the earliest deadline. We then
produce a cost list that outlines all possible insertion points for each unvisited customer, along
with the associated costs. To determine the cost of inserting a customer at a particular point,
we use the following equation, which calculates the cost of inserting customer i between
nodes j and k

c( j, i, k) = d ji + dik − d jk (33)

Then, q jik is calculated for each entry ( j, i, k) ∈ L as follows:

q jik :=

⎧
⎪⎨

⎪⎩

(c( j, i, k) + 1) · (1 − αbsf )(1 − αbsf ) if c ji ∈ Sbsf and cik ∈ Sbsf

(c( j, i, k) + 1) · (αbsf )
2 if c ji /∈ Sbsf and cik /∈ Sbsf

(c( j, i, k) + 1) · αbsf (1 − αbsf ) otherwise

(34)

Subsequently, the selection of an entry ( j, i, k) from the generated list is carried out
based on the probabilities calculated using Eq. (34). Next, if the remaining load capacity of
the vehicle permits, customer i is added in between customers j and k. In addition, if this
insertion is infeasible in terms of battery restrictions, a charging station is inserted into the tour
using the process described in the C&W savings algorithm. In situations where the insertion
of a customer results in the vehicle exceeding its load capacity or battery capacity (even after
charging station insertion) or causes a time window violation, a new tour is initiated, which
includes only the respective customer.

After inserting all of the customers and a complete solution is derived, the obtained set of
tours is transformed into the corresponding set S of solution components.

4.5 The Adapt-CMSA-SETCOV Algorithm

The ILP model for solving subinstances in this variant of Adapt-CMSA is model ILPEVRP
setcov

fromSect. 4.2. In this case, the complete set of solution componentsC consists of a component
cr for each valid tour Tr ∈ T (see Sect. 4.2), that is, C := {cr | Tr ∈ T }. Any subset S ⊂ C
such that each customer i ∈ V is served by exactly one tour of S is a valid solution to the
EVRP-TW-SPD problem instance.

The probabilistic solution construction process in Adapt-Cmsa- SetCovworks in exactly
the same way as in Adapt-Cmsa- Std. Just that the solutions returned consist of solution
components that directly correspond to tours (instead of arcs as in the case of Adapt-Cmsa-
Std).

Another difference is—as mentioned above—the ILP model used to solve subinstances.
In fact, given a subinstance C ′, the corresponding ILP model is obtained by replacing each
occurrence of T with C ′, that is, the model only considers those tours as eligible tours that
appear subinstance C ′. However, before returning the solution, it is checked for duplicate
occurrences of customers, that is, all redundant customers are initially identified. Afterward,
the benefit of removing each redundant customer, which is directly related to the distance
of the respective customer with the adjacent nodes, is computed. Subsequently, redundant
customers, beginning with the one with the greatest benefit, are removed until each customer
appears in a single tour only.
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4.6 Computational Experiments

The experiments were conducted on the same machines as the ones for the VSBPP problem,
that is, on a cluster of machines equipped with Intel® Xeon® 5670 CPUs having 12 cores of
2.933GHz and at least 32GBofRAM.Moreover, the proposed algorithmswere implemented
in C++. Sub-instances in both Adapt-CMSA variants were solved using CPLEX version 20.1
in one-threadedmode. Furthermore, the ILPmodels representing complete problem instances
were solved using CPLEX version 20.1 in standalone mode.

4.6.1 Generation of the problem instances for EVRP-SPD-TW

The algorithm’s performance was evaluated utilizing the EVRP-TW problem instances
derived by Schneider et al. (2014) from the classical VRPTW instances by Solomon (1987).
This dataset includes a total of 92 instances, consisting of 36 small-sized instances and
56 large-sized instances. Small-sized instances include 5, 10, and 15 customers, while large-
sized instances contain 100 customers and 21 charging stations. These instances are organized
into three distinct groups based on the spatial distribution of customer locations: clustered
instances (marked by the prefix“c”), randomly distributed instances (prefix “r”), and a hybrid
of random and clustered distributions (prefix “rc”). Each group further contains two sub-
classes (type 1, respectively type 2) which differentiate instances based on factors such as
time windows, vehicle load, and battery capacity.

Schneider’s modifications primarily involved integrating charging stations and adjusting
battery capacities to ensure instance feasibility. Specifically, one charging station was posi-
tioned at the depot, with the remaining stations distributed randomly, yet in such a way that
every customer could be reached using at most two charging stations. The battery capacity
was determined as the maximum of (1) the need to travel 60% of the average route length
of the best-known solution and (2) twice the battery capacity required to traverse the longest
arc from a customer to a charging station. These changes also caused the creation of new
time windows, as the original ones from Solomon became infeasible due to added constraints
related to charging times.

Since Schneider’s instances only provided a single demand type per customer, we adapted
these to fit the requirements of our EVRP-SPD-TW model. This adaptation involved sep-
arating the combined delivery and pickup demands. We applied the method described by
Salhi and Nagy (1999) to calculate a ratio ρi = min{ xiyi ,

yi
xi

} using the Cartesian coordinates
(xi , yi ) of each customer i ∈ V . The delivery demand qi was then computed by multiplying
the original demand δi by ρi , and the pickup demand pi was obtained by subtracting qi
from δi . These modified instances are available at: https://github.com/manilakbay/EVRP-
TW-SPD-Instances, accessed on (25/04/2024).

4.6.2 Parameter tuning

As in the case of the VSBPP problem, we employed the scientific tuning software
irace (López-Ibáñez et al., 2016) to derive well-working parameter values for Adapt-Cmsa-
Std and Adapt-Cmsa- SetCov. The tuning process was conducted using six instances,
namely r107, r205, rc101, rc104, rc105, and rc205. The budget of irace—that
is, the number of algorithm runs allowed for tuning—was set to 2500, and the time limit per
instance was fixed to 900 CPU seconds. Moreover, the precision of irace was fixed to two
positions behind the comma for numerical parameters. Table 5 presents a summary of the
parameters, their domains, and the final values selected for the experimentation.
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Table 5 Parameters, their domains, and the chosen values as determined by irace

It is worth highlighting that the obtained values for ninit and ninc are significantly smaller
in the context of Adapt-Cmsa- Stdwhen compared to those for Adapt-Cmsa- SetCov. One
possible explanation for this observation is that the ILPmodel used within Adapt-Cmsa- Std
makes it difficult for the algorithm to be successful. It seems as if the subinstances are required
to be as small as possible so that valid solutions can be generated by CPLEX when solving
these subinstances in a restricted time. This explanation is also supported by the obtained
values for tILP. The limit for the running time of CPLEX for solving the ILP models of each
iteration is about twice as high in the case of Adapt-Cmsa- Std. Contrary to this, the value
of the l initsize parameter determined for Adapt-Cmsa- Std is much higher than that determined
for Adapt-Cmsa- SetCov. Higher l initsize may be considered as a diversification mechanism,
as compensation for dealing with small subinstances.

4.6.3 Numerical results

In this section, we provide a detailed experimental evaluation of the proposed algorithms
and study their performance in various scenarios. To gain a better understanding of how they
perform in different situations, we tested them on small-sized instances with 5, 10, and 15
customers, as well as larger-sized instances with 100 customers. The numerical results for the
small-sized instances can be found in Tables 6, 7 and 8, while the results for the larger-sized
instances are presented in Tables 9, 10 and 11.

To assess the effectiveness of the algorithms in handling small problem instances, we
compared Adapt-Cmsa- Std and Adapt-Cmsa- SetCov with the application of CPLEX to
the full-size instances. However, since CPLEX cannot handle larger problem instances, we
used our probabilistic Clark & Wright savings algorithm (pC&W) and our probabilistic
sequential insertion algorithm (pSI) as benchmarks for those scenarios. We ensured that the
parameters for both algorithms were set in the same way as for their application within
Adapt-Cmsa- Std. Finally, we imposed a computation time limit of 150 CPU seconds for
small problem instances and 900 CPU seconds for larger problem instances. Each algorithm
was applied 10 times to each problem instance. Note also that, to compute objective function
values, we set the cost of each vehicle used in a solution to 1000, that is, M = 1000.

The first multi-column of each result table concerning the small problem instances
(Tables 6–8) presents the instance names and the value of cs, the number of copies of each
charging station (dummy charging stations) permitted to be utilized by our algorithms. The
value of cs was determined for each problem instance as follows. The corresponding ILP
model was solved with cs = 1 in the first step. With this setting, each charging station can
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Table 8 Computational results for small-sized instances with 15 customers. The better result between Adapt-
Cmsa- Std andAdapt-Cmsa- SetCov is highlighted in case it improves over the correspondingCPLEX result

mostly be visited once. Then, the value of cs was iteratively incremented until the optimal
solution to the ILP model no longer improved with respect to the previous iteration. The final
value of cs was then set to the value of cs in the previous iteration. Unfortunately, this pro-
cedure is not feasible in large-sized problem instances because the ILP solver cannot derive
an optimal solution in a reasonable time frame. Therefore, we adopted a constant number
of five dummy charging stations per instance. Next, the columns with the heading ‘m’ show
the number of vehicles used in the respective solutions. For algorithms Adapt-Cmsa- Std,
Adapt-Cmsa- SetCov, pC&W, and pSI, the columns labeled ‘best’ display the best objective
function values among the solutions obtained after ten runs. Additionally, columns with the
heading ‘avg.’ show the average objective function values over the best solutions of each
of the 10 runs. Moreover, the ‘time’ columns show the computation time of CPLEX and
the average computation times of both Adapt-CMSA variants to generate the best solutions
in each run. All indicated times are in CPU seconds. The time limit for CPLEX was set to
two hours. The ‘gap(%)’ columns provide the percentage difference between the optimal
solutions obtained and the best lower bounds CPLEX achieves. It is worth noting that if the
gap value is zero, CPLEX has found an optimal solution.

Based on the obtained results, the following observations can be made. For small-sized
problem instances, CPLEX optimally solved 31 instances. However, for the remaining 5
instances (rc201C10, c103C15, r102C15, r202C15, rc204C15), it only provided
feasible solutions. It is worth noting that these solutions were the best found within 2h of
computation time, except for rc201C10, where we allowed 9h of running time to derive the
presented solution.On the other hand, both versions ofAdapt-CMSAfoundoptimal solutions,
as proven by CPLEX. In the case of the r202C15 instance, Adapt-Cmsa- Std and Adapt-
Cmsa- SetCov were even able to improve over the solution obtained by CPLEX by 0.15%
and 36.17%, respectively. Furthermore, Adapt-Cmsa- Std and Adapt-Cmsa- SetCov could
improve the solution obtained by CPLEX by 1.51% in the case of the rc204C15 instance.
Moreover, both variants of Adapt-CMSA require considerably less computation time than
CPLEX. More specifically, while CPLEX found its best solutions on average in 2965.35 s,
Adapt-Cmsa- Std was able to do so in 23.04 s, and Adapt-Cmsa- SetCov was able to do so
in just 21.07 s.

The numerical results for the large-sized instances demonstrate that both variants ofAdapt-
CMSA are superior to pC&W and pSI in terms of both best-performance and average-
performance. Although the average computation time required by Adapt-Cmsa- Std and
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Adapt-Cmsa- SetCov was higher than that required by pC&W and pSI, this was because
pC&W and pSI were not able to improve their best-found solutions any further, while the
Adapt-CMSA algorithms were still able to explore the search space in order find even better
solutions. It is also worth noting that solutions found by both versions of Adapt-CMSAutilize
fewer vehicles than those found by pC&W and pSI.

In addition, the following observations can bemade concerning the comparison of the per-
formances of Adapt-Cmsa- Std and Adapt-Cmsa- SetCov. First, Adapt-Cmsa- SetCov
significantly outperforms Adapt-Cmsa- Std in the case of random and random-clustered
instances; see below for statistical tests. However, from the results presented in Table 9, it
seems difficult to come to a definite conclusion in the context of clustered-type instances.
Adapt-Cmsa- SetCov seems to provide a slightly better performance both in terms of best
and average results. However, in order to back this claim up in a scientifically well-founded
way, we also present critical difference (CD) plots as a statistical tool for assisting in the eval-
uation of the obtained results. As in the case of the VSBPP problem, we used the scmamp
tool Calvo and Santafe (2016) in order to generate the CD plots. Remember that, in these
plots, each algorithm variant is positioned along the horizontal axis according to its average
ranking for the considered subset of problem instances. Algorithm variants whose perfor-
mances fall below the critical difference threshold, computed with a significance level of
0.05, are considered statistically equivalent, as indicated by the horizontal bars connecting
their respective markers. According to Fig. 6, there is not a significant difference between the
performance of Adapt-Cmsa- SetCov and Adapt-Cmsa- Std on clustered instances, while
both outperform the probabilistic implementations of the construction heuristics.

In summary, both variants of Adapt-CMSA show a very satisfactory performance both in
the context of small and large problem instances. Moreover, Adapt-Cmsa- SetCov shows
superiority over Adapt-Cmsa- Std, particularly in the context of random and random-
clustered instances. These claims are backed up in a statisticalway bymeans of the graphics in
Fig. 6. However, we also observed that the performance of Adapt-Cmsa- SetCov decreases
in the context of instances with a long scheduling horizon (C2* R2* and RC2*), see Fig. 6f.
Solutions for those instances include fewer routes and hence more customers per route when
compared to the solutions for the instances with short scheduling horizons (C1* R1* and
RC1*).

4.6.4 Performance Difference Between the two EVRP-TW-SPD ILP Models

Finally, as in the case of the VSBPP, we want to show why Adapt-Cmsa- SetCov generally
outperformsAdapt-Cmsa- Std. For this purpose, we again generate subinstances of different
sizes, translate them both into models ILPEVRPstd and ILPEVRP

setcov, and solve them with CPLEX.
In particular, we generated 10 subinstances by probabilistically constructing 100, respectively
500, solutions (small problem instance) and 50, respectively 100, solutions (large problem
instance) and by merging their solution components in order to obtain subinstances. This was
done for the small problem instance r202C15 with 15 customers and for the large problem
instance c101 with 100 customers. Figure7 shows radar charts that present the obtained
results in the four different cases. Each radar plot provides four different measures, averaged
over 10 subinstances: (1) the number of variables in the models of the subinstances (top), (2)
the relative MIP gap after termination of CPLEX (right), (3) the computation time required
by CPLEX (bottom), and (4) the absolute improvement when comparing the result of solving
the subinstance with the best individual solution that was used to generate the subinstance.
Note that the time limit for CPLEXwas set to 20 CPU seconds in all cases. Note that a model
is promising if the improvement is large, and the number of variables, the relative MIP gap
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Fig. 6 Critical difference (CD) plots concerning the results for large instances. The results in (a) consider
all instances together, while the subsequent plots display the results for subsets of the set of large instances:
(b) clustered instances; (c) random instances; (d) random-clustered instances; (e) instances R1*, C1* and
RC1*; (f) instances R2*, C2* and RC2*

and the required time are low. The radar charts concerning the large problem instance (see
Fig. 7c and d) indicate that this is the case for model ILPEVRP

setcov, while the opposite is actually
the case for model ILPEVRP

std . Especially the case of the small problem instance considering
the lower number of solution constructions (see Fig. 7a) indicates that subinstances must not
be too small. Otherwise, there might not be many improvements to be found in the context
of model ILPEVRP

setcov.

5 Conclusions and future research directions

In this paper, we presented the application of different CMSAvariants to twoNP-hard combi-
natorial optimization problems. The first problem is known as the variable-sized bin packing
problem, and the second one is the electric vehicle routing problem with time windows and
simultaneous pickup and delivery. Both considered optimization problems share the property
that they can bemodeled using an assignment-type integer linear program and a set-covering-
based integer linear program. Both models were used to solve subinstances at each iteration
of the presented CMSA algorithms. In both cases, the results have shown convincingly that
the CMSA variants using the set-covering-based models significantly outperform the CMSA
variants using the standard assignment-type models. In fact, in our opinion, CMSA algo-
rithms are an ideal algorithmic framework for taking profit from set-covering-based models
for solving optimization problems that can be modeled in this way. This is because CMSA
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Fig. 7 Radar charts concerning the comparison of the two ILPmodels for the EVRP-TW-SPD problem applied
to a small problem instance with 15 customers (see (a) and (b)), and to a large problem instance with 100
customers (see (c) and (d))

algorithms are less sophisticated and easier to implement in comparison to column generation
approaches. In addition, CMSA algorithms can explore search spaces, in contrast to simpler
heuristic methods from the literature devised to take profit from set-covering-based models.

When faced with a combinatorial optimization problem that can be modeled by both
types of integer linear programming models, we recommend to test the suitability of using
the set-covering-based model by performing experiments such as the ones that led to the
radar plots in Figs. 4 and 7. They show that it is much more profitable to use the set-covering
formulation for solving subinstances because the quality of the solutions found is much
higher when compared to the standard integer linear programming model. At the same time,
the computational effort is much lower. If this is the case, the use of a set-covering-based
model is indicated.

We envisage at least two possible lines for future work. One line consists in consoli-
dating our findings in the context of additional combinatorial optimization problems that
can be modeled by set-covering-based models. Another line of work consists of improving
the CMSA algorithms presented in this work. In the context of the VSBPP problem, for

123



36 Annals of Operations Research (2024) 343:1–38

example, we only implemented the first solution construction approach that came to mind.
Adding additional greedy heuristics for the construction step of CMSA could help to gen-
erate potentially different bins that, in combination with other bins, could help to find even
better solutions or to improve our results in the few cases in which our algorithm is not able
to compete with the state-of-the-art variable neighborhood search technique. Also, in the
case of the electric vehicle routing problem, we see potential for improvement by adding
additional solution construction techniques.
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