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Abstract: This study developed an ANN-based model to predict nitrate concentrations
in drainage waters using parameters that are simpler and more cost-effective to measure
within the Lower Seyhan Basin, a key agricultural region in Turkey. For this purpose, daily
water samples were collected from a drainage measurement station during the 2022 and
2023 water years, and nitrate concentrations were determined in the laboratory. In addition
to nitrate concentrations, other parameters, such as flow rate, EC, pH, and precipitation,
were also measured simultaneously. The complex relationship between measured nitrate
values and other parameters, which are easier and less costly to measure, was used in
two different scenarios during the training phase of the ANN-Nitrate model. After the
model was trained, nitrate values were estimated for the two scenarios using only the
other parameters. In Scenario I, random values from the dataset were predicted, while
in Scenario II, predictions were made as a time series, and model results were compared
with measured values for both scenarios. The proposed model reliably fills dataset gaps
(Scenario I) and predicts nitrate values in time series (Scenario II). The proposed model,
although based on an artificial neural network (ANN), also has the potential to be adapted
for methods used in machine learning and artificial intelligence, such as Support Vector
Machines, Decision Trees, Random Forests, and Ensemble Learning Methods.

Keywords: nitrate pollution; nitrate modeling; artificial neural networks (ANNs); climate
change; sustainable agriculture; sustainable water

1. Introduction
Monitoring water quality is essential for sustaining natural water bodies and ensuring

clean drinking water. Numerous factors have led to the routine measurement of a variety
of water quality measurements in rivers, lakes, and groundwater, including nitrate (NO3),
pH levels, dissolved oxygen, and others. These variables assist in monitoring the health of
aquatic ecosystems, identifying potential sources of pollution, and developing mitigation
plans. Of these, nitrate concentrations are particularly important because high levels in nat-
ural streams can lead to eutrophication, which lowers oxygen levels and negatively impacts
aquatic life. Nitrate occurs in both surface and groundwater due to natural processes and
anthropogenic activities. The main contributors to the occurrence of nitrates in both surface
and groundwater include decomposed plant and animal wastes, certain categories of solid
waste, household waste, wastewater from industrial processes, agricultural fertilizers, and
wastewater from sewage treatment plants [1–3].

Elevated nitrate concentrations in wastewater indicate both a deficiency in essential
nitrogen fertilizers and reduced production efficiency. Therefore, it is essential to monitor
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the movement of nitrate nitrogen in conjunction with intensive agricultural and livestock
production methods. The use of neural networks represents a promising innovative tool
for the precise simulation of complex nitrogen dynamics in artificially drained soils [4].
Due to its impact on water quality and ecosystem integrity, nitrate contamination occurs in
shallow groundwater, and natural water poses serious environmental management and
public health problems. Continuous sampling over time to monitor nitrate levels provides
crucial insights into pollution trends and informs remediation strategies. However, gaps
often appear in these datasets for a variety of reasons, including technical limitations or
errors in data processing, requiring accurate techniques to fill in missing values to maintain
data integrity and the quality of subsequent analysis. Missing values in these time series
datasets complicate data analysis because they can distort statistical results and make
it difficult to create trustworthy water management plans. To maintain the integrity of
long-term monitoring datasets, accurate missing value imputation techniques are essential.

Significant data gaps and restricted public access in some areas characterize the inade-
quacy of global databases on groundwater quality [5–7]. Protecting ecological integrity and
public health requires stepping up research and groundwater quality monitoring [8–11].

A number of factors, including equipment malfunctions, sampling problems, or exter-
nal circumstances that may make routine data collection impossible, can result in missing
water quality datasets. Monitoring water quality processes and characterizing contami-
nants involves significant financial and labor costs, requiring extensive sampling initiatives
and complex laboratory testing. Therefore, current efforts are focused on developing novel
innovations aimed at improving the practicality of these efforts. Due to the interactions
and correlations among water quality parameters, such as the concentrations of anions
and cations, it is pertinent to examine whether a domain-specific mechanism that governs
the observed patterns is present, thereby affirming the predictability of these parameters.
The discovery of such predictive models holds particular significance for ecologists and
environmental scientists, as it equips them with the capability to forecast water pollution
levels and implement necessary precautionary measures proactively in advance [12,13].

Considerable progress in machine learning applications has improved the ability
to forecast the presence of such contaminants as fluoride, nitrate, and arsenic [14–17].
Nonetheless, the ongoing discharge of dangerous substances as a result of human activity
still poses new risks, which calls for changing study approaches [18,19]. To guarantee
water sustainable management, specific measures are needed to keep the quality of water
resources within reasonable and feasible bounds while meeting demands. Thus, it is
essential to comprehend how pollutant-water systems behave and how NO3 is transported
to a point where it can be predicted how it would react to different modifications. In the
absence of a hydrogeological database, the artificial intelligence method can be trained using
data from multiple sources at different sizes to solve and predict complicated processes [20].

Recently, stochastic modeling techniques, such as artificial neural networks (ANNs)
other than those used in image processing (e.g., convolutional neural networks), have
attracted significant scientific interest due to their simplicity, fast computational capabilities,
and relative effectiveness compared to deterministic models [21,22]. To maintain the
integrity of long-term monitoring datasets, accurate missing value imputation techniques
are essential. Predictive modeling methods such as ANNs are useful in this situation.
The main challenge is training the model to accurately predict missing points, especially
when the data gaps are large or when the data gaps include critical seasonal fluctuations.
Since nitrate is considered the primary measure for assessing groundwater pollution
due to feedlot waste or other agricultural activities, it is important to carefully monitor
nitrate-nitrogen (NO3-N) concentrations in both surface groundwater and subsurface
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runoff. Nitrate leaching from agricultural fields receiving manure and fertilizers is typically
significantly higher in subsurface drainage effluents than in surface runoff [23].

In environmental sciences and hydrology, ANNs are effective tools for predicting
missing values in time series data. Inspired by the neural architecture of the human brain,
ANNs are particularly well suited to predicting missing nitrate levels because they can
capture the many nonlinear correlations in environmental datasets. ANNs are able to learn
patterns and trends from previous nitrate readings and associated environmental variables,
helping them predict missing values with a high degree of accuracy. One of the main
advantages of ANNs is their ability to extract knowledge from incomplete datasets. With
appropriate training, ANNs have the ability to “generalize” from the recognized patterns
in the available data to extrapolate missing values. In this context, the input variables fed to
the ANN include historical nitrate concentrations, meteorological data, and possibly other
ecological indicators. By incorporating information from these inputs, the ANN anticipates
the missing nitrate concentrations within the time sequence.

Estimating nitrate concentrations using cost-effective technologies is essential. Black
box models such as ANNs are attracting great interest in predicting nitrate concentration by
using easily measurable water quality parameters such as temperature, electrical conductiv-
ity (EC), groundwater level, and pH. In this context, ANNs do not require prior knowledge
of the structure and possible relationships between significant variables. Furthermore, the
inherent learning capabilities of ANNs have resulted in their ability to adapt to systemic
changes [24]. ANNs are used for the purpose of modeling complex processes, recognizing
patterns, and performing time series analysis in various scientific disciplines, including,
but not limited to, financial and economic research, industrial engineering studies, hy-
drological studies, meteorological analysis, and agroecological research efforts [25–32].
Stamenković [33] worked on research pertaining to the forecasting of nutrient concentra-
tions within river systems at a national scale, employing two distinct artificial intelligence
methodologies. The methodologies of artificial neural networks (ANN) and support vector
machines (SVM) were utilized to estimate the annual concentrations of nitrate and phos-
phate across the rivers of eleven European nations in this research. The results obtained
indicate that the Artificial Neural Network (ANN) demonstrates superior efficacy in fore-
casting nitrate and phosphate concentrations in comparison to Support Vector Machine
(SVM) models. Such findings emphasize that the ANN model represents a potentially ad-
vantageous instrument for the prediction of nutrient levels in fluvial systems. Stamenković
et al. [34] used a multilayer ANN model to predict nitrate concentrations in the Danube
River through Serbia using water quality data observed at ten monitoring stations between
2011 and 2016. Pearson correlation and variance inflation factor analysis were used to
decide which of the measured parameters should be used to determine the inputs of the
model. According to the correlation analysis, 7 parameters were selected as input values,
and according to the VIF analysis, 21 parameters were selected as input values. For both
cases, the number of neurons in the hidden layer was 20. The results of the analysis showed
that the model performance was the highest when seven parameters were selected as
input. RMSE, MAE, and R2 values were used to determine the model performance and
were calculated as 0.68, 0.42, and 0.91, respectively. Also, in similar studies conducted
on this subject, several researchers have proposed neural networks that use water budget
variables or water quality metrics as input parameters for nitrate pollution modeling [35].
Band et al. [36] modeled groundwater nitrate concentration in the Marvdasht basin of Iran
based on various artificial intelligence methods such as Support Vector Machines (SVM),
Cubist Random Forests (RF), and Bayesian Artificial Neural Networks (Baysian-ANN).
For this purpose, nitrate levels were measured in 67 wells in the study area and used as
dependent variables for modeling. As model inputs, 11 independent variables such as ele-
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vation, slope, plan curvature, profile curvature, precipitation, piezometric depth, distance
to river, distance to settlements, sodium (Na), potassium (K), and topographic wetness
index (TWI) that affect groundwater nitrate changes were selected by considering the
Pearson correlation matrix. It is stated that data from 67 wells with nitrate measurements
were used in the modeling; 70% of the data were used as training data and 30% were used
as test data. Evaluation criteria such as coefficient of determination (R2), mean absolute
error (MAE), root mean square error (RMSE), and Nash–Sutcliffe efficiency (NSE) were
used to evaluate the performance of the models. The RF model (R2 = 0.89, RMSE = 4.24,
NSE = 0.87) was reported to give better results than the other models. It can be seen that
the model performances are quite good. However, the lack of an evaluation of whether
the input and output values are simultaneous or not and the lack of a time variation of the
model results constitute the shortcomings of the model. Hrnjica et al. [37] used deep neural
networks (DNNs) and traditional artificial neural networks (ANNs) to model and predict
nitrate concentration in the Klokot River in Bosnia and Herzegovina. The measurements of
NO3(t), pH(t), NO3(t-1), and pH(t-1) were used as inputs to predict NO3(t+1) as the output
of the model. MSE was used as the error evaluation function, and 64 neurons were used
in the hidden layer. The authors stated that the test performance of both DNN and ANN
networks was low due to the overfitting of both models. In conclusion, the authors stated
that they were not able to accurately model the nitrate concentration in the Klokot River,
but DNN was slightly better than ANN in terms of prediction accuracy. This is thought to
be due to the very low correlation between nitrate and pH and the large number of neurons
used in the model (64). This is because it is known that, when the appropriate network
architecture is not selected in ANN models, test performance decreases due to excessive
learning [38]. Another group [39] used an ANN as a now-type model to estimate the nitrate
contamination of the aquifer in the Gaza Strip. A simpler model using pH, temperature,
electrical conductivity, and aquifer level as input parameters has been presented as well [39].
If long time series are available, neural networks can be used for long-term prediction of
nitrate concentrations in groundwater [3].

In another study, a more straightforward model with aquifer level, pH, temperature,
and electrical conductivity as input parameters was introduced [40]. Neural networks can
be used to predict groundwater nitrate concentrations over an extended period of time if
long time series are provided [3]. A more recent study [41] evaluated nitrate risk zones by
comparing machine learning methods.

Stylianoudaki et al. [42] aimed to estimate the nitrate (NO3) concentration in ground-
water using artificial neural networks (ANN) with data that can be easily measured in situ.
In the study, chemical and physical analysis data of groundwater samples taken from wells
in the Kopaid Plain and Asopos River Basin in Greece were used, and it was stated that the
data consisted of 112 records collected from sixteen wells at equal intervals four times a year.
The study was conducted in two different scenarios. Pearson correlation values were taken
into account in the selection of input values, and in the first scenario, easily measurable data
such as pH, electrical conductivity, water temperature, air temperature, and aquifer level
were used as inputs to the model. In the second scenario, land use percentages were added
to the model inputs in addition to those used in Scenario 1. A trial-and-error procedure
was applied to determine the optimum network structure of the model, and the optimum
number of neurons was selected as 10. As activation functions, the sigmoid activation
function in the hidden layer and the linear activation function in the output layer were
selected. The dataset used in the training and testing phases was randomly selected as 80%
and 20% of the total data, respectively. RMSE and NSE measures were used to determine
the model performance. While RMSE = 26.18 and NSE = 0.54 for Scenario 1, RMSE = 15.95
and NSE = 0.70 for Scenario 2. In other words, the addition of land use percentages to
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the input values resulted in a significant improvement in the performance of the model.
According to Moriasi et al. [43], the model is considered to have a good sensitivity for
NSE > 0.65.

El Amri et al. [44] developed Artificial Neural Network (ANN) and Autoregressive
Integrated Moving Average (ARIMA) models to determine nitrate concentrations and
predict future levels in the Mahdia-Kssour Essef shallow aquifer located in the central-
eastern region of Tunisia. In this context, 11 factors were selected as input values as the
main influencing factors associated with nitrate concentration in the Mahdia-Kssour Essef
aquifer. These factors are depth to groundwater table (GT), number of livestock (L), amount
of fertilizer (AF), land use—cereals (LUC), land use—vegetable crops (LUVc), land use—
olive crops (LUOc), land use—fodder crops (LUFc), land use—fruit orchards (LUO), coarse
texture of soil (SC), medium texture of soil (SM), and fine texture of soil (SF). The model
was tested for 11 different input configurations using these factors, and the best results were
obtained when all factors were used. The optimum number of neurons was determined as
seven by trial and error. The ANN model showed good agreement between the measured
and simulated results, and the coefficient of determination (R2), root mean square error
(RMSE), and mean absolute error (MAE) values were 0.88, 53.95, and 39.64, respectively.
It was also reported that the ANN results were better than those of the ARIMA model.

Deng et al. [45] used a dataset of hydrochemical test results of 316 groundwater
samples collected from intensive agricultural areas in Northeast China between 2011 and
2015. A radial basis function artificial neural network (RBF ANN) prediction model and
principal component regression (PCR) model were constructed using this dataset, and a
particle swarm optimization algorithm was applied to determine the optimal parameter
combinations of the RBF ANN. Input values were selected from a large number of basic
chemical parameters with high correlations with nitrate. The results revealed that the RBF-
ANN model provided a higher accuracy, but the PCR model offered better interpretability.
Therefore, the integration of these two models is advantageous for nitrate prediction
research.

Numerous publications also address the use of ANN models in sediment loss pre-
diction, nutrient loadings to streams, daily reference evapotranspiration estimation, and
drainage water management [4,46–49]. Chau [50] conducted a comprehensive examina-
tion of the integration and presented advancements pertaining to the incorporation of
artificial intelligence within the domain of water quality modeling. Hatzikos et al. [51]
employed neural networks characterized by active neurons as a methodological instrument
for forecasting seawater quality parameters such as temperature, pH, dissolved oxygen,
and turbidity. Wagh et al. [52] developed an ANN model capable of predicting nitrate
concentration based on input variables such as EC, TDS, TH, Mg, Na, Cl, HCO3, and SO4.
The researchers used various ANN algorithms to predict nitrate levels. The optimal ANN
model consisted of seven and eight input neurons, six hidden neurons, and nitrate as the
output variable in the pre- and post-monsoon periods in 2012. They proposed that neural
networks are effective tools for water pollution prediction.

Latif et al. [53] developed and applied a three-layer feed-forward artificial neural
network (ANN) model to predict nitrate (NO3), a water quality parameter (WQP), in the
Feitsui reservoir (Taiwan). The optimum number of neurons was determined as 17 via a
trial and error procedure by increasing the number of neurons from 1 to 20. Five water
quality parameters were monitored and used as inputs to the model: ammonium (NH3),
nitrogen dioxide (NO2), dissolved oxygen (DO), nitrate (NO3), and phosphate (PO4).
The correlation coefficient (R) was used as a statistical measure to evaluate the performance
of the model, and the results indicated that ANN is an accurate model for predicting nitrate
as a water quality parameter in the Feitsui reservoir. The training, test, validation, and
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overall regression values were 0.92, 0.93, 0.99, and 0.94, respectively. The fact that the nitrate
value predicted by the proposed ANN model was also one of the five input parameters of
the model limits the reliability and applicability of the model.

Meng et al. [54] combined Artificial Neural Network (ANN) algorithm and electro-
chemical methods with artificial intelligence methods for the prediction and intelligent
control of nitrate removal. Initial nitrate concentration, pH, time, and current density
were used as model inputs, and optimized nitrate output values were used as outputs to
maximize nitrate removal. As the network architecture, four input values, seven hidden
layer neurons, and one output value were used. RMSE was used as the error evaluation
criterion. Optimum nitrate removal and reduction in energy consumption were achieved
by adjusting the input values. Since this was a prototype study, it is different from the
presented study and other mentioned studies, and the similarity is limited to the use of
ANN.

Long-term monitoring of nitrate levels is essential to track nutrient loading and ensure
water quality. However, gaps in nitrate datasets, whether due to sporadic sampling or
other issues, can have significant implications for data-driven decision making in water
resource management. In this study, we evaluate the application of ANNs to predict
missing nitrate levels in analyses of water samples regularly collected from the basin.
We apply ANNs to predict, forecast, and fill gaps in the same set of missing water quality
data, with a focus on nitrate concentrations in water samples. Various scenarios are
considered as possible models for ANN structuring and used long-term datasets over
specific time series in which gaps are intentionally inserted to simulate incomplete data
scenarios. In this context, missing data scenarios are simulated by intentionally removing
sections of a nitrate time series dataset and then using ANNs to predict the missing
data. To validate the accuracy of the ANN predictions, we compare the predicted values
with the actual nitrate measurements that were deliberately excluded from the dataset.
This approach allows us to evaluate the performance of the ANN model in predicting
missing nitrate levels using known ground truth data, assessing both the accuracy of the
predictions and the robustness of the model in different environmental contexts. In addition,
another important contribution of the study is that it promises practical implications for
water resource management, which requires a lot of time, effort, technical work, and
environmental monitoring. Accurate and timely prediction of nitrate concentrations not
only helps with our understanding of contamination dynamics, but also supports decision-
making processes aimed at mitigating negative impacts on water quality and human
health.

A comprehensive review of the existing literature reveals that the majority of studies on
estimating nitrate (NO3) concentrations using artificial intelligence models have primarily
focused on groundwater, rivers, and reservoirs. These studies have generally relied on
water samples collected at varying locations on a monthly or seasonal basis. Additionally,
some investigations have addressed NO3 removal in these aquatic systems, though these
studies remain limited in scope. Notably, a thorough examination of the literature indicates
an absence of research directly aligning with the objectives of our study, particularly within
the context of an irrigation basin. In this regard, our research represents a pioneering
and novel contribution to the field. It provides a practical example of applying artificial
intelligence methods in a real-world irrigation basin characterized by intensive agricultural
activities. Over two hydrological years (2022–2023), simultaneous and daily water samples
were collected from a single outlet point within the basin, where comprehensive data
related to basin characteristics are recorded. These samples were analyzed in a laboratory
setting to determine NO3 concentrations. The resultant data were subsequently evaluated
using the specified artificial neural network (ANN) model. In this way, with this research,
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by validating the ANN predictions against actual measured values, we contribute to
improving the reliability and usefulness of predictive models in water quality research.
With this comprehensive approach, we also aim to provide valuable predictions on the
potential of ANNs to improve the accuracy and reliability of nitrate prediction in natural
water systems.

2. Materials and Methods
2.1. Study Area, Water Sampling, and Analysis

The Akarsu Irrigation District (AID), the research area, is located in the Lower Seyhan
Plain (LSP) of Turkiye, in a catchment area extending over 9495 hectares [55,56]. This region
predominantly has flat, homogeneous topography and a Mediterranean climate, with
hot, dry summers and warm, rainy winters. The AID records 18.9 ◦C as the annual
average, 9.0 ◦C as the lowest, and 31.0 ◦C as the highest air temperature. Furthermore,
the catchment and its surroundings are reported to receive an average of 649.5 mm of
annual precipitation [57]. In the research area, citrus fruits, wheat, onions, and potatoes
were mainly grown in the 2022 winter season. In Turkey, the summer season usually lasts
from 1 June to the end of August, and the winter season usually runs from 1 December to
the end of February. The shallow groundwater table and water quality of this semi-arid
region have been affected by prolonged, continuous irrigation [57]. The soil structure of
the study area is generally heavy-textured with a high clay content, and excess water in
the soil is drained through open drainage channels. Therefore, continuous water quality
management is essential in this area.

Eleven distinct soil series (Incirlik, Arikli, Yenice, Innapli, Arpaci, Canakci, Mursel,
Ismailiye, Golyaka, Gemisure, and Misis) comprise the soils of Akarsu [58,59], and 67% of
the whole research area is covered by the Arikli (29.5%), Incirlik (25.3%), and Yenice (12.2%)
series. Mursel (0.7%) and Innapli (1.03%) have the lowest distributions [59]. The Lower
Seyhan Plain is not predominantly a karst area, but certain parts of the region might show
some karst characteristics due to the underlying limestone formations. In the study area,
groundwater levels are close to the plant root zone levels, especially during rainy seasons
and periods when irrigation is intensive (average 1.5 m). The groundwater level in the
study area typically varies between 1.5 and 3 m, with seasonal fluctuations that influence
the water table and drainage dynamics. As the intensity of irrigation decreases towards
the end of the hydrological year, the groundwater depth begins to fall below the root zone.
At the end of the irrigation season and during periods of no precipitation, groundwater
can exceed 2.5 m depth.

Figure 1 shows the AID, which is located in the eastern Mediterranean region of
Turkiye. The map is a detailed overview of the Lower Seyhan Plain in Turkiye, with a focus
on irrigation and drainage infrastructure. It includes a map showing the broader region and
a smaller inset map focusing on the Lower Seyhan Plain itself. Flow directions represented
with arrows indicate the irrigation and drainage flow directions of water within the plain.

The Lower Seyhan Plain is an agricultural area with a well-developed irrigation and
drainage system. The pumping stations obtain water from a source (river, reservoir) to
supply the irrigation canals. The measuring stations help monitor water flow and ensure
efficient management of the system. As seen in Figure 1, an irrigation pumping station
is used to pump water for agricultural areas; an irrigation gauging station measures the
flow rate and water levels in irrigation canals. The drainage stations collect excess water
from the fields and drain it into a suitable drain. Drainage water samples used in the study
were automatically taken daily with the automatic water sampling device (ISCO-3700,
Louisville, KY, USA) installed at the drainage gauging station where observations were
made. The water samples were brought to Çukurova University, Faculty of Agriculture,
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Department of Agricultural Structures and Irrigation Laboratory to be prepared for analysis
and were first recorded on the laboratory record sheet, then filtered with blue-band filter
paper and transferred to plastic bottles cleaned by passing them through a chromic acid
solution. The bottles were labeled according to the technique. Depending on the time and
labor, the water samples were either analyzed immediately [60] or kept in the refrigerator
at +4 ◦C until the analysis was performed. A Shimadzu brand spectrophotometer device
was used in the analyses performed to determine the NO3 concentrations in irrigation and
drainage waters in mg L−1 units.
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2.2. Observed Data Used

The dataset used in the model studies was obtained through flow measurements
taken at the drainage gauging station and laboratory analyses of collected water samples.
Covering the 2022 and 2023 water years, the dataset spans 730 days and includes EC, pH, Q
(Discharge), P (daily precipitation), NO3, and the DOWY (day of water year) value, which
indicates the day of the water year for each measurement day to account for temporal
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variations in the dataset. Comprising 730 rows and 5 columns, the dataset was used in two
scenarios during the training and testing phases of the proposed ANN model, with each
scenario containing its own two different conditions. Detailed information regarding the
scenarios is provided in Section 2.3.

As mentioned above, since measuring nitrate is a difficult and costly process, this
study aims to develop a method to express nitrate values in terms of a few parameters
that are easier and cheaper to measure, rather than relying on laboratory analyses. For this
process, as seen in Figure 2, correlations between nitrate levels and the values of DOWY,
EC, pH, Q, and P were calculated, and the highest correlation with nitrate was found to
be inversely proportional to the flow rate (−0.668). This was followed by the correlation
between nitrate and EC (0.623). Although the correlation between nitrate and the other
parameters was relatively weak, preliminary tests indicated that using these parameters as
inputs contributes positively to the model’s generalization and test performance.
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Figure 2. The correlation relationship between NO3 and model parameters.

The minimum, maximum, average, and standard deviations of nitrate concentrations
and model parameters are summarized in Table 1. As shown in Table 1, the average nitrate
concentration over the two years was 31.03 mg/L, with a standard deviation of 21.32 mg/L.
The average daily discharge measured in the drainage channel was 3.19 m3/s, with a
standard deviation of 1.96 m3/s. The variability of rainfall and EC (electrical conductivity)
values was also quite high, indicating that the dataset used in the modeling process was
particularly challenging. Despite this, a very good model performance was achieved.
Additionally, it is important to highlight that the entire dataset consisted of real field
data obtained from on-site measurements and laboratory analyses, which enhances the
originality and value of the study.

In the correlation matrix provided in Figure 2, three different combinations were used
in the preliminary calculations for selecting the network architecture of the model, based
on the correlation relationships between the nitrate concentrations intended to be predicted
using the proposed model and other parameters.
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Table 1. Statistical summary of nitrate values and model parameters.

NO3 (mg/L) EC (ds/m) pH Q (m3/s) P (mm)

Min 5.53 0.00 6.47 0.59 0.00
Max 99.57 2.75 8.88 13.34 77.20
Aveg 31.03 1.05 8.26 3.19 1.94

Std. Dev. 21.32 0.74 0.28 1.96 7.49

All the data used in the model are original and based on intensive field and laboratory
measurements, requiring significant effort and time. In the preliminary evaluation for
modeling, the data matrix was checked for duplicate rows, and no repeated data were
found. Values that showed deviations in scatter plots were not excluded as outliers. This is
because field observations revealed that, in cases of water scarcity, water from drainage
channels was sometimes used for irrigation, or water was pumped into the irrigation area
during dry seasons for use in irrigation. It was generally determined that the quality of
the water used in these situations was lower compared to the primary water source for
irrigation. Therefore, preserving extreme values was considered important both for future
model development and for designing management strategies to be implemented in the
field. For this reason, such values were not excluded as outliers from the dataset.

The temporal variations in the parameters used in the model and nitrate concentrations
throughout the 2022–2023 water years are presented in Figure 3. As observed in Figure 3,
there is a clear positive correlation between nitrate values and EC, and an inverse correlation
with Q. It can generally be stated that there is no functional relationship between nitrate
and the other parameters. However, it is noteworthy that these parameters significantly
influence the model’s performance, particularly in predicting extreme values.

Figure 3. The temporal variation in nitrate concentrations and model inputs.

2.3. Developing an ANN Model for Nitrate Concentrations

To determine the optimal number of neurons in the hidden layer, 80% of the data was
used for training the network, and 20% was used for testing. This process was repeated for
100 different randomly selected training and testing datasets, and the Mean Squared Error
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(MSE) value was calculated. This process was repeated in a loop from 1 to the maximum
number of neurons, which was 30 in this study; the number of neurons that yielded the
minimum MSE value was selected as the optimal number of neurons; and the analyses
were conducted accordingly [61,62]. As seen in Figure 4, the optimum number of neurons
obtained for Scenario I and II was 12.

Figure 4. A three-layer feed-forward ANN.

During the determination of the optimal number of neurons in the hidden layer and
throughout the modeling process, the Levenberg–Marquardt algorithm—a fast and efficient
learning algorithm that combines the precision of the Newton method with the stability of the
gradient descent algorithm—was employed as the learning algorithm [63–65]. The hyperbolic
tangent sigmoid function and the linear activation function were used as activation functions
in the hidden layer and output layer, respectively. The hyperbolic tangent sigmoid function,
which operates within the range of −1 to +1, enables faster learning capability during the
weight update process [66,67]. Meanwhile, the linear activation function produces more
natural results in the output layer, as it transmits the input without any linear distortion [68,69].
Preliminary trials were conducted to test the performance of the learning algorithm and
activation functions, and the selections were made accordingly. The analyses performed on
the aforementioned computer were completed within processing times ranging from 5 to
15 min for each case, depending on the amount of data used in training. The development,
training, and testing phases of the proposed ANN model were conducted on a desktop
workstation using the Python 3.13 programming language. The performance criteria used to
determine model performance are provided in Appendix A.

In the selection of input values for the model, the correlation matrix was taken into
account. Initially, EC and Q values, which showed a high correlation with nitrate, were
tested individually. Subsequently, the DOWY parameter was added to demonstrate the
effect of time. Finally, pH and P values, which have a low correlation with nitrate, were
included. The model performance for each of these three scenarios is summarized in Table 2
using various evaluation metrics. As shown in Table 2, two, three, and five parameters were
used as inputs, respectively. These were selected as [EC, Q], [DOWY, EC, Q], and [DOWY,
EC, pH, Q, P]. The Mean Squared Error (MSE), a widely used error evaluation metric in
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the literature, was employed as the objective function to determine the model’s perfor-
mance. Additionally, the obtained results were evaluated using other error assessment
metrics (RMSE, MAE, MAPE, Pearson correlation coefficient, R2, NSE), and the model’s
performance was summarized in Table 2. A strong agreement was observed between the
results in Table 2 and the correlation matrix. Even when parameters with high correlation
to nitrate were used as inputs, a very good performance was achieved. However, when
parameters with lower correlation were included as inputs, a slight improvement in the
model’s test performance was observed. This improvement, approximately 3–5%, is more
noticeable in the scatter plots. Therefore, all the parameters mentioned above were used
during the training and testing phases. After determining the optimal number of neurons
in the hidden layer as 12, the optimal network architecture to be used in the model was
defined as 5, 12, and 1 for the input, hidden, and output layers, respectively, as shown in
Figure 5.

Table 2. Variation in model performance based on input parameters.

Inputs Scenario Case MSE RMSE MAE MAPE Corr. R2 NSE

EC, Q
I

1 109.5677 10.4675 6.5033 27.0435 0.8717 0.7598 0.7586
2 106.9859 10.3434 6.6808 24.1393 0.8743 0.7644 0.7643

II
1 113.9173 10.6732 6.6912 24.0451 0.8655 0.7491 0.7490
2 117.4629 10.8380 6.6498 24.9530 0.8621 0.7433 0.7412

DOWY,
EC, Q

I
1 97.2194 9.8600 6.4376 23.0049 0.8868 0.7864 0.7858
2 100.6939 10.0346 6.6412 23.0714 0.8821 0.7782 0.7782

II
1 109.4345 10.4611 7.1083 26.8838 0.8712 0.7591 0.7589
2 108.3617 10.4097 6.7181 23.1375 0.8753 0.7661 0.7613

DOWY,
EC, pH,

Q, P

I
1 96.8020 9.8388 6.3569 25.8653 0.8872 0.7871 0.7867
2 99.4891 9.9744 6.6889 23.4808 0.8837 0.7810 0.7808

II
1 92.2249 9.6034 6.5131 24.2921 0.8928 0.7972 0.7968
2 94.4068 9.7163 6.5438 22.0906 0.8917 0.7951 0.7920

Agriculture 2025, 15, x FOR PEER REVIEW  13  of  27 
 

 

model’s performance was summarized in Table 2. A strong agreement was observed be-

tween the results in Table 2 and the correlation matrix. Even when parameters with high 

correlation to nitrate were used as inputs, a very good performance was achieved. How-

ever, when parameters with lower correlation were included as inputs, a slight improve-

ment in the model’s test performance was observed. This improvement, approximately 3–

5%, is more noticeable in the scatter plots. Therefore, all the parameters mentioned above 

were used during the training and testing phases. After determining the optimal number 

of neurons in the hidden layer as 12, the optimal network architecture to be used in the 

model was defined as 5, 12, and 1 for the input, hidden, and output layers, respectively, 

as shown in Figure 5. 

 

 

Figure 5. The typical structure of multi-layer ANNs used in this study. 

Table 2. Variation in model performance based on input parameters. 

Inputs  Scenario  Case    MSE  RMSE  MAE  MAPE  Corr.  R2  NSE 

EC, Q 

I 
1  109.5677  10.4675  6.5033  27.0435  0.8717  0.7598  0.7586 

2  106.9859  10.3434  6.6808  24.1393  0.8743  0.7644  0.7643 

II 
1  113.9173  10.6732  6.6912  24.0451  0.8655  0.7491  0.7490 

2  117.4629  10.8380  6.6498  24.9530  0.8621  0.7433  0.7412 

DOWY, EC, Q 

I 
1  97.2194  9.8600  6.4376  23.0049  0.8868  0.7864  0.7858 

2  100.6939  10.0346  6.6412  23.0714  0.8821  0.7782  0.7782 

II 
1  109.4345  10.4611  7.1083  26.8838  0.8712  0.7591  0.7589 

2  108.3617  10.4097  6.7181  23.1375  0.8753  0.7661  0.7613 

DOWY, EC, pH, Q,P 

I 
1  96.8020  9.8388  6.3569  25.8653  0.8872  0.7871  0.7867 

2  99.4891  9.9744  6.6889  23.4808  0.8837  0.7810  0.7808 

II 
1  92.2249  9.6034  6.5131  24.2921  0.8928  0.7972  0.7968 

2  94.4068  9.7163  6.5438  22.0906  0.8917  0.7951  0.7920 

 

Figure 5. The typical structure of multi-layer ANNs used in this study.



Agriculture 2025, 15, 161 13 of 26

3. Results
The ANN-Nitrate model was implemented for the 2022 and 2023 water years using

data obtained from the study area in two scenarios. In Scenario I, the data used in the train-
ing and testing phases were selected randomly from the dataset, while in Scenario II, they
were chosen in two consecutive time periods. In Scenario I, the aim was to predict nitrate
values for days without measurements due to various reasons within the measurement pe-
riod, whereas in Scenario II, the aim was to predict values before or after the measurement
period. For each scenario, the amounts of data used in the training phase of the model were
chosen as 20% and 50% of the total data, labeled as cases 1 and 2, respectively.

The measured values and model results for Scenario I are provided in Figure 6 as
Case 1 and Case 2, respectively. As can be seen from Figure 6, the model results show
good agreement with the measured values in both cases and represent the overall trend
quite well. In Figure 7, the alignment of the model results with the measured values is
shown through scatter plots. The R2 values calculated for Case 1 and Case 2 are 0.7935 and
0.7831, respectively, which are considered to indicate that the proposed model has very
good generalization and predictive capability.

Considering that the data ratio commonly used in the literature in the training phase
of ANN models [38,61,70] is between 0.70 and 0.80, the fact that the results obtained using
20% of the dataset are very close to those obtained using 50% of the dataset, and that
they represent the actual situation quite well, indicates that the model’s input values and
architecture could be a good alternative for predicting nitrate values.
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Figure 6. Model results for Scenario I.

In Scenario II, unlike in Scenario I, the data used for training and testing the ANN-Nitrate
model were selected sequentially. In the training phase of the model, the first 0.20 and 0.50 portions
of the dataset were used for case I and case II, respectively, and the remaining 0.80 and 0.50 were
predicted in the testing phase. The results obtained for Scenario II are presented in Figure 8. As can
be seen from Figure 8, there was very good agreement between the model results and the measured
nitrate values, and the overall trend was accurately reflected.

Figure 7. Cont.



Agriculture 2025, 15, 161 15 of 26

Figure 7. Model results for Scenario I.

In Figure 9, the model results obtained for Scenario II are presented as a scatter plot
against the measured nitrate values. As shown in Figure 9, the R2 values were calculated
as 0.7789 and 0.7598 for case I and case II, respectively. It can be noted that the R2 values
calculated for Scenario II are somewhat lower than those in Scenario I. However, as seen
in case II, it is expected that model performance will decrease as the prediction period
increases. This situation will be discussed in more detail in the next section.
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Figure 9. Model performance for Scenario II.

4. Discussion
4.1. Optimal Network Selection and Performance Factors in ANN Models

The selection of the optimal network structure plays a crucial role in the performance of
ANN models, along with the choice of learning algorithms, transfer functions, and the ratio
and selection methodology of the training data. Evaluations and comments on this topic
are provided below. In studies on ANN-based nitrate models, Pearson correlation values
are generally used for selecting input data [34,36,42,45,53]. Some studies also consider
basic statistical parameters alongside Pearson correlation values; however, analyses based
on Pearson correlation values have shown better performance [34]. In this study, Pearson
correlation values were considered in the selection of input data. Unlike other studies, the
impact of input data on model performance was determined through analysis, and the
results are presented in detail based on various error evaluation criteria. It was observed
that parameters with low Pearson correlation coefficients had limited impact on the results,
although these inputs improved scatter plots in models with low Pearson correlation
coefficients.

There is no standard formula for determining the optimal number of neurons. How-
ever, in systems with limited data, selecting a large number of hidden neurons improves
the training performance but decreases the test performance of the model [38,61,62,70].
To prevent overfitting, computationally intensive methods such as grid search, random
search, or cross-validation are typically used. Trial-and-error methods are commonly em-
ployed in studies related to nitrate modeling [42,44,54]. Regarding learning algorithms
and transfer functions, information is generally insufficient. As error evaluation criteria,
different metrics such as MSE, MAE, and R2 are used individually or in combination.

In this study, instead of using the computationally intensive trial-and-error method
for optimal network selection, 80% of the data was used for training and 20% for testing.
This process was repeated for 100 randomly selected training and test datasets, and the
Mean Squared Error (MSE) was calculated. This procedure was performed in a loop up to
a maximum of 30 neurons. The number of neurons that provided the minimum MSE was
selected as the optimal number, and analyses were conducted accordingly [61,62,70].
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To determine the optimal network structure, commonly used learning algorithms
and transfer functions in the literature were randomly varied, simultaneously identifying
the most suitable learning algorithm and transfer functions for the data. As a result, the
Levenberg–Marquardt algorithm was identified as the best learning algorithm, and the
hyperbolic tangent sigmoid function for the hidden layer and the linear activation function
for the output layer were determined as the best transfer functions. Thus, the optimal
network architecture, learning algorithm, and transfer functions were identified in a single
step. This procedure was applied for the first time in this study and is considered a
significant contribution to ANN modeling.

The data used in this study were collected from a station that gathers all drainage wa-
ters of a real irrigation field over two water years (2022–2023) through daily measurements
and laboratory analyses, resulting in 730 daily datasets. In the literature, the data used in
nitrate models are often collected from different locations and times. Additionally, the data
length is reported as 316 in [45], with [42] and [36] following at 112 and 67, respectively.

Therefore, although model performance based on error evaluation criteria is high,
the variability in data length and the use of data from different locations and times are
considered limiting factors for decision makers and practitioners. For sustainable agri-
culture and water management, continuous measurements and support for researchers
are essential, as obtaining such data is particularly challenging in developing countries.
Hence, this study, based on daily measurements from a single station using real data, is
considered significant for decision makers and practitioners in terms of both methodology
and practical application.

4.2. Data Ratios and Selection Methods in Training and Testing

Another important factor influencing the performance of ANN models is the ratio and
selection method of data used during training and testing. Typically, 80% of the total data
is used for training, and 20% is used for testing [38,61,62,70]. Most publications on nitrate
modeling also use these ratios with random selection. In this study, the training data ratio
was increased from 10% to 80%, and the performance was analyzed. Since no significant
improvement was observed beyond 20%, Scenario 1 used 20% of the total data for training,
and Scenario 2 used 50%. The remaining data were used for testing. Although using 20%
of the total data for training yielded satisfactory results, 50% was selected in Scenario 2 to
evaluate the prediction performance of one year based on training data from the other year
in the two-year dataset.

Each scenario includes two cases: Case 1 involved random selection of data, while
Case 2 involved sequential selection in the form of a time series. In both scenarios, model
performance was evaluated as very good based on NSE values [43], with random selection
showing slightly better performance. When data are selected sequentially, care must be
taken to include extreme values in the training data. Detailed analyses on this matter are
provided below.

When evaluating the results of the ANN-Nitrate model presented in the previous section,
it is evident that the results obtained for Scenario I were better than those for Scenario II. This is
thought to be due to the fact that in Scenario I, the data used for the training and testing phases
were randomly selected from the entire series, while in Scenario II, the data were selected as
a consecutive time series. As can be clearly seen from Figures 6 and 8, although the nitrate
values measured for the 2022 water year showed a similar trend to those for 2023, they
were relatively smaller. Therefore, since all the data used in the training phase for Scenario
II pertained to 2022, the test performance was slightly lower compared to Scenario I.
This situation is particularly more evident in Case II. This is because all the data used in
the training phase of Case II belonged to 2022, while the model results calculated in the



Agriculture 2025, 15, 161 19 of 26

testing phase belonged entirely to the 2023 water year. To verify this argument, in this
section, data from 2023 instead of 2022 were used in the model training phase, and values
for 2022 were calculated as test data. In other words, the training and testing data used
in Scenario II were swapped, and the analysis was repeated. The results are summarized
in Figures 10 and 11. As can be clearly seen from Figure 10, although the peak values
for 2022 were very well predicted, deviations in minimum values showed a significant
increase. On the other hand, as shown in Figure 11, the R2 values increased to 0.7956 and
0.7979 for cases I and II, respectively. In other words, there was a noticeable improvement
in the model’s performance.

From the points raised in the previous section and the discussions in this section, it is
clear that the overall performance of Scenario I was better than that of Scenario II. However,
considering that the purposes of the two scenarios were different and that the results of
Scenario II were also quite satisfactory in practical terms, it can be concluded that the
proposed model can be reliably used for both scenarios.
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Figure 11. Model performance for Scenario II.

The analyses conducted in Section 2 utilized R2 and MSE as objective functions to
determine the optimal network architecture for the proposed model and to observe the
impact of input parameters on model performance. However, the model performance
was recalculated based on all error evaluation metrics using the obtained results, and it is
presented comparatively in Table 2. As clearly shown in Table 2, the model’s performance
was highly stable and practically satisfactory across all scenarios and conditions based on
all evaluation metrics. To support this argument, all calculations were repeated for both
scenarios using MSE and MAE as objective functions. The model performances based on
all evaluation metrics are summarized in Table 3 using the obtained results. As can be
clearly seen from Table 3, when R2 values were calculated based on the results obtained
using MAE and MSE as objective functions, there was a very strong agreement with the R2

values provided between Figures 6 and 11. This demonstrates that the performance of the
proposed model and network architecture did not vary depending on the error evaluation
metric used.

Table 3. Variation in model performance based on objective function.

Obj. Func Scenario Case MSE RMSE MAE MAPE Corr. R2

MSE
I

1 107.8451 10.3849 7.1259 23.7032 0.8736 0.7632
2 108.2206 10.4029 6.5652 22.2381 0.8734 0.7627

II
1 98.4615 9.9228 6.7897 23.2057 0.8854 0.7840
2 96.2254 9.8095 6.6149 23.3378 0.8877 0.7881

MAE
I

1 100.9913 10.0494 7.0777 24.6614 0.8818 0.7776
2 102.7251 10.1353 6.6752 23.9452 0.8800 0.7744

II
1 94.2135 9.7064 6.5363 23.3390 0.8903 0.7927
2 92.1155 9.5977 6.4191 23.0728 0.8929 0.7973
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5. Conclusions
This study aimed to develop an ANN-based model to determine nitrate concentrations

in drainage waters within an irrigation area located in the Lower Seyhan Basin, one of
Turkey’s significant agricultural production regions. For this purpose, water samples
were taken daily during the 2022 and 2023 water years at a station where drainage waters
from the entire irrigation area are collected, and nitrate concentrations were determined
in the laboratory. Along with nitrate concentrations, other parameters such as discharge,
electrical conductivity, pH, and precipitation were also measured simultaneously at the
same station. The complex relationship between the measured nitrate values and other
parameters, which are easier and cheaper to measure, was used in two different scenarios
during the learning phase of the ANN-Nitrate model. The model, once trained, predicted
nitrate values using the other parameters. In Scenario I, random values were predicted,
while in Scenario II, predictions were made as a time series, and the model results were
compared with measured values.

For Scenario I case 1, the model performances (R2) for training, testing, and the entire
dataset were 0.8805, 0.7732, and 0.7935, respectively, while for case 2, they were 0.7637,
0.8048, and 0.7831, respectively. As observed, despite the data proportions used in training
the model varying from 0.20 to 0.50 of the total data in both cases, there was no significant
change in model performance for the full dataset. This outcome is considered a result of
the careful selection of both the parameters used in training the ANN-Nitrate model and
the model’s network architecture. Furthermore, training the model with fewer data and
achieving a high test performance highlights another significant aspect of this study.

Similarly, in Scenario II case 1, the model performances (R2) for training, testing, and
the entire dataset were 0.8722, 0.7498, and 0.7789, respectively, while for case 2, they were
0.8422, 0.7155, and 0.7598, respectively. The overall performance of Scenario I appeared
to be better than Scenario II. However, considering that each scenario served a different
purpose and that Scenario II also provided practically satisfactory results, it can be said
that the proposed model can be reliably used for both scenarios.

The proposed model, based on artificial neural networks (ANNs), is designed to
predict nitrate concentrations in drainage waters within the Lower Seyhan Basin, one
of Turkey’s key agricultural regions, using parameters that are simpler and more cost-
effective to measure. However, it also has the potential to be applied to other methods
commonly used in machine learning and artificial intelligence, such as Support Vector
Machines (SVM), Decision Trees, Random Forests, Ensemble Methods, and Deep Learning
Techniques. Furthermore, the model can be used without requiring any modifications for
other basins where the input values are measured. Future studies are planned to apply the
model to other basins to enhance its generalizability and to compare the test performances
of the aforementioned methods in a systematic manner.

In conclusion, the ability to accurately predict nitrate—a significant parameter in terms
of irrigation and general water quality—using an ANN-based model with parameters that
are easier and cheaper to measure, such as EC, pH, Q, and P, is considered an important
contribution of this study to the literature. This model aids both in filling in missing data
and in making future predictions.
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Appendix A. Definitions of Error Indicators
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Southeastern Anatolia Region (GAT) 1. Harran Plain. In TUBİTAK Agriculture and Forestry Group Guided Research Project Final
Result Report; Project Number: TOAG-534; TÜBİTAK: Ankara, Türkiye, 1988. (In Turkish)
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Management to Improve Understanding of Nitrogen Leaching in an Irrigated Mediterranean Area in Southern Turkey; IntechOpen:
London, UK, 2017; ISBN 978-953-51-2882-3.

60. Rice, E.W.; Bridgewater, L. Standard Methods for the Examination of Water and Wastewater; American Public Health Association:
Washington, DC, USA, 2012; Volume 10.

61. Karahan, H.; Iplikci, S.; Yasar, M.; Gurarslan, G. River flow estimation from upstream flow records using support vector machines.
J. Appl. Math. 2014, 2014, 714213. [CrossRef]

62. Karahan, H.; Ayvaz, M.T. Simultaneous parameter identification of a heterogeneous aquifer system using artificial neural
networks. Hydrogeol. J. 2008, 16, 817–827. [CrossRef]

63. Bilski, J.; Kowalczyk, B.; Marchlewska, A.; Zurada, J.M. Local Levenberg-Marquardt algorithm for learning feedforwad neural
networks. J. Artif. Intell. Soft Comput. Res. 2020, 10, 299–316. [CrossRef]

64. Yan, Z.; Zhong, S.; Lin, L.; Cui, Z. Adaptive Levenberg–Marquardt algorithm: A new optimization strategy for Levenberg–
Marquardt neural networks. Mathematics 2021, 9, 2176. [CrossRef]

65. Haring, M.; Grøtli, E.I.; Riemer-Sørensen, S.; Seel, K.; Hanssen, K.G. A Levenberg-Marquardt algorithm for sparse identification
of dynamical systems. IEEE Trans. Neural Netw. Learn. Syst. 2022, 34, 9323–9336. [CrossRef]

66. Souayeh, B.; Sabir, Z. Designing hyperbolic tangent sigmoid function for solving the Williamson nanofluid model. Fractal Fract.
2023, 7, 350. [CrossRef]

67. Pérez–Enríquez, L.; Zapotecas–Martínez, S.; Oliva, D.; Altamirano-Robles, L. Hyperbolic tangent sigmoid as a transformation
function for image contrast enhancement. In Proceedings of the 2023 IEEE Symposium Series on Computational Intelligence
(SSCI), Mexico City, Mexico, 5–8 December 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 282–287.
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