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Abstract. In this present paper, authors obtained the exact solution of time fractional general Kaup-Kupershmidt

equation where the fracitonal derivative operator is in conformable sense by using the new sub-equation method. This

method implemented firstly in the literature to a fractional partial differential equation.

2010 Mathematics Subject Classification. 35R11; 35A20; 35C05.

Key words and phrases. conformable fractional derivative; the new sub-equation method; fractional general Kaup-

Kupershmidt; exact solutions.

1. Introduction

The generalizations of differentiation and integration with integer orders are called fractional calculus. In the

last decades, interest to fractional calculus has been increasing considerably because of its huge application area in

various fields such as physics, engineering, dynamical systems, control systems [1-4]. As a result of this interest,

many powerful methods to solve fractional differential equations were presented by many authors. For example

Kurt et. al. [5] obtained approximate anaytical solutions of Whitham-Broer-Kaup Equation by using homotopy

analysis with Caputo derivative.Çelik et. al. [6] used Crank-Nicolson method for solvingfractional diffusion

equation with the Riesz fractional derivative. Tasbozan et. al. [7] employed finite element method for obtaining

the approximate solutions of diffusion equation with Riemann-Liouville fractional derivative. As it is seen

from the the references given above, authors applied numerical methods to obtain the approximate solutionsof

considered equations. Because scientists can not obtain the anaytical solutions for Caputo, Riemann-Liouville

and the Riesz fractional derivatives. But newly defined conformable fractional derivative let us to obtain the
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analytical solutions of the considered equations by using wave transform [8] and chain rule [9]. For instance

Korkmaz et. al. [10] used two different methods to obtain the analytical solution of time-fractional parabolic

equation with exponential nonlinearity. Çenesiz et. al. [11] employed first integral method to get the exact

solutions of conformable fractional Burgers’ type equations. Kurt et. al. [12] considered method to get the

analytical solutions of conformable fractional Nizhnik-Novikov-Veselov system. For further details see papers

[13-22]

In this study we regard the conformable time-fractional general Kaup-Kupershmidt equation ( For α = 1 see

[23])

(1.1) ∂αu

∂tα
+

1

5
γ2u2

∂u

∂x
+

5

2
γ
∂u

∂x

∂2u

∂x2
+ γu

∂3u

∂x3
+
∂5u

∂x5
= 0

where α ∈ (0, 1]. Also, in the case γ = 3 , Eq. (1.1) reduces to the standard Kaup-Kupershmidt equation

(1.2) ∂αu

∂tα
+ 20u2

∂u

∂x
+ 25

∂u

∂x

∂2u

∂x2
+ 10u

∂3u

∂x3
+
∂5u

∂x5
= 0.

The fifth order Kaup-Kupershmidt equation (1.1) is one of the solitonic equations related to the integrable cases

of the Henon-Heiles system and belongs to the completely integrable hierarchy of higher order KdV equations

[24]. These Eq (1.1) and Eq (1.2) for α = 1 studied using various techniques, for example the extended tanh

method [23], the Fan sub-equation method [24], the Projective Riccati equation method [25], the simplified

Hirota’s method [26].

The rest of the work is arranged as follows: In Section 2, the definition of conformable fractional derivative is

introduced, and the basic properties of fractional derivative are investigated. In Section 3, we give a description

of the the new sub-equation method. In Section 4, we employ the new sub-equation method to conformable

time-fractional general Kaup-Kupershmidt equation. Finally, we give a concluding remarks in section 5.

2. Conformable Fractional Calculus

Conformable fractional calculus firstly mentioned by R. Khalil et. al. [27] is well behaved, applicable and

obeys many rules that known derivative and integral satisfies.

Definition 2.1. Let f : [0,∞)→ R be a function. αth order "conformable fractional derivative" of f is defined by

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− f(t)

ε

for all t > 0, α ∈ (0, 1). If f is α differentiable in some (0, a), a > 0 and

lim
t→0

f(t)

exists, then define

f (α)(0) = lim
t→0+

f (α)(t).

But other fractional derivatives such as Caputo, Riemann-Liouville, Grünwald so not satisfy basic rules. For

instance

(1) Let λ be a constant and α ∈ R. So Dα
a (λ) 6= 0 for Riemann-Liouville derivative.
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(2) All fractional derivatives do not satisfy the known formula of the derivative of the product of two

functions.

Dα
a (fg) 6= fDα

a (g) + gDα
a (f)

(3) All fractional derivatives do not satisfy the known formula of the derivative of the quotient of two

functions.

Dα
a

(
f

g

)
6= gDα

a (f)− fDα
a (g)

g2

(4) All fractional derivatives do not satisfy the chain rule.

Dα
a (fog) 6= f (α) (g(t)) g(α)(t)

(5) All fractional derivatives do not satisfy

DαDβf = Dα+βf

in general.

(6) The Caputo derivative assumes that the function f is differentiable.

This new definition satisfies the properties which are given in the following theorem.

Theorem 2.1. Let α ∈ (0, 1) and f, g be α− differentiable at point t > 0. Then

(1) Tα(cf + dg) = cTα(f) + dTα(g),for all a, b ∈ R.

(2) Tα(tp) = ptp−αfor allp ∈ R.

(3) Tα(λ) = 0 for all constant functions f(t) = λ.

(4) Tα(fg) = fTα(g) + gTα(f).

(5) Tα
(
f
g

)
= gTα(g)−fTα(f).

g2

(6) If, in addition to f is differentiable, then Tα(f)(t) = t1−α dfdt .

3. Description of the new sub-equation method

A general fractional nonlinear wave equation can be written as

(3.1) F

(
u,
∂αu

∂tα
,
∂u

∂x
, u
∂u

∂x
, u2

∂u

∂x
,
∂2u

∂x2
, . . .

)
= 0.

We seek its travelling wave solution u(ξ) by letting

(3.2) ξ = λx− η t
µ

µ

where λ and η are parameters to be determined later.Now we briefly illustrate the new sub-equation method.

Step 1. Uniting the independent variables x and t into one variable ξ as usual, then from Eq.(3) we obtain

(3.3) G (u, u′, u′′, . . .) = 0.

Step 2.The solution of Eq. (5) can be expressed by a polynomial in f(ξ) as

(3.4) u(ξ) =

ϑ∑
j=0

bj f
j(ξ),
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where bj (0 ≤ j ≤ ϑ) are constant coefficients to be determined later and f(ξ) satisfies the first order linear ODE

of the form

(3.5) f ′ (ξ) = α+ βf ′(ξ) + σf ′′(ξ)

where α, β, σ are constant. On the other hand, Eq. (7) has the following travelling wave solutions

Family1. If β2 − 4ασ > 0 and σ 6= 0, then we have

f(ξ) =
−β
2σ
−
√
β2 − 4ασ

2σ
tanhpq

(√
β2 − 4ασ

2
ξ

)
,

f(ξ) =
−β
2σ
−
√
β2 − 4ασ

2σ
cothpq

(√
β2 − 4ασ

2
ξ

)
.

Family 2. If β2 − 4ασ < 0 and σ 6= 0, then we have

f(ξ) =
−β
2σ

+

√
− (β2 − 4ασ)

2σ
tanpq

(√
− (β2 − 4ασ)

2
ξ

)
,

f(ξ) =
−β
2σ
−
√
− (β2 − 4ασ)

2σ
cotpq

(√
− (β2 − 4ασ)

2
ξ

)
.

Family 3. If ασ < 0, σ 6= 0 and β = 0, then we have

f(ξ) = −
√
−α
σ

tanhpq
(√
−ασξ

)
,

f(ξ) = −
√
−α
σ

cothpq
(√
−ασξ

)
.

Family 4. If ασ > 0, σ 6= 0 and β = 0, then we have

f(ξ) =

√
α

σ
tanpq

(√
ασξ

)
,

f(ξ) = −
√
α

σ
cotpq

(√
ασξ

)
.

Family 5. If β = 0 and α = −σ, then we have

f(ξ) = −tanhpq (αξ) ,

f(ξ) = −cothpq (αξ) .

Case 6. If β = 0 and α = σ, then we have

f(ξ) = tanpq (αξ) ,

f(ξ) = −cotpq (αξ) .

Family 7. If β2 = 4ασ, then we have

f(ξ) =
−2α(βξ + 2)

β2ξ
.

Family8. If α = 0 and β 6= 0, then we have

f(ξ) = − pβ

σ (coshpq(βξ)− sinhpq(βξ) + p)
,

f(ξ) = − β (sinhpq(βξ) + coshpq(βξ))

σ (sinhpq(βξ) + coshpq(βξ) + q)
.
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Family 9. If β = α = 0, then we have

f(ξ) =
−1

σξ
.

Family 10. If β = υ, σ = mυ and α = 0, then we have

f(ξ) =
peυξ

q − pmeυξ
.

Family11.If β = υ , α = mυ (m 6= 0) and σ = 0, then we have

f(ξ) = eυξ −m.

Family 12.If σ = 0, then

f(ξ) = eβξ − α

β
.

Family 13. If β = σ = 0, then

f(ξ) = αξ.

The generalized hypergeometric functions and the generalized trigonometric functions are defined as [28]

sinhA(ξ) =
peξ − qe−ξ

2
, coshA(ξ) =

peξ + qe−ξ

2
,

tanhA(ξ) =
peξ − qe−ξ

peξ + qe−ξ
, cothA(ξ) =

peξ + qe−ξ

peξ − qe−ξ
,

sechA(ξ) =
2

peξ + qe−ξ
, cschA(ξ) =

2

peξ − qe−ξ
,

sinA(ξ) =
peiξ − qe−iξ

2i
, cosA(ξ) =

peiξ + qe−iξ

2
,

tanA(ξ) = −ipe
iξ − qe−iξ

peiξ + qe−iξ
, cotA(ξ) = i

peiξ + qe−iξ

peiξ − qe−iξ
,

secA(ξ) =
2

peiξ + qe−iξ
, cscA(ξ) =

2i

peiξ − qe−iξ

where ξ is an independent variable, p, q > 0 are constants. Also,the positive integer ϑ can be determined by

considering the homogeneous balance between the highest order derivative linear term and nonlinear terms

appearing in ODE (4).

Step 3. Substituting Eq.(6) into ODE (5), making use of Eq.(7) and setting the coefficients of all powers of f(ξ) to

zeros, we will get a system of algebraic equations, from which λ, η and bj (0 ≤ j ≤ ϑ) can be found explicitly.

Step 4. Substituting the values bj (0 ≤ j ≤ ϑ) obtained in Step 3 into Eq.(6), we may get all possible solutions.

4. Exact Solutions for the conformable time-fractional general Kaup-Kupershmidt Equation

Upon using the transformation

(4.1) u(x, t) = u(ξ), ξ = λx− η t
µ

µ

Eq. (1) is transferred to

(4.2) − ηu′ + 1

5
γ2λu2u′ +

5

2
γλ3u′u′′ + γλ3uu′′′ + λ5u(5) = 0,
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where the prime symbolizes the derivation with respect to ξ. Considering the homogeneous balance between

u2u′ and u(5) in Eq. (9) we required that ϑ+ 5 = 3ϑ+ 1; then ϑ = 2; so we can write (6) as

(4.3) u(ξ) = b0 + b1 f(ξ) + b2 f
2(ξ).

Substituting Eq. (10) along with (7) into Eq. (9) and collecting all terms with the same power of af(ξ) together, the

left hand side of Eq. (9) is converted into a polynomial in f(ξ). Equating each coefficient to be zero yields a set

of simultaneous algebraic equations. Solving the this algebraic system with respect to the unknowns variables

b0, b1 , b2and η we find the following sets of solutions

Set 1:

b0 = −5

4

λ2
(
8σα+ β2

)
γ

, b1 = −15
λ2βσ

γ
, b2 = −15

λ2σ2

γ
, η =

λ5

16
(β2 − 4σα)2.

Set 2:

b0 = −
10λ2

(
8σα+ β2

)
γ

, b1 = −120
λ2βσ

γ
, b2 = −120

λ2σ2

γ
, η = 11λ5(β2 − 4σα)2.

Substituting Set 1 along with (8) into (10) and solutions of ODE (7), we have following travelling wave solutions

of Eq. (1).

Case1. When β2 − 4ασ > 0 and σ 6= 0, then

u(x, t) =
5λ2∆

4γ

(
2− 3 tanh2

pq

(√
∆

2

(
λx− λ5

16
∆2 t

µ

µ

)))
,

u(x, t) =
5λ2∆

4γ

(
2− 3 coth2

pq

(√
∆

2

(
λx− λ5

16
∆2 t

µ

µ

)))
,

where ∆ = β2 − 4ασ.

Case 2. When β2 − 4ασ < 0 and σ 6= 0, then

u(x, t) =
5λ2∆

4γ

(
2 + 3 tan2

pq

(√
−∆

2

(
λx− λ5

16
∆2 t

µ

µ

)))
,

u(x, t) =
5λ2∆

4γ

(
2− 3 cot2pq

(√
−∆

2

(
λx− λ5

16
∆2 t

µ

µ

)))
,

where ∆ = β2 − 4ασ.

Case 3. When ασ < 0, σ 6= 0 and β = 0, then

u(x, t) =
5λ2σα

γ

(
−2 + 3 tanh2

pq

(√
−σα

(
λx− λ5(σα)

2 t
µ

µ

)))
,

u(x, t) =
5λ2σα

γ

(
−2 + 3 coth2

pq

(√
−σα

(
λx− λ5(σα)

2 t
µ

µ

)))
.

Case 4. When ασ > 0, σ 6= 0 and β = 0, then

u(x, t) = −5λ2σα

γ

(
2 + 3 tan2

pq

(√
σα

(
λx− λ5(σα)

2 t
µ

µ

)))
,

u(x, t) =
5λ2σα

γ

(
−2 + 3 cot2pq

(√
σα

(
λx− λ5(σα)

2 t
µ

µ

)))
.
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Case 5. When β = 0 and α = −σ, then

u(x, t) = −5λ2α2

γ

(
−2 + 3 tanh2

pq

(
α

(
λx− λ5α4 t

µ

µ

)))
,

u(x, t) = −5λ2α2

γ

(
−2 + 3 coth2

pq

(
α

(
λx− λ5α4 t

µ

µ

)))
,

Case 6. When β = 0 and α = σ, then

u(x, t) = −5λ2α2

γ

(
2 + 3 tan2

pq

(
α

(
λx− λ5α4 t

µ

µ

)))
,

u(x, t) = −5λ2α2

γ

(
−2 + 3 cot2pq

(
α

(
λx− λ5α4 t

µ

µ

)))
,

Case 8. When α = 0 and β 6= 0, then

u(x, t) = 10λ2β2

γ

(
− 1

4 + 12p(
coshpq

(
β
(
λx−λ5β416

tµ

µ

))
−sinhpq

(
β
(
λx−λ5β416

tµ

µ

))
+p

)
−12

(
− p(

coshpq
(
β
(
λx−λ5β416

tµ

µ

))
−sinhpq

(
β
(
λx−λ5β416

tµ

µ

))
+p

))2
)
,

u(x, t) = 10λ2β2

γ

(
− 1

4 +
12

(
sinhpq

(
β
(
λx−λ

5β4

16
tµ

µ

))
+coshpq

(
β
(
λx−λ

5β4

16
tµ

µ

)))
(
sinhpq

(
β
(
λx−λ5β416

tµ

µ

))
+coshpq

(
β
(
λx−λ5β416

tµ

µ

))
+q

)

−12

( (
sinhpq

(
β
(
λx−λ

5β4

16
tµ

µ

))
+coshpq

(
β
(
λx−λ

5β4

16
tµ

µ

)))
(
sinhpq

(
β
(
λx−λ5β416

tµ

µ

))
+coshpq

(
β
(
λx−λ5β416

tµ

µ

))
+q

)
)2
 .

Case 10. When beta = υ, σ = mυ and α = 0 then

u(x, t) = − 10λ2υ2

γ

(
1
4 + 12m pe

υ

(
λx−λ5υ4

16
tµ

µ

)

q−pmeυ(λx−
λ5υ4
16

tµ
µ )

+12m

(
pe
υ

(
λx−λ5υ4

16
tµ

µ

)

q−pmeυ(λx−
λ5υ4
16

tµ
µ )

)2
 .

Substituting Set 2 along with (8) into (10) and solutions of ODE (7), we have following travelling wave solutions

of Eq. (1).

Case1. Whenβ2 − 4ασ > 0 and σ 6= 0, then

u(x, t) =
10λ2∆

γ

(
2− 3 tanh2

pq

(√
∆

2

(
λx− 11λ5∆2 t

µ

µ

)))
,

u(x, t) =
10λ2∆

γ

(
2− 3 coth2

pq

(√
∆

2

(
λx− 11λ5∆2 t

µ

µ

)))
,

where ∆ = β2 − 4ασ.

Case 2. When β2 − 4ασ < 0 and σ 6= 0, then

u(x, t) =
10λ2∆

γ

(
2 + 3 tan2

pq

(√
−∆

2

(
λx− 11λ5∆2 t

µ

µ

)))
,

u(x, t) =
10λ2∆

γ

(
2− 3 cot2pq

(√
−∆

2

(
λx− 11λ5∆2 t

µ

µ

)))
,

where ∆ = β2 − 4ασ.

Case 3. When ασ < 0, σ 6= 0 and β = 0, then

u(x, t) =
40λ2σα

γ

(
−2 + 3 tanh2

pq

(√
−σα

(
λx− 176λ5(σα)

2 t
µ

µ

)))
,
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u(x, t) =
40λ2σα

γ

(
−2 + 3 coth2

pq

(√
−σα

(
λx− 176λ5(σα)

2 t
µ

µ

)))
.

Case 4. When ασ > 0, σ 6= 0 and β = 0, then

u(x, t) = −40λ2σα

γ

(
2 + 3 tan2

pq

(√
σα

(
λx− 176λ5(σα)

2 t
µ

µ

)))
,

u(x, t) =
40λ2σα

γ

(
−2 + 3 cot2pq

(√
σα

(
λx− 176λ5(σα)

2 t
µ

µ

)))
.

Case 5. Whenβ = 0 and α = −σ, then

u(x, t) = −40λ2α2

γ

(
−2 + 3 tanh2

pq

(
α

(
λx− 176λ5α4 t

µ

µ

)))
,

u(x, t) = −40λ2α2

γ

(
−2 + 3 coth2

pq

(
α

(
λx− 176λ5α4 t

µ

µ

)))
,

Case 6. When β = 0 and α = σ, then

u(x, t) = −40λ2α2

γ

(
2 + 3 tan2

pq

(
α

(
λx− 176λ5α4 t

µ

µ

)))
,

u(x, t) = −40λ2α2

γ

(
−2 + 3 cot2pq

(
α

(
λx− 176λ5α4 t

µ

µ

)))
,

Case 8. When α = 0 and β 6= 0, then

u(x, t) = 10λ2β2

γ

(
− 1

4 + 12p

(coshpq(β(λx−11λ5β4 tµ

µ ))−sinhpq(β(λx−11λ5β4 tµ

µ ))+p)

−12

(
− p

(coshpq(β(λx−11λ5β4 tµ

µ ))−sinhpq(β(λx−11λ5β4 tµ

µ ))+p)

)2
)
,

u(x, t) = 10λ2β2

γ

(
− 1

4 +
12(sinhpq(β(λx−11λ5β4 tµ

µ ))+coshpq(β(λx−11λ5β4 tµ

µ )))
(sinhpq(β(λx−11λ5β4 tµ

µ ))+coshpq(β(λx−11λ5β4 tµ

µ ))+q)

−12

(
(sinhpq(β(λx−11λ5β4 tµ

µ ))+coshpq(β(λx−11λ5β4 tµ

µ )))
(sinhpq(β(λx−11λ5β4 tµ

µ ))+coshpq(β(λx−11λ5β4 tµ

µ ))+q)

)2
)
.

Case 10. When β = υ, σ = mυ and α = 0 then

u(x, t) = − 10λ2υ2

γ

(
1
4 + 12m pe

υ(λx−11λ5υ4 t
µ

µ )

q−pmeυ(λx−11λ5υ4 t
µ
µ )

+12m

(
pe
υ(λx−11λ5υ4 t

µ

µ )

q−pmeυ(λx−11λ5υ4 t
µ
µ )

)2
)
.

5. Conclusions

The new sub-equation method has been successfully employed to time fractional general Kaup-Kuperschmidt

equation. Authors fistly used chain rule and wave transform so the nonlinear conformable fractional differ-

ential equation turns into differential equation with integer order derivative. All the results show that both

arguments(chain rule, wave transform, new sub-equation method) are applicable, reliable are efficient tools for

obtaining the exact solutions of nonlinear partial differential equations with conformable fractional derivative.
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