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Abstract. In this article, the tanh method and the residual power series method (RPSM) are used to obtain new exact
and numerical solutions of the time-fractional Kaup-Kupershmidt equation using the conformable fractional derivative
definition. This definition is simple, effective and reliable in the solution procedure of the fractional differential equations
that have complicated solutions with classical fractional derivative definitions like Caputo and Rieman-Liouville.
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1. Introduction

Fractional calculus has found numerous applications in science and engineering branches such as fractional
differential equations (FDE), fluid flow, electrical network, mathematical physics, biology, image and signal
processing, viscoelasticity and control in recent years.

There are some common methods that are used to obtain approximate or analytical solutions of nonlinear
fractional partial differential equations in literature. Adomian decomposition method (ADM) [19], Laplace
analysis method (LAM) [13], homotopy analysis method (HAM) [16], homotopy perturbation method (HPM)
[22], differential transformation method (DTM) [5] and perturbation-iteration algoritm (PIA) [20] are among
them.

In this article, the tanh method [8,21] and residual power series method (RPSM) [2,4, 11, 12, 15] are used to
obtain new exact and approximate solutions of time-fractional Kaup-Kumershmidt equation of the form

(1.1) ∂αu

∂tα
+ 45u2

∂u

∂x
− 15p

∂u

∂x

∂2u

∂x2
− 15u

∂3u

∂x3
+
∂5u

∂x5
= 0

The tanh method is a powerful tool for obtaining traveling wave solutions of nonlinear fractional differential
equations. In this method a power series in tanh was used as an ansatz to obtain analytical solutions of traveling
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wave type of certain evolution equations. Besides, in RPSM, the coefficients of the power series are calculated
by means of the concept of residual error with the help of one or more variable algebraic equation chains, and
finally, a so-called truncated series solution is obtained [15].

Themajor improvement of the RPSM is that it can be implemented to the problemdirectlywithout linearization,
perturbation or discretization and without any transformation by selecting appropriate initial conditions [12].

After giving brief descriptions of tanhmethod and RSPM,we have presented one example that shows reliability
and efficiency of two methods. Also figures and a table are presented in order to compare their numerical results.
At last, we discussed about obtained results as a section for conclusion.

2. Preliminaries

There are a few definition of fractional derivative of order α > 0. The most widely used are the Riemann-
Liouville and Caputo fractional derivatives.

Definition 2.1. The Riemann-Liouville fractional derivative operator Dαf(x) for α > 0 and q − 1 < α < q defined

as [2, 9, 10]:

(2.1) Dαf(x) =
dq

dxq

 1

Γ(q − α)

x∫
α

f(t)

(x− t)α+1−q dt


Definition 2.2. The Caputo fractional derivative of order α > 0 for n ∈ N, n− 1 < α < n, Dα

∗ , defined as [7]:

(2.2) Dα
∗ f(x) = Jn−αDnf(x) =

1

Γ(n− α)

x∫
α

(x− t)n−α−1
(
d

dt

)n
f(t)dt

Recently, a new definition of a fractional derivative called the "conformable fractional derivative" has been
proposed by R. Khalil et al. [6].

Definition 2.3. Let f : [0,∞)→ R is a function α− th order “conformable fractional derivative” of a defined by

(2.3) Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− (f)(t)

ε

for all t > 0, α ∈ (0, 1) .
The properties of this new definition are given in the following theorem [14]

Theorem 2.1. Let α ∈ (0, 1] and f, g functions are α-differantiable at point t > 0, then

1. Tα(mf + ng) = mTα(f) + nTα(g) for allm,n ∈ R

2. Tα(tp) = ptp−α for all p
3. Tα(f.g) = fTα(g) + gTα(f)

4. Tα( fg ) = gTα(f)−fTα(g)
g2

5. Tα(c) = 0 for all constant functions f(t) = c

6. If, in addition, f is differentiable, then Tα(f)(t) = t1−α df(t)dt
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Definition 2.4. Let f is a function with n variables x1, ..., xn, and the conformable partial derivatives of f of order

α ∈ (0, 1] in xi is defined as follows [6]

(2.4) dα

dxαi
f(x1, ..., xn) = lim

ε→0

f(x1, ..., xi−1, xi + εx1−αi , ..., xn)− f(x1, ..., xn)

ε
.

Definition 2.5. The conformable integral of a function f starting from a ≥ 0 is defined as [16]

(2.5) Iaα(f)(s) =

s∫
a

f(t)

t1−α
dt.

3. A Brief Description of Implemented Methods

3.1. The Tanh Method.

In the beginning we are going to describe the method [21] incrementally.
Step1. The general form of nonlinear conformable fractional differential equation can be regarded as

(3.1) P

(
∂αu

∂tα
,
∂u

∂x
,
∂2αu

∂t2α
,
∂2u

∂x2
, ...

)
= 0

where the arguments and subscripts of polynomial P shows partial derivatives.
Step2. Employing the transformation

(3.2) u(x, t) = u(ξ), ξ = kx−mtα

α

in which k denotes the number of wave andm shows the velocity of the wave. Due to this:

(3.3) ∂α(.)

∂tα
= n

d(.)

dξ
,
∂(.)

∂x
= m

d(.)

dξ
, . . . .

Considering Eq.(3.2), Eq.(3.1) turns in to a differential equation

(3.4) G(U,U ′, U ′′, U ′′′, ...) = 0

where the derivatives are with respect to ξ.
Step3. Now, describing a new independent variable

(3.5) Y = tanh(ξ).

Then the following equations are hold.
∂

∂ξ
= (1− Y 2)

∂

∂Y
,

∂2

∂ξ2
= −2Y (1− Y 2)

∂

∂Y
+ (1− Y 2)2

∂2

∂Y 2
,

(3.6) ∂3

∂ξ3
= 2(1− Y )2(3Y 2 − 1)

∂

∂Y
− 6Y (1− Y 2)2

∂2

∂Y 2
+ ((1− Y 2)3)

∂3

∂Y 3
,

∂4

∂ξ4
= −8Y (1− Y 2)(3Y 2 − 2)

∂

∂Y
+ 4(1− Y 2)2(9Y 2 − 2)

∂2

∂Y 2
− 12Y (1− Y 2)3

∂3

∂Y 3
+ (1− Y 2)4

∂4

∂Y 4
,
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∂5

∂ξ5
= −8Y (−1 + Y 2)(2− 15Y 2 + 15Y 4)

∂

∂Y
− 120Y (−1 + Y 2)2(−1 + 2Y 2)

∂2

∂Y 2

−20(−1 + Y 2)3(−1 + 6Y 2)
∂3

∂Y 3
− 20Y (−1 + Y 2)4

∂4

∂Y 4
+ (1− Y 2)5

∂5

∂Y 5
.

Step4. Present the prediction

(3.7) U(ξ) = S(Y ) =

r∑
i=0

aiY
i

where r is a positive integer, in most cases, that will be evaluated. Substituting (3.7) into the ODE (3.4) concludes
an equation in powers of Y .

Step5. Balancing the linear terms of highest order in the ODE (3.4) with the highest order nonlinear terms gives
us the parameter r. After obtaining r, the all coefficients of Y are equated to zero in the resulting equation.
This results a system of algebraic equations including k,m, p and ai, (i = 0, 1, . . . , r). The analytical solution is
obtained in a closed form after having determined these parameters, considering that r is a positive integer, and
using (3.7).
To be very competent on the the tanh method, one can look into Ref. [17, 18] for the analysis with useful
discussions.

3.2. Description of the residual power series method.

In this section we are going to introduce some important definitions and theorems about residual power series

Theorem 3.1. Suppose that f has a FPS representation at t0 = 0 of the form

(3.8) f(t) =

∞∑
n=0

cnt
nα, 0 < t < R

1
α , R > 0

where R 1
α is the radius of convergence. If f is an infinitely conformable α−differentiable function, for some 0 ≤ m− 1 <

α ≤ m in a neigborhood of a point t0 = 0, then the coefficients cn in (3.8) will take the form cn = f(nα)(0)
αnn! where f (nα)(t)

means the application of the conformable fractional derivative n times [1].

Definition 3.1. A multiple fractional power series about t0 = 0 is defined by
∞∑
n=0

fn(x)tα, where fn(x) are the coefficients

of the series depend on x and t is a variable.

Definition 3.2. A power series of the form
∞∑
n=0

fn(x)tα, is called a multiple fractional power series about t0 = 0, where t

is a variable and fn(x) are functions of x called the coefficients of the series [11].

Theorem 3.2. Assume that u(x, t) has a multiple fractional power series representation at t0 = 0 of the form [3]

(3.9) u(x, t) =

∞∑
n=0

fn(x)tnα, 0 ≤ m− 1 < α < m,x ∈ I, 0 ≤ t ≤ R 1
α .

If u(nα)t (x, t), n = 0, 1, 2, . . . are continuous on I × (0, R
1
α ), then fn(x) =

u
(nα)
t (x,0)
αnn! .

To clarify the basic concept of RPSM, let’s take a nonlinear fractional differential equation of the form:

(3.10) Tαu(x, t) +N [x]u(x, t) +R[x]u(x, t) = c(x, t), x ∈ R, n− 1 < nα ≤ n, t > 0
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expressed by initial condition

(3.11) f0(x) = u(x, 0) = f(x)

where R[x] is a linear, N [x] is a non-linear operator and c(x, t) are continuous functions.
The RPSM method made up of stating the solution of the equation (3.10) subject to (3.11) as a fractional

power series expansion around t = 0.

(3.12) f(n−1)(x) = T
(n−1)α
t u(x, 0) = h(x)

The expansion form of the solution is given by

(3.13) u(x, t) = f(x) +

∞∑
n=0

fn(x)
tnα

αnn!

In the next step, the k.truncted series of u(x, t), namely uk(x, t) can be written as:

(3.14) uk(x, t) = f(x) +

k∑
n=0

fn(x)
tnα

αnn!

If the 1. RPS approximate solution u1(x, t) is

(3.15) u1(x, t) = f(x) + f1(x)
tα

αn

then uk(x, t) could be reformulated as

(3.16) uk(x, t) = f(x) + f1(x)
tα

αn
+

k∑
n=2

fn(x)
tnα

αnn!

for 0 < α ≤ 1, 0 ≤ t < R 1
v , x ∈ I and k = 2, 3, 4, ...

First we express the residual function as

(3.17) Res(x, t) = Tαu(x, t) +N [x]u(x, t) +R[x]u(x, t)− c(x, t)

and the k. residual function as

(3.18) Resk(x, t) = Tαuk(x, t) +N [x]uk(x, t) +R[x]uk(x, t)− g(x, t), k = 1, 2, 3, ...

It is clear that Res(x, t) = 0 and lim
k→∞

Resk(x, t) = Res(x, t) for each x ∈ I and 0 ≤ t. In fact this lead to
∂(n−1)α

∂t(n−1)αResk(x, t) for n = 1, 2, 3, ..., k because in the conformable sense, the fractional derivative of a constant
is zero [4,12,15]. Solving the equation ∂(n−1)α

∂t(n−1)αResk(x, 0) = 0 gives us the desired fn(x) coefficients. Thus the
un(x, t) approximate solutions can be obtained respectively.
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4. Application of Methods for Solving Fractional Kaup-Kupershmidt Equation

4.1. Application of Tanh Method.

Regard the conformable time-fractional Kaup-Kupershmidt equation

(4.1) ∂αu

∂tα
+ 45u2

∂u

∂x
− 15p

∂u

∂x

∂2u

∂x2
− 15u

∂3u

∂x3
+
∂5u

∂x5
= 0

where α ∈ (0, 1). Using the wave transform (3.2) and (3.3), the equation (4.1) becomes

(4.2) −mu′ + 45ku2u′ − 15k3pu′u′′ − 15k3u′u′′′ + k5u(5)

where the prime symbolizes the derivation with respect to ξ. Then using the ansatz

(4.3) Y = tanh(ξ)

and

(4.4) u = S(Y ) =

r∑
i=0

aiY
i

When we balance the highest order linear terms in the resulting equation with the highest order nonlinear terms
in Eq.(4.2), we obtain r = 2 and using (4.4) and (3.6) in resulting equation we get

− m(1− Y 2)
dS

dY
+ 45kS2(1− Y 2)

dS

dY
− 15k3p(1− Y 2)

dS

dY

(
−2Y (1− Y 2)

dS

dY
+ (1− Y 2)2

d2S

dY 2

)
− 15k3S

(
2(1− Y 2)(3Y 2 − 1)

dS

dY
− 6Y (1− Y 2)2

d2S

dY 2

)
+ k5(−8(−1 + Y 2)(2− 15Y 2 + 15Y 4)

dS

dY

− 120Y (−1 + Y 2)2(−1 + 2Y 2)
d2S

dY 2
) = 0.(4.5)

Using obtained values in (4.4), subrogating into (4.5), equating all coefficients of Y led to an algebraic equation
system for a0, a1, a2, k,m as follows.

45a20a1k + 30a0a1k
3 + 16a1k

5 − a1m− 30a1a2k
3p = 0,

90a0a
2
1k + 90a20a2k + 30a21k

3 + 240a0a2k
3 + 272a2k

5 − 2a2m+ 30a21k
3p− 60a22k

3p = 0,

−45a20a1k + 45a31k + 270a0a1a2k − 120a0a1k
3 + 270a1a2k

3 − 136a1k
5 + a1m+ 210a1a2k

3p = 0,

−90a0a
2
1k − 90a20a2k + 180a21a2k + 180a0a

2
2k − 120a21k

3 − 600a0a2k
3 + 240a22k

3

−1232a2k
5 + 2a2m− 60a21k

3p+ 300a22k
3p = 0,

−45a31k − 270a0a1a2k + 225a1a
2
2k + 90a0a1k

3 − 720a1a2k
3 + 240a1k

5 − 330a1a2k
3p = 0,

−180a21a2k − 180a0a
2
2k + 90a32k + 90a21k

3 + 360a0a2k
3 − 600a22k

3 + 1680a2k
5 + 30a21k

3p− 420a22k
3p = 0,

−225a1a
2
2k + 450a1a2k

3 − 120a1k
5 + 150a1a2k

3p = 0,

−90a32k + 360a22k
3 − 720a2k

5 + 180a22k
3p = 0.

Solving this system with aid of Mathematica we get two solution set
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Set 1:

m = 2
(
−12k5 + 10k5p+ 5k5p2 − 5k3p

√
k4 (−4 + 4p+ p2)

)
,

a0 =
2

3

(
−2k2 − k2p+

√
k4 (−4 + 4p+ p2)

)
,

a1 = 0,(4.6)

a2 = 2k2 + k2p−
√
−4k4 + 4k4p+ k4p2.

Thus using (3.2), (4.3), (4.4) and (4.6) the exact solutions can be found as

u1(x, t) =
2

3

(
−2k2 − k2p+

√
k4 (−4 + 4p+ p2)

)

+
(

2k2 + k2p−
√
−4k4 + 4k4p+ k4p2

)
tanh

kx− 2
(
−12k5 + 10k5p+ 5k5p2 − 5k3p

√
k4 (−4 + 4p+ p2)

)
tα

α

2

.(4.7)

Set 2:

m = 2
(
−12k5 + 10k5p+ 5k5p2 + 5k3p

√
k4 (−4 + 4p+ p2)

)
,

a0 =
2

3

(
−2k2 − k2p−

√
k4 (−4 + 4p+ p2)

)
,

a1 = 0,(4.8)

a2 = 2k2 + k2p+
√
−4k4 + 4k4p+ k4p2,

Hence again using (3.2), (4.3), (4.4) and (4.7) the analytical solutions can be found as

u2(x, t) =
2

3

(
−2k2 − k2p−

√
k4 (−4 + 4p+ p2)

)

+
(

2k2 + k2p+
√
−4k4 + 4k4p+ k4p2

)
tanh

kx− 2
(
−12k5 + 10k5p+ 5k5p2 + 5k3p

√
k4 (−4 + 4p+ p2)

)
tα

α

2

.(4.9)

4.2. Application of Residual Power Series Method. Consider the nonlinear time fractional Kaup-Kupershmidt
equation

(4.10) ∂αu

∂tα
+ 45u2

∂u

∂x
− 15p

∂u

∂x

∂2u

∂x2
− 15u

∂3u

∂x3
+
∂5u

∂x5
= 0

with the initial conditions obtained from the exact solution

(4.11) u(x, 0) =
2

3

(
−2k2 − k2p+

√
k4 (−4 + 4p+ p2)

)
+
(

2k2 + k2p−
√
−4k4 + 4k4p+ k4p2

)
tanh [kx]

2

The exact solution of time fractional Kaup-Kupersmidt equation is taken as (4.7)
For residual power series

(4.12) u(x, t) = f(x) +

∞∑
n=0

fn(x)
tnα

αnn!
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and k.truncated series of u(x, t)

(4.13) uk(x, t) = f(x) +

k∑
n=0

fn(x)
tnα

αnn!
, k = 1, 2, 3, ...

The k1 th residual function of time fractional Kaup-Kupershmidt equation is:

(4.14) Resuk(x, t) =
∂αuk
∂tα

+ 45u2k
∂uk
∂x
− 15p

∂uk
∂x

∂2uk
∂x2

− 15uk
∂3uk
∂x3

+
∂5uk
∂x5

to determine the coefficient f1(x), in uk(x, t), we should subrogate the 1.th truncated series u1(x, t) = f(x) +

f1(x) t
α

α into the 1st truncated residual function

(4.15) Resu1(x, t) =
∂αu1
∂tα

+ 45u21
∂u1
∂x
− 15p

∂u1
∂x

∂2u1
∂x2

− 15u1
∂3u1
∂x3

+
∂5u1
∂x5

Now for the substitution of t = 0 through equation Resu1(x, t) to obtain

(4.16) Resu1(x, 0) = f1(x) + 45f2(x)f ′(x)− 15pf ′(x)f
′′
(x)− 15f(x)f (3)(x) + f (5)(x)

Thus for Res1(x, 0) = 0

(4.17) f1(x) = −45f2(x)f ′(x) + 15pf ′(x)f
′′
(x) + 15f(x)f (3)(x)− f (5)(x)

Therefore, we obtain the 1st RPS approximate solution of time-fractional Kaup-Kupershmidt equation as

(4.18) u1(x, t) = f(x) +
1

α
tα(−45f2(x)f ′(x) + 15pf ′(x)f

′′
(x) + 15f(x)f (3)(x)− f (5)(x))

Again, to determine the second unknown coefficient f2(x), we subrogate the 2nd truncated series solution
u2(x, t) = f(x) + f1(x) t

α

α + f2(x) t
2α

2α2 into the 2nd truncated residual function

(4.19) Resu2(x, t) =
∂αu2
∂tα

+ 45u22
∂u2
∂x
− 15p

∂u2
∂x

∂2u2
∂x2

− 15u2
∂3u2
∂x3

+
∂5u2
∂x5

to obtain

Resu2(x, t) = 45

(
f(x) +

tαf1(x)

α
+
t2αf2(x)

2α2

)(
f ′(x) +

tαf
′

1(x)

α
+
t2αf

′

2(x)

2α2

)

−15p

(
f ′(x) +

tαf
′

1(x)

α
+
t2αf

′

2(x)

2α2

)(
f
′′
(x) +

tαf
′′

1 (x)

α
+
t2αf

′′

2 (x)

2α2

)

−15

(
f(x) +

tαf1(x)

α
+
t2αf2(x)

2α2

)(
f (3)(x) +

tαf
(3)
1 (x)

α
+
t2αf

(3)
2 (x)

2α2

)

+f (5)(x) +
tαf

(5)
1 (x)

α
+
t2αf

(5)
2 (x)

2α2
(4.20)

Now, applying Tα on both sides of Resu2(x, t) and equating to 0 for t = 0 gives:
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f2(x) = −90f(x)f1(x)f ′(x)− 45f2(x)f
′

1(x) + 15pf
′

1(x)f
′′

(x)

+15pf
′
(x)f

′′

1 (x) + 15f1(x)f (3)(x) + 15f(x)f
(3)
1 (x)− f (5)1 (x)(4.21)

Therefore the 2nd RPS approximate solution of time-fractional Kaup-Kupershmidt is obtained as:

u2(x, t) = f(x) +
tαf1(x)

α
+
t2α

2α2
(−90f(x)f1(x)f ′(x)− 45f2(x)f

′

1(x) + 15pf
′

1(x)f
′′

(x)

+15pf
′
(x)f

′′

1 (x) + 15f1(x)f (3)(x) + 15f(x)f
(3)
1 (x)− f (5)1 (x))(4.22)

In the same manner, we apply the same procedure for n = 3 to obtain the following results.

f3(x) = −90f2(x)f ′(x)− 90f(x)f2(x)f ′(x)− 180f(x)f1(x)f ′1(x)− 45f2(x)f
′

2(x) + 15pf
′

2(x)f
′′

(x)

+30pf
′

1(x)f
′′

1 (x) + 15pf
′
(x)f

′′

2 (x) + 15f2(x)f (3)(x) + 30f1(x)f
(3)
1 (x) + f(x)f

(3)
2 (x)− f (5)2 (x)(4.23)

u3(x, t) = f(x) +
tαf1(x)

α
+
t2αf2(x)

2α2
+
t3α

6α3
(−90f2(x)f ′(x)− 90f(x)f2(x)f ′(x)

−180f(x)f1(x)f ′1(x)− 45f2(x)f
′

2(x) + 15pf
′

2(x)f
′′

(x) + 30pf
′

1(x)f
′′

1 (x)

+15pf
′
(x)f

′′

2 (x) + 15f2(x)f (3)(x) + 30f1(x)f
(3)
1 (x) + f(x)f

(3)
2 (x)− f (5)2 (x))(4.24)

α = 0.25 α = 0.50 α = 0.75 α = 1

x u3 u3 u3 RPSM Exact Absolute error

0 -0.165431 -0.166569 -0.166653 -0.166664 -0.166664 1.58945E-11
0.1 -0.16656 -0.166438 -0.166214 -0.166118 -0.166118 1.55637E-11
0.2 -0.166442 -0.165064 -0.164536 -0.164335 -0.164335 1.45830E-11
0.3 -0.165082 -0.162474 -0.161652 -0.161350 -0.161350 1.30444E-11
0.4 -0.162504 -0.158718 -0.157618 -0.157222 -0.157222 1.10004E-11
0.5 -0.158761 -0.153869 -0.152513 -0.152028 -0.152028 8.67079E-12
0.6 -0.153924 -0.148018 -0.146429 -0.145866 -0.145866 6.11641E-12
0.7 -0.148083 -0.141269 -0.139477 -0.138844 -0.138844 3.52712E-12
0.8 -0.141344 -0.133740 -0.131774 -0.131083 -0.131083 1.02934E-12
0.9 -0.133824 -0.125555 -0.123446 -0.122708 -0.122708 1.25487E-12
1.0 -0.125646 -0.116841 -0.114621 -0.113846 -0.113846 3.22763E-12

Table 1. Comparison of numerical results for λ = 0.1, ω = 1, µ = 0, t = 0.1, p = 2.5 and k = 0.5

with different values of α.

5. Conclusion and Discussion

In this paper, exact and approximate solutions of the nonlinear time-fractional Kaup-Kupershmidt differential
equation with the tanh method and residual power series method (RPSM) are obtained. With the help of
conformable fractional derivative definition we can easily transform fractional differential equations to the known
classical differential equations. By these methods and conformable fractional derivative definition, it is shown
that there is no need another complex method and complex definition. Approximate and exact solutions of time-
fractional Kaup-Kupershmidt differential equation are compered. Absolute errors are given with approximate
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(a) RPSM solution for α = 1.

(b) Exact solution for α = 1

Figure 1

(a) RPSM solution for α = 0.25. (b) RPSM solution for α = 0.50

Figure 2

and exact solutions with the help of graphs and tables. Also, it is seen that conformable fractional derivative is
clearer, simpler and understandable than other fractional derivative definitions.
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Figure 3. RPSM solution for α = 0.75.
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Figure 4. Plots of u3(x, t) versus space x for different values of α at t = 0.1..
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