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Abstract
We discuss the geometric formulation of continuum defects consisting of dislocations and
disclinations. After reviewing the metric affine geometry and the present geometric formu-
lation of dislocation and disclination written in terms of torsion and full curvature (together
with vanishing non-metricity), we give a new formulation of them in a novel way in terms
of torsion and non-metricity (together with vanishing full curvature), the so-called general
teleparallel geometry. All calculations are performed by using the exterior algebra.We obtain
continuity equations explicitly for dislocation density and disclination density.

Keywords Curvature · Torsion · Non-metricity · Continuum mechanics · Defect ·
Disclination · Dislocation

1 Introduction

It is known that the role of geometry in physics is very valuable. Themost familiar example of
it is general relativity, Einstein’s theory of gravity, inwhich the gravitational field is associated
with the Riemann curvature tensor. With similar motivations, geometric quantities have been
used to express the theory of defects in materials. In this context, the physical state of a
material describes the geometry of the space occupied by its atoms. In studies conducted for
this purpose so far, dislocation type defects have been paired with torsion and disclination
type defects with full curvature [1–11]. We review main results of those works in Section 3

B Muzaffer Adak
madak@pau.edu.tr

Tekin Dereli
tdereli@ku.edu.tr

Ertan Kok
ekok@pau.edu.tr

Özcan Sert
osert@pau.edu.tr

1 Computational and Gravitational Physics Laboratory, Department of Physics, Faculty of Science,
Pamukkale University, Denizli, Türkiye

2 Department of Basic Sciences, Faculty of Engineering and Natural Sciences, Maltepe University,
34857 Maltepe, Istanbul, Türkiye

3 Department of Physics, Faculty of Science, Koç University, 34450 Sariyer, Istanbul, Türkiye

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10773-025-05962-2&domain=pdf


99 Page 2 of 19 International Journal of Theoretical Physics (2025) 64 :99

in terms of exterior forms. There are works discussing the point defects apart from these two
line defects as well and their possible relations to the non-metricity [12–17]. In addition to
theseworks, the authors of Ref [18] investigate the nonlinear equations of the elasticity theory
for bodies with impurities, dislocations and disclinations by adhering a novel mathematical
perspective, more specifically by using the method of the Poisson “hydrodynamic” brackets.
The papers [19, 20] may be seen as the first works discussing the possible relations among
the non-metric connections (i.e. non-metricity), quasi-dislocations and quasi-disclinations.

In this work we adopt the terminology used by de Wit in the papers [21–24] published on
the theory of continuum defects. Accordingly, in 1907, Volterra studied the elastic fields for
a long straight isotropic cylinder containing dislocations and disclinations [25] and named
these defects as distortions. In 1920, Love called them as dislocations [26]. Love’s nomencla-
ture has become widely accepted, but its meaning has become restricted to only translational
dislocations by suppressing rotational dislocations. Therefore, in 1958 Frank introduced a
new name, disclination (the first version was disinclination), to describe rotational disloca-
tion [27]. Since then, the word “distortion" has been used for the gradient of displacement.
Correspondingly, Volterra’s original word “distortion" (dislocation and disclination) is some-
times confused with today’s word “distortion" (gradient of displacement). To overcome this
confusion, it is prefered to use the term “defect" (dislocation and disclination) instead of
Volterra’s original word “distortion". The word “defects" in this terminology may seem to
refer to line defects in crystal researches. However, the usage of the word “defect" does not
exclude point defects in crystal studies, because a point defect can be considered as a defect
loop (closed line defect). In summary, disclination is a defect in the orientation of director
whereas a dislocation is a defect in positional order.

Dislocation density αab and disclination density θab are very convenient tools to obtain
the most useful elastic fields such as distortion, strain, dilatation, stress and rotation caused
by the presence of dislocations and disclinations in a continuum. Physically, as the diagonal
components of dislocation density represents the screw type translational defects, the off-
diagonal ones are relatedwith the edge type translational defects.Analogously, as the diagonal
components of disclination density are associated with the wedge type of rotational defects,
the off-diagonal components measure the twist type rotational defects [23]. In the absence of
disclination, the dislocation density is defined self-consistently and is directly related to the
Burgers vector �b via the formula ba := ˜

S αba∗eb where the term ∗eb represents the oriented
area element on the surface S. This relation means that the dislocation density αba represents
the flux of Burgers vectors in the xa direction that pierces unit area of the surface S normal
to the xb direction. Moreover, in the presence of disclination, it shifts the dislocation density
and therefore in addition to the (general) Burgers vector �B a new vector, the so-called the
Frank vector ��, could be defined corresponding to the disclination density. Their definitions
given by [22] will be recast in the Section 3.

However, if torsion is paired with dislocation and full curvature with disclination as in the
geometric picturewe summarized above, therewill be no shift in dislocationwhendisclination
occurs. On the contrary, the presence of dislocation causes a shift in disclination as shown in
the papers [21–24]. This contradiction is the first motivation leading us to do this work.

On the other hand, we know that ametric affine geometry is defined by the triple; manifold,
metric, affine connection or correspondingly by the triple; non-metricity, torsion, curvature.
Furthermore, the affine connection 1-form, ωab, contains a Riemannian component (the so-
called Levi-Civita connection 1-form, ω̃ab, computed from metric) and a non-Riemannian
component (which we call as defect tensor-valued 1-form, Lab, consisting of tensors of tor-
sion and non-metricity). Although in the literature of geometry and gravity it is usually called
as distortion 1-form, we prefer to name it as defect 1-form appropriate to the topic. We sum-
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marize the basics of metric affine geometry in the forthcoming section. More specifically,
while the symmetric part of defect 1-form consist of only non-metricity 1-form, its anti-
symmetric part contains torsion and certain components of non-metricity. Thus, when the
non-metricity vanishes, the defect 1-form turns out to be anti-symmetric and is given only
by torsion. However, when non-metricity does not vanish, along with that the symmetric
part of the defect 1-form appears, its anti-symmetric part is shifted by certain components of
non-metricity. One can consult Ref. [28] for further reading. In conclusion, the resemblances
between the statements on dislocation (disclination) and the anti-symmetric part (symmet-
ric part) of defect 1-form led us to investigate the reformulation of the defect theory of a
continuum in terms of Cartan-Weyl (general teleparallel) geometry. Besides all these, on the
geometry side, the general teleparallel geometry has an advantage over the Riemann-Cartan
geometry. While the latter does not have a metric formulation, the former does. Metric for-
mulation of general teleparallel geometry is the second motivation leading us to do this work.
In fact, all three teleparallel geometries have metric formulations [28]. As far as we know,
our general teleparallel geometric formulation of continuum defects is the first attempt in
the literature. Free from special discussion here, although plenty of papers has been pub-
lished, no fundamental theory of defects is yet available. We develop our formulation for any
non-Cartesian coordinates covariantly in the language of exterior algebra.

The plan of our paper is as follows. Since our work is based on mainly the geometry and
the exterior algebra, we summarize our mathematical preliminaries in the next section. Then
we review the present literature on geometric formulation of the theory of continuum defects
in Section 3. Later, we give our novel theory of continuum defects written in the general
teleparallel geometry in Section 4. In the section ofDiscussion,we collect our results and state
our future projects as continuation of this paper. Besides, since the continuity equations of
dislocation density and disclination density are derived mainly through the Bianchi identities
relating non-metricity, torsion and full curvature to each other, we give some detail on them
in the language of exterior algebra in the section of Appendix.

2 Metric Affine Geometry

The triple {M, g,∇} or {Qab, T a, Ra
b} defines a metric affine geometry where M is three-

dimensional orientable and differentiable manifold, g is non-degenerate symmetric metric,
∇ is full (or affine) connection or covariant derivative, Qab is non-metricity 1-form, T a is
torsion 2-form and Ra

b is curvature 2-form [29, 30]. We denote the anholonomic metric-
orthonormal coframe by ea , then write the metric as g = gabea ⊗ eb where gab := δab is
the Euclid metric with δab = diag(1, 1, 1). The full connection is determined by the full
connection 1-form ωa

b via the definition ∇ea := −ωa
b ∧ eb or ∇Xa := Xb ⊗ ωb

a where
⊗ denotes tensor product, ∧ is the exterior product in the exterior algebra and Xa is the
orthonormal frame such that ea(Xb) = δab is the duality relation. Besides, ea is called the
metric orthonormal (or shortly orthonormal) 1-form and the Cartan structure equations are
givenby tensor-valuednon-metricity 1-form1, tensor-valued torsion2-formand tensor-valued
full (or non-Riemannian) curvature 2-form, respectively,

Qab := −1

2
Dδab = −1

2

(

dδab − ωc
aδcb − ωc

bδac
) = ω(ab), (1a)

T a := Dea = dea + ωa
b ∧ eb, (1b)

Ra
b := Dωa

b := dωa
b + ωa

c ∧ ωc
b, (1c)

1 Here ω(ab) = Qab is the reason why we adopt the factor − 1
2 in the definition of non-metricity
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where d is the exterior derivative and D is the covariant exterior derivative.We used the result
dδab = 0 in the orthonormal frame in (1a). We utilize the usual notation: (•) and [•] means
to calculate the symmetric and anti-symmetric parts with respect to the indices enclosed, i.e.,
ω(ab) = 1

2 (ωab + ωba) and ω[ab] = 1
2 (ωab − ωba). They satisfy the Bianchi identities

DQab =R(ab), (2a)

DTa =Ra
b ∧ eb, (2b)

DRa
b =0. (2c)

Accordingly, we define the covariant exterior derivative of any (p, q)-type tensor-valued
exterior form T

a1a2···ap
b1b2···bq below

DT
a1a2···ap

b1b2···bq = dT
a1a2···ap

b1b2···bq + ωa1 c ∧ T
ca2···ap

b1b2···bq + · · · + ωap c ∧ T
a1a2···c

b1b2···bq
−ωc

b1 ∧ T
a1a2···ap

cb2···bq − · · · − ωc
bq ∧ T

a1a2···ap
b1b2···c. (3)

If need, one can pass to tensor notation easily by expanding the concerned exterior forms
in components as follows

Qab = Qabce
c, T a = 1

2
T a

bce
b ∧ ec, Ra

b = 1

2
Ra

bcde
c ∧ ed . (4)

Thus, we deduce that Qabc = Q(ab)c is symmetric at the first two indices, T a
bc = T a [bc] is

anti-symmetric at the last two indices and Rabcd = Rab[cd] is anti-symmetric at the last two
indices and asymmetric Rabcd = R[ab]cd +R(ab)cd at the first two indices by definition. In the
subsequent sections, the definitions of the first kind trace 1-form Q := δabQab = Qa

abeb

and the second kind trace 1-form P := (ιaQab)eb = Qa
baeb of the non-metricity tensor

will be used frequently where ιa ≡ ιXa denotes the interior derivative of the exterior algebra,
ιbea = δab . Furthermore, it is worthy to remember that the symmetric part of the first two
indices of Rabcd depends on existence of the non-metricity andwill allow us to definemetrical
disclination density tensor in the next section. Furthermore,wewould like to remind explicitly
that dδab = 0, dδab = 0 and dδab = 0, but Dδab = −2Qab, Dδab = +2Qab and Dδab = 0.
Accordingly, one must pay special attention as raising or lowering an index in front of D
operation in non-metric geometries.

Meanwhile it is worthwhile to remark shortly on our choice of the orthonormal coframe.
In this paper we adhere to formulate all quantities in the orthonormal frame (or equiva-
lently in the orthonormal coframe). Of course, a non-orthogonal coframe can be chosen,
for example, the coordinate coframe, dxα . Nevertheless, it is known that one can always
pass from the orthonormal coframe to the coordinate coframe or vise versa at any stage of
calculations via a linear transformation dxα = hα

aea and its inverse ea = haαdxα where
hα

a is called as dreibein. Then, the affine connection 1-form transforms correspondingly as
ωα

β = hα
aω

a
bhbβ + hα

adhaβ . Thus, tensor-valued exterior forms transform covariantly,
i.e., gαβ = haαhbβδab, Qαβ = haαhbβQab, T α = hα

aT a , Rα
β = hα

a Ra
bhbβ . Finally we

rewrite the Cartan structure equations in the coordinate coframe as

Qαβ := −1

2
Dgαβ = −1

2

(

dgαβ − ωγ
αgγβ − ωγ

βgαγ

) = −1

2
dgαβ + ω(αβ), (5a)

T α := D(dxα) = d(dxα) + ωα
β ∧ dxβ = ωα

β ∧ dxβ, (5b)

Rα
β := Dωα

β := dωα
β + ωα

γ ∧ ωγ
β, (5c)

where d(dxα) = d2xα = 0 because of Poincare lemma in the exterior algebra. One of
advantages of the usage of the orthonormal coframe is that the exterior derivative and the
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variation of metric components vanish, dgab = 0 and δgab = 0, but they do not in the non-
orthonormal coframe, dgαβ �= 0 and δgαβ �= 0. For further discussion on the orthonormal
coframe, the coordinate coframe and the mixed coframe we direct the reader to the paper
[28].

2.1 Decomposition of Full Connection

The full connection 1-form,ωa
b, can be decomposed uniquely to a Riemannian piece, ω̃ab(g)

determined by metric plus a non-Riemannian piece, Lab(T , Q) determined by torsion and
non-metricity [28, 31, 32]

ωab = ω̃ab + Lab, (6)

where ω̃ab = −ω̃ba is the Levi-Civita connection 1-form,

ω̃ab = 1

2

[−ιadeb + ιbdea + (ιaιbdec)e
c] or ω̃a

b ∧ eb = −dea (7)

and Lab is the tensor-valued defect 1-form2,

Lab = 1

2

[

ιaTb − ιbTa − (ιaιbTc)e
c]

︸ ︷︷ ︸

contortion

+ (ıbQac − ıa Qbc)e
c + Qab

︸ ︷︷ ︸

dis f ormation

︸ ︷︷ ︸

de f ect

. (8)

In the literature it is common to define the tensor-valued contortion 1-form, Kab = −Kba ,
in terms of torsion 2-form

Kab = 1

2

[

ιaTb − ιbTa − (ιaιbTc)e
c] or Ka

b ∧ eb = T a . (9)

It is worthy to notice that the symmetric part of the affine connection is determined by only
non-metricity, ω(ab) = Qab, the remainder of ωab is the anti-symmetric, ω[ab] := �ab =
ω̃ab+Kab+(ıbQac−ıa Qbc)ec. Correspondingly, itwould beuseful towriteωab = �ab+Qab

in order to decompose the full curvature as the anti-symmetric piece plus symmetric piece,
Rab = R[ab] + R(ab), where

R[ab] =d�ab + �ac ∧ �c
b + Qac ∧ Qc

b, (10a)

R(ab) =dQab + �ac ∧ Qc
b + Qac ∧ �c

b. (10b)

Here we notice that vanishing of non-metricity terminates the symmetric part of the full
curvature 2-form. Besides, all the Riemannian quantities will be labelled by a tilde over them
in this paper. Accordingly, the full curvature 2-form can be split into Riemannian part plus
non-Riemannian part

Ra
b = ˜Ra

b + ˜DLa
b + La

c ∧ Lc
b (11)

where ˜Ra
b are the Riemannian curvature 2-form and ˜DLa

b is the covariant exterior derivative
of La

b with respect to the Levi-Civita connection,

˜Ra
b = ω̃a

b + ω̃a
c ∧ ω̃c

b, (12a)

˜DLa
b = dLa

b + ω̃a
c ∧ Lc

b − ω̃c
b ∧ La

c. (12b)

2 In gravity literature Lab is called tensor-valued distortion 1-form.
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Whennon-metricity is set to zero, the full connection is calledmetric compatible inwhich case
the symmetric parts of full connection and full curvature vanish. If torsion is also reset along
with non-metricity, the full connection is named the Levi-Civita (or Riemannian) connection.
An affine geometry is classified whether non-metricity, torsion and/or full curvature vanish
or not, see Table 1.

2.2 Some Algebraic Identities

In the calculations we use the following abbreviations

eab··· := ea ∧ eb ∧ · · · , ιab··· := ιaιb · · · , ∂a := ιad, Da := ιa D, (13)

and algebraic identities

D ∗ ea = −Q ∧ ∗ea + ∗eab ∧ T b, (14a)

D ∗ eab = −Q ∧ ∗eab + ∗eabc ∧ T c, (14b)

D ∗ eabc = −Q ∧ ∗eabc, (14c)

and

� ∧ ∗�=(−1)pq� ∧ ∗�, ιa ∗ � = ∗(� ∧ ea), ea ∧ ιa� = p�, (15a)

ea ∧ ∗eb = δab ∗ 1, ea ∧ ∗(eb ∧ ec) = −δab ∗ ec + δac ∗ eb, (15b)

ea ∧ eb ∧ ec = εabc ∗ 1, ∗ ea ∧ ∗(eb ∧ ec) = εabc ∗ 1 (15c)

where ∗ denotes the Hodge duality map, � is any p-form, � is any q-form and pq is
the ordinary multiplication of numbers of p and q . The operation of Hodge map may be
performed via the totally anti-symmetric epsilon tensor by relations

∗1= 1

3!εabce
a ∧ eb ∧ ec =e123, ∗ea = 1

2
εabce

bc, ∗eab=εabce
c, ∗eabc = εabc.

(16)

Table 1 Classification of affine
geometries

Qab T a Ra
b Geometry Name

0 0 0 Minkowski

0 0 �= 0 Riemann

0 �= 0 0 Metric (Weitzenböck) teleparallel

�= 0 0 0 Symmetric teleparallel

0 �= 0 �= 0 Riemann-Cartan

�= 0 0 �= 0 Riemann-Weyl

�= 0 �= 0 0 General teleparallel (Cartan-Weyl)

�= 0 �= 0 �= 0 Riemann-Cartan-Weyl (Metric affine)

In literature, sometimes firstly Qab is decomposed as Qab = /Qab +
1
3 δabQ where δabQab = Q and δab /Qab = 0, then the case of /Qab = 0
and Q �= 0 is called Weyl geometry. But, here by “Weyl geometry” we
mean Qab �= 0 in general!
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Wefix the orientation ofmanifold by choosing ε123 = +1. Further, wewill need the following
algebraic results

εabcε
abc = 3!, εabcε

abm = 2!δmc , εabcε
alm = δlbδ

m
c − δlcδ

m
b , εabcε

klm =
∣

∣

∣

∣

∣

∣

δka δla δma
δkb δlb δmb
δkc δlc δmc

∣

∣

∣

∣

∣

∣

.

(17)

2.3 Path Independence of Scalar Product in the Non-Metric Teleparallel Geometries

Scalar (inner) product of two vectors may be dependent of the path along which they are
parallel propagated in non-metric geometries. In order to see this explicitly let us consider
two vectors U = UaXa and V = V aXa . Their scalar product is formulated by (U , V ) =
δabUaV b. Now, we parallel transfer it along a loop γ . Its total change is calculated as follows

�(U , V ) =
˛

γ

d(U , V ) =
˛

γ

d
(

δabU
aV b

)

=
˛

γ

[

(Dδab)U
aV b + δab(DU

a)V b + δabU
a(DVb)

]

= − 2
˛

γ

QabU
aV b +

˛

γ

Va(DU
a) +

˛

γ

Ua(DVa). (18)

On the other hand, parallel transport of vectorsU andV along the closed curve γ is formulated
by Dγ̇Ua = 0 and Dγ̇ V a = 0 where γ̇ denotes the tangent vector to the curve γ . They
correspond to vanishing of the second and the third integrals. Thus, we arrive at

�(U , V ) = −2
˛

γ

QabU
aV b. (19)

Now, let S be the surface bounded by the loop γ , i.e., ∂S := γ . Then, the usage of Stokes
theorem, written as

´
M d� = ´

∂M � in the language of exterior forms where � is any
p-form, gives rise to

�(U , V ) = − 2
˛

∂S
QabU

aV b = −2
¨

S
d

(

QabU
aV b

)

= − 2
¨

S
(DQab)U

aV b + 2
¨

S
QabV

b(DUa) + 2
¨

S
QabU

a(DVb)

= − 2
¨

S
R(ab)U

aV b. (20)

Again, the last two integrals are equal to zero in the second line because of the parallel
transport rule of vectors.We used the first Bianchi identity (2a) DQab = R(ab) at the last step.
Consequently, because of existence of non-metricity parallel transport of the scalar product
seems depending on the path. But, in teleparallel geometries defined by zero-curvature, i.e.,
both R[ab] = 0 and R(ab) = 0, it turns out to be independent of the path. This result is the
same as the Proposition 2.1 of Ref. [10]. For more discussion on this issue one can consult
[33] and the references therein.
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3 Review of Defect Theory in theMetric Affine Geometry

As a reference we firstly give brief information about the static defect theory written covari-
antly in terms of exterior algebra in the Riemann-Cartan-Weyl geometry. We mainly follow
the results in [2, 10] in which Qabc is called as the density of metric anomalies. Density ten-
sors of dislocation αab, rotational disclination θab andmetrical disclination ζab

c are related to
torsion tensor T a

bc, anti-symmetric components R[ab]cd and symmetric components R(ab)cd

of curvature tensor Ra
bcd , respectively.

αab = 1

2
εacdT b

cd , (21a)

θab = 1

4
εamnεbkl R[kl]mn, (21b)

ζab
c = 1

2
εckl R(ab)kl , (21c)

where we did not insert explicitly the anti-symmetrization parentheses for cd indices in
the first relation, for mn indices in the second one and for kl in the third one because of
appearance of the epsilon tensor. The metric disclination density tensor is symmetric at the
first two indices by definition, ζab

c = ζba
c. Inverses of these relation could be obtained

straightforwardly as

T a
bc = εbcdα

da, (22a)

R[ab]cd = εablεcdkθ
kl , (22b)

R(ab)cd = εcdkζab
k . (22c)

Physically, the diagonal and off-diagonal components of αab measure the density of screw
and edge dislocations, respectively. Similarly the diagonal and off-diagonal components of
θab measure the density of wedge and twist disclinations, respectively [23]. We could not
find any information about the physical interpretation of the metrical disclination density
tensor.

Now, we rewrite them in terms of exterior forms as

αab = ∗(ea ∧ T b), (23a)

θab = 1

2
εbcd ∗ (

ea ∧ R[cd]
)

, (23b)

ζab
c = ∗ (

R(ab) ∧ ec
)

, (23c)

and

T a = αba ∗ eb, (24a)

R[ab] = εabcθ
dc ∗ ed , (24b)

R(ab) = ζab
c ∗ ec. (24c)

Then, the decomposition of the full curvature 2-form turns out to be

Rab = R[ab] + R(ab) = εabcθ
dc ∗ ed + ζab

c ∗ ec. (25)

At this point it is worthwhile to remember the first Bianchi identity (2a); DQab = R(ab).
Thus, in the teleparallel geometries which are defined by the condition Ra

b = 0 meaning
R[ab] ∼ θab = 0 and R(ab) ∼ ζab

c = 0, although we have non-metricity at our disposal, its
covariant derivative and correspondingly both disclinations vanish.
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Covariant exterior derivative of (24a) yields the continuity condition for the dislocation
density tensor. We will show it explicitly.

DTa = D(αba ∗ eb) (26a)

Ra
b ∧ eb =

(

Dαba
)

∧ ∗eb + αba (D ∗ eb) (26b)

Ra
b ∧ eb =

(

Dcα
ba

)

ec ∧ ∗eb + αba (−Q ∧ ∗eb + ∗ebc ∧ T c) (26c)

Hereweused the secondBianchi identity (2b) on lhs and the algebraic identities (14a) and (15)
on rhs. Now, by writing the non-metricity trace 1-form in components Q = Qcec = Qa

acec

and substituting (24a) and (25) here we arrive at the first continuity condition for αab as

Dbα
ba = εabcθbc + εbcdα

cdαba + ζ abb + αbaQb. (27)

Similarly, covariant exterior derivative of (25) generates the second and third continuity
conditions for the rotational and the metrical disclination tensors. In order to see it explicitly
we start with the third Bianchi identity (2c) in the following form.

DRc
b = 0 ⇒ D

(

δca Rab
) = 0 ⇒ DRab = −2Qc

a ∧ Rcb (28)

The anti-symmetric part yields

DR[ab] = −Qc
a ∧ Rcb + Qc

b ∧ Rca . (29)

We substitute (24b) into lhs and (25) into rhs. After using the identities (14a) and (15) we
insert (24a). Thus we arrive at the transient result.

εabc
(

Dmθmc) =εabcεkmdα
kmθdc + 2εabcθ

dcQd + εkbcθ
dk Qc

ad + εakcθ
dk Qc

bd

− ζcb
d Qc

ad + ζca
d Qc

bd (30)

The second continuity condition for the rotational disclination tensor is obtained via multi-
plication of that by εabi and usage of (17) and the rearrangement of indices as

Dbθ
ba = εbcdα

bcθda + θbaQb + θbcQa
cb − εabcζmc

k Qm
bk . (31)

Next, we calculate the symmetric part of (28).

DR(ab) = −Qc
a ∧ Rcb − Qc

b ∧ Rca (32)

Again, we substitute (24c) into lhs and (25) into rhs. After using the identities (14a) and (15)
we insert (24a). Thus we arrive at the third continuity condition for the metrical disclination
tensor.

Dcζab
c = εckdα

kdζab
c + ζab

cQc + θmkεack Q
c
bm + θmkεbck Q

c
am − ζac

mQc
bm − ζbc

mQc
am

(33)

Finally, we obtain the fourth continuity condition for the density of metric anomalies by
performing a short calculation on the first Bianchi identity (2a) with help of the equations
(24a) and (24c).

εabc (DaQmnb) = ζmn
c − αcpQmnp (34)

After obtaining the all continuity conditions we pass to a subcase called the semi-metric
compatible connection which is characterized by

Qab = 1

3
Qδab and ζab

c = 1

3
ζ cδab (35)
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where ζ c = ζb
bc. Now, the four continuity conditions (27), (31), (33), (34) are simplified,

respectively,

Dbα
ba = εabcθbc + εbcdα

cdαba + 1

3
ζ a + αbaQb, (36a)

Dbθ
ba = εbcdα

bcθda + 4

3
θbaQb, (36b)

Daζ
a = εabcα

abζ c + ζ aQa, (36c)

εabc (DaQb) = ζ c − αcbQb. (36d)

For the metric compatible connection defined by the conditions Qa = 0 and ζ a = 0, we
lands to the Riemann-Cartan geometry and the continuity equations turn out to be a much
simpler forms

Dbα
ba = εabcθbc + εbcdα

cdαba, (37a)

Dbθ
ba = εbcdα

bcθda . (37b)

These results are parallel to those of the Ref. [3–5]. Assuming αab and θab to be small and
of the same order, i.e. in the linear limit, we recover the well-known conservation laws or
the kinematic equations of defects in a covariant formulation which are valid for even the
non-Cartesian coordinates.

˜Dbα
ba = εabcθbc, (38a)

˜Dbθ
ba = 0, (38b)

where ˜D denotes the covariant exterior derivative with respect to the Levi-Civita connection
ω̃a

b. The former means that if the disclination density is asymmetric, i.e. εabcθbc �= 0,
dislocations can only end on disclinations (within the body) and conversely must emerge
from them, the latter says that disclinations cannot end inside the body.

In the Cartesian coordinates, xa = (x, y, z), the orthonormal coframe becomes ea = dxa

such that dea = 0 yielding ω̃a
b = 0 via the equation (7). Then, the linear equations of motion

of defects are cast as follows

∂αba

∂xb
= εabcθbc,

∂θba

∂xb
= 0. (39)

Accordingly, the characteristic vectors, the general Burgers vector Bl and the Frank vector
�q are defined in terms of defect densities by de Wit in [22] as

Bl =
¨

S
(α pl + εl qrθ

pq xr ) ∗ ep, (40a)

�q =
¨

S
θ pq ∗ ep. (40b)

The second relation shows that the disclination density θpq represents the flux of Frank vector
in the xq direction that crosses unit area of the surface S normal to the xp direction. A similar
interpretation can be recast for the first relation.

In summary, we obtained the four equations of motion (27), (31), (33), (34) for defects
(dislocation plus disclination plus metric anomaly) in the Riemann-Cartan-Weyl (or metric
affine) geometry defined by the triple (Qab, T a, Ra

b). Non-metricity 1-form is defined as
density of metric anomalies, torsion 2-form is related with dislocation, anti-symmetric and
symmetric components of full curvature 2-form with rotational disclination and metrical
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disclination, respectively. Physical picture of dislocation and rotational disclination are clear
in material science, but visualization of metrical disclination and metric anomaly is blurry.
Therefore, we intend to offer a new formulation of defect theory by narrowing the geometric
realm.

4 A New Formulation of Defect Theory in Terms of the General
Teleparallel Geometry

It isworthy to state explicitly that this section is the original content of our paper.We remember
the decomposition of the full connection, ωab = ω̃ab + Lab. Defect 1-form contains torsion
(via contortion) and non-metricity, Lab = Kab + (ιbQac − ιaQbc)ec + Qab. Thus we realize
that the anti-symmetric part is L[ab] = Kab + (ιbQac − ιaQbc)ec := �ab and the symmetric
part is L(ab) = Qab.

We postulate the following relation between disclination density tensor and the symmetric
part of the defect 1-form, i.e, non-metricity 1-form,

θab = 1

3C
εacd Q

bcd − 1

15C
εabcQc, (41a)

Qbcd = C
(

εk
cdθkb + εk

bdθkc + δbcεmn
dθmn

)

, (41b)

where C is a constant which is kept as a suitable unit conversion parameter. They satisfy the
properties δabθ

ab = 0 and Pb = 0. The second equation can be rewritten as

Qbc = Qbcded = C
(

θkb ∗ ek
c + θkc ∗ ek

b + δbcθmn ∗ emn

)

. (42)

Similarly, we postulate the following relation between dislocation density tensor and the
anti-symmetric part of the defect 1-form

αab = ∗(�bc ∧ ec
a) = ∗(ea ∧ T b) − ∗(Qbc ∧ ec

a), (43a)

T a =
(

αba − 4Cθba + Cθab
)

∗ eb. (43b)

While passing to the second step we use the relation between contortion and torsion (9) and
the relevant identity in the (15). We can compute

αab = 1

2
εamnT b

mn + 4Cθab − Cθba . (44)

Thus, it is worthy to remark that when the non-metricity hence disclination vanishes, the
general dislocation density reduces to the (pure) dislocation density αab = ∗(ea ∧ T b) and
T a = αba ∗ eb as claimed by de Wit [21–24]. The next step is to obtain continuity equations
for the defect tensors. Thus, the crucial point is to compute the covariant exterior derivative
of the equations (41a) and 44.
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We will need the Bianchi identities in component form. Some details can be found in the
Appendix.

DQabc = 2Qa
kQ

kbc + 2Qb
kQ

kac + 2Qc
kQ

abk + 1

2
ιc

(

QabkTk − R(ab)
)

, (45a)

DQc = 2QabQabc + 1

2
ιc

(

QdT
d − R

)

, (45b)

DTa
pk = 1

3
ιpιk

(

T a
bcT

b ∧ ec − Ra
b ∧ eb

)

, (45c)

Dεabc = 2Qdaεd
bc + 2Qdcεd

ab + 2Qdbεd
ca − εabcQ, (45d)

where we denote R = δab Rab. Besides, we want to remind again that we are in the general
teleparallel geometry, i.e., Ra

b = 0, R(ab) = 0, R = 0 above.
Firstly, we calculate the covariant exterior derivative of disclination tensor.

Dθab = 1

3C

[

(Dεacd)Q
bcd + εacd(DQbcd)

]

− 1

15C

[

(Dεabc)Qc + εabc(DQc)
]

(46a)

=C

(

76

15
θab + 4

15
θba

)

θcd ∗ ecd + 1

3
αcdθab ∗ ecd − 1

3
αcaθdb ∗ ecd

+ C

(

41

15
θad − 2

3
θda

)

θcb ∗ ecd + C

(

4

15
θbd + 4

3
θdb

)

θca ∗ ecd

+ 1

6

(

αc f − 4Cθc f + Cθ f cδabθd f ∗ ecd
)

+ C

(

46

15
θad − 2

3
θda

)

θcd ∗ ecb

− 1

6
αcdθ

ad ∗ ecb − C

6
θdcθ

ad ∗ ecb + 4C

15
θbdθcd ∗ eca (46b)

Secondly, we calculate the covariant exterior derivative of dislocation tensor.

Dαab =1

2

(

Dεamn) T b
mn + 1

2
εamn

(

DTb
mn

)

+ 4CDθab − CDθba (47a)

=C
(

5αab + θba
)

θcd ∗ ecd + 1

3

(

αdb − 4Cθdb + Cθbd
) (

αc f − 5Cθc f
)

εc f de
a

+ C

3
αcd

(

4θab − θba
)

∗ ecd + C2
(

32

3
θad − 4θda

)

θcb ∗ ecd

+ C2
(

12θad − 8

3
θda

)

θcd ∗ ecb + C2
(

2

3
θdb − 2θbd

)

θcd ∗ eca

+ C2
(

6θdb − 5

3
θbd

)

θca ∗ ecd + 1

2

(

αc f − 4Cθc f + Cθ f c
)

θddδ
ab ∗ ec f

+ Cαcd

(

θbd ∗ eca − θad ∗ ecb
)

+ C2θdc

(

1

6
θbd ∗ eca − 2

3
θad ∗ ecb

)

+ C

(

1

3
αcbθda − 4

3
αcaθdb

)

∗ ecd (47b)
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Thus we compute the covariant divergence of defect tensors by hitting ιa to the found results.

Daθ
ab =C

3
θabθcdεcda + 2

3
αcdθabεcda + C

(

46

15
θad − 2

3
θda

)

θcdε
cb

a

+ C

(

2

3
θcd − 1

3
θdc

)

θadεcba − 1

3
αcdθ

adεcba (48a)

Daα
ab =1

2
αabαcdεcda + 11C

3
αabθcdεcda + 4C

3
αcdθabεcda + C2

(

θba − θab
)

θcdεcda

+ C2
(

10θad − 13

6
θda

)

θcdε
cb

a −
(

3C

2
αcd + 2C2

3
θdc

)

θadεcba (48b)

These are our continuity equations such as those (37). We want again to emphasize that
although the Riemann-Cartan geometry in which standard geometric formulation of defect
theory is established does not have a metric formulation, the general teleparallel geometry
does have a metric formulation [28]. This result is one of motivations directing us to do this
work.

5 Discussion

Since dislocation density and disclination density are useful quantities to obtain information
about many elastic fields such as distortion, strain, dilatation, stress and rotation caused by
defects in a continuum, it makes sense to look for a complete theory that explains their
behavior. One of the various ways to do that is to adopt the geometric approach. As far as we
know, in almost all studies conducted in this direction in the literature, the dislocation density
is matched with the torsion tensor of the Riemann-Cartan geometry, and the disclination
density with the full curvature tensor [2–11]. For a summary of that formulation, one can
look at the equations (37) and later of Section 3. Those arguments are based on the definitions
given by (23), together with Qab = 0, hence R(ab) = 0 and ζabc = 0 constraints. In that
formulation, the geometric arena suitable for discussing the behaviour of only dislocation type
defects appears naturally as metric (Weitzenböck) teleparallel geometry. Conversely, we are
left with Riemannian geometry as the appropriate geometry for dislocation-free continuum.

Looking at that formulation from a different perspective will give us new insights. If one
inserts the decomposition of full curvature given by the equation (10a) or (11), together with
the metricity condition, into the definition (23b), it becomes clear that there are contributions
to the disclination density from the torsion tensor via the contortion 1-form inside of Lab.
Therefore, according to the pairing between torsion and dislocation density (23a), since they
are proportional to each other, there are contributions coming from the dislocation density to
the disclination density. However, this conclusion is the opposite of what de Wit says in the
papers [21–24]. Aswe stated in the introduction, we adopt deWit’s terminology and approach
regarding the continuum defects. According to de Wit’s articles, if there is dislocation in a
continuum, it contains some of them in the (general) dislocation density. When disclination
is eliminated, the general dislocation density turns into (pure) dislocation density. To achieve
this phenomenological result, we matched the symmetric part of the defect 1-form with
the disclination density, see (41). Accordingly, we also matched the dislocation density to
the anti-symmetric part of the defect 1-form, see (43). These correspondences appear the
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first time in this paper. Thus, a disclination-free continuum, θab = 0 hence Qab = 0, can
be represented by again the metric (Weitzenböck) teleparallel geometry. The reverse case
characterized by the configuration, T a = 0 hence αab = 0, but θab �= 0, is not always
possible because of the equation (43a). This result is in accordance with deWit’s conclusion.
The geometric realm of the latter case is the symmetric teleparallel geometry.

It is worthy to notice that one way to satisfy mathematically de Wit’s conclusion in the
Riemann-Cartan geometry is to map dislocation to full curvature 2-form and disclination to
torsion 2-form, opposite to the current approach in the literature.However,working in all three
teleparallel geometries has some advantageous comparedwith theRiemann-Cartan geometry.
It is known that the metric (hence the orthonormal 1-form ea) and the full connection 1-form
ωa

b are, in general, independent quantities in metric affine geometry. Nevertheless, although
there is not any metric formulation of the Riemann-Cartan geometry, we have shown a
way for metric formulation of the general teleparallel geometry in our recent paper [28] in
which previously known metric formulations of the symmetric teleparallel geometry and
Weitzenböck teleparallel geometry have been summarized as well.

The ground-state configurations of a continuum with defects can be determined by the
extrema of a free-energy integral F = ´

B L where B is the body manifold corresponding to
the three dimensional abstract manifold M and L is called the Lagrange 3-form [3–9]. One
of our future projects is to write down some possible Lagrange 3-forms containing torsion
and non-metricity, obtain variational field equations, find some classes of exact solutions and
compare them with the results coming from the material science world. Thus, we hope that
our new and strict mathematical model for material defects may predict new insights on the
behavior of material.

In this work we introduced a new formulation of defect fields for static configurations. A
natural extension of that is to consider its dynamical counterpart. By inclusion of the defect
velocity tensor field similar to those in [34, 35] the results of our work could be generalized.
That generalization remains an open problem waiting to be solved.

Our other future project is to apply our findings and experiences gained in this paper
to studies of photonic crystals. A photonic crystal has a lattice pattern formed basically
by using two different optical materials. If they are placed periodically in two dimensions,
that structure is called a two-dimensional photonic crystal. Of course, there may be three-
dimensional photonic crystals. In practice the two-dimensional ones which are constructed
by arranging very tiny (in nanometer scale) dielectric roads at lattice points are the most
commonly investigated. The aim of these searches is mainly to control the behaviour of
electromagnetic wave by creating crystal defects in lattice pattern. Defects can be produced
by various methods such as by changing the radius or the dielectric constant, by removing
a selected rod, by adding a tiny auxiliary extra rod to some main roads etc. [36, 37] and the
references therein. Correspondingly, a medium containing defects could be represented by a
suitable teleparallel geometry and theMaxwell field could be coupled to it in a scale invariant
way. Scale invariance is crucial because, in engineering of photonic crystal apparatus, firstly
some simulations are done, then experiments are performed in millimeter scale and finally
fabrication process takes place in nanometer scale.
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Appendix

A Bianchi Identities

We calculate some more identities from the Bianchi identities (2). We start with the first
Bianchi identity (2a).

D(Qabce
c) = R(ab) ⇒ (DQabc) ∧ ec = −QabcT

c + R(ab). (49)

We hit firstly ιk and then ιm ,

(DkQabc) ∧ ec − DQabk = ιk
(−QabcT

c + R(ab)
)

, (50a)

DkQabm − DmQabk = 1

2
(ιm ιk − ιk ιm)

(−QabcT
c + R(ab)

)

, (50b)

where we anti-symmetrizedmk indices on the right hand side of the second line.We conclude

DkQabm = 1

2
ιk ιm

(

QabcT
c − R(ab)

) ⇒ DQabm = 1

2
ιm

(

QabcT
c − R(ab)

)

. (51)

Here it is not difficult to see DQabm ∧ ∗em = DmQabm ∗ 1 = 0. Now we can compute

D ∗ Qab =D
(

Qabc ∗ ec
) = (DQabc) ∧ ∗ec + Qabc

(

D ∗ ec
) = Qabc

(

D ∗ ec
)

=QabcD(δmc ∗ em) = Qabc

(

2Qmc ∧ ∗em − Q ∧ ∗ec + ∗ecd ∧ T d
)

=(2P − Q − T ) ∧ ∗Qab (52)

where Q = δabQab, P = (ιbQab)ea and T = ιaT a . By the usage of Dδab = 0, Dδab =
−2Qab and Dδab = +2Qab this conclusion turns out to be

D ∗ Qab = (2P − Q − T ) ∧ ∗Qab + 4Qa
c ∧ ∗Qcb. (53)

Next, we start with the second Bianchi identity (2b).

1

2
D(T a

bce
bc) = Ra

b ∧ eb ⇒ (DTa
bc) ∧ ebc = 2Xa (54)

where we defined a new three-form Xa := Ra
b ∧ eb − T a

bcT b ∧ ec for simplicity. Then we
hit ιm and ιp and ιk consecutively, and rearrange the terms

DmT
a
pk + DpT

a
km + DkT

a
mp = −1

3
(ιm ιpιk + ιpιk ιm + ιk ιm ιp)X

a . (55)

Here since mpk indices are cyclic on lhs, we make them cyclic on rhs. Thus, we conclude

DmT
a
pk = −1

3
ιm ιpιk X

a ⇒ DTa
pk = −1

3
ιpιk X

a . (56)

When one remembers that any four-form, e.g. Xa ∧ ∗epk , vanishes in three dimensions, it is
trivial to see DTa

pk ∧ ∗epk = 0. Consequently, we compute
D ∗ T a =1

2
D(T a

bc ∗ ebc) = 1

2
(DTa

bc) ∧ ∗ebc + 1

2
T a

bc(D ∗ ebc) = 1

2
T a

bc(D ∗ ebc)

=1

2
T a

bc[(Dδbk)δcm ∗ ekm + δbk(Dδcm) ∗ ekm + δbkδcm(D ∗ ekm)]
=2Qbc ∧ ∗(ec ∧ ιbT a) − Q ∧ ∗T a + T b ∧ ∗(eb ∧ T a) (57)
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In spite of teleparallelism, Ra
b = 0 in the paper, for the appendix to become complete on

its own we perform the similar computations for the third Bianchi identity (2c).

1

2
D(Ra

bcde
cd) = 0 ⇒ (DRa

bcd) ∧ ecd = −2Za
b (58)

where we defined a new three-form Za
b := Ra

bcdT c ∧ ed for simplicity. Then we hit ιm and
ιp and ιk consecutively, and rearrange the terms

DmRa
bpk + DpR

a
bkm + Dk R

a
bmp = 1

3
(ιm ιpιk + ιpιk ιm + ιk ιm ιp)Z

a
b (59)

where we made cyclic mpk indices on the right hand side. Thus, we conclude

DmRa
bpk = 1

3
ιm ιpιk Z

a
b ⇒ DRa

bpk = 1

3
ιpιk Z

a
b. (60)

When one remembers that any four-form, e.g. Za
b ∧ ∗epk , vanishes in three dimensions, it

is trivial to see DRa
bpk ∧ ∗epk = 0. Consequently, we compute

D ∗ Ra
b =1

2
D(Ra

bcd ∗ ecd ) = 1

2
(DRa

bcd ) ∧ ∗ecd + 1

2
Ra

bcd (D ∗ ecd ) = 1

2
Ra

bcd (D ∗ ecd )

=1

2
Ra

bcd [(Dδck)δdm ∗ ekm + δck(Dδdm) ∗ ekm + δckδdm(D ∗ ekm)]
=2Qcf ∧ ∗(e f ∧ ιc Ra

b) − Q ∧ ∗Ra
b + T c ∧ ∗(ec ∧ Ra

b). (61)

B Relation Between Disclination and Non-Metricity

We postulate the following relations between disclination density tensor and non-metricity
tensor

θab = Aεacd Q
bcd + BεabcQc, (62a)

Qbcd = C
(

εk
cdθkb + εk

bdθkc
)

+ K δbcεdmnθ
mn, (62b)

where A, B,C, K are arbitrary constants. The first relation satisfies the property δabθ
ab = 0.

We denote Qabc = ιcQab and Qc = ιcQ = δabQabc = Qa
ac where Q(ab)c by definition.

We also define the second trace Pa = δbcQabc = ιbQab = Qab
b along with the first trace

Qc = δabQabc of non-metricity. We compute the second kind trace from the equation (62b)
as

Pb = δcd Q
bcd = (K − C)εbmnθ

mn . (63)

We prefer to set Pa = 0 from the outset for mathematical simplification by choosing K = C .
Then we compute the first trace as

Qd = δbcQ
bcd = 5Cεdmnθ

mn . (64)

As seen, choice of Pb = 0 for mathematical reasoning does not cause any loss of physical
generality. Now by substituting (62b) into (62a) we obtain

θab = ACεacd

(

εk
cdθkb + εk

bdθkc + δbcεdmnθ
mn

)

+ 5BCεabcεmncθ
mn

= (4AC + 5BC)θab − (AC + 5BC)θbc. (65)
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Symmetric part and anti-symmetric parts yield two relations, respectively,

3AC = 1 and 5AC + 10BC = 1. (66)

Thus, we conclude

A = 1

3C
and B = − 1

15C
. (67)

Reversely, we insert (62a) into (62b)

Qbcd = Cεk
cd

(

Aεka f Qb
a f + BεkbaQa

)

+ Cεk
bd

(

Aεka f Qc
a f + BεkcaQa

)

+ Cδbcεdmn

(

Aεma f Qn
a f + BεmnaQa

)

= AC
(

2Qbcd − Qdbc − Qdcb + δbcQd
)

+ BC
(

4δbcQd − δdbQc − δdcQb
)

(68)

By hitting δbc we arrive at the same condition 5AC +10BC = 1 above. By multiplying with
δcd we check the property Pb = 0. Consequently we leave the constant C as a suitable unit
conversion parameter.
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