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a b s t r a c t

In this work we characterize translativity of the summability |R, pn|k, k > 1, for any
sequence (pn) without imposing the conditions given by Orhan [C. Orhan, Translativity of
absolute weighted mean summability, Czechoslovak Math. J. 48 (1998) 755–761], and so
deduce some known results.

© 2010 Elsevier Ltd. All rights reserved.

Let
∑

an be a given series with partial sums (sn), and let (pn) be a sequence of positive numbers such that

Pn = p0 + p1 + · · · + pn → ∞ as n → ∞ P−1 = p−1 = 0.

The sequence-to-sequence transformation

Tn =
1
Pn

n−
v=0

pvsv

defines the sequence (Tn) of the (R, pn) Riesz means of the sequence (sn), generated by the sequence coefficients (pn). The
series

∑
an is said to be summable |R, pn|k, where k ≥ 1, if

∞−
n=1

nk−1
|Tn − Tn−1|

k < ∞ (1)

(see [1]) and summable |N̄, pn|k if
∞−
n=1


Pn
pn

k−1

|Tn − Tn−1|
k < ∞

(see [2]).
Following the concept of translativity in ordinary summability, Cesco [3] introduced the concept of left translativity for

the summability |R, pn|k for the case k = 1 and gave sufficient conditions for |R, pn| to be left translative. Al-Madi [4] has
also studied the problem of translativity for the same summability.

Analogously, we call |R, pn|k, k ≥ 1, left translative if the summability |R, pn|k of the series
∑

∞

n=0 an implies the
summability |R, pn|k of the series

∑
∞

n=0 an−1 where a−1 = 0. |R, pn|k is called right translative if the converse holds, and
translative if it is both left and right translative.

Dealing with translativity of the summability |R, pn|k, Orhan [5] proved the following theoremwhich extends the known
results of Al-Madi [4] and Cesco [3] to k > 1.
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Theorem A. Suppose that

∞−
n=v

nk−1


pn+1

Pn+1Pn

k

= O


vk−1

Pk
v+1


(2)

and
∞−
n=v

nk−1


pn
Pn−1Pn

k

= O


vk−1

Pk
v


(3)

hold, where k ≥ 1. Then, |R, pn|k is translative if and only if

(a)
Pn

Pn+1
= O


pn

pn+1


and (b)

Pn+1

Pn
= O


pn+1

pn


. (4)

The aim of this work is to characterize translativity of the summability |R, pn|k, k > 1, for any sequence (pn)without imposing
the conditions (2) and (3) of Theorem A. Our theorems are as follows.

Theorem 1. Let 1 < k < ∞. Then, |R, pn|k is left translative if and only if (4)(a) holds and
m−2−
v=1

1
v

P2
v

pv

−
Pv+1Pv−1

pv

k
∗1/k∗ 

∞−
n=m+1

nk−1


pn
Pn−1Pn

k
1/k

= O(1), (5)

where k∗ is the conjugate index k.

Theorem 2. Let 1 < k < ∞. Then, |R, pn|k is right translative if and only if (4)(b) holds and m−
v=1

1
v

PvPv−2

pv

−
P2

v−1

pv


k∗


1/k∗ 
∞−

n=m

nk−1


pn
Pn−1Pn

k
1/k

= O(1), (6)

where k∗ is the conjugate index k.
By Theorems 1 and 2, we have Theorem A for any sequence (pn) as follows.

Corollary 1. Let 1 < k < ∞. Then, |R, pn|k is translative if and only if (4)(a), (4)(b), (5) and (6) hold.
We require the following lemmas in the proof of the theorems.
A triangular matrix A is said to be factorable if anv = anbv for 0 ≤ v ≤ n and zero otherwise. Then the following result of

Bennett [6] is well known.

Lemma 1. Let 1 < p ≤ q < ∞, let a and b be sequences of non-negative numbers, and let A be a factorable matrix. Then A
maps ℓp into ℓq if and only if there exists M such that, for m = 1, 2, . . . ,

m−
v=1

bp
∗

v

1/p∗ 
∞−

n=m

aqn

1/q

≤ M.

We can easily prove the following lemma by making use of Lemma 1.

Lemma 2. Let 1 < k < ∞ and let B, C, B′ and C ′ be the matrices defined by

bnv =


P0n1/k∗ pn

PnPn−1
, v = 0

n1/k∗ pn
PnPn−1


P2

v − Pv+1Pv−1
 v−1/k∗

pv

, 1 ≤ v ≤ n − 2

0, v > n − 2,

cnv =




n
n − 1

1/k∗ pnPn−1

Pnpn−1
, v = n − 1

0, v ≠ n − 1,

b′

nv =

n1/k∗ pn
PnPn−1


PvPv−2 − P2

v−1

 v−1/k∗

pv

, 1 ≤ v ≤ n

0, v > n
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and

c ′

nv =




n
n + 1

1/k∗ pnPn+1

Pnpn+1
, v = n + 1

0, v ≠ n + 1,

respectively. Then:

(a) B maps ℓk into ℓk if and only if (5) is satisfied,
(b) C maps ℓk into ℓk if and only if (4)(a) is satisfied,
(c) B′ maps ℓk into ℓk if and only if (6) is satisfied,
(d) C ′ maps ℓk into ℓk if and only if (4)(b) is satisfied.

Lemma 3. Let A be an infinite matrix. If A maps ℓk into ℓk, then there exists a constant M such that |anv| ≤ M for all v, n ∈ N.

Proof. A is continuous, which is immediate as ℓk is BK -space. Thus there exists a constantM such that

‖A(x)‖ ≤ M‖x‖ (7)

for x ∈ ℓk. By applying (7) to x = ev for v = 0, 1, 2, . . . (ev is the vth coordinate vector), we get
∞−
n=0

|anv|k
1/k

≤ M,

which implies the result. �

We are now ready to prove our theorems.

Proof of Theorem 1. Let (s̄n) denote the n-th partial sums of the series
∑

∞

n=0 an−1(a−1 = 0). Then s̄n = sn−1, s−1 = 0. Let
(tn) and (zn) be the (R, pn) transforms of (sn) and (s̄n), respectively. Hence we have

tn =
1
Pn

n−
v=0

pvsv,

Tn = tn − tn−1 =
pn

PnPn−1

n−
v=1

Pv−1av for n ≥ 1, T0 = a0 (8)

and

zn =
1
Pn

n−
v=0

pv s̄v =
1
Pn

n−1−
v=0

pv+1sv,

Zn = zn − zn−1 =
pn

PnPn−1

n−1−
v=0

Pvav for n ≥ 1, Z0 = 0. (9)

It follows by making use of (8) that

Zn =
pn

PnPn−1


P0a0 +

n−1−
v=1

Pv


Pv

pv

Tv −
Pv−2

pv−1
Tv−1



=
pn

PnPn−1


P0T0 +

n−2−
v=1


P2

v

pv

−
Pv+1Pv−1

pv


Tv +

P2
n−1

pn−1
Tn−1


.

Take Z∗
n = n1/k∗Zn, T ∗

n = n1/k∗Tn for n ≥ 1 and Z∗
n = 0, T ∗

0 = T0. Then

Z∗

n = n1/k∗ pn
PnPn−1


P0T ∗

0 +

n−2−
v=1


P2

v

pv

−
Pv+1Pv−1

pv


v−1/k∗T ∗

v +
P2
n−1

pn−1
(n − 1)−1/k∗ T ∗

n−1



=

∞−
v=0

anvT ∗

v ,



M.A. Sarıgöl / Applied Mathematics Letters 24 (2011) 126–130 129

where

anv =



P0n1/k∗ pn
PnPn−1

, v = 0

n1/k∗ pn
PnPn−1


P2

v − Pv+1Pv−1
 v−1/k∗

pv

, 1 ≤ v ≤ n − 2

n1/k∗(n − 1)−1/k∗ pnPn−1

Pnpn−1
, v = n − 1,

0, v ≥ n.

Now, |R, pn|k is left translative if and only if
∑

∞

n=1 |Z∗
n |

k < ∞ whenever
∑

∞

n=1 |T ∗
n |

k < ∞, or equivalently, the matrix A
maps ℓk into ℓk, i.e., A ∈ (ℓk, ℓk). On the other hand, it is seen that

Z∗

n =

∞−
v=0

bnvT ∗

v +

∞−
v=0

cnvT ∗

v ,

i.e., A = B + C . Hence, it is clear that if B, C ∈ (ℓk, ℓk), then A ∈ (ℓk, ℓk). Conversely, if A ∈ (ℓk, ℓk), then it follows from
Lemma 3 that there exists a constant M such that |an,n−1| ≤ M for all n ∈ N. By considering the definition of the matrix B,
we obtain B ∈ (ℓk, ℓk) by Lemma 1, which implies C ∈ (ℓk, ℓk). Therefore

A ∈ (ℓk, ℓk) if and only if B, C ∈ (ℓk, ℓk).

This completes the proof together with Lemma 2. �

Proof of Theorem 2. It follows from (9) that

Tn =
pn

PnPn−1


n−

v=1


PvPv−2

pv

−
P2

v−1

pv−1


Zv +

Pn−1Pn+1

pn+1
Zn+1


and so

T ∗

n =
pn

PnPn−1


n−

v=1


PvPv−2

pv

−
P2

v−1

pv−1


v−1/k∗Z∗

v +
Pn−1Pn+1

pn+1
(n + 1)−1/k∗Z∗

n+1



=

∞−
v=0

anvZ∗

v ,

where

anv =


n1/k∗ pn

PnPn−1


PvPv−2

pv

−
P2

v−1

pv


v−1/k∗ , 1 ≤ v ≤ n


n

n + 1

1/k∗ pnPn+1

Pnpn+1
, v = n + 1

0, v ≥ n + 2.

The remainder is similar to the proof of Theorem 1 and so is omitted.
We now turn our attention to a result of Sarigol [7] which claims that, if k > 0, then there exists two positive constant

M and N , depending only on k, for which

M
Pk

v−1
≤

∞−
n=v

pn
PnPk

n−1
≤

N
Pk

v−1

for all v ≥ 1, where M and N are independent of (pn). If we put n = Pn/pn in Corollary 1, then

∞−
n=m

nk−1


pn
Pn−1Pn

k

=

∞−
n=m

pn
Pk
n−1Pn

.

So it is easy to see that conditions (5) and (6) hold. Hence we deduce the result due to Kuttner and Thorpe [8]. �

Corollary 2. Let 1 < k < ∞. Then, |N̄, pn|k is translative if and only if (4)(a) and (4)(b) hold.
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