Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/aml)

Applied Mathematics Letters

journal homepage: www.elsevier.com/locate/aml

On translativity of absolute Riesz summability

Mehmet Ali Sarıgöl

Department of Mathematics, University of Pamukkale, Denizli 20017, Turkey

a r t i c l e i n f o

a b s t r a c t

Article history: Received 19 April 2010 Received in revised form 12 August 2010 Accepted 18 August 2010

Keywords: Translativity Absolute Riesz summability Matrix transformations

In this work we characterize translativity of the summability $|R, p_n|_k$, $k > 1$, for any sequence (p_n) without imposing the conditions given by Orhan [C. Orhan, Translativity of absolute weighted mean summability, Czechoslovak Math. J. 48 (1998) 755–761], and so deduce some known results.

© 2010 Elsevier Ltd. All rights reserved.

Let $\sum a_n$ be a given series with partial sums (s_n) , and let (p_n) be a sequence of positive numbers such that

 $P_n = p_0 + p_1 + \cdots + p_n \to \infty$ as $n \to \infty$ $P_{-1} = p_{-1} = 0$.

The sequence-to-sequence transformation

$$
T_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v
$$

defines the sequence (T_n) of the (R, p_n) Riesz means of the sequence (s_n) , generated by the sequence coefficients (p_n) . The series $\sum a_n$ is said to be summable $|R, p_n|_k$, where $k \geq 1$, if

$$
\sum_{n=1}^{\infty} n^{k-1} |T_n - T_{n-1}|^k < \infty \tag{1}
$$

(see [\[1\]](#page-4-0)) and summable $|\bar{N}, p_n|_k$ if

$$
\sum_{n=1}^{\infty} \left(\frac{P_n}{p_n}\right)^{k-1} |T_n - T_{n-1}|^k < \infty
$$

(see [\[2\]](#page-4-1)).

Following the concept of translativity in ordinary summability, Cesco [\[3\]](#page-4-2) introduced the concept of left translativity for the summability $|R, p_n|_k$ for the case $k = 1$ and gave sufficient conditions for $|R, p_n|$ to be left translative. Al-Madi [\[4\]](#page-4-3) has also studied the problem of translativity for the same summability.

Analogously, we call $|R, p_n|_k$, $k \ge 1$, left translative if the summability $|R, p_n|_k$ of the series $\sum_{n=0}^{\infty} a_n$ implies the summability $|R, p_n|_k$ of the series $\sum_{n=0}^{\infty} a_n$ implies the summability $|R, p_n|_k$ of t translative if it is both left and right translative.

Dealing with translativity of the summability $|R$, $p_n|_k$, Orhan [\[5\]](#page-4-4) proved the following theorem which extends the known results of Al-Madi [\[4\]](#page-4-3) and Cesco [\[3\]](#page-4-2) to $k > 1$.

Applied *Mathematics* Letters

E-mail address: [msarigol@pau.edu.tr.](mailto:msarigol@pau.edu.tr)

^{0893-9659/\$ –} see front matter © 2010 Elsevier Ltd. All rights reserved. [doi:10.1016/j.aml.2010.08.031](http://dx.doi.org/10.1016/j.aml.2010.08.031)

Theorem A. *Suppose that*

$$
\sum_{n=v}^{\infty} n^{k-1} \left(\frac{p_{n+1}}{p_{n+1} p_n} \right)^k = O\left(\frac{v^{k-1}}{p_{v+1}^k} \right)
$$
(2)

and

$$
\sum_{n=v}^{\infty} n^{k-1} \left(\frac{p_n}{P_{n-1}P_n}\right)^k = O\left(\frac{v^{k-1}}{P_v^k}\right)
$$
\n(3)

hold, where k ≥ 1 *. Then,* $|R, p_n|_k$ *is translative if and only if*

(a)
$$
\frac{P_n}{P_{n+1}} = O\left(\frac{p_n}{p_{n+1}}\right)
$$
 and (b) $\frac{P_{n+1}}{P_n} = O\left(\frac{p_{n+1}}{p_n}\right)$. (4)

The aim of this work is to characterize translativity of the summability $|R, p_n|_k$, $k > 1$, for any sequence (p_n) without imposing *the conditions* [\(2\)](#page-1-0) and [\(3\)](#page-1-1) *of [Theorem](#page-1-2)* A*. Our theorems are as follows.*

Theorem 1. *Let* $1 < k < \infty$ *. Then,* $|R, p_n|_k$ *is left translative if and only if* [\(4\)](#page-1-3)(a) *holds and*

$$
\left\{\sum_{v=1}^{m-2} \frac{1}{v} \left| \frac{P_v^2}{p_v} - \frac{P_{v+1}P_{v-1}}{p_v} \right|^{k^*} \right\}^{1/k^*} \left\{ \sum_{n=m+1}^{\infty} n^{k-1} \left(\frac{p_n}{P_{n-1}P_n} \right)^k \right\}^{1/k} = O(1),\tag{5}
$$

where k[∗] *is the conjugate index k.*

Theorem 2. *Let* $1 < k < \infty$ *. Then,* $|R, p_n|_k$ *is right translative if and only if* [\(4\)](#page-1-3)(b) *holds and*

$$
\left\{\sum_{v=1}^{m} \frac{1}{v} \left| \frac{P_v P_{v-2}}{p_v} - \frac{P_{v-1}^2}{p_v} \right|^{k^*} \right\}^{1/k^*} \left\{\sum_{n=m}^{\infty} n^{k-1} \left(\frac{p_n}{P_{n-1}P_n}\right)^k \right\}^{1/k} = O(1),\tag{6}
$$

where k[∗] *is the conjugate index k.*

By [Theorems](#page-1-4) 1 and [2](#page-1-5)*, we have [Theorem](#page-1-2)* A *for any sequence* (*pn*) *as follows.*

Corollary 1. *Let* $1 < k < \infty$ *. Then,* $|R, p_n|_k$ *is translative if and only if* $(4)(a)$ $(4)(a)$ *,* $(4)(b)$ *,* [\(5\)](#page-1-6) *and* [\(6\)](#page-1-7) *hold.*

We require the following lemmas in the proof of the theorems.

A triangular matrix A is said to be factorable if $a_{nv} = a_n b_v$ for $0 \le v \le n$ and zero otherwise. Then the following result of *Bennett* [\[6\]](#page-4-5) *is well known.*

Lemma 1. Let $1 < p \le q < \infty$, let a and b be sequences of non-negative numbers, and let A be a factorable matrix. Then A *maps* ℓ_p *into* ℓ_q *if and only if there exists M such that, for* $m = 1, 2, ...,$

$$
\left(\sum_{v=1}^m b_v^{p^*}\right)^{1/p^*} \left(\sum_{n=m}^\infty a_n^q\right)^{1/q} \leq M.
$$

We can easily prove the following lemma by making use of [Lemma 1.](#page-1-8)

Lemma 2. Let $1 < k < \infty$ and let B, C, B' and C' be the matrices defined by

$$
b_{nv} = \begin{cases} P_0 n^{1/k^*} \frac{p_n}{p_n p_{n-1}}, & v = 0\\ n^{1/k^*} \frac{p_n}{p_n p_{n-1}} (p_v^2 - P_{v+1} P_{v-1}) \frac{v^{-1/k^*}}{p_v}, & 1 \le v \le n-2\\ 0, & v > n-2, \end{cases}
$$

\n
$$
c_{nv} = \begin{cases} \left(\frac{n}{n-1}\right)^{1/k^*} \frac{p_n p_{n-1}}{p_n p_{n-1}}, & v = n-1\\ 0, & v \ne n-1, \end{cases}
$$

\n
$$
b'_{nv} = \begin{cases} n^{1/k^*} \frac{p_n}{p_n p_{n-1}} (P_v P_{v-2} - P_{v-1}^2) \frac{v^{-1/k^*}}{p_v}, & 1 \le v \le n\\ 0, & v > n \end{cases}
$$

and

$$
c'_{nv} = \begin{cases} \left(\frac{n}{n+1}\right)^{1/k^*} \frac{p_n p_{n+1}}{P_n p_{n+1}}, & v = n+1\\ 0, & v \neq n+1, \end{cases}
$$

respectively. Then:

- (a) *B* maps ℓ_k *into* ℓ_k *if and only if* [\(5\)](#page-1-6) *is satisfied,*
- (b) *C* maps ℓ_k *into* ℓ_k *if and only if* [\(4\)](#page-1-3)(a) *is satisfied*,
- (c) *B'* maps ℓ_k *into* ℓ_k *if and only if* [\(6\)](#page-1-7) *is satisfied*,
- (d) C' *maps* ℓ_k *into* ℓ_k *if and only if* [\(4\)](#page-1-3)(b) *is satisfied.*

Lemma 3. Let A be an infinite matrix. If A maps ℓ_k into ℓ_k , then there exists a constant M such that $|a_{nv}| \le M$ for all $v, n \in \mathbb{N}$.

Proof. *A* is continuous, which is immediate as ℓ_k is BK-space. Thus there exists a constant *M* such that

$$
\|A(x)\| \le M\|x\| \tag{7}
$$

for $x \in \ell_k$. By applying [\(7\)](#page-2-0) to $x = e_v$ for $v = 0, 1, 2, \ldots$ (e_v is the *v*th coordinate vector), we get

$$
\left(\sum_{n=0}^{\infty}|a_{nv}|^k\right)^{1/k}\leq M,
$$

which implies the result. \square

We are now ready to prove our theorems.

Proof of Theorem 1. Let (\bar{s}_n) denote the *n*-th partial sums of the series $\sum_{n=0}^{\infty} a_{n-1}(a_{-1}=0)$. Then $\bar{s}_n=s_{n-1}, s_{-1}=0$. Let (t_n) and (z_n) be the (R, p_n) transforms of (s_n) and (\bar{s}_n) , respectively. Hence we have

$$
t_n = \frac{1}{P_n} \sum_{v=0}^n p_v s_v,
$$

\n
$$
T_n = t_n - t_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=1}^n P_{v-1} a_v \quad \text{for } n \ge 1, \qquad T_0 = a_0
$$
\n(8)

and

$$
z_n = \frac{1}{P_n} \sum_{v=0}^n p_v \bar{s}_v = \frac{1}{P_n} \sum_{v=0}^{n-1} p_{v+1} s_v,
$$

\n
$$
Z_n = z_n - z_{n-1} = \frac{p_n}{P_n P_{n-1}} \sum_{v=0}^{n-1} P_v a_v \quad \text{for } n \ge 1, \qquad Z_0 = 0.
$$
\n(9)

It follows by making use of [\(8\)](#page-2-1) that

$$
Z_n = \frac{p_n}{p_n p_{n-1}} \left[P_0 a_0 + \sum_{v=1}^{n-1} P_v \left(\frac{P_v}{p_v} T_v - \frac{P_{v-2}}{p_{v-1}} T_{v-1} \right) \right]
$$

=
$$
\frac{p_n}{p_n p_{n-1}} \left[P_0 T_0 + \sum_{v=1}^{n-2} \left(\frac{P_v^2}{p_v} - \frac{P_{v+1} P_{v-1}}{p_v} \right) T_v + \frac{P_{n-1}^2}{p_{n-1}} T_{n-1} \right].
$$

Take $Z_n^* = n^{1/k^*} Z_n$, $T_n^* = n^{1/k^*} T_n$ for $n \ge 1$ and $Z_n^* = 0$, $T_0^* = T_0$. Then

$$
Z_n^* = n^{1/k^*} \frac{p_n}{p_n p_{n-1}} \left[p_0 T_0^* + \sum_{v=1}^{n-2} \left(\frac{p_v^2}{p_v} - \frac{p_{v+1} p_{v-1}}{p_v} \right) v^{-1/k^*} T_v^* + \frac{p_{n-1}^2}{p_{n-1}} (n-1)^{-1/k^*} T_{n-1}^* \right]
$$

=
$$
\sum_{v=0}^{\infty} a_{nv} T_v^*,
$$

where

$$
a_{nv} = \begin{cases} P_0 n^{1/k^*} \frac{p_n}{P_n P_{n-1}}, & v = 0 \\ n^{1/k^*} \frac{p_n}{P_n P_{n-1}} (P_v^2 - P_{v+1} P_{v-1}) \frac{v^{-1/k^*}}{p_v}, & 1 \le v \le n-2 \\ n^{1/k^*} (n-1)^{-1/k^*} \frac{p_n P_{n-1}}{P_n p_{n-1}}, & v = n-1, \\ 0, & v \ge n. \end{cases}
$$

Now, $|R, p_n|_k$ is left translative if and only if $\sum_{n=1}^{\infty} |Z_n^*|^k < \infty$ whenever $\sum_{n=1}^{\infty} |T_n^*|^k < \infty$, or equivalently, the matrix A maps ℓ_k into ℓ_k , i.e., $A \in (\ell_k, \ell_k)$. On the other hand, it is seen that

$$
Z_n^* = \sum_{v=0}^{\infty} b_{nv} T_v^* + \sum_{v=0}^{\infty} c_{nv} T_v^*,
$$

i.e., $A = B + C$. Hence, it is clear that if $B, C \in (\ell_k, \ell_k)$, then $A \in (\ell_k, \ell_k)$. Conversely, if $A \in (\ell_k, \ell_k)$, then it follows from [Lemma 3](#page-2-2) that there exists a constant *M* such that $|a_{n,n-1}|$ ≤ *M* for all $n \in \mathbb{N}$. By considering the definition of the matrix *B*, we obtain $B \in (\ell_k, \ell_k)$ by [Lemma 1,](#page-1-8) which implies $C \in (\ell_k, \ell_k)$. Therefore

 $A \in (\ell_k, \ell_k)$ if and only if $B, C \in (\ell_k, \ell_k)$.

This completes the proof together with [Lemma 2.](#page-1-9) \Box

Proof of Theorem 2. It follows from [\(9\)](#page-2-3) that

$$
T_n = \frac{p_n}{P_n P_{n-1}} \left[\sum_{v=1}^n \left(\frac{P_v P_{v-2}}{p_v} - \frac{P_{v-1}^2}{p_{v-1}} \right) Z_v + \frac{P_{n-1} P_{n+1}}{p_{n+1}} Z_{n+1} \right]
$$

and so

$$
T_n^* = \frac{p_n}{p_n p_{n-1}} \left[\sum_{v=1}^n \left(\frac{P_v p_{v-2}}{p_v} - \frac{P_{v-1}^2}{p_{v-1}} \right) v^{-1/k^*} Z_v^* + \frac{P_{n-1} P_{n+1}}{p_{n+1}} (n+1)^{-1/k^*} Z_{n+1}^* \right]
$$

=
$$
\sum_{v=0}^\infty a_{nv} Z_v^*,
$$

where

$$
a_{nv} = \begin{cases} n^{1/k^*} \frac{p_n}{p_n p_{n-1}} \left(\frac{p_v p_{v-2}}{p_v} - \frac{p_{v-1}^2}{p_v} \right) v^{-1/k^*}, & 1 \le v \le n \\ \left(\frac{n}{n+1} \right)^{1/k^*} \frac{p_n p_{n+1}}{p_n p_{n+1}}, & v = n+1 \\ 0, & v \ge n+2. \end{cases}
$$

The remainder is similar to the proof of [Theorem 1](#page-1-4) and so is omitted.

We now turn our attention to a result of Sarigol [\[7\]](#page-4-6) which claims that, if $k > 0$, then there exists two positive constant *M* and *N*, depending only on *k*, for which

$$
\frac{M}{P_{v-1}^k} \le \sum_{n=v}^{\infty} \frac{p_n}{P_n P_{n-1}^k} \le \frac{N}{P_{v-1}^k}
$$

for all $v \ge 1$, where *M* and *N* are independent of (p_n) . If we put $n = P_n/p_n$ in [Corollary 1,](#page-1-10) then

$$
\sum_{n=m}^{\infty} n^{k-1} \left(\frac{p_n}{P_{n-1}P_n} \right)^k = \sum_{n=m}^{\infty} \frac{p_n}{P_{n-1}^k P_n}.
$$

So it is easy to see that conditions [\(5\)](#page-1-6) and [\(6\)](#page-1-7) hold. Hence we deduce the result due to Kuttner and Thorpe [\[8\]](#page-4-7). \Box

Corollary 2. Let $1 < k < \infty$. Then, $|\overline{N}, p_n|_k$ is translative if and only if [\(4\)](#page-1-3)(a) and (4)(b) hold.

References

- [1] M.A. Sarigol, On two absolute Riesz summability factors of infinite series, Proc. Amer. Math. Soc. 118 (1993) 485–488.
- [2] H. Bor, A note on two summability methods, Proc. Amer. Math. Soc. 98 (1986) 81–84.
- [3] R.P. Cespo, On the theory of linear transformations and the absolute summability of divergent series, Univ. Lac. La Plata Publ. Fac. Fisicomat Series 2, Revista 2 (1941) 147–156.
- [4] A.K. Al-Madi, On translativity of absolute weighted mean methods, Bull. Calcutta Math. Soc. 79 (1987) 235–241.
- [5] C. Orhan, Translativity of absolute weighted mean summability, Czechoslovak Math. J. 48 (1998) 755–761.
- [6] G. Bennett, Some elementary inequalities, Quart. J. Math. Oxford (2) 38 (1987) 401–425.
- [7] M.A. Sarigol, Necessary and sufficient conditions for the equivalence of the summability methods $|\bar{N}, p|_k$ and $|C, 1|_k$, Indian J. Pure Appl. Math. 22 (1991) 483–489.
- [8] B. Kuttner, B. Thorpe, Translativity of some absolute summability methods, Analysis 14 (1994) 57–65.