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Abstract- Up to tenth-order finite difference schemes are proposed in this paper to 

solve one-dimensional advection-diffusion equation. The schemes based on high-order 

differences are presented using Taylor series expansion. To obtain the solutions, up to 

tenth-order finite difference schemes in space and a fourth-order Runge-Kutta scheme 

in time have been combined. The methods are implemented to solve two problems 

having exact solutions. Numerical experiments have been conducted to demonstrate the 

efficiency and high-order accuracy of the current methods. The techniques are seen to 

be very accurate in solving the advection-diffusion equation for 5Pe ≤ . The produced 

results are also seen to be more accurate than some available results given in the 

literature. 

Key Words- Advection-Diffusion Equation, Contaminant Transport, High-order Finite 

Difference Schemes, Runge-Kutta. 

 

1. INTRODUCTION 

Advection–diffusion equation illustrates many quantities such as mass, heat, 

energy, velocity, vorticity, etc. The solutions of the equation model some of the 

phenomena such as the contaminant transport in groundwater, spread of pollutants in 

rivers, contaminant dispersion in shallow lakes and reservoirs etc. The slow progress 

has been made towards the analytical solutions of the advection-diffusion equation 

when initial and boundary conditions are intricate. Since many of the analytical 

solutions have not much easy use, many attempts have been carried out on developing 

the accurate numerical techniques. A number of numerical techniques have been 

recommended to illuminate physical phenomena described by the advection-diffusion 

equation in various fields of science. The difficulties arising in numerical solutions of 

the advection-diffusion equation results form the dominant advection that is for 

relatively high Peclect number. The one-dimensional advection-diffusion transport 

equation without the source terms has the following form: 

0, ,t x xxc uc Dc a x b+ − = ≤ ≤                                                                   (1) 

where the subscripts t  and x  stand for differentiation with respect to time and space, 

respectively. Also c , u  and D   indicate concentration, velocity of water flow and the 
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diffusion coefficient, respectively. Here a  and b  show the physical constants.  The 

initial condition is 

( ,0) ( ), ,c x f x a x b= ≤ ≤                                                                              (2) 

and the boundary conditions are 

0(0, ) ( ), 0 ,c t g t t T= < ≤                                                  (3) 

1(1, ) ( ), 0 ,c t g t t T= < ≤                                                                    (4) 

where 0,f g  and 1g  are prescribed functions whilst u  is the unknown function, 

concentration. Equation (1) describes two processes: advection and diffusion. Notice 

that 0D >  and 0u >  are considered to be positive constants quantifying the diffusion 

and advection processes, respectively. 

To solve the advection-diffusion equation with the finite difference method, 

Noye and Tan [1] has used a weighted discretization with the modified equivalent 

partial differential equation. Soon after, the authors extended this scheme to solve two-

dimensional advection-diffusion equation [2]. However, solution of two- and three-

dimensional problems by using these methods is difficult since requirement of matrix 

inversions at each time step. The upwind scheme [3] and the flux-corrected scheme [4] 

are available for the solution of the depth-averaged form of the advection-diffusion 

equation. An alternative widely used approach is the split-operator approach [5, 6], in 

which the advection and diffusion terms are solved by two various numerical methods. 

To solve the advection-diffusion equation accurately, various versions of the finite 

difference methods have been used in the literature [7-18]. Stability of various versions 

of the finite difference schemes for the advection-diffusion problems have been carried 

out in several studies in the literature [19-23].The various forms of the finite difference 

schemes previously have been successfully described by means of using various 

combinations in getting the numerical solution of some problems represented by partial 

differential equations [24-29]. In this paper, highly accurate solutions of the advection-

diffusion equation are obtained using up to tenth-order finite difference schemes in 

space and a fourth-order Runga-Kutta (RK4) scheme in time. The numerical 

computations showed that the high-order schemes produce very accurate solutions in 

comparison with some previous works. Furthermore, these schemes can therefore be 

used for solving partial differential equations encountered in various fields of science. 

 

2. THE HIGH-ORDER SCHEMES 

Spatial derivatives are evaluated by various orders of finite difference schemes. 

The spatial derivative ic′  at point i  can be approximated by, ( 1)R L+ + -point stencil, 

( )R L+ -order finite-difference scheme as: 

1 R

i j L i j

j L

c a c
h

+ +
=−

′ = ∑ , 1 i N≤ ≤ .                                                               (5) 

where 1i ih x x+= −  is the spacing of uniform mesh. The above formula involves 

( 1)R L+ +  constants, 0 1 2, , , R La a a a +K  which need to be known at point i . R  and L  
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indicates number of points in the right hand side and the left hand side for the taken 

stencil, respectively. R  is equal to L  for the considered stencil at internal points but 

this is not the case for the boundary nodes. N  is the number of grid points. The 

coefficients ja  were determined with Taylor series expansion of (5). Thus, the schemes 

using 7, 9 and 11 points, hereafter referred to as FD6, FD8 and FD10, are of order 6, 8 

and 10, respectively. 

The coefficients ja  for the first derivatives in the FD6, FD8 and FD10 schemes 

are given at internal nodes in Table 1. 

 

Table 1. The coefficients ja  for the first derivatives in the schemes at internal nodes 

Order 0a  1a  2a  3a  4a  5a  6a  7a  8a  9a  10a  

6 
1

60

−
 

9

60
 

45

60

−
 0 

45

60
 

9

60

−
 

1

60
 -- -- -- -- 

8 
3

840
 

32

840

−
 

168

840
 

672

840

−
 0 

672

840
 

168

840

−
 

32

840
 

3

840

−
 -- -- 

10 
2

2520

−
 

25

2520
 

150

2520

−
 

600

2520
 

2100

2520

−
 0 

2100

2520
 

600

2520

−
 

150

2520
 

25

2520

−
 

2

2520
 

  

 

Table 2a. The coefficients ja  are given for the boundary nodes (1-5) for the relevant schemes 

Node Order 
0a  1a  2a  3a  4a  5a  6a  7a  8a  9a  10a  

6 
-147

60
 

360

60
 

-450

60
 

400

60
 

-225

60
 

72

60
 

-10

60
 -- -- -- -- 

8 
-2283

840
 

6720

840
 

-11760

840
 

15680

840
 

-14700

840
 

9408

840
 

-3920

840
 

960

840
 

-105

840
 -- -- 1 

10 
-7381

2520
 

53200

2520
 

-56700

2520
 

100800

2520
 

-132300

2520
 

127008

2520
 

-88200

2520
 

43200

2520
 

-14175

2520
 

2800

2520
 

-252

2520
 

6 
-10

60
 

-77

60
 

150

60
 

-100

60
 

50

60
 

-15

60
 

2

60
 -- -- -- -- 

8 
105

840

−
 

1338

840

−
 

2940

840
 

2940

840

−
 

2450

840
 

1470

840

−
 

588

840
 

140

840

−
 

15

840
 -- -- 2 

10 
-252

2520
 

-4609

2520
 

11340

2520
 

-15120

2520
 

17640

2520
 

-15876

2520
 

10584

2520
 

-5040

2520
 

1620

2520
 

-315

2520
 

28

2520
 

6 
2

60
 

24

60

−
 

35

60

−
 

80

60
 

30

60

−
 

8

60
 

1

60

−
 -- -- -- -- 

8 
15

840
 

240

840

−
 

798

840

−
 

1680

840
 

1050

840

−
 

560

840
 

210

840

−
 

48

840
 

5

840

−
 -- -- 3 

10 
28

2520
 

560

2520

−
 

3609

2520

−
 

6720

2520
 

5880

2520

−
 

4704

2520
 

2940

2520

−
 

1344

2520
 

420

2520

−
 

80

2520
 

7

2520

−
 

8 
5

840

−
 

60

840
 

420

840

−
 

378

840

−
 

1050

840
 

420

840

−
 

140

840
 

30

840

−
 

3

840
 -- -- 

4 

10 
7

2520

−
 

105

2520
 

945

2520

−
  

1914

2520

−
 

4410

2520
  

2646

2520

−
 

1470

2520
 

630

2520

−
   

189

2520
 

35

2520

−
  

3

2520
 

5 10 
3

2520
 

40

2520

−
 

270

2520
 

1440

2520

−
 

924

2520

−
 

3024

2520
 

1260

2520

−
 

480

2520
 

135

2520

−
 

24

2520
 

2

2520

−
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Table 2b.The coefficients ja  are given for the boundary nodes ((N-4)-N) for the relevant 

schemes 

Node Order 
0a  1a  2a  3a  4a  5a  6a  7a  8a  9a  10a  

N-4 10 
2

2520
 

24

2520

−
 

135

2520
 

480

2520

−
 

1260

2520
 

3024

2520

−
 

924

2520
 

1440

2520
 

270

2520

−
 

40

2520
 

3

2520

−
 

8 
3

840

−
 

30

840
 

140

840

−
 

420

840
 

1050

840

−
 

378

840
 

420

840
 

60

840

−
 

5

840
 -- -- 

N-3 

10 
3

2520

−
 

35

2520
 

189

2520

−
 

630

2520
 

1470

2520

−
 

2646

2520
 

4410

2520

−
 

1914

2520
 

945

2520
 

105

2520

−
 

7

2520
 

6 
1

60
 

8

60

−
 

30

60
 

80

60

−
 

35

60
 

24

60
 

2

60

−
 -- -- -- -- 

8 
5

840
 

48

840

−
 

210

840
 

560

840

−
 

1050

840
 

1680

840

−
 

798

840
 

240

840
 

15

840

−
 -- -- N-2 

10 
7

2520
 

80

2520

−
 

420

2520
 

1344

2520

−
 

2940

2520
 

4704

2520

−
 

5880

2520
 

6720

2520

−
 

3069

2520
 

560

2520
 

-28

2520
 

6 
2

60

−
 

15

60
 

50

60

−
 

100

60
 

150

60

−
 

77

60
 

10

60
 -- -- -- -- 

8 
15

840

−
 

140

840
 

588

840

−
 

1470

840
 

2450

840

−
 

2940

840
 

2940

840

−
 

1338

840
 

105

840
 -- -- N-1 

10 
-28

2520
 

315

2520
 

-1620

2520
 

5040

2520
 

-10584

2520
 

15876

2520
 

-17640

2520
 

15120

2520
 

-11340

2520
 

4609

2520
 

252

2520
 

6 
10

60
 

72

60

−
 

225

60
 

400

60

−
 

450

60
 

360

60

−
 

147

60
 -- -- -- -- 

8 
105

840
 

960

840

−
 

3920

840
 

9408

840

−
 

14700

840
 

15680

840

−
 

11760

840
 

6720

840

−
 

2283

840
 -- -- N 

10 
252

2520
 

-2800

2520
 

14175

2520
 

-43200

2520
 

88200

2520
 

-127008

2520
 

132300

2520
 

-100800

2520
 

56700

2520
 

-25200

2520
 

7381

2520
 

 

 

Truncation error terms for the first-order derivative of the schemes are given by: 

1 R

i j L i j

j L

TE c a c
h

+ +
=−

′= − ∑ . 

When the Taylor expansion of the second term in the RHS of the formula in above is 

used, the truncation terms of the schemes FD6, FD8, FD10 can be obtained as, 

respectively, 6 (7)0.007143 ih c− , 8 (9)0.001587 ih c , 10 (11)0.000361 ih c− . 

The coefficients for the first derivatives in the FD6, FD8 and FD10 schemes are given 

at boundary nodes in Table 2. 

First-order spatial derivative terms can be re-written into matrix form as follows: 
′ =C AC .                              (6) 

The second-order spatial derivatives are obtained by applying the first-order operator 

twice, i.e., 
′′ ′=C AC                                       (7) 

where 1 2( , , , )TNc c c=C K .  

For the approximate solutions of equation (1) with the boundary conditions (2) 

using the FD methods, first the interval [ ],a b  is discretized such that 

1 2 ... Na x x x b= < < < =  where N  is the number of grid points. After application of the 
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FD techniques to equation (1), the equation can be reduced into a set of ordinary 

differential equations in time. Then the governing equation becomes 

i
i

dc
Pc

dt
=                                                                                             (8) 

where P  indicates a spatial differential operator. Each spatial derivative on the right 

hand side of equation (8) was computed using the present schemes and then the semi-

discrete equation (8) was solved using the RK4 scheme, through the operations, 

            
( ) ( )1 1

2

n n

i i ic c t P c= + ∆ , 

( ) ( )( )2 11

2

n

i i ic c t P c= + ∆ , 

( ) ( )( )3 2n

i i ic c t P c= + ∆ ,               (9) 

( ) ( )( ) ( )( ) ( )( )1 2 31 1
2 2

6

n n n

i i i i i ic c t P c P c P c P c+  = + ∆ + + +
 

. 

3. NUMERICAL ILLUSTRATIONS 

To show the performance of the methods for the model problem, various error 

norms are reported. Let us consider the advection-diffusion equation (1) with the initial 

condition (2) and boundary conditions (3-4). The results are compared with the 

analytical and some numerical solutions. The numerical computations were performed 

using uniform grids. The computed solutions are shown in Tables 3-8. 

An important non-dimensional parameter in numerical analysis is the 

Courant ( )Cr  number. This parameter gives the fractional distance relative to the grid 

spacing travelled due to advection in a single time step ( ) /Cr u t h= ∆ . It is possible to 

show using a Fourier error analysis that for a forward difference in time approximation 

(i.e. explicit), no matter what approximation is used for the spatial derivatives, that the 

transport equation is stable for values of the 1Cr < . This stability constraint for explicit 

transport equations states that one cannot advect the concentration more than one grid 

cell in a single time step.  

The Peclet number is another important non-dimensional term which compares 

the characteristic time for dispersion and diffusion given a length scale with the 

characteristic time for advection. In numerical analysis, one normally refers to a grid 

Peclet number ( ) /Pe uh D= , where u  is the velocity of water flow and the 

characteristic length scale is given by the grid spacing h . More details on the effects of 

the Courant and Peclet numbers on the results can be found in [30]. 

Two examples for which the exact solutions are known are now used to test the 

methods described for solving the advection–diffusion equation. Elapsed time t  is taken 

to be 1 s and 5 s in Example 1 and Example 2, respectively. The techniques are applied 

to solve (1)–(4) with 0 1( ), ( )g t g t  and ( )f x  prescribed. 

Example 1 [17, 31]. Consider (1)–(4) with 

2( 0.5)
( ) exp

0.00125

x
f x

 +
= − 

 
, 

2

0

0.025 (0.5 )
( ) exp

0.00125 0.040.000625 0.02

t
g t

tt

 −
= − ++  

, 
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2

1

0.025 (1.5 )
( ) exp

0.00125 0.040.000625 0.02

t
g t

tt

 −
= − ++  

 

 

for which the exact solution to the one-dimensional advection–diffusion in a region 

bounded by 0 1x≤ ≤  is taken from [17] and given as: 

20.025 ( 0.5 )
( , ) exp

0.00125 0.040.000625 0.02

x t
c x t

tt

 + −
= − ++  

.                       (10) 

The parameters used are 20.01 m /sD =  and 1.0 m/su = . The produced results and 

exact solutions are compared in Table 3 for the various values of the Courant number 

and for the different grid sizes. Both quantitative and qualitative agreement between the 

exact and the approximate solutions is excellent (see Tables 3-5, Figures 1a,b). Figures 

1a,b show numerically calculated concentration profiles using the present 

approximations at grid Peclet numbers of 2 and 5, respectively, for the same Courant 

number 0.2Cr =  with various elapsed times. It has been seen that the approximated 

profiles are in very good agreement with their analytical counterparts. 

For comparison purpose, for 2Pe = , 0.2Cr = , 0.004t∆ = , 0.02h =  at 0.5x = , 

absolute errors have also been computed and seen to be 4.03E-07, 1.42E-09 and 6.88E-

09 for the FD6, FD8 and FD10 respectively. It can be seen that these results are far 

better comparison to Dehghan’s result [17] which is 1.80E-06. Note that the same 

problem is solved in [16, 17] by using various forms of finite difference schemes. In the 

present model, using the present schemes, more accurate results are obtained in 

comparison with the corresponding references. As seen in Table 4, the high-order FD 

results are also compared with the results of Kadalbajoo and Arora [31] used the Taylor-

Galerkin B-spline finite element methods. It is seen that the present results are more 

accurate than their results. However, in order to improve the accuracy, the present work 

uses smaller time increment comparison to them. 

The results of the three schemes for the equation are compared in Table 6 for this 

example. Table 5 shows that the accuracy of the solutions improves rapidly as the mesh 

size is reduced. All comparisons show that among the proposed schemes, the FD10 

usually offer better results than the rest of two schemes. Therefore for the coming 

example, only the FD10 scheme is considered to observe the physical and mathematical 

behavior of the problem. 
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Figure 1. FD10 solution at various times in Example 1 for (a) 0.02h = , 0 1x≤ ≤ , 

0.004t∆ = , 1.0 m/su = , 
20.01 m /sD = , 0.2Cr = , 2Pe = ,(b) 0.025h = , 0 1x≤ ≤ , 

0.01t∆ = , 1.0 m/su = , 
20.005 m /sD = , 0.4Cr = , 5Pe = . 

 

Example 2 [13]. Let us consider equation (1) for 3.5 6.5x≤ ≤ ,  0.8 m/su =  and 
20.005 m /sD = .  

Then the exact solution to equation (1) as given by Noye and Tan [1] is 
21 ( 1 )

( , ) exp
(4 1)4 1

x ut
c x t

D tt

 − −
= − ++  

.                     (11) 

 

The initial and boundary conditions (2)-(4) are taken from the exact solution. The 

distribution of the Gaussian pulse is computed using the FD10 solutions as shown in 

Figure 2. As can be seen in Table 7 that the FD10 results in Example 2 is far more 

accurate comparison to Karahan’s results [16]. In Table 4, various error norms of FD10 

solutions for various values of , , ,h Pe t Cr∆  with 5x = , 5t =  have also been presented 

in Example 2. FD10 solutions in addition to absolute and relative errors have also 

presented in Table 8 for various values of x  with 0.025h = , 0.005t∆ = , 0.16Cr =  and 

4Pe = . 

4. CONCLUSIONS 

In this work the advection-diffusion processes were dealt with using up to tenth-

order finite difference schemes in space and the RK4 in time. The methods successfully 

worked to give very accurate solutions to these processes for 5Pe ≤ . The performance 

of the schemes for the considered problems was measured by calculating the various 

error indicators. The methods give convergent approximations, and handle the advection-

diffusion problems. The schemes based on high-order differences provide efficient and 

alternative methods for modelling the behaviour of the problem. Comparisons of the 

results with exact solutions showed that the present schemes are capable of solving the. 

For a further research, one can concentrate on solving the advection-diffusion problems 

using high Peclet numbers, 5Pe > , with high-order upwind schemes. Restrictions of the 

stability of the high-order FD schemes for the advection-diffusion problems will be 

analyzed in a future study in detail. 
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Table 3. Numerical solutions for different schemes with 0.5x = , 1.0t = , Pe 2=  in 

Example 1. 

 

 

 

 

 

 

 

 

Table 4. A comparison of present solutions with the results of Kadalbajoo and Arora 

[31] at various nodal points with 0.01h = , 1.0t =  and 1Pe =  in Example 1. 

 

 

 

 

 

 

 

 

 

 

 

 

0.02, 2h Pe= =   0.01, 1h Pe= =  
t∆  

Cr Exact FD6 FD8 FD10  Cr Exact FD6 FD8 FD10 

0.0005 0.025 0.17407766 0.17407682 0.17407772 0.17407764  0.050 0.17407766 0.17407765 0.17407766 0.17407766 

0.0010 0.050 0.17407766 0.17407689 0.17407772 0.17407765  0.100 0.17407766 0.17407765 0.17407766 0.17407766 

0.0020 0.100 0.17407766 0.17407702 0.17407769 0.17407765  0.200 0.17407766 0.17407765 0.17407766 0.17407766 

0.0033 0.167 0.17407766 0.17408557 0.17408607 0.17408605  0.333 0.17407766 --- --- --- 

0.0040 0.200 0.17407766 0.17407725 0.17407766 0.17407765  0.400 0.17407766 --- --- --- 

0.0080 0.400 0.17407766 0.17407757 0.17407761 0.17480605  0.800 0.17407766 --- --- --- 

0.0100 0.500 0.17407766 0.17407766 --- ---  1.000 0.17407766 --- --- --- 

 0.001t∆ = ,  Cr=0.1   0.01t∆ = ,  Cr=1 
x  Exact 

FD6 FD8 FD10  
TGBS1Q 

[31] 

TGBS1L 

[31] 

TGBS2Q 

[31] 

TGBS2L 

[31] 

TGBS2HQ 

[31] 

TGBS2HL 

[31] 

0.1 0.0035992 0.0035992 0.0035992 0.0035992  0.0035860 0.0035872 0.0036345 0.0036360 0.0036055 0.0036070 

0.2 0.0196422 0.0196423 0.0196423 0.0196423  0.0196139 0.0196087 0.0196514 0.0196436 0.0196048 0.0195969 

0.3 0.0660098 0.0660099 0.0660099 0.0660099  0.0660910 0.0660729 0.0656778 0.0656522 0.0658887 0.0658624 

0.4 0.1366027 0.1366028 0.1366028 0.1366028  0.1368574 0.1368703 0.1361951 0.1362141 0.1366971 0.1367171 

0.5 0.1740776 0.1740777 0.1740777 0.1740777  0.1740807 0.1741277 0.1745342 0.1746041 0.1744042 0.1744743 

0.6 0.1366027 0.1366028 0.1366028 0.1366028  0.1362195 0.1362113 0.1373380 0.1373258 0.1365433 0.1365294 

0.7 0.0660098 0.0660099 0.0660099 0.0660099  0.0658153 0.0657761 0.0659965 0.0659361 0.0657310 0.0656721 

0.8 0.0196422 0.0196423 0.0196423 0.0196423  0.0197571 0.0197514 0.0193274 0.0193197 0.0196024 0.0195950 

0.9 0.0035992 0.0035992 0.0035992 0.0035992  0.0037190 0.0037288 0.0034599 0.0034754 0.0036699 0.0036847 
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Table 5. Different error norms for various values of Cr  and t∆  with ( 0.5x =  for 

absolute and relative errors), 1.0t = , Pe 2=  in Example 1. 
0.02, 2h Pe= =   0.01, 1h Pe= =  

Scheme t∆  
Cr  

Absolute  

error 

Relative  

error 2L  L∞   Cr  
Absolute 

error 

Relative 

error 2L  L∞  

FD6 0.0005 0.025 8.40E-07 4.83E-06 6.40E-07 1.48E-06  0.050 6.66E-09 3.82E-08 8.42E-09 2.02E-08 

 0.0010 0.050 7.68E-07 4.41E-06 6.08E-07 1.42E-06  0.100 5.80E-09 3.33E-08 7.71E-09 1.86E-08 

 0.0020 0.100 6.34E-07 3.64E-06 5.51E-07 1.31E-06  0.200 4.45E-09 2.56E-08 6.60E-08 1.61E-08 

 0.0033 0.167 7.92E-06 4.55E-05 4.31E-05 7.43E-05  0.333 9.09E-06 5.22E-05 ---- ---- 

 0.0040 0.200 4.03E-07 2.32E-06 4.57E-07 1.11E-06  0.400 ---- ---- ---- ---- 

 0.0080 0.400 8.62E-08 4.95E-07 3.46E-07 8.58E-07  0.800 ---- ---- ---- ---- 

 0.0100 0.500 7.37E-09 4.23E-08 4.76E-05 3.33E-04  1.000 ---- ---- ---- ---- 

             

FD8 0.0005 0.025 7.37E-08 4.23E-07 6.68E-08 8.25E-08  0.050 2.42E-11 1.39E-10 3.29E-11 7.58E-11 

 0.0010 0.050 6.15E-08 3.53E-07 3.17E-08 7.08E-08  0.100 2.18E-11 1.25E-10 4.71E-11 1.16E-10 

 0.0020 0.100 3.90E-08 2.24E-07 2.27E-08 4.94E-08  0.200 8.51E-11 4.89E-10 8.03E-11 1.91E-10 

 0.0033 0.167 8.41E-06 4.83E-05 4.30E-05 7.37E-05  0.333 ---- ---- ---- ---- 

 0.0040 0.200 1.42E-09 8.17E-09 1.32E-08 3.12E-08  0.400 ---- ---- ---- ---- 

 0.0080 0.400 4.13E-08 3.37E-07 2.20E-08 4.88E-08  0.800 ---- ---- ---- ---- 

 0.0100 0.500 ---- ---- ---- ----  1.000 ---- ---- ---- ---- 

             

FD10 0.0005 0.025 1.18E-08 6.76E-08 6.67E-09 1.51E-08  0.050 4.50E-12 2.58E-11 2.39E-12 5.40E-12 

 0.0010 0.050 1.00E-08 5.77E-08 5.63E-09 1.27E-08  0.100 1.74E-12 9.97E-12 1.09E-12 2.49E-12 

 0.0020 0.100 6.88E-09 3.95E-08 3.76E-09 8.49E-09  0.200 5.15E-12 2.96E-11 2.46E-12 5.83E-12 

 0.0033 0.167 8.40E-06 4.82E-05 4.30E-05 7.37E-05  0.333 ---- ---- ---- ---- 

 0.0040 0.200 1.58E-09 9.08E-09 7.90E-10 1.61E-09  0.400 ---- ---- ---- ---- 

 0.0080 0.400 5.72E-03 3.28E-02 ---- ----  0.800 ---- ---- ---- ---- 

 0.0100 0.500 ---- ---- ---- ----  1.000 ---- ---- ---- ---- 

 

 

 

Table 6. A comparison of analytical and numerical solutions for various values of x  

with 0.02h = , 0.004t∆ = , 0.2Cr =  and 2Pe =  in Example 1. 

 
FD6 FD8 FD10 

x  Exact 
Results 

Absolute  

errors 
Results 

Absolute  

errors 
Results 

Absolute  

errors 

0.10 0.00359920727 0.00359921813 1.09E-08 0.00359920589 1.38E-09 0.00359920768 4.05E-10 

0.20 0.01964225900 0.01964209009 1.69E-07 0.01964226493 5.93E-09 0.01964225790 1.10E-09 

0.30 0.06600988665 0.06600982836 5.83E-08 0.06600987396 1.27E-08 0.06600988736 7.14E-10 

0.40 0.13660277419 0.13660355137 7.78E-07 0.13660278944 1.52E-08 0.13660277500 8.09E-10 

0.50 0.17407765596 0.17407725278 4.03E-07 0.17407765738 1.42E-09 0.17407765437 1.58E-09 

0.60 0.13660277419 0.13660192973 8.44E-07 0.13660274865 2.55E-08 0.13660277488 6.82E-10 

0.70 0.06600988665 0.06601059056 7.04E-07 0.06600991054 2.39E-08 0.06600988717 5.19E-10 

0.80 0.01964225900 0.01964248474 2.26E-07 0.01964225650 2.49E-09 0.01964225832 6.73E-10 

0.90 0.00359920727 0.00359895542 2.52E-07 0.00359920059 6.68E-09 0.00359920743 1.54E-10 
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Figure 2. FD10 solutions for transport of one-dimensional Gaussian pulse at various 

times with the parameters 0.025h = , 0 6x≤ ≤ , 0.005t∆ = , 0.8 m/su = , 20.005 m /sD = , 

0.16Cr = , 4Pe =  in Example 2. 

 

Table 7. Different error values of FD10 solutions for various values of , , ,h Pe t Cr∆  

with 5x = , 5t =  in Example 2. 
Absolute error ,h Pe  t∆  Exact Cr  FD10 

Ref.[16] Present 

Relative  

error 2L  L∞  

0.0005 0.21821789 0.016 0.21821789 9.13E-04 1.74E-09 7.97E-09 5.78E-10 1.75E-09 

0.0010 0.21821789 0.032 0.21821789 9.31E-04 1.64E-09 7.50E-09 5.44E-10 1.64E-09 

0.0020 0.21821789 0.064 0.21821789 9.73E-04 1.44E-09 6.60E-09 4.79E-10 1.44E-09 

0.0025 0.21821789 0.080 0.21821789 9.96E-04 1.35E-09 6.17E-09 4.48E-10 1.35E-09 

0.0050 0.21821789 0.160 0.21821789 1.13E-03 8.83E-10 4.05E-09 3.00E-10 9.10E-10 

0.0100 0.21821789 0.320 0.21821789 1.47E-03 7.55E-10 3.46E-09 2.58E-10 7.55E-10 

0.025,h=  

4Pe=  

0.0200 0.21821789 0.640 ---- 2.26E-03 ---- ---- ---- ---- 

0.0005 0.21821789 0.032 0.21821789 8.59E-05 6.06E-13 2.78E-12 3.00E-13 9.13E-13 

0.0010 0.21821789 0.064 0.21821789 9.53E-05 4.48E-13 2.05E-12 2.64E-13 8.57E-13 

0.0020 0.21821789 0.128 0.21821789 1.16E-04 3.62E-14 1.66E-13 1.56E-13 5.72E-13 

0.0025 0.21821789 0.160 0.21821789 1.26E-04 7.51E-13 3.44E-12 2.65E-13 8.08E-13 

0.0050 0.21821789 0.320 0.21821789 1.85E-04 3.09E-11 1.41E-10 1.02E-11 3.23E-11 

0.0100 0.21821789 0.640 ---- 3.27E-04 ---- ---- ---- ---- 

0.0125,h =  

2Pe =  

0.0200 0.21821789 1.280 ---- 0.217533 ---- ---- ---- ---- 

 

Table 8. FD10 solutions in addition to absolute and relative errors for various values of 

x  with 0.025h = , 0.005t∆ = , 0.16Cr =  and 4Pe = . 

x  Exact FD10 Absolute errors Relative errors 

3.50 0.0000000 0.0000000 3.13E-09 1.60E-12 

4.00 0.0000159 0.0000159 5.82E-09 4.55E-07 

4.50 0.0201770 0.0201770 1.56E-08 1.32E-08 

5.00 0.2182179 0.2182179 2.31E-08 4.05E-09 

5.50 0.0201770 0.0201770 2.89E-08 9.56E-09 

6.00 0.0000159 0.0000159 1.00E-09 4.77E-07 

6.50 0.0000000 0.0000000 5.22E-13 1.30E-12 



 

 

High-Order Finite Difference Schemes  

 

 

459 

5. REFERENCES 
 

1. B. J. Noye and H. H. Tan, A third-order semi-implicit finite difference method for 

solving the one-dimensional convection–diffusion equation, International Journal for 

Numerical Methods in Engineering, 26, 1615-29, 1988. 

2. B. J. Noye and H. H. Tan, Finite difference methods for the two-dimensional 

advection diffusion equation, International Journal for Numerical Methods in Fluids, 9, 

75-98, 1989. 

3. D. B. Spalding, A novel finite difference formulation for differential expression 

involving both first and second derivatives, International Journal for Numerical 

Methods in Fluids, 4, 551-559, 1972. 

4. J. B. Boris and D. L. Book, Flux corrected for transport algorithm that works, Journal 

of Computational Physics, 11, 38-69, 1973. 

5. Y. S. Li and C. P. Chen, An efficient split operator scheme for 2D advection diffusion 

equation using finite elements and characteristics, Applied Mathematical Modelling, 13, 

248-253, 1989. 

6. R. J. Sobey, Fractional step algorithm for estuarine mass transport, International 

Journal for Numerical Methods in Fluids, 3, 567-581, 1983. 

7. M. K. Patel, N. C. Markatos and M. Cross, A critical evaluation of seven 

discretisation schemes for convection–diffusion equation, International Journal for 

Numerical Methods in Fluids, 5, 225-244, 1985. 

8. B. P. Leonard, Simple high accuracy resolution program for convective modeling of 

discontinuities, International Journal for Numerical Methods in Fluids, 8, 1291-1318, 

1988. 

9. J. A. Kaandrop, C. P. Lowe, D. Frenkel and P. M. A. Sloot, Effect of nutrient 

diffusion and flow on coral morphology, Physical Review Letters, 77, 2328-2331, 1996. 

10. P. B. Warren, Electroviscous transport problems via Lattice-Boltzmann, 

International Journal of Modern Physics C, 8, 889-898, 1997. 

11. R. M. H. Merks, A. G. Hoekstra and P. M. A. Sloot, The moment propagation 

method for advection–diffusion in the Lattice Boltzmann method: validation and Peclet 

number limits, Journal of Computational Physics, 183, 563-576, 2002. 

12. B. P. Sommeijer and J. Kok, Implementation and performance of the time 

integration of a 3D numerical transport model, International Journal for Numerical 

Methods in Fluids, 21, 349-367, 1995. 

13. S. Sankaranarayanan, N. J. Shankar and H. F. Cheong, Three-dimensional finite 

difference model for transport of conservative pollutants, Ocean Engineering, 25, 425-

442, 1998. 

14. K. Huang, J. Simunek and M. T. H. Genuchten, A third-order numerical scheme 

with upwind weighting for solving the solute transport equation, International Journal 

for Numerical Methods in Engineering, 40, 1623–37, 1997. 

15. C. Zoppou, S. Roberts and R. J. Renka, Exponential spline interpolation in 

characteristic based scheme for solving the advective–diffusion equation, International 

Journal for Numerical Methods in Fluids, 33, 429-452, 2000. 

16. H. Karahan, A third-order upwind scheme for the advection–diffusion equation 

using spreadsheets, Advances in Engineering Software, 38, 688-697, 2007. 



 

 

M. Sari, G. Gürarslan and A. Zeytinoğlu  

 

 

460 

17. M. Dehghan, Weighted finite difference techniques for the one-dimensional 

advection–diffusion equation, Applied Mathematics and Computation, 147, 307-319, 

2004. 

18. I. Dağ, D. Irk and M. Tombul, Least-squares finite element method for the 

advection–diffusion equation, Applied Mathematics and Computation, 173, 554-565, 

2006. 

19. A. C. Hindmarsh, P. M. Gresho and D. F. Griffiths, The stability of explicit Euler 

time-integration for certain finite difference approximations of the multi-dimensional 

advection-diffusion equation, International Journal for Numerical Methods in Fluids, 4, 

853-897, 1984. 

20. A. Rigal, Numerical analysis of two-level finite difference schemes for unsteady 

diffusion-convection problems, International Journal for Numerical Methods in 

Engineering, 28, 1001-1021, 1989. 

21. A. Rigal, Stability analysis of finite difference schemes for two-dimensional 

advection-diffusion problems, International Journal for Numerical Methods in Fluids, 

13, 579-597, 1991. 

22. P. Wesseling, Von Neumann stability conditions for the convection-diffusion 

equation, IMA Journal of Numerical Analysis, 16, 583-598, 1996. 

23. J. M. C. Pereira and J. C. F. Pereira, Fourier analysis of several finite difference 

schemes for the one-dimensional unsteady convection–diffusion equation, International 

Journal for Numerical Methods in Fluids, 36, 417-439, 2001. 

24. M. Sari and G. Gürarslan, A sixth-order compact finite difference scheme to the 

numerical solutions of Burgers’ equation, Applied Mathematics and Computation, 208, 

475-483, 2009. 

25. M. Sari, G. Gürarslan and I. Dağ, A compact finite difference method for the 

solution of the generalized Burgers-Fisher equation, Numerical Methods for Partial 

Differential Equations, (2009), doi: 10.1002/num.20421.  

26. S. Karaa and J. Zhang, High order ADI method for solving unsteady convection–

diffusion problems, Journal of Computational Physics, 198, 1-9, 2004. 

27. M. Sari, Solution of the porous media equation by a compact finite difference 

method, Mathematical Problems in Engineering, 2009, 2009, Article ID 912541. 

28. J. Li, High-order finite difference schemes for differential equations containing 

higher derivatives, Applied Mathematics and Computation, 171, 1157-1176, 2005. 

29. M. Sari and G. Gürarslan, A sixth-order compact finite difference method for the 

one-dimensional sine-Gordon equation, Communications in Numerical Methods in 

Engineering (accepted). 

30. C. I. Steefel and K. T. B. MacQuarrie, Approaches to modeling reactive transport in 

porous media.  In Reactive Transport in Porous Media (Lichtner PC, Steefel CI, 

Oelkers EH eds.), Reviews in Mineralogy 34, 83-125, 1996. 

31. M. K. Kadalbajoo and P. Arora, Taylor-Galerkin B-spline finite element method for 

the one-dimensional advection–diffusion equation, Numerical Methods for Partial 

Differential Equations (2009), doi: 10.1002/num.20488.  


