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Abstract: In this study, numerical solutions of singularly perturbed two-pomt boundary value problems with
a linear or non-linear nature are obtained using Differential Quadrature Method (DOM). It is demonstrated
through numerical examples that accurate results for the problem can be obtained using a considerably small

number of grid points. The computed results are compared with exact solutions for various values of N.
Comparisons showed that the method is capable of achieving high accuracy and efficiency.
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INTRODUCTION

Behaviour of many physical systems leads to a
singularly perturbed differential equation depending on a
small physical parameter such that O<e<<1. We consider
the following class of singularly perturbed two-pomt
boundary value problem arises in various fields of science
such as fluid dynamics, control theory, chemical-reactor
theory aerodynamics theory, elasticity and especially fluid
motion,

ay"(x) + q(x)y' () + px)y(x) = £(x), (1)
0<x <1,
with the boundary conditions
y(0)= A, y(1)=B, ABeR, (2

€ 18 the small parameter. Here q(x), p(x) and f(x) are
assumed to be sufficiently smooth, bounded and real
functions as mentioned in (Kadalbajoo and Patidar, 2003a;
Khan ef al., 2004). In many applied areas, (1) possesses
boundary layers, that 1s, regions of quick change in the
solution near the ends with widths o(1) as e—0.

In recent years, much attention has been paid on
finding the solutions of these singularly perturbed
equations. In literature, there are various methods by
which the solutions of these equations can be obtained.
For example, difference methods (Kellogg and Tsan, 1978,
Berger et al, 1981, llicasu and Schultz, 2004), fimte
element methods (Chen, 1997, Chin and Krasny, 1983;
Schatz and Wahlbin, 1983; Stynes and O’ Riordan, 1986),
differential transformation method (Chen and Liu, 1998),
spline methods (Flaherty and Mathon, 1980; Jam and

Azz, 1983; Sakai and Usmami, 1989; Stojanovic, 1996;
Kadalbajoo and Patidar, 2003b), spectral methods (Liu and
Tang, 2001) and numerical integration method (Reddy and
Reddy, 2002). Tn all these technicues, especially in finite
difference techmques, usually uniformity, convergence of
the approximations, linearity, order of the fimte difference
and some applications were successfully analyzed.

To the best knowledge of the author, the idea of the
DOM has not been implemented for the singular
perturbation problems so far. The DOM 15 an efficient
discretization technicue in solving initial and/or boundary
value problems accurately using a considerably small
number of grid points. Bellman et af. (1972) introduced the
method in the early 1970s and, since then, the technique
has been successfully employed in finding the solutions
of many problems in applied and physical sciences
(Shu, 1991; Shu and Richards, 1992; Yiicel, 2006). The
method has been projected by its proponents as a
potential alternative to the conventional numerical
solution techniques such as the finite difference and finite
element methods.

In the DQ method, derivatives of a function with
respect to a coordinate direction are expressed as linear
weighted sums of all the functional values at all grid
points along that direction. The weighting coefficients in
that weighting sum are determined using test functions.
Among the many kinds of test functions, the Lagrange
interpolation polynomial is widely employed since it has
no limitation on the choice of the grid points. This leads
to Polynomial-Based Differential Quadrature (PDQ) which
1s suitable in most engineering problems. For problems
with periodic behaviours, polynomial approximation may
not be the best choice for the true solution. In contrast,
Founer series expansion can be the best approximation
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giving the Fourier Expansion-Based Differential
Quadrature (FDQ). The ease for computation of weighting
coefficients in explicit formulations (Shu, 2000) for both
cases 18 based on the analysis of function approximation
and linear vector space.

This study suggests the use of the DQM for solving
the considered singularly perturbed boundary value
problems. The current study aims to demonstrate that the
DQM 18 capable of achieving ugh accuracy for the
problem under consideration.

MATERIALS AND METHODS

The DOM was presented for the first time by
Bellman et al. (1972) as mentioned before for solving
differential equations. The method uses the basis of the
quadrature method in driving the derivatives of a
function. It follows that the partial derivative of a function
with respect to a space variable can be approximated by
a weighted linear combination of function values at some
mtermediate points in that variable.

In order to show the mathematical representation of
the method, we consider a single variable function u(x) on
the domain a<x<b; then the n* order derivative of the
function u(x) at an intermediate point (grid peint) x; can be
written as:

d"u o i
i =kZ=;W§<)(X,)U(Xk)’ (3)

x=1;

i=12,..,N, n=12,. N-1

where, N 1s the number of grid pomnts in the whole domain
fa=x <x,<.<xg=b)and w"(x) are the weightjng
coefficients of the n® derivative. As can be seen from
Eq. 3, two mportant factors control the quality of the
approximation resulting from the application of the DQM.
These are the values of weighting coefficients and the
positions of the discrete vamables. Once the weighting
coefficients are determined, the bridge to link the
derivatives in the governing differential equation and the
functional values at the mesh points is established. In
other words, with the weighting coefficients, one can
easily use the functional wvalues to compute the
derivatives. Note that for multidimensional problems each
derivative 1s approximated i the respective direction
similarly.

In order to determine the weighting coefficients in
Eq. 3, u(x) must be approximated by some test functions.
To select a suitable test function, one needs to satisfy the
followmg conditions:

+  Differentiability: The test function of the differential
equation must be differentiable at least up to the nth
derivative (here n is the highest order of the
differential equation).

+  Smoothness: u(x) must be sufficiently smooth to be
satisfied the condition of the differentiability.

Polynomial-Based Differential Quadrature (PDQ): When
the function u(x) 1s approximated by a higher order
polynomial, Shu (2000) and Shu and Richards (1992)
presented some explicit formulations to compute the
weighting coefficients within the scope of a higher order
polynomial approximation and a linear vector space. It 1s
supposed that the solution of a one-dinensional
differential equation is approximated by a (N-1)* degree

polynomial:
uix) = g g, x* (4

If w.(x), k=12...N_gare the base polynomials in V,
(N-dimensional linear vector space), then u(x) can be
expressed by

uix) = ZN; d,w, (%) (5)

Here, the base polynomials w(x), k = 1,2,..., N, are
chosen as the Lagrange mterpolated polynomials:

MG (6)

= MO ()

Where:

M) =] [(x-x)
a )
M®P(x, )= T]x, - %)

i=k

and x;, 1=1,2,..., N, stand for the coordinates of grid pomts
which can be chosen arbitrarily. Substituting Eq. 5 ito
Eq. 3 and wsing Eq. 6 result in the following weighting
coefficients for the first and second-order derivatives:

M (x
W)= K
(X,_Xk)M (Xk)
for k=i, ik=1.2..N (8)

N
whix)= > wl(x),
k=1

i=k
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1
)
(X, - Xk)
for k=i, i,k=12,...N )]
N
wiP(x) =2 wP(x)
k=1

i=k

wP(x) = 2w (x )wP(x,) -

Tt can be understood from the above equations that
the weighting coefficients of the second-order derivative
can be completely deterrmined from those of the first-order
derivative. Note that the explicit weighting coefficients for
the FDQ can be found m (Shu, 2000).

Choice of the grid point distributions: The selection of
locations of the sampling points plays an important role
in the accuracy of the solution of the differential
equations. Using uniform grids can be considered to be a
convenient and easy selection method. Quite frequently,
the DOM delivers more accurate selutions using the so-
called Chebyshev-Gauss-Lobatto points. For a domain
specified by a<x<b and discretized by a set of unequally
spaced poits (non-uniform grid), then the coordinate of
any point i can be evaluated by:

X, = a+%[1—cos[;l__ll EB (b-1) (10)

Implementation of boundary conditions: In order to gain
the accurate numerical solution of differential equations,
proper implementation of the boundary conditions is also
very unportant. Essential and natural boundary conditions
can be approximated by the DOM. Using the technique in
solving differential equations, the governing equations
are actually satisfied at each sampling point of the
domain, so one has one equation for each point, for each
unknown. In the resulting system of algebraic equations
from the DOQM, each boundary condition replaces the
corresponding  field equation. This procedure 1s
straightforward when there is one boundary condition at
each boundary and when we have distnibuted the
sampling pomts so that there i1s one pomt at each

boundary.

Applications to singularly perturbed problems: For the
approximate soluttion of the boundary value problem
Eq. 1 with the boundary conditions given in Eq. 2 using
the DOM, we first discritize the interval [0,1] such that
O=x <%, <..< %, =1 where N 1s the number of grid points.
We denote v, = y(x), f; = f(x)), etc. Applications of the
DQM, to discritize the derivatives in Eq. 1, lead to:

n n
Ezwi)yk + quWE)Yk Yy -f=0 (11)
k=1

k=1

i=23..N-1,

where, Wi and w5 are the weighting coefficients of the
first and second order derivatives, respectively. These
weighting coefficients can be determined using the
explicit formulas given by Eq. 8 and 9. Note that Eq. 11
should be applied at all interior points to obtain a set of
DQ algebraic equations. This will give us N-2 equations
with N unknowns. But we have two boundary conditions
specified at both ends. These boundary conditions can be
used to eliminate two unknowns (y, and yy) in Eq. 11.

If we have boundary conditions of the type given in
Eq. 2, we obtain y; = A, vy = B. These can be substituded
into the discritized Eq. 11 to obtamn a (N-2)x(N-2)
system of equations. This can be solved for the
unknowns v, Va, ..., Y-

Note that it is necessary to analyze the error resulting
from the approximation of a function and its derivatives.
Shu (1991) has given a thorough error analysis in his
Ph.D thesis. Therefore it will not be discussed here in this
research.

We alsonote that the PDQ method 1s an extension of
finite difference methods and is actually the highest order
finite difference scheme. Equation 4 can be applied to
both interior points and boundary points and can also be
applied to a umiform mesh or a non-uniform mesh. As the
highest order finite difference scheme, the PDQ method is
a global approximation approach since it uses all the
functional values in the whole computational domain.

Numerical illustrations: To demonstrate the efficiency
and accuracy of the DOQM, we have solved the following
three linear problems whose exact solutions are known as
well as a non-linear problem which is compared to its
possible solution in literature. The PDQ method is applied
to the problems for the non-umform gnd pomnts
distribution given in Eq. 10. All computations were carried
out using double-length anthmetic.

We have solved the following singularly perturbed
two-pomt boundary value problems in the region O<x<1
and for various values of €.

Example 1: Consider the following problem:
ey’ +y=0, ¥WO=yl)=0,
with exact solution given by:

-~ sin(x //2)
sin(1/+/z)
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Table 1: Maximum absolute errors for each &

Table 2: Maximum absolute errors for each £

g N=8 N=16 N=32 N=&1 N z=10"! g=10"2 g=10"3
27! 5.59E-09 5.55E-16 2.55E-15 2.36E-14 10 7.53E-05 2.53E-01 9.13E-01
272 1.27E-07 1.11E-15 349E-15 3.86E-14 20 3.63E-13 9.35E-03 6.06E-01
273 1.95E-05 3.99E-15 5.99E-14 2.84E-13 30 244E-15 4.67E-05 2.48E-01
274 3.44E-05 3.48E-14 1.47E-14 2.17E-14 40 2.55E-15 5.4E-08 1.23E-01
273 4.41E-04 5.82E-12 1.08E-14 1.91E-14 50 5.83E-15 1.22E-11 4.23E-02
276 9.01E-03 1.30E-09 T.66E-15 2.30E-15

2~ 3.96E-01 2.68E-07 6.33E-15 L.13E-14 Table 3: Computational results for example 2

2% 2.67E-00 4 ASE-04 199E-14  1.83F-13 =10, N =100 o= 10 N=250

2-° 1.81E+01 4.45E-02 1.40E-12 5.02E-14

We solved this boundary value problem using the
DOM with g(x) = 0, p(x) = 1 and f(x) = 0 in Eq. 1.
Applications of the DQM reduce this boundary value
problem to a (N-2)x(N-2) system of linear algebraic
equations for the unknowns v,, vi, ..., vy, Although this
system of equations can be solved by using several
approaches, we use here a FORTRAN IMSL routine called
DLSARG which solves a real general system of linear
equations with iterative refinement.

In Table 1, the maximum absolute errors are given for
various values of N and €. [t can be observed from the
table that the results obtained are very accurate, even if
the mumber of grid points is taken to be relatively small,
e, N = B As the number of grid points increases
reasonably, the errors decrease. This implies that the
accuracy of the DQ results can be improved by using a
larger number of grid points.

Example 2: ey" (xHy'(x) = 14+2x, y(0) = 0, y(1) = 1 whose
exact solution 1s given by

vix)=x(x+1-2g)+ (28—1)%.

This equation represents singularly perturbed linear
equation and is solved for q(x) =1, p(x) = Oand f(x) = 1+2x
i Eq. 1. The maximum absolute errors for various values
of N and ¢ are given in Table 2. As can be seen, using the
reasonably small number of grid points the method
produces accurate results. Note that decreasing in error is
relatively slow for very small values of £ However, to
overcome this drawback, number of grid pomts can be
increased at reasonable level.

In Table 3, we also compare the DQ results with the
exact solutions at selected points for different values of N
and €. Note that the DQ results are given at umform grids
interpolated with the use of a FORTRAN IMSL routine
called DCSIEZ. This routine computes the cubic spline
mterpolant with the not-a-knot condition and retum
values of the interpolant at specified pomts. It can be
seen that the DQ results are seen to be in a very good
agreement with the exact solutions. To solve the system
of linear algebraic equations for the unknowns here

X DQ Exact solution  DQ Exact solution
0.00  0.0000000 0.0000000 0.0000000 0.0000000
0.02 -0.9776472 -0.9776400 -0.9794138 -0.9794040
0.04  -0.9564844 -0.9564800 -0.9578318 -0.9582080
0.06 -0.9345189 -0.9345200 -0.9366138 -0.9362120
0.08 -0.9117516 -0.9117600 -0.9135461 -0.9134160
0.10 -0.8881943 -0.8882000 -0.8903313 -0.8898200
0.20 -0.7584082 -0.7584000 -0.75990065 -0.7598400
0.40  -0.4388094 -0.4388000 -0.4399873 -0.4398800
0.60 -0.0391919 -0.0391999 -0.0399202 -0.0399199
0.80  0.4404069 0.4404000 0.4399990 0.4400400
1.00  1.0000000 1.0000000 1.0000000 1.0000000

Table 4: Computational results for example 3
g=10% N=101 g=10"* N=251

X DQ Exact DQ Exact

0.00 10000000 1.0000000 1.0000000 1.0000000
0.02 03756749 0.3756784 0.3753135 0.3753479
0.04 03832567 0.3832599 0.3832121 0.3829296
0.06  0.3909975 0.3909945 0.3905739 0.3906645
0.08 03988887 0.3988851 0.3986703 0.3985557
0.10 04069357 0.4069350 0.4064012 0.4066062
0.20 04496880 0.4196879 0.4195894 0.4193649
040 05491419 0.5491404 0.5485881 0.5488445
0.60  0.67035892 0.6705877 0.6700944 0.6703469
0.80  0.8188%45 0.81889%42 0.8189829 0.8187471
1.00  1.0000000 1. 0000000 1. 0000000 1. 0000000

and the following example, the same procedure with
example 1 has been used.

Example 3: In this example we consider the following
homogeneous singularly perturbed problem given by
Bender and Omszag (1978) ey" (x)+y'-y(x) = 0, 0<x<1 with
y(0) =y(1)=1. The exact solution is given by:

(€™ —1e™* +(1-e™)e"*
e

y(x) =

Where:

m :—1+Jl+4a m

! 2e

S

T 2g

We solve this problem using the DQM for q(x) = 1
and p(x) = -1 with f{x) = 0 m Eq. 1. The maximum errors in
computed solutions are given in Table 4 for various
values of N and & The agreement between the DQ
solutions and the exact solutions is very good. Similar
observations can be made as inexamples 1 and 2. The
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Table 5: Computational results for example 4

2= 10" N=40 =107, N=110
BRender and Bender and
X DO Orszag’s solution DO Orszag’s solution
0.00  0.0000000 0.0000000 0.0000000 0.0000000
0.02  0.6642816 0.6606491 0.6734848 0.6733446
0.04  0.6569235 0.6536939 0.6539547 0.6539265
0.06  0.6378740 0.6348740 0.6356386 0.6348783
0.08 0.6191408 0.6161861 0.6161951 0.6161861
0.10  0.6005473 0.5978370 0.5979755 0.5978370
0.20  0.5129945 0.5108256 0.5107667 0.5108256
040 03580415 0.3566749 0.3568654 0.3566749
0.60 0.2237864 0.2231436 0.2232924 0.2231435
0.80  0.1056600 0.1053605 0.1058105 0.1053605
1.00  0.0000000 0.0000000 0.0000000 0.0000000

computational results at grid points have been obtained
with the use of same procedure as in the previous
example.

The DOQM can be used to solve non-linear singular
perturbation problems as well as to linear singular
perturbation problems. Even though we have mostly
intended to focus on linear singular perturbation
problems, to properly show the range of the DQ method
we also include a non-linear singular perturbation problem
as follows:

Example 4: Consider the following singularly perturbed
problem given by Bender and Orszag (1978):

gy +2y'+e7=0, 0<x<l
with
y(O) =y(1)=0.

Applications of the DOM reduce this problem to a
system of non-linear equations. This system is solved
here using a FORTRAN IMSL routine called DNEQNF.
This routine solves a system of non-linear equations
using a modified Powell hybrid algorithm and a fimte-
difference approximation to the Jacobian.

We compare the DQ results with the Bender and
Orszag’s umformly valid approximation

-x
Y(X) = m[%] - eT In2.
+X

The comparison of the results can be seen in Table 5 for
various values of N and e. It can be noticed that the
agreement 1s considerably good.

CONCLUSIONS

In this study, the DOM has been applied to solve
singularly perturbed two-point boundary value problems
with a linear or non-linear nature. The applications

presented here showed that the DQM has the capability
of solving singularly perturbed two-point boundary value
problems and also 1s capable of producing highly accurate
solutions with minimal computational effort. The
performance of the method for the considered problems
was measured by comparing with the exact solutions. Tt
can be observed from the tables that the DOQM
approximates the exact solution very well. This shows the
efficiency and accuracy of the method.

It has been observed that an increase in the number
of grid points gives rise to an mcrease in the accuracy of
the DQM solution, as 1s the case in most numerical
techniques. However, using a considerably small number
of grid peints in the DOQM produces highly accurate
results with the use of non-uniform grids. This technique
provides an alternative method to the conventional ways
of solving singular perturbation problems.
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