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Copyright © 2014 Ayşegül Akyüz-Daşcıoğlu et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

A collocation method based on the Bernstein polynomials defined on the interval [𝑎, 𝑏] is developed for approximate solutions of
the Fredholm-Volterra integrodifferential equation (FVIDE) in the most general form.This method is reduced to linear FVIDE via
the collocation points and quasilinearization technique. Some numerical examples are also given to demonstrate the applicability,
accuracy, and efficiency of the proposed method.

1. Introduction

The quasilinearization method was introduced by Bellman
and Kalaba [1] to solve nonlinear ordinary or partial differ-
ential equations as a generalization of the Newton-Raphson
method. The origin of this method lies in the theory of
dynamic programming. In this method, the nonlinear equa-
tions are expressed as a sequence of linear equations and these
equations are solved recursively. The main advantage of this
method is that it converges monotonically and quadratically
to the exact solution of the original equations [2]. Therefore,
the quasilinearization method is an effective approach for
obtaining approximate solutions of nonlinear equations such
as differential equations [3–7], functional equations [8, 9],
integral equations [10–12], and integrodifferential equations
[13–15].

In this paper, we consider the nonlinear FVIDE in the
general form

𝑔 (𝑥, 𝑦 (𝑥) , 𝑦
󸀠

(𝑥) , . . . , 𝑦
(𝑚)

(𝑥))

= 𝜆
1

∫
𝑏

𝑎

𝑓 (𝑥, 𝑡, 𝑦 (𝑡) , 𝑦
󸀠

(𝑡) , . . . , 𝑦
(𝑚)

(𝑡)) 𝑑𝑡

+ 𝜆
2

∫
𝑥

𝑎

V (𝑥, 𝑡, 𝑦 (𝑡) , 𝑦
󸀠

(𝑡) , . . . , 𝑦
(𝑚)

(𝑡)) 𝑑𝑡,

(1)

under the initial

𝑚−1

∑
𝑘=0

𝜏
𝑗𝑘

𝑦
(𝑘)

(𝑐) = 𝜇
𝑗
; 𝑗 = 0, 1, . . . , 𝑚 − 1, 𝑐 ∈ [𝑎, 𝑏] , (2)

or boundary conditions

𝑚−1

∑
𝑘=0

[𝛼
𝑗𝑘

𝑦
(𝑘)

(𝑎) + 𝛽
𝑗𝑘

𝑦
(𝑘)

(𝑏)] = 𝛾
𝑗
; 𝑗 = 0, 1, . . . , 𝑚 − 1.

(3)

Here 𝑔 : [𝑎, 𝑏] × R𝑚+1 → R, 𝑓 : [𝑎, 𝑏] × [𝑎, 𝑏] × R𝑚+1 → R,
and V : [𝑎, 𝑏] × [𝑎, 𝑏] × R𝑚+1 → R are known functions, 𝛼

𝑗𝑘
,

𝛽
𝑗𝑘
, 𝜏
𝑗𝑘
, 𝜇
𝑗
, 𝛾
𝑗
, 𝜆
1
, and 𝜆

2
are known constants, and 𝑦(𝑥) is an

unknown function.
Besides, we approximate to the nonlinear FVIDE (1) by

the generalizedBernstein polynomials defined on the interval
[𝑎, 𝑏] as

𝑦 (𝑥) ≅ 𝐵
𝑛

(𝑦; 𝑥) =

𝑛

∑
𝑖=0

𝑦 (𝑎 +
(𝑏 − 𝑎) 𝑖

𝑛
) 𝑝
𝑖,𝑛

(𝑥) , (4)
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where𝑝
𝑖,𝑛

(𝑥) denotes the generalized Bernstein basis polyno-
mials of the form

𝑝
𝑖,𝑛

(𝑥) =
1

(𝑏 − 𝑎)
𝑛

(
𝑛

𝑖
) (𝑥 − 𝑎)

𝑖

(𝑏 − 𝑥)
𝑛−𝑖

; 𝑖 = 0, 1, . . . , 𝑛.

(5)

For convenience, we set 𝑝
𝑖,𝑛

(𝑥) = 0, if 𝑖 < 0 or 𝑖 > 𝑛.
Bernstein polynomials have many useful properties such

as the positivity, continuity, differentiability, integrability,
recursion’s relation, symmetry, and unity partition of the
basis set over the interval [𝑎, 𝑏]. For more information
about the Bernstein polynomials, see [16, 17]. Recently, these
polynomials have been used for the numerical solutions of
differential equations [4, 18, 19], integral equations [20–24],
and integrodifferential equations [25–27].

Now, we give two main theorems for the generalized
Berntein polynomials and their basis forms that were proved
by Akyuz Dascioglu and Isler [4] as follows.

Theorem 1. If 𝑦 ∈ 𝐶
𝑘
[𝑎, 𝑏], for some integer 𝑚 ≥ 0, then

lim
𝑛→∞

𝐵
(𝑘)

𝑛
(𝑦; 𝑥) = 𝑦

(𝑘)

(𝑥) ; 𝑘 = 0, 1, . . . , 𝑚 (6)

converges uniformly.

Proof. The above theorem can be easily proved by applying
transformation 𝑡 = (𝑥 − 𝑎)/(𝑏 − 𝑎) to the theorem given on
the interval [0, 1] by Phillips [28].

Theorem 2 (see [4]). There is a relation between generalized
Bernstein basis polynomials matrix and their derivatives in the
form

P(𝑘) (𝑥) = P (𝑥)N𝑘; 𝑘 = 1, . . . , 𝑚 (7)

such that

P (𝑥) = [𝑝
0,𝑛

(𝑥) 𝑝
1,𝑛

(𝑥) ⋅ ⋅ ⋅ 𝑝
𝑛,𝑛

(𝑥)] . (8)

Here the elements of (𝑛 + 1) × (𝑛 + 1) matrix N = (𝑑
𝑖𝑗
), 𝑖, 𝑗 =

0, 1, . . . , 𝑛, are defined by

𝑑
𝑖𝑗

=
1

𝑏 − 𝑎

{{{{

{{{{

{

𝑛 − 𝑖; 𝑖𝑓 𝑗 = 𝑖 + 1

2𝑖 − 𝑛; 𝑖𝑓 𝑗 = 𝑖

−𝑖; 𝑖𝑓 𝑗 = 𝑖 − 1

0; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(9)

In highlight of these theorems, a collocation method
based on the generalized Bernstein polynomials, given in
Section 2, is developed for the approximate solutions of
the nonlinear FVIDE in the most general form (1) via the
quasilinearization technique iteratively. In Section 3, some
numerical examples are presented for exhibiting the accuracy
and applicability of the proposed method. Finally, the paper
ends with the conclusions in Section 4.

2. Method of the Solution

Our aim is to obtain a numerical solution of the nonlinear
FVIDE in the general form (1) under conditions (2) or (3) in

terms of the generalized Bernstein polynomials. For this, we
firstly express this nonlinear equation as a sequence of linear
FVIDEs via the quasilinearization technique iteratively. After
that, using the collocation points yields the system of linear
algebraic equations.This system represents a matrix equation
given by the following theorem. Finally, solving this system
with the conditions we get the desired approximate solution.

Theorem3. Let 𝑥
𝑠
be collocation points defined on the interval

[𝑎, 𝑏], and let the functions 𝑔, 𝑓, and V be able to expand by
Taylor series with respect to 𝑦

(𝑘)
; 𝑘 = 0, 1, . . . , 𝑚. Suppose that

nonlinear FVIDE (1) has the generalized Bernstein polynomial
solution. Then, the following matrix relation holds:

[

𝑚

∑
𝑘=0

(G
𝑟,𝑘
P − 𝜆
1
F
𝑟,𝑘

− 𝜆
2
V
𝑟,𝑘

)N𝑘]Y
𝑟+1

= H
𝑟
;

𝑟 = 0, 1, . . . ,

(10)

where N is defined in Theorem 2, P = [𝑝
𝑖,𝑛

(𝑥
𝑠
)], G
𝑟,𝑘

=

diag[𝐺
𝑟,𝑘

(𝑥
𝑠
)], F
𝑟,𝑘

= [𝐹
𝑟,𝑘

𝑠,𝑖
], and V

𝑟,𝑘
= [𝑉
𝑟,𝑘

𝑠,𝑖
] are (𝑛 + 1) ×

(𝑛 + 1) matrices, and Y
𝑟+1

= [𝑦
𝑟+1

(𝑎 + (𝑏 − 𝑎)𝑖/𝑛)] and
H
𝑟

= [ℎ
𝑟
(𝑥
𝑠
)] are (𝑛 + 1) × 1 matrices for 𝑖, 𝑠 = 0, 1, . . . , 𝑛,

such that

𝐺
𝑟,𝑘

(𝑥
𝑠
) = 𝑔
𝑦
(𝑘)
𝑟

(𝑥
𝑠
, 𝑦
𝑟
(𝑥
𝑠
) , 𝑦
󸀠

𝑟
(𝑥
𝑠
) , . . . , 𝑦

(𝑚)

𝑟
(𝑥
𝑠
)) ,

𝐹
𝑟,𝑘

𝑠,𝑖
= ∫
𝑏

𝑎

𝑓
𝑦
(𝑘)
𝑟

(𝑥
𝑠
, 𝑡, 𝑦
𝑟
(𝑡) , 𝑦
󸀠

𝑟
(𝑡) , . . . , 𝑦

(𝑚)

𝑟
(𝑡)) 𝑝
𝑖,𝑛

(𝑡) 𝑑𝑡,

𝑉
𝑟,𝑘

𝑠,𝑖
= ∫
𝑥𝑠

𝑎

V
𝑦
(𝑘)
𝑟

(𝑥
𝑠
, 𝑡, 𝑦
𝑟
(𝑡) , 𝑦
󸀠

𝑟
(𝑡) , . . . , 𝑦

(𝑚)

𝑟
(𝑡)) 𝑝
𝑖,𝑛

(𝑡) 𝑑𝑡.

(11)

Here 𝑟 is iteration index, 𝑝
𝑖,𝑛

(𝑥) is generalized Bernstein basis
polynomials, and ℎ

𝑟
(𝑥) is given in the following proof.

Proof. Firstly, by applying the quasilinearization method to
the nonlinear FVIDE (1), we obtain a sequence of linear
FVIDEs:

𝑔 (𝑥, 𝑦
𝑟
(𝑥) , 𝑦

󸀠

𝑟
(𝑥) , . . . , 𝑦

(𝑚)

𝑟
(𝑥))

+

𝑚

∑
𝑘=0

(𝑦
(𝑘)

𝑟+1
(𝑥) − 𝑦

(𝑘)

𝑟
(𝑥)) 𝑔

𝑦
(𝑘)
𝑟

=

𝑚

∑
𝑘=0

[𝜆
1

∫
𝑏

𝑎

(𝑦
(𝑘)

𝑟+1
(𝑡) − 𝑦

(𝑘)

𝑟
(𝑡)) 𝑓
𝑦
(𝑘)
𝑟

𝑑𝑡

+𝜆
2

∫
𝑥

𝑎

(𝑦
(𝑘)

𝑟+1
(𝑡) − 𝑦

(𝑘)

𝑟
(𝑡)) V
𝑦
(𝑘)
𝑟

𝑑𝑡]

+ 𝜆
1

∫
𝑏

𝑎

𝑓 (𝑥, 𝑡, 𝑦
𝑟
(𝑡) , 𝑦
󸀠

𝑟
(𝑡) , . . . , 𝑦

(𝑚)

𝑟
(𝑡)) 𝑑𝑡

+ 𝜆
2

∫
𝑥

𝑎

V (𝑥, 𝑡, 𝑦
𝑟
(𝑡) , 𝑦
󸀠

𝑟
(𝑡) , . . . , 𝑦

(𝑚)

𝑟
(𝑡)) 𝑑𝑡,

(12)
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where the expressions 𝑔
𝑦
(𝑘)
𝑟
, 𝑓
𝑦
(𝑘)
𝑟
, and V

𝑦
(𝑘)
𝑟

represent partial
differentiation of the functions𝑔,𝑓, and Vwith respect to𝑦

(𝑘)

𝑟
,

and these are defined, respectively, as

𝑔
𝑦
(𝑘)
𝑟

=
𝜕𝑔

𝜕𝑦
(𝑘)

𝑟

(𝑥, 𝑦
𝑟
(𝑥) , 𝑦

󸀠

𝑟
(𝑥) , . . . , 𝑦

(𝑚)

𝑟
(𝑥)) ,

𝑓
𝑦
(𝑘)
𝑟

=
𝜕𝑓

𝜕𝑦
(𝑘)

𝑟

(𝑥, 𝑡, 𝑦
𝑟
(𝑡) , 𝑦
󸀠

𝑟
(𝑡) , . . . , 𝑦

(𝑚)

𝑟
(𝑡)) ,

V
𝑦
(𝑘)
𝑟

=
𝜕V

𝜕𝑦
(𝑘)

𝑟

(𝑥, 𝑡, 𝑦
𝑟
(𝑡) , 𝑦
󸀠

𝑟
(𝑡) , . . . , 𝑦

(𝑚)

𝑟
(𝑡)) .

(13)

Here 𝑦
0
(𝑥) is a reasonable initial approximation of the

function 𝑦(𝑥), and 𝑦
𝑟
(𝑥) is always considered known and is

obtained fromprevious iteration.The recurrence relation (12)
can now be written compactly in the form

𝑚

∑
𝑘=0

[𝑔
𝑦
(𝑘)
𝑟

𝑦
(𝑘)

𝑟+1
(𝑥) − 𝜆

1
∫
𝑏

𝑎

𝑓
𝑦
(𝑘)
𝑟

𝑦
(𝑘)

𝑟+1
(𝑡) 𝑑𝑡

−𝜆
2

∫
𝑥

𝑎

V
𝑦
(𝑘)
𝑟

𝑦
(𝑘)

𝑟+1
(𝑡) 𝑑𝑡] = ℎ

𝑟
(𝑥)

(14)

denoting ℎ
𝑟
(𝑥):

ℎ
𝑟
(𝑥) = −𝑔 (𝑥, 𝑦

𝑟
, 𝑦
󸀠

𝑟
, . . . , 𝑦

(𝑚)

𝑟
)

+

𝑚

∑
𝑘=0

[𝑔
𝑦
(𝑘)
𝑟

𝑦
(𝑘)

𝑟
(𝑥) − 𝜆

1
∫
𝑏

𝑎

𝑓
𝑦
(𝑘)
𝑟

𝑦
(𝑘)

𝑟
(𝑡) 𝑑𝑡

−𝜆
2

∫
𝑥

𝑎

V
𝑦
(𝑘)
𝑟

𝑦
(𝑘)

𝑟
(𝑡) 𝑑𝑡]

+ 𝜆
1

∫
𝑏

𝑎

𝑓 (𝑥, 𝑡, 𝑦
𝑟
(𝑡) , 𝑦
󸀠

𝑟
(𝑡) , . . . , 𝑦

(𝑚)

𝑟
(𝑡)) 𝑑𝑡

+ 𝜆
2

∫
𝑥

𝑎

V (𝑥, 𝑡, 𝑦
𝑟
(𝑡) , 𝑦
󸀠

𝑟
(𝑡) , . . . , 𝑦

(𝑚)

𝑟
(𝑡)) 𝑑𝑡.

(15)

Notice that (14) is a linear FVIDE with variable coefficients,
since 𝑦

𝑟
(𝑥) is known function of 𝑥. 𝑦

𝑟+1
(𝑥) is an unknown

function that has the Bernstein polynomial solution; also this
function and its derivatives can be expressed by

𝑦
(𝑘)

𝑟+1
(𝑥) ≃ 𝐵

(𝑘)

𝑛
(𝑦
𝑟+1

; 𝑥) = P(𝑘) (𝑥)Y
𝑟+1

; 𝑟 = 0, 1, . . . . (16)

By utilizingTheorem 2 and collocation points, above relation
becomes

𝑦
(𝑘)

𝑟+1
(𝑥
𝑠
) = P (𝑥

𝑠
)N𝑘Y

𝑟+1
; 𝑘 = 0, 1, . . . , 𝑚. (17)

Substituting the collocation points and the relation (17) into
(14), we obtain a linear algebraic system:

𝑚

∑
𝑘=0

[𝐺
𝑟,𝑘

(𝑥
𝑠
)P (𝑥

𝑠
) − 𝜆
1
F
𝑟,𝑘

(𝑥
𝑠
) − 𝜆
2
V
𝑟,𝑘

(𝑥
𝑠
)]N𝑘Y

𝑟+1

= ℎ
𝑟
(𝑥
𝑠
) .

(18)

Here F
𝑟,𝑘

(𝑥
𝑠
) and V

𝑟,𝑘
(𝑥
𝑠
) are denoted by

F
𝑟,𝑘

(𝑥
𝑠
) = ∫
𝑏

𝑎

𝑓
𝑦
(𝑘)
𝑟

(𝑥
𝑠
, 𝑡, 𝑦
𝑟
(𝑡) , 𝑦
󸀠

𝑟
(𝑡) , . . . , 𝑦

(𝑚)

𝑟
(𝑡))P (𝑡) 𝑑𝑡,

V
𝑟,𝑘

(𝑥
𝑠
) = ∫
𝑥𝑠

𝑎

V
𝑦
(𝑘)
𝑟

(𝑥
𝑠
, 𝑡, 𝑦
𝑟
(𝑡) , 𝑦
󸀠

𝑟
(𝑡) , . . . , 𝑦

(𝑚)

𝑟
(𝑡))P (𝑡) 𝑑𝑡.

(19)

P(𝑡) and 𝐺
𝑟,𝑘

(𝑥) are defined, respectively, in Theorems 2 and
3.

For 𝑠 = 0, 1, . . . , 𝑛, the system (18) can be written
compactly in the matrix form

W
𝑟
Y
𝑟+1

= H
𝑟
; 𝑟 = 0, 1, . . . (20)

so that

W
𝑟

=

𝑚

∑
𝑘=0

(G
𝑟,𝑘
P − 𝜆
1
F
𝑟,𝑘

− 𝜆
2
V
𝑟,𝑘

)N𝑘, (21)

where matrices are clearly

G
𝑟,𝑘

=

[
[
[
[

[

𝐺
𝑟,𝑘

(𝑥
0
) 0 . . . 0

0 𝐺
𝑟,𝑘

(𝑥
1
) . . . 0

...
... d

...
0 0 . . . 𝐺

𝑟,𝑘
(𝑥
𝑛
)

]
]
]
]

]

,

P =

[
[
[
[

[

P (𝑥
0
)

P (𝑥
1
)

...
P (𝑥
𝑛
)

]
]
]
]

]

, F
𝑟,𝑘

=

[
[
[
[

[

F
𝑟,𝑘

(𝑥
0
)

F
𝑟,𝑘

(𝑥
1
)

...
F
𝑟,𝑘

(𝑥
𝑛
)

]
]
]
]

]

,

V
𝑟,𝑘

=

[
[
[
[

[

V
𝑟,𝑘

(𝑥
0
)

V
𝑟,𝑘

(𝑥
1
)

...
V
𝑟,𝑘

(𝑥
𝑛
)

]
]
]
]

]

, H
𝑟

=

[
[
[
[

[

ℎ
𝑟
(𝑥
0
)

ℎ
𝑟
(𝑥
1
)

...
ℎ
𝑟
(𝑥
𝑛
)

]
]
]
]

]

.

(22)

Hence, the proof is completed.

Corollary 4. For 𝜆
1

= 𝜆
2

= 0, the nonlinear FVIDE (1) is
reduced to the 𝑚th order nonlinear differential equation

𝑔 (𝑥, 𝑦 (𝑥) , 𝑦
󸀠

(𝑥) , . . . , 𝑦
(𝑚)

(𝑥)) = 0, (23)

and by utilizing Theorem 3, this equation can be written as

𝑚

∑
𝑘=0

G
𝑟,𝑘
PN𝑘Y

𝑟+1
= Ĥ
𝑟
; 𝑟 = 0, 1, . . . . (24)

Here the matrices P, N, and G
𝑟,𝑘

are defined as above, and
elements of the matrix Ĥ

𝑟
= [ℎ̂
𝑟
(𝑥
𝑠
)] are denoted by

ℎ̂
𝑟
(𝑥
𝑠
) =

𝑚

∑
𝑘=0

𝐺
𝑟,𝑘

(𝑥
𝑠
) 𝑦
(𝑘)

𝑟
(𝑥
𝑠
)

− 𝑔 (𝑥
𝑠
, 𝑦
𝑟
(𝑥
𝑠
) , 𝑦
󸀠

𝑟
(𝑥
𝑠
) , . . . , 𝑦

(𝑚)

𝑟
(𝑥
𝑠
)) .

(25)
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Corollary 5. For𝑚 = 0, the nonlinear FVIDE (1) is reduced to
the nonlinear Fredholm-Volterra integral equation in the form

𝑔 (𝑥, 𝑦 (𝑥)) = 𝜆
1

∫
𝑏

𝑎

𝑓 (𝑥, 𝑡, 𝑦 (𝑡)) 𝑑𝑡 + 𝜆
2

∫
𝑥

𝑎

V (𝑥, 𝑡, 𝑦 (𝑡)) 𝑑𝑡

(26)

such that 𝑦
(0)

(𝑡) = 𝑦(𝑡). FromTheorem 3, this equation has the
iteration matrix form as

[G
𝑟

− 𝜆
1
F
𝑟

− 𝜆
2
V
𝑟
]Y
𝑟+1

= H
𝑟
; 𝑟 = 0, 1, . . . . (27)

Here G
𝑟

= diag[𝐺
𝑟
(𝑥
𝑠
)], F
𝑟

= [𝐹
𝑟,𝑠,𝑖

], V
𝑟

= [𝑉
𝑟,𝑠,𝑖

], H
𝑟

=

[ℎ
𝑟
(𝑥
𝑠
)], and elements of these matrices are denoted as follows:

𝐺
𝑟
(𝑥
𝑠
) = 𝑔
𝑦𝑟

(𝑥
𝑠
, 𝑦
𝑟
(𝑥
𝑠
)) ,

𝐹
𝑟,𝑠,𝑖

= ∫
𝑏

𝑎

𝑓
𝑦𝑟

(𝑥
𝑠
, 𝑡, 𝑦
𝑟
(𝑡)) 𝑝
𝑖,𝑛

(𝑡) 𝑑𝑡,

𝑉
𝑟,𝑠,𝑖

= ∫
𝑥𝑠

𝑎

V
𝑦𝑟

(𝑥
𝑠
, 𝑡, 𝑦
𝑟
(𝑡)) 𝑝
𝑖,𝑛

(𝑡) 𝑑𝑡,

ℎ
𝑟
(𝑥
𝑠
)

= 𝑔
𝑦𝑟

(𝑥
𝑠
, 𝑦
𝑟
(𝑥
𝑠
)) 𝑦
𝑟
(𝑥
𝑠
) − 𝑔 (𝑥

𝑠
, 𝑦
𝑟
(𝑥
𝑠
))

− 𝜆
1

∫
𝑏

𝑎

[𝑓 (𝑥
𝑠
, 𝑡, 𝑦
𝑟
(𝑡)) − 𝑓

𝑦𝑟
(𝑥
𝑠
, 𝑡, 𝑦
𝑟
(𝑡)) 𝑦
𝑟
(𝑡)] 𝑑𝑡

− 𝜆
2

∫
𝑥𝑠

𝑎

[V (𝑥
𝑠
, 𝑡, 𝑦
𝑟
(𝑡)) − V

𝑦𝑟
(𝑥
𝑠
, 𝑡, 𝑦
𝑟
(𝑡)) 𝑦
𝑟
(𝑡)] 𝑑𝑡.

(28)

Now we can solve the nonlinear FVDIE (1) under the
initial (2) or boundary (3) conditions as follows.

Step 1. Firstly, we use Theorem 3 for the nonlinear FVDIE
(1) and determine the matrices in (10). This matrix equation
is a system of linear algebraic equations with 𝑛-unknown
coefficients 𝑦

𝑟+1
(𝑎 + (𝑏 − 𝑎)𝑖/𝑛). Let the augmented matrix

corresponding equation (10) be denoted by [W
𝑟
;H
𝑟
].

Step 2. We need to choose the first iteration function 𝑦
0
(𝑥)

for calculating the W
𝑟
and H

𝑟
. Notice that this function

can be obtained in a variety of ways. For instance, it can
be obtained from the physical situation for engineering
problems. However, a very rough choice for the first iteration
function such as initial value is enough for the procedure
to converge. We can also consider that the first iteration
function as the highest degree polynomial satisfied the given
conditions (2) or (3).

Step 3. From expression (17), initial (2) and boundary (3)
conditions can be written in the matrix forms, respectively,

I
𝑗
Y
𝑟+1

= 𝜇
𝑗
,

B
𝑗
Y
𝑟+1

= 𝛾
𝑗
,

(29)

where the matrices are

I
𝑗

=

𝑚−1

∑
𝑘=0

𝜏
𝑗𝑘
P (𝑐)N𝑘,

B
𝑗

=

𝑚−1

∑
𝑘=0

[𝛼
𝑗𝑘
P (𝑎)N𝑘 + 𝛽

𝑗𝑘
P (𝑏)N𝑘] .

(30)

Besides, (29) can be denoted by the augmented matrices
[I
𝑗
; 𝜇
𝑗
] and [B

𝑗
; 𝛾
𝑗
].

Step 4. To obtain the solution of nonlinear FVIDE (1) under
the given conditions, we insert the elements of the row
matrices [I

𝑗
; 𝜇
𝑗
]or [B

𝑗
; 𝛾
𝑗
] to the endof the augmentedmatrix

[W
𝑟
;H
𝑟
]. In this way, we have the new augmented matrix

[W̃
𝑟
; H̃
𝑟
], that is, (𝑛 + 𝑚 + 1) × (𝑛 + 1) rectangular matrix.

Step 5. If rank(W̃
𝑟
) = rank[W̃

𝑟
; H̃
𝑟
] = 𝑛 + 1, then unknown

coefficients 𝑦
𝑟+1

are uniquely determined for each iteration 𝑟.
This kind of systems can be solved by the Gauss Elimination,
Generalized Inverse, and QR factorization methods.

3. Numerical Results

Four numerical examples are given to illustrate the applica-
bility, accuracy, and efficiency of the proposed method. All
results are computed by using an algorithmwritten inMatlab
7.1. Besides, in the tables, the absolute and L2-norm errors
are computed numerically on the collocation points 𝑥

𝑠
=

𝑎 + (𝑏 − 𝑎)𝑠/𝑛; 𝑠 = 0, 1, . . . , 𝑛, by the folowing formulas:

𝐸abs =
󵄨󵄨󵄨󵄨𝑦 (𝑥
𝑠
) − 𝐵
𝑛

(𝑦
𝑟
; 𝑥
𝑠
)
󵄨󵄨󵄨󵄨 ,

𝐸
2

= √∫
𝑥𝑠

0

(𝑦 (𝑥) − 𝐵
𝑛

(𝑦
𝑟
; 𝑥))
2

𝑑𝑥

(31)

such that 𝐵
𝑛
(𝑦
𝑟
; 𝑥) is a Bernstein approximation for the 𝑟th

iteration function 𝑦
𝑟
and 𝑦(𝑥) is an exact solution.

Example 1. Consider the nonlinear Volterra integrodifferen-
tial equation

𝑦
󸀠

(𝑥) = 2𝑥 −
1

2
sin (𝑥

4
) + ∫
𝑥

0

𝑥
2
𝑡 cos (𝑥

2
𝑦 (𝑡)) 𝑑𝑡;

0 < 𝑥, 𝑡 < 1

(32)

under the initial condition 𝑦(0) = 0. Exact solution of this
equation is 𝑦(𝑥) = 𝑥

2. Here 𝑔(𝑥, 𝑦
󸀠
(𝑥)) = 𝑦

󸀠
(𝑥) − 2𝑥 +

(1/2) sin(𝑥
4
) and V(𝑥, 𝑡, 𝑦(𝑡)) = 𝑥

2
𝑡 cos(𝑥2𝑦(𝑡)).

Let 𝑦
0
(𝑥) = 0 be the first iteration function. From

Theorem 3, matrix relation of the above problem can be
written as

(G
𝑟,1
PN + V

𝑟,0
)Y
𝑟+1

= H
𝑟
; 𝑟 = 0, 1, . . . , (33)

where H
𝑟

= [ℎ
𝑟
(𝑥
𝑠
)], V
𝑟,0

= [𝑉
𝑟,0

𝑠,𝑖
], P = [𝑝

𝑖,𝑛
(𝑥
𝑠
)], and

G
𝑟,1

= I
𝑛+1

(I
𝑛+1

is an identity matrix with dimensional
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Table 1: Comparison of theL2-norm errors for Example 1.

𝑛

Presented method Hybrid method [29]
𝑦
0
(𝑥) = 0 𝑦

0
(𝑥) = 𝑥

𝑟 = 2 𝑟 = 3 𝑟 = 2 𝑟 = 3 𝑛 = 9 8.8𝑒 − 012

2 7.0𝑒 − 006 1.7𝑒 − 012 8.7𝑒 − 008 3.5𝑒 − 017 𝑛 = 17 3.4𝑒 − 012

3 2.2𝑒 − 007 3.8𝑒 − 017 2.2𝑒 − 009 7.2𝑒 − 017 𝑛 = 19 2.1𝑒 − 013

4 6.0𝑒 − 008 1.3𝑒 − 016 1.1𝑒 − 009 2.4𝑒 − 017 𝑛 = 39 9.7𝑒 − 017

Table 2: Comparison of the absolute errors for Example 2.

𝑥
Presented method Direct method [31] Fixed point method [30]

𝑛 = 2, 𝑟 = 1 𝑛 = 2, 𝑟 = 2 𝑛 = 2, 𝑟 = 3 𝑛 = 2, 𝑟 = 4 𝑛 = 15 𝑛 = 4

0.1 5.7𝑒 − 004 1.8𝑒 − 008 2.5𝑒 − 017 6.1𝑒 − 018 9.8𝑒 − 004 2.9𝑒 − 005

0.2 8.7𝑒 − 003 2.9𝑒 − 008 3.5𝑒 − 017 9.0𝑒 − 018 7.0𝑒 − 004 1.2𝑒 − 005

0.3 1.0𝑒 − 003 3.6𝑒 − 008 4.2𝑒 − 017 1.1𝑒 − 017 7.4𝑒 − 004 9.0𝑒 − 005

0.4 1.1𝑒 − 003 4.0𝑒 − 008 4.6𝑒 − 017 1.2𝑒 − 017 1.1𝑒 − 003 3.1𝑒 − 004

0.5 9.3𝑒 − 004 4.1𝑒 − 008 4.7𝑒 − 017 1.2𝑒 − 017 1.6𝑒 − 004 1.1𝑒 − 004

0.6 6.7𝑒 − 004 3.8𝑒 − 008 4.4𝑒 − 017 1.2𝑒 − 017 1.1𝑒 − 003 1.0𝑒 − 003

0.7 2.5𝑒 − 004 3.2𝑒 − 008 3.8𝑒 − 017 1.0𝑒 − 017 8.2𝑒 − 004 2.0𝑒 − 003

0.8 3.0𝑒 − 004 2.2𝑒 − 008 2.9𝑒 − 017 7.6𝑒 − 018 8.2𝑒 − 004 2.9𝑒 − 003

0.9 1.0𝑒 − 003 8.4𝑒 − 009 1.6𝑒 − 017 4.2𝑒 − 018 1.1𝑒 − 003 1.1𝑒 − 003

1.0 1.8𝑒 − 003 8.4𝑒 − 009 0 0 1.5𝑒 − 004 1.8𝑒 − 003

(𝑛 + 1)), because of the 𝑔
𝑦
󸀠
𝑟

= 1. Elements of the matrices
become

ℎ
𝑟
(𝑥
𝑠
)

= 2𝑥
𝑠
−

1

2
sin (𝑥

4

𝑠
)

+ ∫
𝑥𝑠

0

[𝑥
2

𝑠
𝑡 cos (𝑥

2

𝑠
𝑦
𝑟
(𝑡)) + 𝑥

4

𝑠
𝑡 sin (𝑥

2

𝑠
𝑦
𝑟
(𝑡)) 𝑦
𝑟
(𝑡)] 𝑑𝑡,

𝑉
𝑟,0

𝑠,𝑖
= ∫
𝑥𝑠

0

𝑥
4

𝑠
𝑡 sin (𝑥

2

𝑠
𝑦
𝑟
(𝑡)) 𝑝
𝑖,𝑛

(𝑡) 𝑑𝑡.

(34)
A numerical comparison of the proposed method with

the Hybrid method [29] is given in Table 1. The obtained
numerical results for two different initial approximations are
also listed in Table 1. It can be seen that the computational
results of the proposed method are better and more effective
for smaller values 𝑛 and iterations 𝑟 than the other method,
and the choice of the higher degree polynomial for the initial
approximation leads to better results.

Example 2. Consider the nonlinear Fredholm-Volterra inte-
grodifferential equation

𝑦
󸀠

(𝑥) = −𝑦 (𝑥) + 2𝑥 + 𝑥
2

+
𝑥
5

10
−

1

32

+
1

4
∫
1

0

𝑡𝑦
3

(𝑡) 𝑑𝑡 −
1

2
∫
𝑥

0

𝑦
2

(𝑡) 𝑑𝑡; 𝑥, 𝑡 ∈ [0, 1]

(35)
with the initial condition 𝑦(0) = 0 that exact solution is
𝑦(𝑥) = 𝑥

2. Here the required functions and constants are

denoted by 𝑔 (𝑥, 𝑦(𝑥), 𝑦
󸀠
(𝑥)) = 𝑦

󸀠
(𝑥) + 𝑦(𝑥) − 2𝑥 − 𝑥

2
−

(𝑥
5
/10) + (1/32), 𝑓 (𝑥, 𝑡, 𝑦(𝑡)) = 𝑡𝑦

3
(𝑡), V (𝑥, 𝑡, 𝑦(𝑡)) = 𝑦

2
(𝑡),

𝜆
1

= 1/4, and 𝜆
2

= −1/2.
We have two choices satisfying the initial condition for

the first iteration functions such that𝑦
0
(𝑥) = 0 and𝑦

0
(𝑥) = 𝑥.

Let the first iteration function be 𝑦
0
(𝑥) = 𝑥, because of the

higher degree. FromTheorem 3, matrix relation of the above
problem is

(G
𝑟,0
P + G

𝑟,1
PN −

1

4
F
𝑟,0

+
1

2
V
𝑟,0

)Y
𝑟+1

= H
𝑟
;

𝑟 = 0, 1, . . . ,

(36)

where H
𝑟

= [ℎ
𝑟
(𝑥
𝑠
)], F
𝑟,0

= [𝐹
𝑟,0

𝑠,𝑖
], V
𝑟,0

= [𝑉
𝑟,0

𝑠,𝑖
], P =

[𝑝
𝑖,𝑛

(𝑥
𝑠
)], andG

𝑟,0
= G
𝑟,1

= I
𝑛+1

because of the 𝑔
𝑦𝑟

= 𝑔
𝑦
󸀠
𝑟

= 1.
Elements of these matrices are as follows:

𝐹
𝑟,0

𝑠,𝑖
= ∫
1

0

3𝑡𝑦
2

𝑟
(𝑡) 𝑝
𝑖,𝑛

(𝑡) 𝑑𝑡,

𝑉
𝑟,0

𝑠,𝑖
= ∫
𝑥𝑠

0

2𝑦
𝑟
(𝑡) 𝑝
𝑖,𝑛

(𝑡) 𝑑𝑡,

ℎ
𝑟
(𝑥
𝑠
) = 2𝑥

𝑠
+ 𝑥
2

𝑠
+

𝑥
5

𝑠

10
−

1

32
+

1

4

× ∫
1

0

[−2𝑡𝑦
3

𝑟
(𝑡)] 𝑑𝑡 −

1

2
∫
𝑥𝑠

0

[−𝑦
2

𝑟
(𝑡)] 𝑑𝑡.

(37)

Table 2 contains a numerical comparison of the proposed
method between the numerical method based on fixed point
theorem [30] anddirectmethod by using triangular functions
[31]. The table reveals that convergence of the presented
method is faster and more accurate than the others.
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Table 3: Absolute errors for Example 3.

𝑥
𝑛 = 6 𝑛 = 8

𝑟 = 1 𝑟 = 3 𝑟 = 5 𝑟 = 1 𝑟 = 3 𝑟 = 5

0.01 2.6𝑒 − 004 2.6𝑒 − 004 2.6𝑒 − 004 5.1𝑒 − 009 1.4𝑒 − 008 1.4𝑒 − 008

0.02 2.5𝑒 − 004 2.6𝑒 − 004 2.6𝑒 − 004 2.2𝑒 − 008 1.4𝑒 − 008 1.4𝑒 − 008

0.03 2.5𝑒 − 004 2.5𝑒 − 004 2.5𝑒 − 004 6.6𝑒 − 008 1.4𝑒 − 008 1.4𝑒 − 008

0.04 2.5𝑒 − 004 2.5𝑒 − 004 2.5𝑒 − 004 1.3𝑒 − 007 1.4𝑒 − 008 1.4𝑒 − 008

0.05 2.4𝑒 − 004 2.5𝑒 − 004 2.5𝑒 − 004 2.0𝑒 − 007 1.4𝑒 − 008 1.4𝑒 − 008

0.06 2.4𝑒 − 004 2.4𝑒 − 004 2.4𝑒 − 004 3.0𝑒 − 007 1.4𝑒 − 008 1.4𝑒 − 008

0.07 2.4𝑒 − 004 2.4𝑒 − 004 2.4𝑒 − 004 4.1𝑒 − 007 1.4𝑒 − 008 1.4𝑒 − 008

0.08 2.3𝑒 − 004 2.4𝑒 − 004 2.4𝑒 − 004 5.3𝑒 − 007 1.4𝑒 − 008 1.4𝑒 − 008

0.09 2.3𝑒 − 004 2.3𝑒 − 004 2.3𝑒 − 004 6.7𝑒 − 007 1.4𝑒 − 008 1.4𝑒 − 008

0.1 2.3𝑒 − 004 2.3𝑒 − 004 2.3𝑒 − 004 8.3𝑒 − 007 1.3𝑒 − 008 1.3𝑒 − 008

𝑥
𝑛 = 10 𝑛 = 12

𝑟 = 1 𝑟 = 3 𝑟 = 5 𝑟 = 1 𝑟 = 3 𝑟 = 5

0.01 9.1𝑒 − 009 8.4𝑒 − 014 8.4𝑒 − 014 9.1𝑒 − 009 1.1𝑒 − 016 1.9𝑒 − 016

0.02 3.6𝑒 − 008 1.2𝑒 − 013 1.2𝑒 − 013 3.6𝑒 − 008 1.9𝑒 − 016 9.6𝑒 − 017

0.03 8.0𝑒 − 008 3.0𝑒 − 013 3.0𝑒 − 013 8.0𝑒 − 008 2.5𝑒 − 016 7.0𝑒 − 016

0.04 1.4𝑒 − 007 3.4𝑒 − 013 3.4𝑒 − 013 1.4𝑒 − 007 5.4𝑒 − 016 4.2𝑒 − 016

0.05 2.2𝑒 − 007 1.3𝑒 − 013 1.3𝑒 − 013 2.2𝑒 − 007 1.9𝑒 − 015 1.5𝑒 − 015

0.06 3.1𝑒 − 007 4.7𝑒 − 013 4.7𝑒 − 013 3.1𝑒 − 007 4.1𝑒 − 015 3.7𝑒 − 015

0.07 4.2𝑒 − 007 1.5𝑒 − 012 1.5𝑒 − 012 4.2𝑒 − 007 7.5𝑒 − 015 7.0𝑒 − 015

0.08 5.5𝑒 − 007 3.2𝑒 − 012 3.2𝑒 − 012 5.5𝑒 − 007 1.2𝑒 − 014 1.2𝑒 − 014

0.09 6.9𝑒 − 007 5.6𝑒 − 012 5.6𝑒 − 012 6.9𝑒 − 007 1.9𝑒 − 014 1.8𝑒 − 014

0.1 8.4𝑒 − 007 8.8𝑒 − 012 8.8𝑒 − 012 8.4𝑒 − 007 2.7𝑒 − 014 2.6𝑒 − 014

Example 3. Consider the third-order nonlinear Fredholm
integrodifferential equation

𝑦
󸀠󸀠󸀠

(𝑥) = −𝑒
𝑥

+ ∫
1

−1

𝑒
𝑥−2𝑡

𝑦
2

(𝑡) 𝑑𝑡 (38)

with the boundary conditions

𝑦 (0) = 𝑦
󸀠

(0) = 1, 𝑦 (1) = 𝑒. (39)

The exact solution of the above equation is 𝑦(𝑥) = 𝑒
𝑥. Here

𝑔 (𝑥, 𝑦
󸀠󸀠󸀠

(𝑥)) = 𝑦
󸀠󸀠󸀠

(𝑥) + 𝑒
𝑥 and 𝑓(𝑥, 𝑡, 𝑦(𝑡)) = 𝑒

𝑥−2𝑡
𝑦
2
(𝑡).

Let the first iteration function be 𝑦
0
(𝑥) = 1+𝑥+(𝑒−2)𝑥

2.
FromTheorem 3,matrix relation of the above problem can be
denoted by

(G
𝑟,3
PN3 − F

𝑟,0
)Y
𝑟+1

= H
𝑟
; 𝑟 = 0, 1, . . . (40)

such that H
𝑟

= [ℎ
𝑟
(𝑥
𝑠
)], F
𝑟,0

= [𝐹
𝑟,0

𝑠,𝑖
], P = [𝑝

𝑖,𝑛
(𝑥
𝑠
)], and

G
𝑟,3

= I
𝑛+1

. Here elements of matrices are, respectively,

𝐹
𝑟,0

𝑠,𝑖
= ∫
1

−1

2𝑒
𝑥𝑠−2𝑡𝑦
𝑟
(𝑡) 𝑝
𝑖,𝑛

(𝑡) 𝑑𝑡,

ℎ
𝑟
(𝑥
𝑠
) = −𝑒

𝑥𝑠 − ∫
1

−1

𝑒
𝑥𝑠−2𝑡𝑦

2

𝑟
(𝑡) 𝑑𝑡.

(41)

In Table 3, absolute errors of the proposed method are
given for different values 𝑛 and iterations 𝑟. The table
shows that the presented method converges quite rapidly for

increasing values 𝑛 and iterations 𝑟. Besides, the absolute
error of the homotopy analysis method [32] given with figure
is approximately 2.0𝑒 − 006 for iteration 𝑟 = 6. Therefore,
we can say that the proposed method has more effective
numerical results than the other methods.

Example 4. Consider the fourth-order Volterra integrodiffer-
ential equation

𝑦
(4)

(𝑥) = 1 + ∫
𝑥

0

𝑒
−𝑡

𝑦
2

(𝑡) 𝑑𝑡 (42)

with the boundary conditions

𝑦 (0) = 𝑦
󸀠

(0) = 1, 𝑦 (1) = 𝑒, 𝑦
󸀠

(1) = 𝑒 (43)

that exact solution is 𝑦(𝑥) = 𝑒
𝑥. Here the functions are

𝑔 (𝑥, 𝑦
(4)

(𝑥)) = 𝑦
(4)

(𝑥) − 1 and V(𝑥, 𝑡, 𝑦(𝑡)) = 𝑒
−𝑡

𝑦
2
(𝑡).

Let the first iteration function be 𝑦
0
(𝑥) = 1 + 𝑥 + (2𝑒 −

5)𝑥
2

+ (3 − 𝑒)𝑥
3. FromTheorem 3, matrix form of the above

problem can be written as

(G
𝑟,4
PN4 − V

𝑟,0
)Y
𝑟+1

= H
𝑟
; 𝑟 = 0, 1, . . . , (44)

where H
𝑟

= [ℎ
𝑟
(𝑥
𝑠
)], V
𝑟,0

= [𝑉
𝑟,0

𝑠,𝑖
], P = [𝑝

𝑖,𝑛
(𝑥
𝑠
)], and G

𝑟,4
=

I
𝑛+1

. Here elements of matrices are, respectively,

𝑉
𝑟,0

𝑠,𝑖
= ∫
𝑥𝑠

0

2𝑒
−𝑡

𝑦
𝑟
(𝑡) 𝑝
𝑖,𝑛

(𝑡) 𝑑𝑡,

ℎ
𝑟
(𝑥
𝑠
) = 1 − ∫

𝑥𝑠

0

𝑒
−𝑡

𝑦
2

𝑟
(𝑡) 𝑑𝑡.

(45)
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Table 4: Comparison of theL2-norm errors for Example 4.

Presented method Hybrid method [29]
𝑛 𝑟 = 0 𝑟 = 1 𝑟 = 2 𝑟 = 3 𝑟 = 4 𝑛 = 15 4.7𝑒 − 008

6 2.0𝑒 − 004 2.1𝑒 − 004 2.1𝑒 − 004 2.1𝑒 − 004 2.1𝑒 − 004 𝑛 = 17 3.0𝑒 − 010

8 1.3𝑒 − 008 8.3𝑒 − 009 8.3𝑒 − 009 8.3𝑒 − 009 8.3𝑒 − 009 𝑛 = 19 3.7𝑒 − 011

10 1.3𝑒 − 008 1.2𝑒 − 012 1.2𝑒 − 012 1.2𝑒 − 012 1.2𝑒 − 012 𝑛 = 31 3.0𝑒 − 009

12 1.4𝑒 − 008 5.4𝑒 − 015 2.0𝑒 − 015 2.0𝑒 − 015 2.0𝑒 − 015 𝑛 = 35 4.5𝑒 − 012

15 1.6𝑒 − 008 5.5𝑒 − 015 1.3𝑒 − 014 1.3𝑒 − 014 1.3𝑒 − 014 𝑛 = 39 6.0𝑒 − 013

In Table 4, L2-norm errors of the proposed method
are compared with the L2-norm errors computed via the
Hybrid of Block-Pulse functions and Lagrange interpolation
polynomials [29] for different values 𝑛. While the results of
other methods are effective, the computational results of the
proposedmethod are more rapid, effective, for smaller values
𝑛.

4. Conclusions

In general, nonlinear integrodifferential equations can not be
solved analytically. For this reason, numerical solutions of
nonlinear equations are needed. With the presented method,
we have reduced the nonlinear FVIDE (1) to a sequence of
linear equations depending on the collocation points and
the iteration function, and then, combining the conditions
with obtained linear matrix equation, we have the general-
ized Bernstein polynomials solution. Besides, the proposed
method is valid for both nonlinear differential and integral
equations; this is explained in Section 2. If unknown function
is continuous on the interval [𝑎, 𝑏], then the Bernstein
collocation method can be used for solving these kinds of
equations via the quasilinearization technique. For conve-
nience, the first iteration function can be choosen as initial
value. Besides, this function can be select as the higher degree
polynomials satisfied the given conditions for providing the
better approximation. These polynomials can be obtained
from interpolation or the least square approximation meth-
ods. The applicability and accuracy of the proposed method
have been testedwith somenumerical examples.These results
have shown that the presented method converges rapidly for
all problems. Consequently, all these positive implications
lead to applicability of the proposed method for numerical
solutions of any other kinds of problems including nonlinear
equations.
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