INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING
Int. J. Adapt. Control Signal Process. 2014; 28:412-428
Published online 25 April 2012 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/acs.2293

A model-based PID controller for Hammerstein systems using
B-spline neural networks

X. Hong Lt g, Iplikciz, S. Chen®* and K. Warwick !

LSchool of Systems Engineering, University of Reading, Reading, RG6 6AY, UK
2 Pamukkale University, Department of Electrical and Electronics Engineering, Kinikli Campus, 20040, Denizli, Turkey
3School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, UK
4Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

SUMMARY

In this paper, a new model-based proportional-integral-derivative (PID) tuning and controller approach is
introduced for Hammerstein systems that are identified on the basis of the observational input/output data.
The nonlinear static function in the Hammerstein system is modelled using a B-spline neural network. The
control signal is composed of a PID controller, together with a correction term. Both the parameters in
the PID controller and the correction term are optimized on the basis of minimizing the multistep ahead
prediction errors. In order to update the control signal, the multistep ahead predictions of the Hammerstein
system based on B-spline neural networks and the associated Jacobian matrix are calculated using the de
Boor algorithms, including both the functional and derivative recursions. Numerical examples are utilized
to demonstrate the efficacy of the proposed approaches. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Because of their simplicity and robust performance, proportional-integral-derivative (PID)
controllers have been the most popular controller structures. A major issue associated with a PID
controller design however is that its parameters need to be tuned properly. There exist many tuning
and adaptation schemes for linear plants in the literature [1-3]. However, it is a challenging task to
obtain good PID controller parameters if the plant to be controlled exhibits nonlinear behaviour. In
order to tune and adapt the PID parameters for controlling a nonlinear unknown plant, it is neces-
sary to obtain a nonlinear or a linearized model of the plant. For systems that can be described by
the controlled autoregressive integrated moving average (CARIMA) models, PID parameters can be
tuned by using model-predictive control methods based on the CARIMA model of the plant [4,5].
Neural networks have been widely applied to model unknown dynamical processes and then used
for PID parameter tuning. In [6], the parameters of a PID controller are tuned online by minimizing
the multistep ahead prediction errors on the basis of a dynamic model of the plant obtained using
a recurrent neural network. The predicted error gradients are back-propagated through the network
in order to find the modifications in the controller parameters. In [7], a neural network model of the
process is obtained and then is linearized around some instantaneous operating points, similar to the
gain scheduling approach. On the basis of a linearized model corresponding to the operating point,
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A MODEL-BASED PID CONTROLLER FOR HAMMERSTEIN SYSTEMS 413

the PID parameters are then tuned online by a generalized minimum variance approach. In [8], a
radial basis function (RBF) neural network model is used to tune PID parameters for controlling a
nonlinear time-varying system. In a combined method [9], a neural network model of the plant is
initially obtained, followed by tuning the PID parameters offline based on the neural network using
the genetic algorithm optimization. The support vector machine (SVM) has also been used in the
tuning and adaptation of PID parameters for nonlinear systems. Similar to [7], a model of a nonlinear
system is obtained by an SVM and then is linearized to extract the instantaneous linear model for a
self-tuning PID controller [10]. In [11], a least squares SVM model is used to tune PID parameters
to control a nonlinear time-varying system. Recently, a novel predictive model-based PID tuning
and control approach has been proposed for unknown nonlinear systems that are modelled using
neural networks and SVMs [12]. The work introduces a useful technique both for PID parameter
tuning and for the correction of the PID output during control, which yields superior tracking and
parameter convergence performance.

The Hammerstein model, comprising a nonlinear static functional transformation followed by a
linear dynamical model, has been applied to a nonlinear plant/process modelling in a wide range
of biological/engineering problems [13—16]. For example, it is a suitable model for signal process-
ing applications involving any nonlinear distortion followed by a linear filter, as in modeling of the
human heart in order to regulate the heart rate during treadmill exercises [17] and in the modeling
of hydraulic actuator friction dynamics [18]. The Hammerstein model in itself has also been widely
researched [19-28].

The model characterization/representation of the unknown nonlinear static function is
fundamental to the identification of a good Hammerstein model. Various approaches have been
developed in order to capture the a priori unknown nonlinearity by the use of both parametric [27,28]
and nonparametric methods [22,25,26]. It has been shown that the Bernstein basis is the best con-
ditioned and the most stable among any other polynomial basis [29]. The inverse of de Casteljau’s
algorithm was introduced to identify the Bezier—Bernstein neural network by busing the Bernstein
approximation and from observational data [30]. Recently, a new identification algorithm [31] for
the Hammerstein model has been introduced on the basis of the Bezier—Bernstein approximation
and the inverse of de Casteljau’s algorithm. Alternatively, the special structure of Hammerstein
models can be exploited to develop hybrid parameter estimation algorithms [21, 28, 32]. Similar to
the Bezier curve, the B-spline curve has also been widely used in computer graphics and computer-
aided geometric design [33]. B-spline curves consist of many polynomial pieces, offering much
more versatility than Bezier curves while maintaining the same advantage of the best conditioning
property. Early work on the construction of the B-spline curve was mathematically involved and
found to be numerically unstable [34]. However, the de Boor algorithm uses recurrence relations
and is numerically stable [34]. The B-spline basis functions for nonlinear system modelling have
since been widely applied [35-37].

Model-based control for the Hammerstein system has been well studied [14, 38, 39]. A pop-
ular treatment for handling the Hammerstein model is to remove the nonlinearity via an inver-
sion [39-41]. This enables the celebrated self-tuning control methods to be readily applicable
[42]. The implementation of model-based control for an a priori unknown Hammerstein model
requires system identification including modelling and identification of the nonlinear static function.
Different nonlinear model representations result in variations in the controller design algorithms. For
example, in [38,43], the nonlinear static function is based on an explicit polynomial function of the
input. The optimal control law satisfies a polynomial equation of the input, which is then found
via root solving. In [44], the closed-loop system is linearized by inserting the inverse of the identi-
fied static nonlinearity, and the nonlinear subsystems’ inverse is calculated using the inverse of de
Casteljau’s algorithm.

Computationally efficient and numerically stable algorithms are in general desirable in nonlinear
system identification and control. In [45], the control of a Hammerstein system, as characterized by
the B-spline neural network, is investigated through the removal of the nonlinearity via the inver-
sion of a B-spine neural network and the application of a pole assignment controller. The work
introduced a new algorithm referred to as the inverse of the de Boor algorithm which computes
the inverse efficiently. Despite the advantages of linearization methods for controlling Hammerstein
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systems, its performance is heavily dependent upon the assumption that the nonlinearity is removed
via the inserted functional inversion. However, this assumption may not be appropriate in some
circumstances, leading to the deterioration in controller performance because of modeling/tracking
errors especially during the transient phase of systems.

In this work, a new PID controller is introduced for Hammerstein systems that are identified on the
basis of observational input/output data, in which the nonlinear static function in the Hammerstein
system is modelled using a B-spline neural network. Note that, for the system identification of the
resultant model representation, Bai’s overparameterization approach is directly applicable [21]. In
this paper, we used the Gauss—Newton algorithm subject to constraints, as proposed in [31]. The
predictive model-based PID tuning and controller approach in [12] was combined with the B-spline
neural network-based Hammerstein model. For this purpose, multistep ahead predictions of the
B-spline neural network-based Hammerstein model are generated as well as the essential Jacobian
matrix for updating the control signal, on the basis of the de Boor recursion including both the
functional and derivative recursions. The motivation of the proposed methods is twofold. First, this
extends the model-based PID controller [12] to accommodate the Hammerstein systems. Second, the
proposed model based on the B-spline neural networks has a significant advantage over many other
modeling paradigms in that this enables stable and efficient evaluations of functional and derivative
values on the basis of the de Boor recursion, which is used in updating the PID control signals.

This paper is organized as follows. Section 2 formulates the modelling of the Hammerstein
system on the basis of the B-spline functions and describes the system identification algorithm
for the system. Section 3 introduces the proposed model-based PID controller on the basis of the
multistep ahead predictive control. This includes the PID controller parameter optimization, the
corrector block for optimal control signal and the associated multistep ahead predictions and
Jacobian calculations. In Section 4, we have presented the simulation results, and some conclusions
are given in Section 5.

2. MODELLING OF THE HAMMERSTEIN SYSTEM BASED ON B-SPLINE FUNCTIONS

2.1. The Hammerstein system

The Hammerstein system, as shown in Figure 1, consists of a cascade of two subsystems, a nonlinear
memoryless function W(e) as the first subsystem, followed by a linear dynamic part as the second
subsystem. The system can be represented by

y@&)=—ary(t —1)—axy(t —2)—...—an,y(t —ng) 0
+hv(t—=1)+... 4+ byv(t —np) +£(1)

U(I_J)Z\p(u(t_J))’ j=1""’nb ()

where y(t) is the system output and u(¢) is the system input. £(¢) is assumed to be a white noise
sequence independent of (), with zero mean and variance of o2, v(¢) is the output of the nonlinear
subsystem and the input to the linear subsystem. a ;s and b;s are parameters of the linear subsys-
tem. n, and np are assumed known system output and input lags. Denote a = [ay, . .., ana]T S
and b = [b1,...,bn,]T € R It is assumed that A(g™') = 1 +a1qg™! + ... + an,q " and
B(q™") =b1q~'+...4by,q " are coprime polynomials of ¢!, where ¢! denotes the backward
shift operator.
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Figure 1. The Hammerstein system.
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Without significant loss of generality, the following assumptions are initially made about
the problem.

Assumption 1
The persistence excitation condition is given by

umg +np) -+ ulng+1) y(g+np) -+ yp+1)
rank : : : : : : =natnp, ()
u(N-1) - u(N—-np) y(N-=1) - y(N—ng)
Assumption 2
The gain of the linear subsystem is given by
B(q~! " bj
Goiim B4 _ 2imb )

g=1 A(g™) 14+ q;

Assumption 3
W (e) is a one-to-one mapping; that is, it is an invertible and continuous function.

Assumption 4
u(t) is bounded by Upin < u(t) < Upax, wWhere Uy in and Uy, are assumed known finite
real values.

Remark 1
e Assumption 1 is necessary irrespective of the model representation and identification algorithm.
Persistent excitation is the essential condition for the input signal for the sake of identifiability.
e Because the signals between the two subsystems are unavailable, Assumption 2 is introduced
for identifiability. Otherwise, any pair of {p[by,...,bs,]T, ¥ (e) /p}, for p # 0, provides the
identical input/output measurements.

The two objectives of the work are that of system identification and subsequent controller design
for the identified model. The objective of system identification for the mentioned Hammerstein
model is, given an observational input/output data set Dy = {y (), u(t)}i\’:l, to identify W(e) and
to estimate the parameters a, b; in the linear subsystems. Note that the signals between the two
subsystems are unavailable. In this work, B-spline basis functions are adopted in order to model
W(e). Specifically, the B-spline basis functions are initially formed by using the de Boor algorithm
[34] for the input data sets.

2.2. Modelling of V(e) using B-spline function approximation

Univariate B-spline basis functions are parameterized using a piecewise polynomial of order k
and also by a knot vector which is a set of values defined on the real line that break it up
into a number of intervals. Supposing that there are d basis functions, the knot vector is speci-
fied by (d + k) knot values, {Uy,U,,--- ,Ugz1k}. At each end, there are k knots satisfying the
condition of being external to the input region, and as a result, the number of internal knots is
(d — k). Specifically,

Ui < Uz < Uy = Upin <Ugy1 <Ugq2 <+ <Uzg <Upax =Ug1 < <Ugyr  (5)
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Given these predetermined knots, a set of d B-spline basis functions can be formed by using the
de Boor recursion [34], given by

1 lfU] Su< U]'+1
0 otherwise (6)

j=1.d+k)

(0) _
Bj (u) =

@) -1 Uigjt+1—u BY-D
B () = Ul+J U B )+ Uit j+1=Uj+1 /+1 (), =1,---.,k (7)
j=1,---,(d+k—1i)
The first-order derivatives of the B-spline function have a similar recursion
d (k) k (k 1)) k B%-D
@B W)= Uk+j _UJ () = Uk+j+1=Uj+1 Biyy ), j=1,-.d ®)

We model W (e) as a B-spline neural network [37] in the form of

d
k
v =y BPwe; ©)
j=1
where w ;s are weights to be determined. Denote w = [wy, - -, wq]T € R?. Note that because of the

piecewise nature of B-spline functions, there are only (k + 1) basis functions with nonzero values
for any point u. Hence, the computational cost for the evaluation of W(u), on the basis of the de
Boor algorithm, is determined by the polynomial order k, rather than the number of knots, and this
is in the order of O(k?). The evaluation of the first-order derivatives can be regarded as a byproduct,
with the additional computational cost in the order of O (k).

2.3. The system identification algorithm

With the B-spline approximation, the model-predicted output y(¢) in (1) can be written as

YO)=—ary(t—1)—axy(t =2)—...—an,y(t —ng)
d d
+b Y 0 BR— 1)+ b, Y 0B —ny) (10)
j=1 j=1

Let the modelling error be () = y(t) — y(¢). Over the estimation data set Dy = {y(?), u(t)}i\’:l,
(1) can be rewritten in a linear regression form

y(0) = P& D + () (11)
where x(t) = [-y(t — 1),...,—y(t — na),u(t — 1),...,u(t — np)]’ is the system input
vector of observables with an assumed known dimension of (n, + np), ¥ = [aT, (h1w1), ...,
(b10a)s ... (buy@1), - .., (byywp,)]T € Ratdns,

px(1)) = [—y(l D=yt —na). B = 1), ..
T
LBRG 1), BRG—ny),... . B —n,,)] (12)

Equation (11) can be rewritten in the matrix form as

y=Pd +¢ (13)
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A MODEL-BASED PID CONTROLLER FOR HAMMERSTEIN SYSTEMS 417

where y = [y(1),---,y(N)]T is the output vector. ¢ = [g(1),...,&(N)]T, and P is the
regression matrix

pi(x(1))  pa(x(1)) - puytdan, (X(1))
P= r1(x(2))  p2(x(2)) - Pngy+dny, (x(2)) (14)
PIXNY) paX(N)) -+ Prytdony (X(N))

The parameter vector # can be found as the least squares solution of
?1s =B 'PTy (15)

provided that B = PTP is of full rank. Alternatively, if this condition is violated, that is
Rank(B) = r < ng + d - np, then performing the singular value decomposition, BQ = QX,
where ¥ = diag[oy,...0,,0,---,0]. Q = [q1,*** ,q1,"** ,Qn,+dn,], followed by truncating the
eigenvectors corresponding to zero eigenvalues, we have

r T

Pq;

2y =3 T, (16)
1

i=1

This procedure produces our final estimate of a, which is simply taken as the subvector of the

resultant ﬂi”g , consisting of its first n, elements. Clearly, information on b and @ is contained in

ﬂvaf . Hence, it is straightforward to recover this on the basis of Bai’s approach using singular value

decomposition [21]. Alternatively, the parameter estimation for b and @ can be obtained using our
previous work [31]. This is outlined below and in the summary in Appendix A. Consider that a
sequence z(t) is generated, on the basis of the derived parameter estimates a, as an auxiliary model
output sequence, given by

) =y@)+ary(t—1) +axy(t—2)+...+dn,y(t —na) (17)

Then, consider approximating z(¢) by using the following model

d d
)= b1 Y wBRC =1+ b, Y 0B —ny),

j=1 j=1
= g(x(1),b,®) (18)
By setting the objective function as Jg(b,w) = % vazl[z.(t) — g(x(1)),b,®)]?, subject to
"y p
sz’fial; = 1 (see Assumption 2), the Gauss—Newton algorithm, subject to constraints, as
j=19j

proposed in [31], is used in this work. For completeness, see Appendix A.

3. THE MODEL-BASED PID CONTROLLER

Figure 2 illustrates the proposed model-based PID controller for Hammerstein systems using
B-spline neural networks, where 7 (¢) is the desired reference trajectory to be followed by the plant
output y(¢), and e(¢) is the error between the desired and measured output at time index 7. Both
the PID controller parameters and the control signal are derived using the concept of predictive
control, which is explained as follows. At each sampling time, consider that the control signal u(?)
is repeatedly applied to the plant exactly for consecutive K time steps, and the resultant predictive
output trajectory vector is denoted as [y (¢ + 1]t), y(¢ + 2|t),..., y(t + K|t)]. The optimal u(z) is
then derived, such that the sum of the squared K-step ahead prediction errors are minimized with
minimum deviation in the control action. In other words, it is obtained by minimizing the objective
function J, given by

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2014; 28:412-428
DOI: 10.1002/acs



418 X.HONG ET AL.

Multistep ahead predictions

B-Spline NN
based
Hammerstein
model
+
\ néu(t) System id{l:ntiﬁcation Et+1)

t © ~
¢ l—’®ﬂ PID controller [—* 0. ;® L0 plant yerl)

corrector block

Figure 2. Diagram of the model-based PID controller.

K
1 1
Ju(t)) = = t+ k| + Aut) —ut —1))> 19
(u(0)) ZKZZJI[e(HU] + 5 A —u( = 1)) (19)
where e(r + «|t) = r(t + k) — Y (¢t + «|t) is the k-step ahead prediction error, k = 1,--- , K, K is

the predetermined prediction horizon and A > 0 is a predetermined penalty term. The control signal
u(t) is designed to be composed of the PID output 1) (¢), plus a correction term néu(z), with 7 as
an optimum step-length, given by

u(t) = u® (1) + ndu(r) (20)

which is obtained by a two-step procedure. (i) The PID controller parameters are initially optimized
on the basis of minimizing (19) without the correction term (n = 0), followed by (ii) obtaining
néu(t), minimizing (19) subject to the PID controller, as derived in (i).

3.1. PID controller parameter optimization using predictive control

Initially consider that the output of the PID controller u‘®(¢), in response to error e(t), according
to the following formula

u@(t) =u(t — 1)+ Kple(t) —e(t —1)] + Kre(t) + Kple(t) —2e(t — 1) +e(t —2), (1)

is applied to the Hammerstein system, where Kp, K; and Kp are the PID parameters to be
optimized on the basis of the objective function J(u(?)(¢)). At the beginning of the control sequence,
the PID parameters are set to zero. In the proposed scheme, we adopt the Levenberg—Marquardt
rule (22) as the minimization algorithm, such that the PID parameters are updated at every time step
according to

new old
KP KP .
T i qTa
Kpew | =1 Kold | —a(J'J+p1) Jé (22)
Kﬁew K;;)]d
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A MODEL-BASED PID CONTROLLER FOR HAMMERSTEIN SYSTEMS 419

where « is a small predetermined positive number. i > 0 is a parameter that yields a compromise
between the steepest descent and the Gauss—Newton algorithms. I is the 3 x 3 identity matrix, J is
the (K + 1) x 3 Jacobian matrix given by

r de(t+1]t) de(t+1[t) de(t+1]t) T
9K p K7 9K D
de(t+2[t) de(t+2t) de(t+2[t)
9K p 9K 9K p
J= s : s
de(t+K|t) de(t+K|t) de(t+K|t)
9K p 9K KD
WAu®)—u@-1) IVAu@®—u@-1) INVAu@-ul-1))
L K p Ky dKp u@)=u© () (23)
PG+l PG+l P+l T
oK p 0K/ 0K p
3y (t+2t) 3y (+2[1) 3y (t+2[7)
oK p 0K/ 0K p
Bﬁ(t-;-K\t) ay(tirlqt) Bﬁ(t-;-K\t)
oK p 0K/ 0K p
du(t) u(t) du(t)
L Vi 0K p Z 0K ‘/X%)KD u@)=u© ()
and € is the vector of prediction errors and the input slew given by
e(t+ 1)) rt+ 1) —y@ + 1))
€= : = - (24)
e(t + K|t) r(t+ K|t) — y(t +«lt)

VAu@)—u —1)) VA(@) —u(t — 1))

It can be seen that the Jacobian matrix (23) can be decomposed as the product of two different
matrices by using the chain rule, as follows

[u@=u® @) [u()=u© (1)

ay(+1]t)
Jdu(t)
3y (t+2[r)
du(t)

_ ou(t) ou(t) ou(t)

J=1- : X 9Kp K; 9Kp 25)
We+K|)
du(t)
VA lu(@)=u© ()

:Jch

where
_ | 9p@+11n) 3y (t+2t) y(+K]|t)
Im = [ u(@) u(@) qu@) ]|u(t)=u(0)(t) (26)

and J. is a matrix of the partial derivatives of 1(?)(¢), with respect to the PID parameters and can be
written by using only the tracking errors as

T

e(t)y—e(—1)
e(t)
e(t)y—2e(t—1)+e(t—2)

Over time, the PID parameters are expected to converge. However, mostly in the transient-state
and to some extent in the steady-state, the converged PID parameters may not be good enough
to produce an acceptable control action; that is, the control action u® () may not be adequate to
force the plant output toward the desired trajectory because of some modeling inaccuracies and
external disturbances, which lead to the necessity of a correction term néu(z) to be added to the
control action.

Je 27
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3.2. The optimal control signal using corrector block

The aim of the corrector block is to produce a suboptimal correction term §u(z) used in (20) by
minimizing the objective function J(u(¢)) given by (19). More specifically, the corrector block tries
to minimize the objective function J with respect to §u(¢) on the basis of the second-order Taylor
approximation of the objective function J as follows:

Ju(r)) =Ju@ @) + Su(r))
0J(u(t))
M) oy =u© ()

1920(u(t) ,
2 8u(t)2 [u(@®)=u© () (Su(t)) (28)

~Ju (1) + Su(t)

Because we wish to find the §u/(¢) that minimizes the objective function, if we take the derivative of
the approximate J with respect to §u(z) and equate it to zero, we obtain

9J(u(1)) %I (u(t))

Su(t) =0 (29)
() oy=uo@  UO? un=uO @)
SO
38{)
__ uOu@=uO@®
u(r) = 2 (30)

()2 |u()=u© (1)

which corresponds to the Newton direction that provides a quadratic convergence to the local
minimum if the scalar second-order term (Hessian) in the Taylor expansion is positive and the
higher-order terms are negligible [46]. At this point, it seems that we need to calculate the gradient
and Hessian terms, that is, the first-order and second-order derivatives of the objective function with
respect to u(¢). However, in order to avoid calculating the time-consuming second-order derivatives,
we can employ the well-known Jacobian approximation which suggests that the (K+ 1)x1 Jacobian
matrix J,, can represent the gradient vector exactly and the Hessian matrix approximately as

AI(u(@)) I (u(r))

=2JT¢ and
W) w=uo@ N(1)? u(ry=u® o)

~2J Y, (31)

Thus, we can compute the correction term as
Bu(t) = ~J3,&/Jpdum (32)

In this way, we need only the first-order derivatives. It is obvious that the Jacobian matrix J,, plays
a very crucial role in the proposed structure, as it allows us to obtain the Jacobian matrix (25) to
update the PID parameters and also to calculate the correction term by means of (32).

Finally, once du(t) is determined, a line search is used to search for the optimum step-length 7 to
further minimize the objective function. This is a typical one-dimensional optimization problem and
can be solved by the golden section algorithm [47]. This algorithm directly evaluates J(u"(¢)) for
a sequence of control signals u (¢), n = 1,2, ---, until this converges to the optimal u(¢), which is
associated with the optimum step-length 1 (see Appendix B).

Note that the PID controller parameter updating formula (22) requires the calculation of mul-
tistep ahead predictions and the Jacobian J,,. Moreover, the subsequent control signal correction
term, given by (20) and (32) via the golden section algorithm (Appendix B), not only requires the
Jacobian J,,,, but also the iterative calculation of multistep ahead predictions for the objective func-
tional evaluations. Note also that the calculation of multistep ahead predictions and the Jacobian J,,
are model specific. In [12], this controller scheme has been applied to unknown nonlinear systems
that are modelled using neural networks and SVMs, respectively. In the following, the calculation
of multistep ahead predictions and Jacobian J,,, for the B-spline neural network-based Hammerstein
model are introduced.
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3.3. The calculation of multistep ahead predictions and Jacobian J,,

If a control signal u(t) is repeatedly applied to the plant exactly K time steps, then the k-step

ahead predictions (¢ = 1,---, K) using the B-spline neural network-based Hammerstein model
are given by
Yt +klt)=—ar1y(t +k—1t)—ay(t +k =2|t) — ... —an, Yt + k —nglt)
+bhiv(t+k—=1)4+...+ by, v(t +k—np) (33)

in which each term in the right-hand side of (33) is computed by

. B |y +r—ilt) if (k—i)>0
Y+ —ilt) —{ y(t+x—i) otherwise
=1 ’na’ K:l’.--,K (34)
and
B(k) if (k—i)=0
t B _1 (), if (e —i)=
U( +K_l - B(k)(u(t—l-k—l))w otherwise
_1 J
i=1, oy k=1, K (35)

3y (t+«lt) k=1 ---

Similarly, the elements in J,,, )

, K are also computed recursively from

8)7(t+/<|t)__a 8)?(t+/c—1|t)_a 3)7(t+/c—2|t)_ iy 0Y(t + Kk —nglt)
u) Y ou) 2 u(r) v fna du(r)
av(t +«—1]t) ov(t + k —np|t)
oy a3 o bny A (36)

in which each term in the right-hand side of (36) is computed by

09t +x —1]1) _% VA if (e — ) > 0

du(t) 0 otherwise
i=1,---,n4, k=1,---,K 37)
and
(@ +«k—ilt) % _lw] du(t)B(k)(u(t)) it («k—i)=0
@) () otherwise
=1,---,np, k=1,--,K (38)

Note that in calculating (33)—(39), the de Boor algorithm (6)—(8) is applied in evaluating the

associated entries. In particular, we point out that the term du(t)B(k) (u(1)), in (39), is evaluated
using (8) and gives exact derivative values at minimum extra computational cost, and this is an
advantage specific to our proposed Hammerstein model using B-spline neural network with the de
Boor recursion. Specifically, at each time step, the proposed algorithm requires (33) to be evaluated
(Nmax + 1) times, on the basis of u(”)(t), n=1,-,Nmax, Where n,,,, is the maximum number
of iterations set in the golden section algorithm. Equation (36) is, however, only evaluated once for
the calculation of J,,. Hence, the two main parts of the computational cost are, first, due to the PID
parameter updates in the order of O(9x (K +1)+33) and, second, due to the iterative multistep ahead
predictions mainly in the golden section algorithm. This is of the order O (k?+(n,+k-np)K), which
is further scaled by n,,,. Effectively, the proposed algorithm enables stable and efficient evalua-
tions of the multistep ahead predictions and functional derivatives to be possible, which could be
problematic for many other nonlinear representations, including some spline function-based
nonlinear models.
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The optimal values for A and K are mostly problem-dependent, and thus, there is no general
analytical way of finding them. Still, it will be helpful to take some general facts given next into
consideration while attempting to find their proper values by trial and error.

Remark 2

e The choice of A. Because A penalizes the difference between successive control actions, its
choice is mainly based on the allowable input slew in the control loop, the level of the
measurement noise and the change in the reference input. If there is no measurement noise
and the reference signal is not changing abruptly, then A can be chosen to be very small, even
zero. Otherwise, it may slow the system response if it is chosen to be too large. If there is some
measurement noise, then the control input will try to tolerate it by fluctuating around a nominal
value, which will increase the performance index given by (19) when A is too small. Therefore,
while making a choice for A, the physical constraints on the actuators, the level of measurement
noise and the expected trajectory of the reference input should be taken into consideration.

e Choice of K. Prediction horizon K has a large impact on the stability and the rise time of
the closed-loop system. Too small K values may lead to oscillations at the output or even
instability, whereas too large values could cause long delays in the system response. In other
words, the choice of K gives a compromise between the stability and the rise time of the
closed-loop system.

e Stability conditions. The main goal of the controller is to force the system output to follow
the reference trajectory. For this purpose, the controller tries to find a suboptimal solution to
minimize the cost function given by (19). For linear noise-free systems, it is demonstrated in
[48] that instead of finding the global solution, feasible, suboptimal solutions to this type of
problem can yield a stabilizing controller. Moreover, as shown in [49], it is even not necessary
to find a local minimum, and the only task during each sampling period is to find a solution
that provides a sufficient decrement in the cost function. In this respect, the model-based PID
controller provides sufficient stability and works for applications with noise-free or low noise
cases. The stability conditions for noisy nonlinear systems are, however, theoretically difficult
and remain as an open problem. In practice, in order to show the robustness of the proposed
controller against the uncertainties caused by prediction errors, the noise level up to which
the controller can provide satisfactory performance should be determined, together with other
parameter settings by trial and error.

4. NUMERICAL EXAMPLES

The Hammerstein system is a suitable model for signal processing applications involving any
nonlinear distortion followed by a linear filter, for example the modeling of hydraulic actuator fric-
tion dynamics [18] and liquid level control system for a nonconstant cross-sectional area tank [42].

0.9

Bj(s)(u)

Figure 3. Eight B-spline basis functions used in the two Hammerstein systems.
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Two Hammerstein systems are simulated, in which the linear subsystems are the same for both sys-
temsas A(g"!) =1-12¢"1 +0.9¢72, B(q~!) = 1.7¢! — ¢2. The nonlinear subsystem, ¥ (e),
is given in each case by

System 1 : ¥(u) = 2sign(u)\/m (39)
System 2: W(u) = —2sign(u)u’ (40)

respectively. The variances of the additive noise to the system output are set as 62 = 0.0001 and
0.01, respectively. For each system, 1000 training data samples y(¢) were generated by using (1)
and (2), where u(¢) was a uniformly distributed random variable u(¢) € [—1.5, 1.5]. The polynomial
degree of the B-spline basis functions was set as k = 2 (piecewise quadratic). The knot sequence
U; was set as [-3, -2.5, -2, -1, -0.3, 0, 0.3, 1, 2, 2.5, 3]. The resultant 8 basis functions are plotted

Table I. Results of linear subsystem parameter estimation for two systems.

ai az by by

True parameter —-1.2 0.9 1.7 -1
Estimate parameters (System 1, 62 = 0.0001) —1.1986 0.8993 1.6886 —0.9880
Estimate parameters (System 1, 6 = 0.01) —1.2003 0.9006 1.7115 —1.0112
Estimate parameters (System 2, 62 = 0.0001) —1.1989 0.8994 1.6887 —0.9882
Estimate parameters (System 2, 02 = 0.01) —1.1992 0.8999 1.6781 —-0.9774

5

4 L

B spline model prediction
3}| == True function °
o (U‘,Vi) sequence (external)

21 ¢ (U,v) sequence (internal)

o
1 L
0® )
1}
o
-2t
o
33 -2 -1 0 1 2 3
u
(@)
10 :
81 ]
6 L
o
4 L
2 L
0o )
27 B spline model prediction
—4 H == True function
_sll © (U,V) sequence (external) o
_al o (Ui,Vi) sequence (internal) °
103 -2 -1 0 1 2 3
u
(b)

Figure 4. Modelling results for the nonlinear function W(u); (a) System 1 and (b) System 2.
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in Figure 3. Initially, system identification was carried out using the modeling algorithm outlined in
Appendix A for each system. Modelling results are shown in Table I, for the linear subsystem, and
in Figure 4 (a) and (b), for the nonlinear subsystems.

The performance of the proposed controllers for the two systems were tested on the basis of the
models identified using data sets generated with 02 = 0.0001. The parameters were empirically set
ata = 0.2, u = 1073, K = 15, A = 10 for illustration only because it was found that the proposed
approach is robust for a wide range of parameters. The reference signals 7 (¢) were generated as a
series of square waves resembling a staircase. Figure 5(a) and Figure 6(a) plot the computed control
signal applied to each system, respectively. Figure 5(b) and Figure 6(b) plot the system output y(¢)
together with the corresponding reference signal r(¢) for both systems, respectively, with a small
noise (02 = 2.5 x 107> for System 1 and 62 = 9 x 107 for System 2). From these figures, it is
shown that the proposed method exhibits excellent results in terms of system identification, as well
as the subsequent control for the identified systems for these particular examples.

In [45], the control is investigated through the removal of nonlinearity via the inversion of the
same B-spine neural network and the application of a pole assignment controller. The perfor-
mance is heavily dependent upon the assumption that the nonlinearity is removed via the inserted
functional inversion. Our experiences on the same examples using pole assignment with lineariza-
tion [45] have shown that, although they can perform equally well in cases of low noise level
and when the reference signals r(¢) are well below the bounds, the proposed method can have a
higher operating range in cases of noise-free or low noise level without performance deterioration.

Actual applied control signal u(t)

160 260 360 460 560 660 760 860 960
t
(a)

System response
o

o= v‘ _1.7," . ‘ - reference signal r(t)| |
. . . . . — - — - system output y(t)

100 200 300 400 500 600 700 800 900
t

(b)

Figure 5. Results of the proposed PID controller for System 1.
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Actual applied control signal u(t)

_2,,
100 200 300 400 500 600 700 800 900
t
(a)
4
3,, L L . L. L N N P gy

System response
o

reference signal r(t)| |

-2r — .~ system output y(t)

) RUSE -

100 200 300 400 500 600 700 800 900
t
(b)

Figure 6. Results of the proposed PID controller for System 2.

This is because in [45], the control signal can overshoot the range of v(z), which has to be
amplitude-limited before the inverse of the de Boor algorithm. On the other hand, in terms of
robustness to noise level for stability, the proposed algorithm is worse than the pole assignment
with linearization [45], probably, because of uncertainties caused by error propagation in multistep
ahead predictions.

5. CONCLUSIONS

This paper has introduced a new effective PID control method for Hammerstein systems based
on observational input/output data. Modeling of the nonlinear static function in the Hammerstein
system is based on B-spline function approximation. By minimizing the multistep ahead prediction
errors, the PID controller parameters are updated and then corrected to generate the control signal.
The multistep ahead predictions of the B-spline neural network-based Hammerstein system and the
associated Jacobian matrix are very efficiently computed on the basis of the de Boor algorithms,
including both the functional and derivative recursions. The efficacy of the proposed approach has
been demonstrated via two numerical examples.

The algorithm proposed here has been specifically aimed at using a practical, well-regarded
PID structure to deal with a class of nonlinear systems that can be reasonably modelled using a
Hammerstein approach. We have shown here how this can be achieved and have given a number of
examples as to how computational cost can be minimized by employing recursive approximation
techniques where applicable.
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APPENDIX A: A SUMMARY OF THE SYSTEM IDENTIFICATION ALGORITHM

. On the basis of the training data set and any prior knowledge on the system, predetermine

the number of basis functions d, the polynomial order k& and the input range [Upin, Unax]-

Predetermine a set of (d + k) knots according to (5).

Over the training data set Dy = {y(¢), u(t)}fvzl, construct d basis functions B;d)(u(t)) on

the basis of (6) and (7). Subsequently, apply the method described in Section 2.3 to find the
parameter vector 4 as the subvector of #5%.

Construct the auxiliary model output sequence z(¢) by using (17).

Apply the Gauss—Newton algorithm, subject to the constraint G = 1 [31], to find b and &.
On the basis of @, the underlying function W(e) for any point within the range [Uin, Unax]

can be recovered by applying the de Boor algorithm (using (6)—(8)).

APPENDIX B: PSEUDOCODE OF THE GOLDEN SECTION ALGORITHM

Predetermine 9y,4x, Nmin- { The search range for 1 is determined by 1y,in = 0 and Nyax, Which
is mapped from the control signal bounds via (20)}

7 =0.38197,;

Predetermine precision €.

Nmax = -2.078log(e/ (Mmax — Mmin)) {the number of iterations}

M = (- Nmin+TNmax> Urtemp = u(o)(t)+1715u(t)

Obtain K-step ahead predictions (y(t + t|t) 7 =1,..., K) in response to U;emp
Calculate J1 =Y K [r(t + 1) = (@ + t|0)]* + AMutremp —u(t — 1)]?

N2 = TNmin+t(1-T)Nmax; Uremp = u(o)(t)+7728u(t)

Obtain K-step ahead predictions (y(t + t|t) v =1,..., K) inresponse to Usemp
Calculate Jo =Y K_ [r(t + ) — (1 + t|0)]* + AMuremp —u(t — 1)]?

for n =1 — ny;,, do

n<n+1
if J, < J; then
Nmin <= N1 N1 <= N25J1 < J2
M2 = Tlmin+H(1-T)Imaces Uremp = u @ () +128u (1)
Obtain K-step ahead predictions (y (¢t + t[t) 7 =1,..., K) in response to Usemp
Calculate Jo =Y K_ [r(t + 1) — 5t + t0)]* + AMuremp — u(t — 1)]?
end if
if J; < J, then
Nmax <= N2; N2 <= N1 5 J2 <
M = (A-Omin*T fmax’s remp = uO (1)+718u(t)
Obtain K-step ahead predictions (y(t + 7) t© =1,..., K) in response to U;emp
Calculate J1 =Y X_ [r(t + 1) — 5t + t0)]* + AMuremp — u(t — 1)]?
end if

end for
Noptimal = (771 + 772)/2
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