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Abstract: In this study, free vibration behavior of a mul-
tilayered symmetric sandwich beam made of function-
ally graded materials (FGMs) with variable cross section 
resting on variable Winkler elastic foundation are inves-
tigated. The elasticity and density of the functionally 
graded (FG) sandwich beam vary through the thickness 
according to the power law. This law is related to mix-
ture rules and laminate theory. In order to provide this, 
a 50-layered beam is considered. Each layer is isotropic 
and homogeneous, although the volume fractions of the 
constituents of each layer are different. Furthermore, the 
width of the beam varies exponentially along the length of 
the beam, and also the beam is resting on an elastic foun-
dation whose coefficient is variable along the length of 
the beam. The natural frequencies are computed for con-
ventional boundary conditions of the FG sandwich beam 
using a theoretical procedure. The effects of material, geo-
metric, elastic foundation indexes and slenderness ratio 
on natural frequencies and mode shapes of the beam are 
also computed and discussed. Finally, the results obtained 
are compared with a finite-element-based commercial 
program, ANSYS®, and found to be consistent with each 
other.
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1  Introduction
Functionally graded materials (FGMs) are obtained 
by changing the volume fractions of constituents from 
one surface to the other gradually. Thus, the material 
properties of the structure can be adjusted according 

to demand. Because of this advantage, these materials 
have attracted the attention of many researchers [1–4]. 
The field has been developed rapidly because of their 
wide practical application in machine, civil, aerospace 
and automotive areas. Among these areas, dynamic 
analysis of beams made of FGMs has been studied by 
some researchers. Aydogdu and Taskin [5] investigated 
free vibration of simply supported FG beam by using 
parabolic, first-order and exponential shear deforma-
tion beam theories. Aydogdu [6] used the semi-inverse 
method to find a relation between elasticity modulus 
and natural frequency and buckling. Pradhan and 
Murmu [7] presented thermomechanical vibration ana
lysis of beams and sandwich beams made of FGM under 
different conditions. Bedjilili et  al. [8] coped with the 
free vibration of composite beams with a variable fiber 
volume fraction using the first-order shear deformation 
theory. A fourth-order differential equation of a homog-
enized beam deflection was dealt with by Murin et al. [9]. 
Mahi et al. [10] analyzed the free vibration of a symmetric 
FG beam subjected to initial thermal stresses by using a 
theoretical formulation, and they assumed the material 
properties as temperature dependent.

Additionally, there are some studies related to free 
vibration behavior of beams with variable cross section. 
Ece et  al. [11] investigated the vibration of an isotropic 
beam, which has variable cross section. Atmane et al. [12] 
presented a theoretical investigation for free vibration of 
an FG beam with variable cross section. Their theory was 
based on the Kirchhoff-Love hypothesis and they only 
changed the material properties as exponential. Cranch 
and Adler [13] presented the closed-form solution for the 
natural frequencies and mode shapes of unconstrained 
nonuniform beams with four kinds of rectangular cross 
sections. Caruntu [14] examined the nonlinear vibrations 
of beams with rectangular cross section and parabolic 
thickness variation. Datta and Sil [15] determined numeri-
cally the natural frequencies of cantilever beams with 
constant width and linearly varying depth. Laura et  al. 
[16] used approximate numerical approaches to determine 
the natural frequencies of Bernoulli beams with constant 
width and bilinearly varying thickness.
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In other words, beams resting on elastic foundations 
have wide application in engineering practice. As a result, 
some researches have been performed to investigate the 
dynamic response of the beams resting on various elastic 
foundations, such as the Winkler, Pasternak and Vlasov 
models. Some of these are given as follows.

Ayvaz and Özgan [17] applied a modified Vlasov 
model to free vibration analysis of beams resting on elastic 
foundations, and they analyzed the effects of the subsoil 
depth, the beam length, their ratio and the value of the 
vertical deformation parameter within the subsoil on the 
frequency parameters of beams on elastic foundations. 
Motaghian et al. [18] solved the free vibration problem of 
beams on elastic foundation of the Winkler type, which 
is distributed over a particular length of the beam. They 
proposed an innovative mathematical approach to find a 
precise analytical solution of the free vibration of beams. 
Ying et al. [19] presented exact solutions for bending and 
free vibration of FG beams resting on a Winkler-Pasternak 
elastic foundation based on the two-dimensional theory 
of elasticity. They solved the problem by using the state 
space method.

Natural frequencies obtained from the aforemen-
tioned studies are generally about isotropic beams 
either with variable cross sections or on elastic foun-
dation, or FG beams with constant cross section. Some 
studies on FG beams with variable cross sections are 
solved via plate hypotheses. The difference of this study 
from the others is that the Euler-Bernoulli beam hypo
thesis is modified for natural frequencies of sandwich 

laminated FG beams. Therefore, this study shows that 
the effective elasticity modulus and the effective mass 
density can be used instead of elasticity modulus and 
mass density in the governing differential equation of 
motion for a beam made of conventional materials in this  
hypothesis.

In this work, free vibration behavior of a symmet-
ric FG sandwich beam with variable cross section on 
the variable elastic foundation is analyzed. The mate-
rial properties (effective elasticity modulus and mass 
density) of the FG sandwich beam vary through the 
thickness according to the power law, whereas the width 
of the beam with rectangular cross section changes expo-
nentially along the length of the FG beam. Natural fre-
quencies are found by using obtained effective material 
properties for various boundary conditions. The results 
obtained are compared with ANSYS® solutions, and all 
results are found to be consistent with each other. The 
effects of material, geometrical and elastic foundation 
indexes and slenderness ratio on the vibration behav-
ior of the sandwich beam with variable cross section are 
also discussed.

2  �Determination of the effective 
material and geometry properties

Consider a transversely vibrating symmetric sandwich 
beam with variable cross section made of FGM on a 

Figure 1 An FG sandwich beam with variable cross section on variable Winkler foundation.
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variable Winkler elastic foundation as shown in Figure 1. 
Here; L and h represent the length and thickness of the 
beam, respectively. b0 is the half-width at the left end of 
the beam. However, the width of the beam b(x) is sup-
posed to vary exponentially along the length of the beam 
as follows,

	 b(x) = b0 eβx � (1)

where β is the geometric index, and as β = 0 the beam has 
uniform cross section.

The beam is assumed to be composed of 50 FG layers 
in order to get a more consistent value in the solution. 
Each layer is a mixture of aluminum (Al) and alumina 
(Al2O3) phases, and layers are arranged symmetrically to 
the neutral plane of the beam. That is, the beam is stacked 
as [Al2O3/FGM/Al]s. The mixture ratio is chosen as a poly-
nomial function, and it varies continuously and symmet-
rically through the thickness with respect to the neutral 
plane of the beam.

In order to obtain the effective material properties of 
the whole structure, the following procedure is applied. 
First, the material properties of the upper half of the beam 
are calculated from the power law as given in Eqs. (2) and 
(3). Second, effective material properties of the whole 
structure are obtained by using the formula of effective 
elasticity modulus for symmetric laminated composite 
structures. The power law for elasticity modulus is given 
as follows:

	
( ) ( ) = + + c m m

1-
2

n

E z E E z E
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 (2)

where Ec, Em, z and n are the elasticity moduli of 
ceramic and metal phases and the coordinate axis in 

the thickness direction of the beam and material index, 
respectively. The variation of mass density in each layer 
through the beam thickness has also been considered 
to obtain more accurate results. The expressions written 
for elasticity moduli are also considered to be valid for 
density.
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The above-mentioned variable z is defined as 
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where η is equal to (m/2)-1, 

where m represents the number of the layer of the beam 
(see Figure 1).

It is seen from Figure 1 that the top and bottom 
surfaces of the FG beam are pure ceramic, whereas the 
middle section of the beam is pure metal. The variations 
of elasticity modulus and the mass density through the 
whole thickness of the beam for various material indexes 
(n) are shown in Figure 2A and B, respectively.

Eqs. (2) and (3) give the elasticity modulus and mass 
density for each layer in the upper half part of the beam, 
respectively. In order to find the elasticity modulus and 
the mass density throughout the whole beam thickness, 
the classical laminate theory will be used.

The bending moment on a symmetric FG sandwich 
beam can be written in a way similar to that used in lami-
nated composite beam theory [20],
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Figure 2 Variations of elasticity modulus (A) and mass density (B) through the thickness for different index values of power law functions.
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where r and zj are the curvature of the beam and the 
distance between the outer face of the jth layer and the 
neutral plane, respectively. The bending moment can also 
be written as follows:

	
= ef yyE I

M
r �

 (5)

where Eef is the effective elasticity modulus and Iyy is the 
cross-sectional inertia moment about the neutral axis of 
the beam. Substituting Eq. (4) into Eq. (5), the effective 
elasticity modulus can be written as
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Similarly, the effective mass density can be written as 
follows,
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In the calculation of the natural frequency, the effec-
tive elasticity modulus Eef and the effective mass density 
ρef can be used instead of elasticity modulus E and mass 
density ρ in a beam manufactured from isotropic and 
homogenous materials.

3  �Theoretical formulation and 
solution

The governing differential equation of motion for a 
beam with variable cross section made of FGMs on a 
variable Winkler elastic foundation can be expressed 
as follows:
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and

	

( )
ef

∂=
∂

2

2
,( ) w x tM E I x

x �
(9)

where t is time, A(x) = b(x)h is the variable cross-sectional 
area, I(x) = b(x) h3/12 is the variable inertia moment, 
k(x) = ksb(x) is the variable foundation modulus and ks is 
the elastic foundation index.

Putting Eq. (9) into Eq. (8) yields
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The transverse displacement w(x,t) can be expressed 
as

	 w(x,t) = W(x)eωt� (11)

Similarly, putting Equation (11) into Equation (10) gives,
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Substituting A(x), I(x) and k(x) into Eq. (12) yields
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As Eq. (13) is solved, the following expression can be 
obtained,

( ) ( )
β
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1 - / 2h E h E  and λ µ β= + 2 4 2 2

2 / 2h E h E, 

where μ is equal to ( )ρ ω+2 28 3 - sh E Eh k h  and C1, C2, C3 
and C4 are (complex) constants. In other words, the solu-
tion can also be written in trigonometric form:
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where B1, B2, B3 and B4 are real constants and are deter-
mined by the boundary conditions.

Three different types of boundary conditions are con-
sidered in this study: clamped (C), simply supported (S) and 
free (F). These boundary condition types are described as,

C→W = 0; dW/dx = 0� (16)
S→W = 0; d2W/dX2 = 0� (17)
F→d2W/dX2 = 0; d3W/dX3 = 0� (18)
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Table 1 Material properties of the constituents of the FG sandwich 
beam.

Material E (GPa) ρ (kg/m3) υ

Al 70 2700 0.3
Al2O3 380 3950 0.3

The widely used boundary conditions are taken 
into account at two ends of the beam, i.e., C-C, C-S, S-S 
and C-F.

When the boundary conditions are applied to Eq. (15), 
four equations emerged from each boundary condition. 
The roots of these four equations are obtained from the 
determinant, which is composed of four equations. As a 
result of this, the characteristic equations can be found for 
each related boundary conditions.

For example, the following four equations are 
obtained by substitution of boundary conditions of CC 
into Eq. (15).

	 W(x)|x = 0 = B1+B3 = 0� (19a)
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The following characteristic equation is written by the 
determinant of matrix, which is obtained from Eq. (19):
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In order to calculate the natural frequencies, these 
characteristic equations are solved numerically.

4  Results and discussion
In this study, the 50-layered FG sandwich beam with vari-
able cross section on Winkler foundation is considered. 
The material properties of the constituents of the beam 
are given in Table 1. The elasticity modulus and density of 
the FG beam are chosen to be variable, whereas Poisson’s 
ratio υ is considered as a constant. The thickness and 

length of the beam are constant and are set to h = 5 mm 
and L = 200 mm, respectively. The width is b0 = 20 mm at 
the left end of the FG beam and changes exponentially 
along the length of the beam. Material index (n) is con-
sidered to be between 0 and 10, and geometric index (β) 
is taken from -1/L to 1/L with an interval of 0.25/L. The FG 
beam is isotropic, homogenous and uniform as n and β 
are equal to zero.

The variable elastic foundation is designed on the 
basis of Winkler modeling. The variable foundation 
modulus k(x) varies according to elastic foundation index 
ks through the length of the beam as mentioned above. In 
this study, ks is taken to be from 0 to 1000.

In order to support the accuracy of the results 
obtained from the present method, the beam is also 
solved by the commercial program ANSYS® using finite 
element analyses. The beam is modeled and meshed by 
SHELL 63 which has six degrees of freedom at each node. 
The elastic foundation stiffness (EFS) can be added to the 
beam model in this element type. This element is quite 
well suited for computing natural frequencies of beams 
that have EFS. The beams with variable cross section 
are modeled by SOLIDWORKS® program and imported 
to ANSYS as IGS files. In mesh refinement, an element 
is utilized per square millimeter of the cross section. 
In the solution, 6868 elements and 7100 nodes are uti-
lized for the C-C beam with β = 1/L. The block Lanczos 
method is used for the eigenvalue extractions to calculate 
frequencies.

Table 2 and Figures 3–5 represent the variations of 
the natural frequencies for mode 1 of the FG cantilever 
beam, which are obtained with both present and ANSYS 
solutions, versus material index (n), geometrical index 
(β) and elastic foundation index (ks). Moreover, Table 
2 shows the error rate (%) between present and ANSYS 
results.

4.1  Effect of material index

Figure 3 illustrates the variations of the natural frequen-
cies of an FG beam with β = -1/L and ks = 100 versus material 
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Table 2 Comparison of the results of the present and ANSYS for CF boundary condition.

β = -1/L, ks = 100 β = -1/L, n = 1 n = 1, ks = 100

n Present ANSYS Error (%) ks Present ANSYS Error (%) β Present ANSYS Error (%)

0 11328.1 11328.3 0.0017 0 248.8 250.1 0.5210 -1/L 11783.8 11784.0 0.0017
1 11783.8 11784.0 0.0017 100 11783.8 11784.0 0.0017 -0.75/L 11783.4 11783.6 0.0017
2 12080.4 12080.6 0.0013 200 16663.0 16663.2 0.0013 -0.5/L 11783.1 11783.3 0.0018
3 12289.2 12289.4 0.0016 300 20407.1 20407.4 0.0016 -0.25/L 11782.9 11783.0 0.0008
4 12444.2 12444.5 0.0020 400 23563.7 23564.0 0.0013 0 11782.6 11782.8 0.0015
5 12563.9 12564.1 0.0015 500 26344.7 26345.1, 0.0014 0.25/L 11782.4 11782.6 0.0012
6 12659.0 12659.2 0.0013 600 28859.0 28859.4 0.0012 0.5/L 11782.2 11782.4 0.0014
7 12736.3 12736.5 0.0015 700 31171.1 31171.5 0.0012 0.75/L 11782.1 11782.2 0.0008
8 12800.3 12800.6 0.0020 800 33323.1 33323.6 0.0014 1/L 11781.9 11782.1 0.0013
9 12854.3 12854.5 0.0013 900 35344.4 35344.9 0.0013

10 12900.2 12900.4 0.0017 1000 37256.2 37256.7 0.0013

Figure 3 Variations of the natural frequencies with material index (n) for C-F boundary conditions ( β = -1/L, ks = 100).

index (n) for C-F (cantilever) boundary conditions. It can 
be seen from the figure that natural frequencies increase 
with increasing material index (n). Namely, an increase in 
the volume fractions of the ceramic phase in the FG sand-
wich beam causes a decrease in the natural frequencies. 
As a result, in order to achieve the desired natural fre-
quencies, the volume fractions of the constituents of the 
symmetric FG sandwich beam can be arranged. In order 
to verify the accuracy of the results obtained from the 
present method, a corresponding beam is also solved by 
ANSYS®. In Figure 3, it seems to be in excellent agreement 
with both results of ANSYS® and the present analytical 
solutions for the case considered in this study.

4.2  Effect of geometric index

Figure 4 depicts the variations of the natural frequencies 
of an FG beam with n = 1 and ks = 100 versus geometric index 
(β) for C-F boundary conditions. It can be seen from Figure 
4 that natural frequencies gradually decrease with chang-
ing from narrowing to expanding of the cross section for 
the C-F beam. As a result, narrowing beams can provide 
more advantages than expanding beams because less 
material is used, and they have higher natural frequencies 
than expanding beams. It is also seen that the results of 
the present and ANSYS® solutions are very close to each 
other.
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Figure 4 Variations of the natural frequencies with geometric index (β) for C-F boundary conditions (n = 1 and ks = 100).

Figure 5 Variations of the natural frequencies with elastic foundation index (ks) for C-F boundary conditions (β = -1/L and n = 1).

4.3  Effect of elastic foundation index

Figure 5 shows the variations of the natural frequencies 
of an FG beam with β = -1/L and n = 1 versus elastic founda-
tion index (ks) for C-F boundary conditions. It can be seen 
that natural frequencies increase with increasing elastic 
foundation index (ks). It is also seen that the increase in 
natural frequencies is relatively apparent when ks  ≤  100, 
whereas it becomes considerably slow when ks > 100. From 

Figure 5, it is shown that the results of the present analyti-
cal solutions have an excellent agreement with the results 
of ANSYS® solutions for C-F boundary conditions.

4.4  Effect of the combining of all indexes

The first three natural frequencies of the symmetric FG 
sandwich beam on variable Winkler elastic foundation 
under three different types of boundary conditions are 
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Table 3 First three natural frequencies (Hz) of the sandwich beam on elastic foundation.

ks β = -1/L β = 0 β = 1/L

n = 0 n = 1 n = 10 n = 0 n = 1 n = 10 n = 0 n = 1 n = 10

Simply supported-simply supported
 0 550.5 513.6 401.1 555.9 518.6 405.1 550.5 513.6 401.1

2229.0 2079.4 1624.2 2223.8 2074.6 1620.4 2229.0 2079.4 1624.2
5011.6 4675.4 3651.9 5003.5 4667.8 3646.0 5011.6 4675.4 3651.9

 102 11338.3 11792.4 12905.0 11338.6 11792.6 12905.1 11338.3 11792.4 12905.0
11542.2 11963.3 13000.6 11541.2 11962.4 13000.1 11542.2 11963.3 13000.6
12384.3 12675.0 13405.8 12381.0 12672.2 13404.1 12384.3 12675.0 13405.8

 103 35816.9 37258.9 40791.4 35817.0 37259.0 40791.5 35816.9 37258.9 40791.4
35882.0 37313.3 40821.8 35881.6 37313.1 40821.6 35882.0 37313.3 40821.8
36161.6 37547.6 40952.6 36160.5 37546.6 40952.1 36161.6 37547.6 40952.6

Clamped-clamped
 0 1268.1 1183.0 924.0 1260.3 1175.7 918.3 1268.1 1183.0 924.0

3484.5 3250.7 2539.1 3474.0 3240.9 2531.4 3484.5 3250.7 2539.1
6821.9 6364.2 4971.0 6810.4 6353.4 4962.6 6821.9 6364.2 4971.0

 102 11395.7 11840.4 12931.8 11394.9 11839.7 12931.4 11395.7 11840.4 12931.8
11848.9 12221.4 13146.3 11845.8 12218.8 13144.8 11848.9 12221.4 13146.3
13220.9 13390.3 13823.5 13215.0 13385.1 13820.5 13220.9 13390.3 13823.5

 103 35835.1 37274.1 40799.9 35834.8 37273.9 40799.8 35835.1 37274.1 40799.9
35981.8 37396.9 40868.4 35980.8 37396.1 40867.9 35981.8 37396.9 40868.4
36456.6 37795.0 41091.2 36454.5 37793.2 41090.2 36456.6 37795.0 41091.2

Clamped-simply supported
 0 930.1 867.7 677.7 868.5 810.2 632.9 809.9 755.6 590.2

2878.6 2685.4 2097.6 2814.5 2625.6 2050.9 2766.1 2580.5 2015.6
5938.3 5539.9 4327.1 5872.2 5478.2 4278.9 5825.7 5434.8 4245.1

 102 11363.1 11813.1 12916.5 11358.2 11809.0 12914.3 11353.9 11805.4 12912.3
11685.1 12083.4 13068.2 11669.4 12070.2 13060.8 11657.9 12060.5 13055.3
12787.4 13018.7 13605.2 12756.8 12992.6 13590.0 12735.5 12974.3 13579.3

 103 35824.7 37265.5 40795.1 35823.2 37264.2 40794.4 35821.8 37263.0 40793.7
35928.2 37352.0 40843.3 35923.1 37347.8 40841.0 35919.3 37344.6 40839.2
36301.7 37665.0 41018.3 36290.9 37656.0 41013.3 36283.4 37649.7 41009.8

listed in Table 3. The effect of geometric, material and 
elastic foundation indexes are taken into account in this 
table. It can be seen from Table 3 that for the beam with 
symmetrical boundary conditions, i.e., S-S and C-C, the 
natural frequencies are symmetrical according to the beam 
of uniform cross section by increasing β, but they decrease 
with increasing n for ks = 0. As for ks > 0, they increase with 
increasing n. It can also be seen from Table 3 that for the 
beam with nonsymmetrical boundary conditions, i.e., C-S, 
the natural frequencies decrease with increasing β for all 
ks values, whereas they decrease with increasing n for ks = 0 
and increase with increasing n for ks > 0.

4.5  Effect of the slenderness ratio

The variations of the natural frequencies against the slen-
derness ratio (L/h) for material index n = 1, elastic founda-
tion index ks = 100 and geometric index β = -1/L are depicted 

in Figure 6. As expected, natural frequencies decrease with 
increasing slenderness ratio. Especially, whereas the natural 
frequencies of the beam reduce sharply for slenderness ratio 
between 5 and 10, they decline slowly after L/h = 10.

4.6  Mode shapes

In Figures 7 and 8, the first mode shape of the cantile-
ver FG beam with β = -1/L is derived for various material 
indexes n and elastic foundation indexes ks, respectively. 
It can be seen that the mode shapes of the FG beams with 
different material indexes and elastic foundation indexes 
are very close to each other. Namely, the influences of the 
material index and elastic foundation index on the mode 
shape of the beam are quite limited.

The first displacement of the cantilever FG beam with 
n = 1 and ks = 100 is shown in Figure 9 for different geometric 
indexes. The geometric index has an insignificant effect 
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Figure 6 Variations of the natural frequencies with slenderness ratio (L/h) for C-F boundary conditions (β = -1/L, ks = 100 and n = 1).

Figure 7 The first mode shape of the cantilever FG beam on elastic foundation for various material indexes (β = -1/L, ks = 100).

on the mode shape for cantilever FG beam. It is found that 
the maximum amplitude occurs at the right end of the 
narrowing cantilever beam. It is also seen from Figure 9 
that the amplitude of the beam decreases with expanding 
width at the right end of the beam.

Figure 10 demonstrates the change in the fundamen-
tal vibration mode shape of FG beams for different length-
to-height ratios as β = -1/L, ks = 100 and n = 1. It can be seen 

in Figure 10 that slenderness ratio has no effect on the 
amplitude at the right end of the beam.

Finally, the first four bending eigenmodes are shown 
in Figure 11. It can be seen that the absolute value of 
amplitudes for all modes are almost the same at the right 
end of the beam. Nevertheless, the first and the third 
mode curves take place at completely opposite directions 
according to the second and the fourth mode.
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Figure 8 The first mode shape of the cantilever FG beam for various elastic foundation indexes (β = -1/L and n = 1).

Figure 9 The first mode shape of the cantilever FG beam on elastic foundation for various geometric indexes (ks = 100 and n = 1).

5  Conclusion
The free vibration of a symmetric FG sandwich beam with 
variable cross section resting on variable Winkler elastic 
foundation is investigated in this paper, and the verifica-
tion is carried out by the results obtained from ANSYS® 

commercial software. Effects of material index, geometric 
index, elastic foundation index and slenderness ratio on 
vibration behavior of the FG beams are investigated. The 
following conclusions can be drawn from the analyses:

–– The effective elasticity modulus and the effective mass 
density can be used instead of elasticity modulus and 
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Figure 10 The first mode shape of the cantilever FG beam on elastic foundation for various slenderness ratios (β = -1/L, ks = 100 and n = 1).

Figure 11 The first four mode shape of the cantilever FG beam on elastic foundation (β = -1/L, ks = 100 and n = 1).

mass density in the governing differential equation of 
motion for a beam made of conventional materials.

–– Increase in the volume fractions of the ceramic in the 
symmetric FG sandwich beam causes decrease in the 
natural frequencies.

–– The natural frequencies decrease gradually with 
increasing geometric index.

–– The natural frequencies increase with increasing 
elastic foundation index (ks). The increase in natural 
frequencies is relatively apparent when ks  ≤  100, 
whereas it becomes considerably slow when ks > 100.

–– The natural frequencies of the beam reduce sharply 
for slenderness ratio between 5 and 10, whereas they 
decline slowly after L/h = 10.
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–– The effects of the material index and elastic 
foundation index on the mode shape of the beam are 
quite limited.

–– The amplitude at the right end of the beam decreases 
with expanding width at the right end of the beam.

–– The slenderness ratio has no effect on the amplitude 
at the right end of the beam.
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