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1. Introduction

The quasicrystal as a new structure of solids has been first discovered in 1984 by Schechtman et al. [1]. The physical prop-
erties, such as the structural, electronic, magnetic, optical and thermal properties, of QCs have been investigated intensively.
Most of these properties combine effectively to give technologically interesting applications which have been protected re-
cently by several patents [2-4]. For instance, the combination of such kind of properties as high hardness, low friction and
corrosive resistance of QCs gives almost ideal material for motor-car engines. The application of QCs in motor-car engines
would be undoubtedly result in reduced air pollution and increase engine lifetimes. The same set of associated properties
(hardness, low friction, corrosive resistance) combined with bio-compatibility is also very promising for introducing QCs
in surgical applications as parts used for bone repair and prostheses.

Dynamic analysis of elasticity problems of quasicrystals is very limited. In addition to the difficulty of mathematical anal-
ysis for dynamic problems in quasicrystals, a possible reason is that the physical mechanism of phase is not very clear. As is
well-known, phonon excitations lead to wave propagations. However, for phason excitations, there are several kinds of dif-
ferent points of views [5-14].

Elasticity is one of the interesting properties of QCs. Equations of anisotropic elastodynamics in 3D QCs are more compli-
cated than those of 1D and 2D QCs. For this reason most authors consider only elastic plane problems for QCs [15-17], i.e.
they suppose that the elastic fields induced in QCs are independent of the variable z. In the last several years many works
have been devoted to the construction of general solutions of static and plane elasticity in QCs. The plane elasticity problems
of 3D and 2D quasicrystals has been studied for static case in [18]. Based on the stress potential function general solution of
the plane elasticity problems of icosahedral quasicrystals has been studied for static case in [19]. Gao [20] has established
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general solutions for plane elastostatic of cubic quasicrystals using an operator method. Fan and Guo [21] has developed the
potential function theory for plane elastostatic of 3D icosahedral quasicrystals. Using PS method related with polynomial
presentation of data 3D elastodynamic problems in 3D QCs have been solved in [22]. The method for the derivation of
the time-dependent fundamental solution with three space variables in 2D and 3D QCs with arbitrary system of anisotropy
have been studied in [23,24].

In the present paper a method for computation of the time-dependent fundamental solution (FS) of three-dimensional
elastodynamics in 3D QCs is studied. This method was proposed for elastodynamic problems of normal crystals in [25].
The method has been applied equations of anisotropic dynamic elasticity for 2D and 3D QCs to obtain fundamental solutions
of phonon and phason displacements [23,24]. However, in this paper the phonon displacements, phason displacements, pho-
non displacement speeds, phason displacement speeds, phonon stresses, phason stresses arising from pulse point source for
dynamic elasticity of 3D QCs are computed.

Originality of this paper is the reduction of the second order differential equations of elastodynamics of 3D quasicrystals
to a first order symmetric hyperbolic system. This allows us to simplify of a quite complex problem and to obtain phonon and
phason elements at the same time with a small number of calculations. Applying the Fourier transform with respect to the
space variables to the symmetric hyperbolic system, system of ordinary differential equations with respect to the time var-
iable whose coefficients depend on the Fourier parameters is obtained. Using the some matrix computations a solution of the
obtained system is computed with respect to Fourier parameters. Applying the inverse Fourier transform to the resulting
formula the time-dependent FS of elasticity for 3D QCs is computed. The obtained time-dependent FS is a vector with com-
ponents 21 whose are 3 phonon displacement speeds, 6 phonon stresses, 3 phason displacements and 9 phason stresses aris-
ing from an arbitrary force. Integrating of phonon and phason displacement speeds give phonon and phason displacement
arising from an arbitrary force. Consequently, the phonon displacement speed, phason displacement speed, phonon stress,
phason stress arising from pulse point source in time dependent 3D QCs is computed. The method is suitable for computer
programming. Using the MATLAB programming the values of the FS in 3D QCs is computed and the wave propagation in
these crystals is simulated.

The paper is organized as follows. The basic equations of elastodynamics for 3D QCs are written in Section 2. In Section 3
equations of anisotropic elastodynamics in 3D QCs are written in the form of the symmetric hyperbolic system containing
twenty-one partial differential equations of the first order. The time-dependent FS of elasticity for 3D QCs and vector partial
differential equation for FS columns are given in Section 4. The method of computing FS columns is described in the Section 5.
Computational examples with the description of input data and results of computations are written in Section 6. The con-
clusion, appendix and a collection of computational images of phonon and phason displacements, displacement speeds and
stresses for anisotropic elasticity of QCs with icosahedral structure are given at the end of the paper.

2. The basic equations for 3D QCs

Let x = (x1,X2,X3) € R® be a space variable, t € R be a time variable. The generalized Hooke’s laws of the elasticity problem

of 3D QCs are given by (see, for example, [15,26,27])
0y = Cijuiént + RyiaWh, (1)
Hjj = Rujen + Kijuwi, 2)

where the subscripts i,j,k,| = 1,2, 3. The equations of deformation geometry are given by

71 6uk 8u1 78Wk _
8“75(8_)(, 6_Xk> Wkl*a—xla, k,1=1,2,3. 3)

Here u, and wy, k = 1,2,3 are the phonon and phason displacements; &y(x,t), wi(x,t),k, I =1,2,3 are phonon and phason
strains, respectively.
Cyjiu are the phonon elastic constants and they satisfy the symmetry property (see, for example, [15,26,27])

Cii = Cjit = Cijik = Ciaj- (4)
Kju are the phason elastic constants and they satisfy the symmetry property (see, for example, [15,26,27])

Kij = K- (3)
R are the phonon-phason coupling elastic constants and they satisfy the symmetry property (see, for example, [15,26,27])

Rijiy = Rjiw- (6)
The positivity of elastic strain energy density requires that the elastic constant tensors Cj, K, Rjiw must be positive definite.

Namely, when the strain tensors ¢;, w; are not zero entirely, the elastic constant tensors satisfy the following inequality (see,
for example [27])

3 3 3
Z C,-jkls,-js,d > O, Z I(ijk,wijw,<1 > O, Z R,’jklsijWkl > 0. (7)
ij k=1 ijki=1 ij k=1
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The dynamic equilibrium equations can be written in the following form

2., 3 .
pTUED) _ 570010 | fixe) ®)
j=1 J
Pwi(x,t) S~ OH(x,t)
B Z éXj

+g(x,t), i=1,23 xR teR, 9)

=
where the constant p > 0 is the density; o and Hy,i,j = 1,2,3 are phonon and phason stresses; fi(x, t) and g;(x,t),i=1,2,3
are body forces for the phonon and phason displacements, respectively.

3. Reduction of time-dependent anisotropic elastodynamics in 3D QCs to a symmetric hyperbolic system
From the symmetry property (4) it is convenient to describe the phonon elastic constants in terms of a 6 x 6 matrix
according to the following conventions relating pairs of indices (ij) and (kl) to single indices « and j:
11) -1, (22)«2, (33)<3, (23),32) 4, (13),(31) <5, (12),(21) < 6. (10)

The obtained matrix C = (Cuy)q,¢ Of all moduli, where o = (ij), = (kl), is symmetric.
Using the symmetry properties (4), (6) and the rule (10) the phonon stresses g; can be written in the form

0y = Cou1811 + Co2802 + Cy3833 + 2C54823 + 2Cy 5813 + 2C56€12 + Ry11Wi1 + Ry2oWaz + Ry 33W33 + Ry 23Was
+ Ry31W31 + Ry1oWi2 + Ry3aWap + Ry 13Wi3 + Ryoiwar, @ =1,2,3,4,5,6. (11)

Using the symmetry property (6) and the rule (10) the phason stresses H; can be written in the form

Hjj = Ry €11 + Ry jj€an + Rajié3s 4 2Ry €23 + 2Rs €13 + 2Rs jj€12 + Kij11Wi1 + Kij2aWaz + Kijz3Was + Kij23Was
+ Kij31Ws1 + Kjj12W12 + Kij3oW32 + Kijiswas + Kijoiwar, 1,j=1,2,3. (12)

The relations (11) and (12) can be written in the matrix form

Here
T = (01,02,03,04,05,06,H11,H2z, H33, Hy3, H31, H12, H32, Hi3, Ha ),
Y= (811782278337282372813728127W117W22?W33,W23-,W31,W127W327W137W21)*7
_ C R
C= 3 C:(Cdﬂ)ﬁxﬁ7 067[;:172737475767 (14)
R K 15x15 1

Rint Rizz Rizs Rizs Rizi Rie Rizz Rz Rim

Roit Rezz Razzs Razz Razi Rone Rz Roizs Rom

R311 Rszz Rszz Rszz Raszi Rsiz Rs;z Rsis Rso

Ryti Razz Raszs Ryzz Razi Ranz Razz Rass Rz

Rsi1 Rszp Rs3s Rsyzs Rs3i Rsia Rs3zz Rsiz Rso

Rsi1 Re22 Ress Rexs Resi Reiz Resz Reis Re21/ g9
Kiiin Kinze Knss Knas Kinsi Knaz Knz Kias Koa
Kpir Kaz Kaszs Koz Kozt Koz Koz Knis Kaon
K311 Kszzp Kzzszs Ksspzs Kszzi Kz Kzzza Kssuz Ksso
Ky Kazzo Kazzs Kazazs Kassi Kasio Kazza Kazaiz Koz
K= | Ksinn Kz Kzaizz Kzizzs Kzizi Kz Ksizz Ksiis Ksion
Kizin Kz Kizzzs Kizaz Kizzi Kz Kizza Kizas Ko
K311 K322z K3z Koz Ksazi Ksono Ksaza Kszaz Kz

K13,11 K13.22 K]3,33 K13.23 K13,31 K13,]2 K13,32 K13,13 K]3.21

K21,11 K21.22 K21,33 K21A23 K21,31 KZ],]Z K21,32 K21.13 K]Z.Zl 9%9

and « is the sign of the transposition. Since the matrix C is symmetric and the phason elastic constants Kj satisfy the sym-
metry property (5) the matrix C is symmetric. From the conditions (7) the matrix C is positive definite (see, Appendix).

Differentiating (13) with respect to t and multiplying the left hand side of the resulting formula by the inverse of C, de-
noted C-!, we find the following matrix representation
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aT 063\ 0 /U
c! — =0 15
+12:< (Aj?)*)aXJ(W) 15,15 (15)
where
-1 000 0 O 0 00 0 0 -1
Al=[ 0o o000 0 -1|, Ayj=|0 -1 0 0 0 O |,
0 000 -1 0 0 00 -10 0
00 0 0 -10 -1 000 0 0O0O0 O
AA=|l00 0 -1 0 Of; AA=<{ 0o o000 0 00O -1], (16)
00 -1 0 0 O 0 000 -1000 0
0 0000 -10 00 00 0 0 00O -10
A=[{0 -1000 0 O 0O, A2A=|00 0 -1 000 0 O];
0 0000 0 -100 00 -1 0 000 0 O
U= (U102 Us), W= Wy, Wy, W), Ui t) = 2000 ey < 20 g 5 5

and 0,, is the zero matrix of the order I x n.
Using symmetry properties (4) and (6) and the rule (10) Egs. (8) and (9) can be written as

o (U 3 Ajl 039\ aT
g T( ) ! < A (17)
ot \W ]:ZI 03.6 Ajz 8Xj

where F = (f1.f2,f3,81,8,.8)"-
The relations (15) and (17) can be presented by the following system

A0—+ZAJ _F, XxeR, teR, (18)

where F = (f1,f,f3,81,8,,83,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)",
V = (Uy, Uy, U3, Wi, W;, W3, 04,02,03,04,05,06,H11,Hp, Ha3, Ho3, H31, H12, H3z, Hi3, Ha ),

056 Al Os

Is 0 036 035 A?
A0:<Pe 76,15) CA- 36 36 ; 7 (19)
21x21

Oi56 C7! (A;)* Os3  0Og15

093 (Ajz)* 0515

21x21

Here I is the unit matrix of the order 6 x 6 and 0, is the zero matrix of the order | x n, matrices Aj1 ,Ajz,j =1,2,3, are defined
by (16).

We note that the matrices A;,j = 1,2, 3, are symmetric. Since C is positive definite and symmetric, p > 0 the matrix Ay is
symmetric and positive definite. Therefore system (18) is a symmetric hyperbolic system (see, for example, [28]).

4. Fundamental solution (FS) of anisotropic elastodynamics in 3D QCs

Let m run values 1,2,3,4,5,6. The time-dependent FS of elasticity for 3D QCs is a 21 x 6 matrix whose mth column is a
vector function

V7(x, 1) = (UY (%, 0), U3 (. £), U5'(x, £), WY'(x, £), W3 (x, 1), W3 (x, 1), 0" (x, £), 03 (X, 1), 05' (%, 1), 0 (X, €),
O-rsn(xv t)= O-Ein(xv t)Hrlnl (X7 t)7 H?Z(xv t)= H?}(Xv t) Hr2n3(x7 t)v HT] (X7 t)7HT2(X7 t)v H?Z(x7 t)? HT}(xv t)7 Hr2n1 (X, t))x

satisfying the following initial value problem (IVP)
V" V™
Aoa—+ZAa =E"(x,t), xR, teR, (20)

Vm( X, )|t<0:0' (21)

Here E™ = (8T, 97,05, 04,08, 6¢,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)", m = 1,2, 3,4,5,6; 5 be the Kronecker symbol i.e. 57 =1
ifn=mandds) =0ifn=m;n,m=1,2,3,4,5,6;5(x) = 5(x1)5(x2)5(x3) is the Dirac delta function of the space variable con-
centrated at x; = 0,x, = 0,x3 = 0;6(t) is the Dirac delta function of the time variable concentrated at t = 0.
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The computation of mth column for the time-dependent FS of 3D QCs is the main problem of this paper. This problem is
related with finding a vector function V" (x, t) satisfying (20) and (21).

5. Computation of FS of anisotropic elastodynamics in 3D QCs

In this section we compute mth column of the FS V™ (x, t). Firstly, IVP (20) and (21) are written in terms of the Fourier
transform with respect to x € R3. Then, a solution of the obtained IVP is derived by matrix transformations and the ordinary
differential equations technique. Finally, an explicit formula for mth column of the FS is found by the inverse Fourier
transform.

Equations for mth column of FS in terms of Fourier images. Let

vm(vv t) = (Orlnv UTv U?v Wr]n W? WTv 6.r1n7 6-?7 6-3m7 6?117 621 6?1:1711 (X7 t)vl:ITZnZ(Xv t)vl:l?}(xv t)v
H%(Xv t)7H3m1 (X7 t)vHrlnz(xv t)7H3m2(xv t)7Hr1nB(x7 t)ngll (X, t))*v

be the Fourier image of V™ (x, t) with respect to x = (x;,X3,x3) € R® (see, for example [29]), i.e.

Vj’"(V,t):/‘ / / Vi (x, t)e™Vdx, dx,dxs,
V=(V,V2,V3) ER’, X-V=X;V] + XV +X3V3, iP=-1,j=1,...21, m=1,...6.

The IVP (20) and (21) can be written in terms of V™(v,t) as follows

\/m

AO% — iB(V)V™ = E™5(t), (22)
VT(V,8)]o =0, (23)

where B(v) = (VA1 + V2A2 + V3A3).
Diagonalization A, and B(v) simultaneously. The matrix A, is symmetric positive definite and B(v) is symmetric. We can

construct a non-singular matrix 7(v) and a diagonal matrix D(v) = diag(dx(v),k =1,2,...,21) with real valued elements
such that (see, for example, [25])
T"(MAT(v) =1, (24)
T (V)BT (v) = D(v), (25)

where I is the identity matrix, 7*(v) is the transposed matrix to 7 (v).
MATLAB commands of constructing D(v), 7 (v) are listed below.

Input : Gy, Rijut, Kijit, V1, V2, V3
[EigVecA,, EigValAy] = eig(Ao);
P = EigVecAy;
PT =P
M = EigValAy;
Ms = sqrt(M);
SqrA, = P « Ms « PT;
InvSqrA, = inv(SqrAy);
B=1v1xA1+ 0v2%A2+ v3 xA3;
H = InvSqrA, = B x InvSqrAy;
[EigVecH, EigValH] = eig(H);
D(v) = EigValH;
Q(v) = EigVecH;
T (v) = simplify(InvSqrA0 = Q);
Output : D(v), T (v).
Computation of mth column of FS in terms of Fourier images. Consider the following transformation
VT (v, t) = T (Y™ (v, 1), (26)

where Y™ (v, t) is unknown vector function. Substituting (26) into (22) and (23) and then multiplying the obtained vector
differential equation by 7*(v) and using (24) and (25) we find
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6;{—: —iDW)Y™ = T*(VE™s(t), teR (27)

Y (v, )| = 0. (28)
Using the ordinary differential equations technique (see, for example, [30]), a solution of the IVP (27) and (28) is given by
Y™ (v,t) = 0(t)[cos(D(v)t) + isin(D(v)t)]T*(v)E™,

where 0(t) is the Heaviside function, i.e. (t) = 1 for t > 0 and 0(t) = 0 for t < 0; cos(D(v)t) and sin(D(v)t) are diagonal matri-
ces whose diagonal elements are cos(d,(v)t) and sin(dy(v)t),k = 1,2,...,21, respectively.
Finally, a solution of (22) and (23) is determined by

V™(v,t) = 0(t)T (v)[cos(D(V)t) + i sin(D(v)t)] 7" (v)E™. (29)

Computation for mth column of FS. Noting that every solution of (20) and (21) is a real valued vector function. Therefore,
applying the inverse Fourier transform to (29) we obtain (see, for example, [25])

V7 (x,t) = (Z(t;3 / * / * / T (v)cos (D(v)t — 1(v - X)) T (v)E™dvydvdvs,
TE —00 —0C —00
V'(x,t) = (Vi(x,t),Va(x, 1), V3(x,t),..., Va1 (x, 1)), (30)
where cos (D(v)t — I(v - X)) is the diagonal matrix with diagonal elements cos (dy(V)t — v -x),k=1,2,...,9.

Remark: Let us point out the physical sense of V" (x,t) components. The first three components of V" (x,t) are compo-

nents of the phonon displacement speed u™(x,t) = (u;(x,t), u>(x, t), us(x,t)), i.e. Uy (x,t) = ”:)‘; (x,t),n=1,2,3; the second

three components of V"(x,t) are components of the phason displacement speed w™(x,t) = (w;(X,t), w2 (X, t), w3(x,t)), i.e.

Wi(x,t) = ";";"" (x,t),n = 1,2,3; the third six components of V" (x, t) are the phonon stresses a7 (x, t); the fourth nine compo-

nents of V" (x, t) are the phason stresses Hj/ (x, t) of the considered anisotropic medium arising from the source E"(x)d(t).
Integrating the first six components of V" (x, t) with respect to t the FS for phonon and phason displacements of elastody-
namics of 3D QCs can be found in the following form

t t
un’”(x,t):/ V' (x, T)dT, wn"'(x,t):/ Vis(x,1)dt, n=1,2,3,
0 0

or
ur(x,t) = (3523 /_j /: \/_:[T(V)S(\h t,X)T"(V)E™],dv1dv,dys,
wil(x,t) = (;)523 /ﬂC /%C /%O[T(V)S(v, t,X)7"(V)E™],,5dvidv,dvs, (31)

where elements of the matrix S(v,t,x) are found by formulae (see, for example, [25])

sin(d (v)t=v-x) | sin(vx) .
AL 4 PR di(v) # 0,
S (v, £) _{ d () CADN K(v)

Si(v,t,x) =0, j#k, kj=1,...,21.
tcos(v - x), if d(v) = 0; il :

[T (v)S(v,t,x)T*(v)E™], is the nth component of the vector 7 (v)S(v,t,x)7*(v)E™.

6. Computational experiment

This method was proposed for elastodynamic problems of normal crystals in [25]. [25] is a special case of this paper for
Ruij = Kijiu = 0,1,j,k,1 = 1,2,3. The robustness and correctness of the suggested method has been shown on the examples of
isotropic crystals in [25].

The aim of the computational experiment is to derive values of elements for the FS of anisotropic elastodynamics in ico-
sahedral QC Al-Mn-Pd (see, for example, [15,31]) and present results in the form of 3D graphs. The elastic constants for Al-
Mn-Pd are taken from [31]. We choose p = 1(10*kg/m3). Using MATLAB code in Section 5 the matrices 7 (v) and D(v) have
been obtained. Substituting 7(v) and D(v) into formula (30) we have computed a solution V"(x,t) = (V' (x,t),
V3(x,t), V3(x,t),..., V3 (x,t)) of (20) and (21) for m = 3. The computed vector-functions V™ (x,t) are columns of the FS of
elastodynamics in AlI-Mn-Pd. We note that the first three components of the vector function V" (x, t) are the phonon displace-
ment speed U™ (x,t) = (U7 (x,t), U7 (x,t), U3 (x,t)); the second three components of V™ (x,t) are the phason displacement
speed W™ (x,t) = WT'(x,t), W5 (x,t), W5 (x,t)); the third six components of V™ (x,t) are the phonon stresses; the fourth nine
components of V" (x, t) are the phason stresses arising from forces E™§(x)4(t). Substituting 7 (v) and D(v) into formula (31)
we have computed fundamental solution of the phonon displacement u™ = (u]*,u¥,u}') and the phason displacement
w = (W, wi', wi) arising from pulse point forces E*5(x)3(t) have been computed.
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Fig. 1. The third component of the phonon displacement speed U3(0,x,, 3, t) at the time t = 0.1 in Al-Mn-Pd.
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Fig. 2. The second component of the phason displacement speed W3 (x;,0,x3,t) at the time ¢ = 0.1 in Al-Mn-Pd.

80 60 -40 20 0O 20 40 60 80

Fig. 3. The sixth component of the phonon stress 2 (x1,x,,0,t) at time t = 0.1 in Al-Mn-Pd.
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o 50 0 » 5 100

Fig. 4. The ninth component of the phason stress H3, (x;,0,x3,t) at time t = 0.1 in Al-Mn-Pd.

Fig. 6. The first component of the phonon displacement u3(x1,0,xs,t) at time t = 0.1 in Al-Mn-Pd.
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Fig. 7. The second component of the phason displacement w3 (x;,x,,0,t) at time t = 5 in Al-Mn-Pd.

The result of the computational experiment is presented in Figs. 1-7. Fig. 1 presents the third phonon displacement speed
V3(0,x,,%3,0.1) = U3(0,x,,x3,0.1) on the plane x; = 0 corresponding to source E>5(x)5(t). Fig. 2 presents the second phason
displacement speed Vg (x1,0,x3,0.1) = Wg (x1,0,x3,0.1) on the plane x, = 0 corresponding to source E>5(x)d(t). These images
are the view from the top of the magnitude axis V% (i.e. the view of the surface z = V;(O,Xz,X;, 0.1)) and Vg (i.e. the view of
the surface z = V2(x;,0,x3,0.1)), respectively.

Fig. 3 shows 2D level plot of dynamic distribution for the sixth component of the phonon stress g2 (x1,x,,0,t) in the Al-
Mn-Pd at t = 0.1, i.e. V3,(x1,x,,0,0.1). Fig. 4 shows 2D level plot of dynamic distribution for the ninth component of the pha-
son stress H3, (x1,0,x3,t) in the Al-Mn-Pd at t = 0.1, i.e. V3, (x;,0,%3,0.1).

Figs. 5 and 6 present dynamic distribution of the first component of phonon displacement u3(x;,0,x3,0.1). Fig. 5 is the
graph of the 3-D surface u3(x1,0,x3,t) for t = 0.1. Here the horizontal axes are x; and x;. The vertical axis is the magnitude
of u3(x;,0,x3,0.1). Fig. 6 contain screen shot of 2-D level plot of the same surface u3(x;,0,x3,0.1), i.e. a view from the top of
the magnitude axis u3 (i.e. the view of the surface z = u3(x;,0,x3,0.1)). Fig. 7 is 2D level plot of the second phason displace-
ment w3(xq,xz,0,t) at t = 5. This figure presents a view from the top of the magnitude axis w3 (x1,x2,0,5) (i.e. the view of the
surface z = w3 (x1,x,,0,5)).

7. Conclusion

In this paper dynamical equations of homogeneous anisotropic elastic media in 3D QCs have been written in the form
of the symmetric hyperbolic system of the first order. To obtain FS of the phonon and phason displacements, displace-
ment speeds and stresses the method which was proposed for elastodynamic problems of normal crystals in [25] has
been applied. The robustness and correctness of the suggested method has been shown on the examples of isotropic
crystals [25]. This method is based on the modern achievements of computational algebra which allows us to make
computer applications. Using our method the simulations of phonon and phason displacements, displacement speeds
and stresses of anisotropic elasticity in 3D QCs has been made at the same time. The results of simulation give a pos-
sibility to observe and analyze the elastic wave propagation in 3D QCs arising from pulse point sources of the form
E™5(x1)0(x2)0(x3)0(t).

Appendix
The matrix C, defined by (14), is symmetric with real valued elements. Let us show that C is positive definite, i.e. the ma-
trix C has to satisfy
V'Cy >0 (32)

for arbitrary nonzero vectors V = (&1, &2, €3, €4, €, 66, W11, Waz, W33, Wa3, W1, W12, W2, W13, Wa1) € R™>.
We assume in Section 2 that Cjy, Ryu, Kiju satisfy conditions (7) when the strain tensors ¢;, w; are not zero entirely.
Using symmetry properties (4) and (6) and the rule (10) the first and third conditions in (7) can be written in the form

3 6 3 6 3
> Ciutije = Y Capas >0, > RiugiWu =D Y Ryjewj >0, (33)

ijk,I=1 o.p=1 ijk]=1 a=1ij=1
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where €11 = €1, €xn = &, €33 = &3,2623 = &4,2€13 = €5,2E12 = & are arbitrary nonzero real numbers. And from (33) and the
second condition in (7) we have

6 6 3 3
VCY = Z C“,/gﬁaﬁ/; —+ ZZZR%U'S%WU' + Z KijkaWijWk[ > 07

o,p=1 a=1ij=1 ijkI=1

where V = (&1, &, &3, &4, &, &6, W11, Wz, W33, Wa3, W31, Wiz, Wiz, Wi3, W1 ) € R'® are arbitrary nonzero vectors.
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