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APPROXIMATION OF CONJUGATE FUNCTIONS BY
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Abstract. We investigate the approximation of a conjugate function by the Fejér sums of the
Fourier series of the conjugate function and obtain the estimate between the derivatives of
the conjugate functions and the derivatives of the conjugate trigonometric polynomials in the
weighted Orlicz spaces with Muckenhoupt weights. We prove inverse theorem of approximation
theory for the derivatives conjugate functions in the weighted Orlicz spaces.

1. Introduction and new results

A continuous and convex function M : [0,∞) → [0,∞) which satisfies the condi-
tions

M(0) = 0; M > 0 for x > 0,

lim
x→0

M(x)
x

= 0; lim
x→∞

M(x)
x

= ∞,

is called an N− function. The complementary N− function to M is defined by

N(y) := max
x�0

(xy−M(x))

for y > 0 [35, p. 11].
We denote by T the interval [−π ,π ] and C the complex plane. Let M be an

N− function and N be its complementary function. By LM(T ) we denote the linear
space of Lebesgue measurable functions f : T → C satisfying the condition∫

T

M (α| f (x)|)dx < ∞

for some α > 0, equipped with the norm

‖ f‖LM(T ) := sup

⎧⎨⎩
∫
T

| f (x) ·g(x)|dx : g ∈ LN (T ) , ρ (g,N) � 1

⎫⎬⎭ ,
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where
ρ (g,N) :=

∫
T

N (|g(x)|dx) .

The space LM(T ) is a Banach space [42, pp. 52–68]. The norm ‖·‖LM(T) is called
Orlics norm and the space LM(T ) is called Orlicz space.

Note that the Orlicz spaces are known as the generalizations of the Lebesgue space
Lp(T ) , 1 < p < ∞ .

A function ω is called a weight on T if ω : T → [0,∞] is a measurable and
ω−1 ({0,∞}) has measure zero (with respect to Lebesgue measure).

The class of measurable functions f defined on T and satisfying the condition
ω f ∈ LM(T ) is called weighted Orlicz space LM(T,ω) with the norm

‖ f‖LM(T,ω) := ‖ fω‖LM(T ) .

Let M−1 : [0,∞) → [0,∞) be the inverse function of the N− function M . The
lower and upper Boyd indices αM and βM are defined by

αM = lim
t→+∞

θ (t) = sup
t>1

θ (t), βM = lim
t→0+

θ (t) = inf
0<t<1

θ (t),

where θ (t) = − logh(t)/ logt , and for Orlicz spaces [6], [9], [36]

h(t) = lim
x→∞

sup
M−1(x)
M−1(tx)

, t > 0.

The Boyd indices αM , βM are known to be nontrivial if 0 < αM and βM < 1. It
is known that

0 � αM � βM � 1

and
αN + βM = 1, αM + βN = 1.

The space LM(T ) is reflexive if and only if 0 < αM � βM < 1.
Let 1 < p < ∞ , 1/p+ 1/q . A weight function ω belongs to the Muckenhoupt

class Ap(T ) if ⎛⎝ 1
|I|
∫
I

ω p (x)dx

⎞⎠1/p⎛⎝ 1
|I|
∫
I

ω−q (x)dx

⎞⎠1/q

� C,

with a finite C independent of I , where I is any subinterval of T and |I| denotes the
length of I .

Note that the weight functions belong to the class Ap , introduced by Muckenhoupt
[37], play a very important role in different fields of mathematical analysis.

Let LM(T,ω) be a weighted Orlicz space with Boyd indices 0 < αM � βM < 1,
and let ω ∈ A1/αM

(T )∩A1/βM
(T ) . For f ∈ LM (T,ω) the shift operator can be defined

as:

fh(x) :=
1
2h

h∫
−h

f (x+ t)dt, 0 < h < π , x ∈ T.
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The function

Ωk
M,ω (δ , f ) := sup

0<hi�δ
1�i�k

∥∥∥∥∥ k

∏
i=1

(
I− fhi

)
f

∥∥∥∥∥
LM(T,ω)

, δ > 0, k = 1,2, . . .

is called k− th modulus of smoothness of g , where I is identity operator. It is known
[26] that fh is a bounded linear operator on LM(T,ω) . If k = 0 we set Ω0

M,ω (δ ,g) :=
‖g‖LM(T,ω) and k = 1 we write ΩM,ω (δ ,g) := Ω1

M,ω (δ ,g) .
The function conjugate to a 2π -periodic summable function on [−π ,π ] given by

f̃ (x) = lim
ε→0+

⎧⎪⎨⎪⎩− 1
π

π∫
ε

f (x+ t)− f (x− t)

2tan
t
2

dt

⎫⎪⎬⎪⎭= − 1
π

π∫
0

f (x+ t)− f (x− t)

2tan
t
2

dt

exists almost-everywhere.
Let

f (x) ∼ a0

2
+

∞

∑
k=1

Ak(x, f ), Ak(x, f ) := ak coskx+bk sinkx (1.1)

be the Fourier series of the function f ∈ L1(T ) . Then in the case where the conjugate
trigonometric series

−i
∞

∑
k=−∞

sign kcke
ikx =

∞

∑
k=1

(ak sinkx−bk coskx)

is the Fourier series of some function f̃ . It is know that the conjugate series to Fourier
series f ∈ L[0,2π ] will not always be the Fourier series (see, for example, [47, p. 155]).
The nth partial sums, Fejér sums of the series (1.1) are defined, respectively, as

Sn(x, f ) =
a0

2
+

n

∑
k=1

Ak(x, f ),

σn( f ) =
1

n+1

n

∑
k=0

Sk(x, f ).

For f ∈ LM (T,ω) we define the derivative of f as a function g satisfying

lim
h→0

∥∥∥∥1
h
( f (x+h)− f (x))−g(x)

∥∥∥∥
LM(T,ω)

= 0.

in which case we write g = f ′ . Then we say that the function f ∈ LM (T,ω) has
derivative in the sense LM (T,ω) . Let

En( f )M,ω := inf
Tn∈Πn

‖ f −Tn‖LM(T,ω)
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be the best approximation to f ∈ LM (T,ω) in the class Πn of trigonometric polynomi-
als of degree not greater than n . Note that the existence of T ∗

n ∈ Πn such that

En( f )M,ω := ‖ f −T ∗
n ‖LM(T,ω)

follows, for example, from Theorem 1.1 in [11, p. 59].
Note that the problems of existence of the derivative of function and approximation

of the function, conjugate function , its derivative by polynomials and rational function
in different spaces are investigated by several authors (see, for example, [1–8], [10–34],
[38–41], [43–55], etc.).

In the present paper we investigate the approximation of a conjugate function by
the Fejér sums of the Fourier series of the conjugate function in the weighted Or-
licz spaces LM (T,ω) . Under certain conditions, we obtain the estimate between the
derivatives of the conjugate functions and the derivatives of the conjugate trigonometric
polynomials in the weighted Orlicz space LM(T,ω) . Note that the estimate obtained
between the derivatives of the conjugate functions and the derivatives of the conju-
gate trigonometric polynomials depends on sequence of the best approximation in the
weighted Orlicz spaces LM(T,ω).

In addition, we obtain inverse theorem of approximation theory for the derivatives
conjugate functions in the weighted Orlicz spaces LM(T,ω).

We use c1 , c2 ,... to denote constants (which may, in general, differ in different re-
lations) depending only on numbers that are not important for the questions of interest.

Our main results are the following.

THEOREM 1.1. Let LM (T,ω) be a weighted Orlicz space with Boyd indices 0 <
αM � βM < 1 and let f ∈ LM (T,ω) , ω ∈A1/αM

(T )∩A1/βM
(T ) . Then f̃ (r) ∈ LM (T,ω)

and the estimate∥∥∥ f̃ (x)−σn−1

(
f̃
)∥∥∥

LM(T,ω)
� c1

(
ΩM,ω

(
1

n+1
, f

)
+En+1

(
f̃
)

M,ω

)
, (n = 1,2, ...)

holds with a constant c1 > 0 independent of n .

THEOREM 1.2. Let LM(T,ω) be a weighted Orlicz space with Boyd indices 0 <
αM � βM < 1 and let f ∈ LM (T,ω) , ω ∈ A1/αM

(T )∩A1/βM
(T ). Then f̃ (r) ∈ LM (T,ω)

and if Tn is the best approximation trigonometric polynomial to f in the space LM(T,ω)
and for some natural r satisies the condition

∞

∑
n=1

nr−1En( f )M,ω < ∞, (1.2)

then ∥∥∥ f̃ (r) − T̃ (r)
n

∥∥∥
LM(T,ω)

� c2

{
nrEn( f )M,ω +

(
∞

∑
μ=n+1

μ r−1Eμ( f )M,ω

)}
.
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THEOREM 1.3. Let LM(T,ω) be a weighted Orliez space with Boyd indices 0 <
αM � βM < 1 , and let ω ∈ A1/αM

(T )∩A1/βM
(T ) . If f ∈ LM(T,ω) satisfies, for some

natural r ,
∞

∑
n=1

nr−1En( f )M,ω < ∞,

then f̃ (r) ∈ LM (T,ω) and for every natural number n the estimate

Ωk
M,ω

(
1
n
, f̃ (r)

)
� c3

{
1

n2k E0( f )M,ω +
1

n2k

n

∑
q=1

q2k+r−1Eq( f )M,ω +
∞

∑
q=n+1

qr−1Eq( f )M,ω

}
,

k = 1,2, ...,

holds with a constant c3 independent of n.

2. Proofs of the new results

Proof of Theorem 1.1. We set

T2n(x) =
1

n+1

2n

∑
k=n

Sk(x, f ),

where Sk(x, f ) is the n -th partial sums of the function f ∈ L1(T ) .
According to [20] and [26]

‖ f (x)−T2n (x)‖LM(T,ω) � c4En+1 ( f )M,ω . (2.1)

By [18] for any function f ∈ LM (T,ω) and g ∈ LM (T,ω) we get∥∥ f̃
∥∥

LM(T,ω) � c5 ‖ f‖LM(T,ω) , ‖σn−1 (g)‖LM(T,ω) � c6 ‖g‖LM(T,ω) . (2.2)

Then taking into account (2.2) and the triange inequality, we obtain

‖g−σn−1 (g)‖LM(T,ω) = ‖g−T2n (g)+T2n (g)−σn−1 (g)‖LM(T,ω)

� ‖g−T2n (g)‖LM(T,ω) +‖T2n (g)−σn−1 (g)‖
LM (T,ω)

= ‖g−T2n (g)‖LM(T,ω) +‖σn−1(T2n (g)−g)‖LM(T,ω)

� ‖g−T2n (g)‖LM(T,ω) + c7‖g−T2n (g)‖LM(T,ω)

� (1+ c8)‖g−T2n (g)‖LM(T,ω) . (2.3)

According to (2.1) and (2.3), we have

‖g−σn−1 (g)‖LM(T,ω) � c9En+1(g)M,ω .

Now in this inequality assuming g = f̃∥∥ f̃ −σn−1
(
f̃
)∥∥

LM(T,ω) � c10En+1( f̃ )M,ω . (2.4)
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It is known from [29] that

En ( f )M,ω � c11Ωk
M,ω

(
1

n+1
, f

)
(2.5)

By virtue of (2.4) and (2.5) we obtain

∥∥ f̃ −σn−1
(
f̃
)∥∥

LM(T,ω) � c12

{
ΩM,ω

(
1

n+1
, f

)
+En+1

(
f̃
)
M,ω

}
.

This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. From the condition (1.2), it follows f (r) ∈ LM(T,ω) . Con-
sequently, due to boundedness of adjoint operator we obtain f̃ (r) ∈ LM(T,ω). For the
natural number n we consider trigonometric polynomial T2in , where i = 0,1, ....The
following relation holds:

f (x) = Tn(x)+
∞

∑
i=0

(T2i+1n(x)−T2in(x)). (2.6)

Since trigonometric polynomial Tn is the polynomial of best approximation to f ,
the right side of the series (2.6) converges by the norm of space LM(T,ω) . Then by
(2.6), for every natural number n , we obtain

‖T2i+1n(x)−T2in(x)‖LM(T,ω) � ‖T2i+1n(x)− f (x)‖LM(T,ω) +‖ f (x)−T2in(x)‖LM(T,ω)

� E2i+1n( f )M,ω +E2in( f )M,ω � 2E2in( f )M,ω .

It is clear that
T2i+1n(x)−T2in(x)

is trigonometric polynomial of degree at most 2i+1n . Since En( f̃ )M,ω � cEn( f )M,ω
[26] and the sequence {En( f )M,ω} is monotone, then using the Bernstein inequality
for weighted Orlicz spaces [26] we have∥∥∥T̃ (r)

2i+1n
(x)− T̃ (r)

2in
(x)
∥∥∥

LM(T,ω)
� (2i+1n)r

∥∥T̃2i+1n(x)− T̃2in(x)
∥∥

LM(T,ω)

� (2i+1n)r
(∥∥∥ f̃ − T̃2i+1n

∥∥∥
LM(T,ω)

+
∥∥∥ f̃ − T̃2in

∥∥∥
LM(T,ω)

)
� (2i+1n)r (E2i+1n( f̃ )M,ω +E2in( f̃ )M,ω

)
� (2i+1n)r2E2in( f )M,ω

� 2r+1(2in)rE2in( f )M,ω . (2.7)

Let

T̃n(x)+
∞

∑
i=0

(T̃2i+1n(x)− T̃2in(x))

be the conjugate series of the series (2.6).
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Then, taking into account (2.7) we get∥∥∥∥∥T̃ r
n (x)+

∞

∑
i=0

(T̃ (r)
2i+1n

(x)− T̃ (r)
2in

(x)

∥∥∥∥∥
LM(T,ω)

� c132
r+1

∞

∑
i=0

(2in)rE2in( f )M,ω . (2.8)

Since the condition (1.2) holds, then we have the following inequality

∞

∑
m=n+1

mr−1Em( f )M,ω =
∞

∑
i=0

2i+1n

∑
m=2in+1

mr−1Em( f )M,ω

�
∞

∑
i=0

(2in)r−1E2i+1n( f )M,ω 2in =
∞

∑
i=0

(2in)rE2i+1n( f )M,ω .

Then

∞

∑
i=0

(2in)rE2in( f )M,ω = nrEn( f )M,ω +
∞

∑
i=0

(2i+1n)rE2i+1n( f )M,ω

� nrEn( f )M,ω +2r
∞

∑
m=n+1

mr−1En( f )M,ω .

The last inequality yields

2r+1
∞

∑
i=0

(2in)rE2in( f )M,ω � c14{nrEn( f )M,ω +
∞

∑
m=n+1

mr−1En( f )M,ω}. (2.9)

According to (2.8) and (2.9) the series

T̃ (r)
n (x)+

∞

∑
i=0

(
T̃ (r)
2i+1n

(x)− T̃ (r)
2in

(x)
)

(2.10)

converges by the norm of space LM(T,ω) to some function. It is clear that for the
derivative f̃ (r) in the sense LM(T,ω)

f̃ (r)(x) = T̃ (r)
n (x)+

∞

∑
i=0

(T̃ (r)
2i+1n

(x)− T̃ (r)
2in

(x)).

Using (2.9) and (2.10) we have∥∥∥ f̃ (r)(x)− T̃ (r)
n (x)

∥∥∥
LM(T,ω)

� 2r+1
∞

∑
i=0

(2in)rE2in( f )M,ω

� c15{nrEn( f )M,ω +
∞

∑
m=n+1

mr−1Em( f )M,ω}.

The proof of Theorem 1.2 is completed. �
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Proof of Theorem 1.3. According to Theorem 1.2 f̃ (r) ∈ LM(T,ω), we have

En( f̃ (r))M,ω � c16

{
nrEn( f )M,ω +

(
∞

∑
μ=n+1

μ r−1Eμ( f )M,ω

)}
. (2.11)

For the k−modulus of smoothness Ωk
M,ω (·, f ) the following estimate holds [26]:

Ωk
M,ω

(
1
n
, f

)
� c17

n2k

{
E0 ( f )M,ω +

n

∑
m=1

m2k−1Em ( f )M,ω

}
. (2.12)

If the inequality (2.12) is applied to the function f̃ (r), we get

Ωk
M,ω

(
1
n
, f̃ (r)

)
� c18

n2k

{
E0

(
f̃ (r)
)

M,ω
+

n

∑
m=1

m2k−1Em

(
f̃ (r)
)

M,ω

}
. (2.13)

Using the estimates (2.11) and (2.13), we obtain

Ωk
M,w

(
1
n
, f̃ (r)

)
M,ω

� c19

n2k

{
E0

(
f̃ (r)
)

M,ω
+

n

∑
m=1

m2k−1Em

(
f̃ (r)
)

M,ω

}

� c20

n2k

{
E0 ( f )M,ω +

∞

∑
m=1

mr−1Em( f )M,ω

+
n

∑
m=1

m2k−1

[
mrEm ( f )M,ω +

∞

∑
p=m+1

pr−1Ep ( f )M,ω

]}

� c21

n2k

{
E0 ( f )M,ω +

n

∑
m=1

m2k+r−1Em( f )M,ω +
n

∑
m=1

m2k−1
∞

∑
p=m

mr−1Ep( f )M,ω

}

� c22

n2k

{
E0 ( f )M,ω +

n

∑
m=1

m2k+r−1Em ( f )M,ω

+
n

∑
m=1

m2k−1

[
n

∑
p=m

pr−1Ep ( f )M,ω +
∞

∑
p=n+1

pr−1Ep( f )M,ω

]}

� c23

{
1

n2k E0 ( f )M,ω +
1
nk

n

∑
m=1

m2k+r−1Em ( f )M,ω

+
1

n2k

n

∑
p=1

pn−1Ep ( f )M,ω

p

∑
m=1

m2k−1 +
∞

∑
p=n+1

pr−1Ep ( f )M,ω

}
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� c24

{
1

n2k E0 ( f )M,ω +
1

n2k

n

∑
m=1

m2k+r−1Em ( f )M,ω +
1

n2k

n

∑
p=1

p2k+r−1Ep ( f )M,ω

}

� c25

{
1

n2k
E0 ( f )M,ω +

1
n2k

n

∑
q=1

q2k+r−1Eq ( f )M,ω +
∞

∑
q=n+1

qr−1Eq ( f )M,ω

}
.

The proof of Theorem 1.3 is completed. �
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