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This study aims to produce numerical solutions of one-dimensional advection-diffusion equation using a sixth-order compact
difference scheme in space and a fourth-order Runge-Kutta scheme in time. The suggested scheme here has been seen to be very
accurate and a relatively flexible solution approach in solving the contaminant transport equation for Pe ≤ 5. For the solution of the
present equation, the combined technique has been used instead of conventional solution techniques. The accuracy and validity of
the numerical model are verified through the presented results and the literature. The computed results showed that the use of the
current method in the simulation is very applicable for the solution of the advection-diffusion equation. The present technique is
seen to be a very reliable alternative to existing techniques for these kinds of applications.

1. Introduction

Problems of environmental pollution can always be reduced
to the solution of a mathematical model of advection dif-
fusion. The unknown quantity in these cases is the con-
centration, 𝐶, a scalar physical quantity, which represents
the mass of a pollutant or the salinity or temperature of
the water [1]. Advection-diffusion equation (ADE) illustrates
many quantities such as mass, heat, energy, velocity, and
vorticity [2]. The ADE has been used as a model equation in
many engineering problems such as dispersion of tracers in
porous media [3], pollutant transport in rivers and streams
[4], the dispersion of dissolved material in estuaries and
coastal seas [5, 6], contaminant dispersion in shallow lakes
[7], long-range transport of pollutants in the atmosphere [8],
thermal pollution in river systems [9], and flow in porous
media [10]. The advection-diffusion transport equation in
one-dimensional case without source terms is as follows:
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= 0, 0 ≤ 𝑥 ≤ 𝐿, 0 < 𝑡 ≤ 𝑇, (1)

with initial condition

𝐶 (𝑥, 𝑡 = 0) = 𝐶
0
(𝑥) (2)

and boundary conditions
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(3)

where 𝑡 is time, 𝑥 is space coordinate, 𝐷 is diffusion coef-
ficient, 𝐶(𝑥, 𝑡) is concentration, 𝑈(𝑥, 𝑡) is velocity of water
flow, and 𝐿 is length of the channel, respectively. Here 𝐶

0
, 𝑓
0
,

𝑓
𝐿
, and 𝑔 are prescribed functions, whilst 𝐶 is the unknown

function. Notice that 𝐷 > 0 and 𝑈 > 0 are considered to
be positive constants quantifying the diffusion and advection
processes, respectively.

It is known that the use of the standard finite difference
and finite element method is not effective and often leads to
unreal results. For that reason, several alternative methods
are proposed in the literature for solving the ADE with high
accuracy [11]. These include method of characteristic with
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Galerkinmethod (MOCG) [11], finite difference method [12–
14], high-order finite element techniques [15], high-order
finite difference methods [16–24], Green-element method
[25], cubic B-spline [26], cubic B-spline differential quadra-
turemethod (CBSDQM) [27], method of characteristics inte-
grated with splines (MOCS) [28–30], Galerkin method with
cubic B-splines (CBSG) [31], Taylor-Collocation (TC) and
Taylor-Galerkin (TG) methods [32], B-spline finite element
method [33], Least squares finite element method (FEMLSF
and FEMQSF) [34], Lattice Boltzmann method [35], Taylor-
Galerkin B-spline finite element method [36], and meshless
method [37, 38].

Utility of higher-order numerical methods in solving
many problems accurately is required. Lately, a noticeable
interest in the development and application of CD methods
for solving the Navier-Stokes [39–41] and other partial
differential equations [42–46] has been renovated. Narrower
stencils are required in the CD schemes, and by a comparison
to classical difference schemes, they have less truncation
error. In the current paper, accurate solutions of the ADE
are obtained by using a sixth-order compact difference (CD6)
[47], a fourth-order Runge-Kutta (RK4) schemes in space and
time, respectively.

2. The Compact Finite Difference Method

CDmethods are very popular in the fluid dynamics commu-
nity because of their high accuracy and advantages associated
with stencils [48]. These methods are efficient for higher
accuracies without any increase in a stencil, while traditional
high-order finite difference methods use larger stencil sizes
that make boundary treatment hard. It can also be noted that
the CD schemes have been demonstrated to be more precise
and computationally economic. Use of smaller stencil sizes
in the CD methods is useful when dealing with nonperiodic
boundary conditions.

A uniform one-dimensional mesh is considered, consist-
ing of𝑁points:𝑥
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2
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size ℎ = 𝑥
𝑖+1
− 𝑥
𝑖
. The first-order derivatives of the unknown

function can be given at interior nodes as follows [47]:
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leading to an 𝛼-family of fourth-order tridiagonal schemes
with

𝑎 =
2

3
(𝛼 + 2) , 𝑏 =

1

3
(4𝛼 − 1) . (5)

A sixth-order tridiagonal scheme is obtained by 𝛼 = 1/3,
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(6)

Approximation formulae for the derivatives of nonperiodic
problems can be derived with the consideration of one-
sided schemes for the boundary nodes. Interested readers are
referred to the work of Lele [47] for details of the derivations
for the first- and second-order derivatives.

The third-order formula at boundary point 1 is as follows:
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The fourth-order formula at boundary points 2 and𝑁 − 1 is
as follows:
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The third-order formula at boundary point𝑁 is as follows:
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Use of the above formulae leads to followingmatrix equation:

B𝐶󸀠 = A𝐶, (10)

where 𝐶 = (𝐶
1
, . . . , 𝐶

𝑛
)
𝑇. Consideration of the first-order

operator twice will give us the second-order derivative terms;
that is,

B𝐶󸀠󸀠 = A𝐶󸀠. (11)

The RK4 scheme is considered to obtain the temporal
integration in the present study. Utility of the CD6 technique
to (1) gives rise to the following differential equation in time:
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= 𝐿𝐶
𝑖
, (12)

where 𝐿 indicates a spatial linear differential operator. The
spatial and temporal terms are approximated by the CD6
and the RK4 schemes, respectively.The semidiscrete equation
(12) is solved using the RK4 scheme, through the following
operations:
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(13)

To obtain the approximate solution of (1) with the boundary
and initial conditions using the CD6-RK4, the domain [0, 𝐿]
is first discretized such that 0 = 𝑥

1
< 𝑥
2
< ⋅ ⋅ ⋅ < 𝑥

𝑁
= 𝐿

where𝑁 is the number of grid points.

3. Numerical Illustrations

Let us consider the advection-diffusion equation with the
initial and boundary conditions. The numerical results are
compared with the exact solutions. The differences between
the computed solutions and the exact solutions are shown
in Tables 1–5. Three examples for which the exact solutions
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Table 1: Peak concentration values at 𝑡 = 9600 s for various Cr numbers (Δ𝑡 = 50 s).

Cr 0.25 0.50 0.75 1.00
MOCS [28] 9.677 9.756 9.805 10.000
MOCG [11] 9.816 9.836 9.934 10.000
CBSG [31] 9.986 9.986 9.993 9.986
FEMLSF [34] 9.647 9.864 9.918 9.943
FEMQSF [34] 9.926 9.932 9.949 9.961
TC [32] 9.940 9.984 9.993 9.986
TG [32] 9.989 9.991 9.996 9.991
CD6 9.999 10.000 10.000 10.000
Exact 10.000 10.000 10.000 10.000

Table 2: Error norms for various Cr values at 𝑡 = 9600 s.

Cr ℎ
CSDQM [27] FEMLSF [34] FEMQSF [34] CD6
𝐿
2

𝐿
∞

𝐿
2

𝐿
∞

𝐿
2

𝐿
∞

𝐿
2

𝐿
∞

0.1250 200 34.734 1.156 32.874 1.350 12.555 0.518 0.8511 0.4293
0.2500 100 2.685 0.136 10.596 0.494 7.951 0.376 0.0218 0.0100
0.5000 50 0.170 0.008 7.984 0.380 7.908 0.373 0.0024 0.0008
1.0000 25 0.023 0.001 7.881 0.377 7.908 0.379 0.0029 0.0007

Table 3: Comparison between numerical solutions and the exact solution.

𝑥
MOCS MOCG CBSG FEMLSF FEMQSF TC TG CD6 Exact
[28] [11] [31] [34] [34] [32] [32] Δ𝑡 = 10 s Δ𝑡 = 1 s

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
19 1.000 0.999 1.000 1.000 1.000 0.999 0.999 0.999 0.999 0.999
20 1.000 0.998 0.999 0.999 1.000 0.999 0.998 0.998 0.998 0.998
21 1.000 0.996 0.996 0.997 0.999 0.999 0.996 0.996 0.996 0.996
22 1.000 0.990 0.991 0.993 0.996 0.998 0.991 0.992 0.991 0.991
23 1.000 0.978 0.981 0.985 0.989 0.994 0.980 0.982 0.982 0.982
24 1.000 0.957 0.961 0.970 0.974 0.987 0.960 0.965 0.964 0.964
25 1.000 0.922 0.927 0.943 0.946 0.972 0.926 0.936 0.935 0.934
26 0.996 0.870 0.874 0.902 0.900 0.945 0.874 0.891 0.889 0.889
27 1.013 0.799 0.800 0.842 0.832 0.902 0.800 0.827 0.824 0.823
28 1.047 0.708 0.706 0.763 0.743 0.838 0.705 0.743 0.739 0.738
29 0.897 0.602 0.596 0.666 0.638 0.755 0.595 0.641 0.637 0.636
30 0.457 0.488 0.479 0.556 0.524 0.653 0.479 0.528 0.523 0.523
31 0.067 0.375 0.366 0.442 0.411 0.541 0.366 0.413 0.408 0.408
32 −0.036 0.272 0.265 0.332 0.306 0.427 0.264 0.306 0.301 0.301
33 −0.010 0.185 0.181 0.235 0.218 0.320 0.181 0.212 0.208 0.208
34 0.002 0.118 0.118 0.156 0.147 0.227 0.117 0.138 0.135 0.135
35 0.000 0.070 0.072 0.096 0.095 0.152 0.072 0.084 0.082 0.082
36 0.000 0.038 0.042 0.055 0.058 0.096 0.041 0.048 0.047 0.046
37 0.000 0.020 0.023 0.030 0.034 0.057 0.023 0.025 0.025 0.024
38 0.000 0.009 0.012 0.015 0.019 0.032 0.012 0.012 0.012 0.012
39 0.000 0.004 0.006 0.007 0.010 0.017 0.006 0.006 0.005 0.005
40 0.000 0.002 0.003 0.003 0.005 0.008 0.002 0.002 0.002 0.002
41 0.000 0.001 0.001 0.001 0.003 0.004 0.001 0.001 0.001 0.001
42 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.000 0.000 0.000
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Table 4: A comparison of the peak errors of different solution
techniques for Pe = 4 with ℎ = 0.025.

Cr Δ𝑡 CN [12] FD3 [17] CD6
0.016 0.0005 1.54𝐸 − 03 9.13𝐸 − 04 5.64𝐸 − 09

0.032 0.001 1.51𝐸 − 03 9.31𝐸 − 04 5.64𝐸 − 09

0.064 0.002 1.47𝐸 − 03 9.73𝐸 − 04 5.78𝐸 − 09

0.08 0.0025 1.44𝐸 − 03 9.96𝐸 − 04 5.99𝐸 − 09

0.16 0.005 1.34𝐸 − 03 1.13𝐸 − 03 1.10𝐸 − 08

0.32 0.01 1.20𝐸 − 03 1.47𝐸 − 03 8.18𝐸 − 08

0.64 0.02 1.12𝐸 − 03 2.26𝐸 − 03 9.02𝐸 − 07

0.80 0.025 NA NA 1.79𝐸 − 06

Table 5: A comparison of analytical and CD6 solutions for various
values of 𝑥 with ℎ = 0.025, Δ𝑡 = 0.005, Cr = 0.16, and Pe = 4.

𝑥 Exact CD6 Absolute error
3.50 0.0000000 0.0000000 3.78𝐸 − 13

4.00 0.0000159 0.0000159 1.02𝐸 − 09

4.50 0.0201770 0.0201769 1.94𝐸 − 08

5.00 0.2182179 0.2182179 1.10𝐸 − 08

5.50 0.0201770 0.0201770 2.51𝐸 − 08

6.00 0.0000159 0.0000160 9.45𝐸 − 10

6.50 0.0000000 0.0000000 4.40𝐸 − 13

are known are used to test the method described for solving
the advection-diffusion equation.The technique is applied to
solve the ADE with 𝐶

0
(𝑥), 𝑓

0
(𝑡), 𝑓
𝐿
(𝑡), and 𝑔(𝑡) prescribed.

To test the performance of the proposed method, 𝐿
2
and 𝐿

∞

error norms are used as follows:
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Example 1. Here, pure advection equation is considered in an
infinitely long channel of constant cross-section and bottom
slope, and velocity is taken to be 𝑈 = 0.5m/s. Concentration
is accepted to be the Gaussian distribution of 𝜌 = 264m, and
initial peak location is 𝑥

0
= 2000m.The initial distribution is

transported downstream in a long channel without change in
shape by the time 𝑡 = 9600 s. Exact solution of this problem
is as follows [11]:

𝐶 (𝑥, 𝑡) = 10 exp[−
(𝑥 − 𝑥

0
− 𝑈𝑡)

2

2𝜌
2

] . (15)

At the boundaries the following conditions are used:

𝐶 (0, 𝑡) = 0,

−𝐷(
𝜕𝑐

𝜕𝑥
) (9000, 𝑡) = 0.

(16)

Initial conditions can be taken from exact solution. The
initial Gaussian pulse at 𝑡 = 0 , the concentration distri-
bution obtained using the CD6 solution, and concentration
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Figure 1: Comparison of the exact solution and the numerical
solution obtained with CD6 scheme for ℎ = 25 and Δ𝑡 = 50 s.

distribution obtained using exact solution at 𝑡 = 9600 s
are compared in Figure 1. Both quantitative and qualitative
agreements between the exact and the CD6 solutions are
excellent (see Tables 1 and 2, Figure 1).

As seen from Table 1, the CD6 method has given the
closest result to the exact peak concentration value. Note that,
since an explicit time integration scheme RK4 is used in this
study, the CD6 scheme cannot produce any result for Cr > 1.
To show the accuracy of the obtained results, 𝐿

2
and 𝐿

∞

error norms have been calculated using the CD6 scheme and
exhibited in Table 2. As seen in the corresponding table, the
CD6 solution is better than its rivals.

Example 2. Flow velocity and diffusion coefficient are taken
to be 𝑈 = 0.01m/s and 𝐷 = 0.002m2/s in this experiment.
Let the length of the channel be 𝐿 = 100m and be divided
into 100 uniform elements. The Pe number is accepted to be
5. The Cr numbers are selected as 0.01, 0.1, and 0.6 for the
present work. Exact solution of the current problem is [11]

𝐶 (𝑥, 𝑡) =
1

2
erfc(𝑥 − 𝑈𝑡

√4𝐷𝑡

) +
1

2
exp (𝑈𝑥

𝐷
) erfc(𝑥 + 𝑈𝑡

√4𝐷𝑡

) .

(17)

At the boundaries the following conditions are used:

𝐶 (0, 𝑡) = 1,

−𝐷(
𝜕𝑐

𝜕𝑥
) (𝐿, 𝑡) = 0.

(18)

Initial conditions can be taken from exact solution. Com-
parison between numerical solutions and the exact solution
is given in Table 3. In the calculation of the exact results
given by Szymkiewicz [11], there has erroneously been a
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Figure 2: Comparison of the exact solution and the numerical
solution obtained with CD6 scheme for ℎ = 1m and Δ𝑡 = 10 s.

mistake. Therefore the exact results have been recalculated
in MATLAB. As seen in Table 3, the solutions produced by
other researchers [11, 28, 31, 32, 34] for Cr = 0.6 do not
converge enough.This case proves that the selected time step
(Δ𝑡 = 60 s) is greater than it needs to be. Note also that
the CD6 scheme gives stable results for Cr = 0.6, and the
computed results are nearly as good as in FEMQSF [34]. Since
this problem cannot be solved accurate enough for Δ𝑡 = 60 s,
the calculations have been repeated for the cases Δ𝑡 = 10 s
(Cr = 0.1) and Δ𝑡 = 1 s (Cr = 0.01), and the corresponding
results have been given in Table 3. The results produced by
the CD6 scheme for Δ𝑡 = 1 s are the same as with the exact
solution, while the results of theCD6 scheme forΔ𝑡 = 10 s are
seen to be acceptable level. Comparison of the exact solution
and the numerical solution obtained with CD6 scheme for
ℎ = 1m and Δ𝑡 = 10 s is shown in Figure 2. As can be seen
in Figure 2, there is an excellent agreement between CD6 and
exact solutions.

Example 3. Consider the quantities 𝑈 = 0.8m/s and
𝐷 = 0.005m2/s in (1). The following exact solution for this
example can be found in [49]:

𝐶 (𝑥, 𝑡) =
1

√4𝑡 + 1

exp[−(𝑥 − 1 − 𝑈𝑡)
2

𝐷 (4𝑡 + 1)
] . (19)

At the boundaries the following conditions are used:

𝐶 (0, 𝑡) =
1

√4𝑡 + 1

exp[−(−1 − 𝑈𝑡)
2

𝐷(4𝑡 + 1)
] ,

𝐶 (9, 𝑡) =
1

√4𝑡 + 1

exp[− (8 − 𝑈𝑡)
2

𝐷(4𝑡 + 1)
] .

(20)

Initial conditions can be taken from exact solution. The
distribution of the Gaussian pulse at 𝑡 = 5 s is computed
using the exact solution and comparedwith the concentration

3.5 4 4.5 5 5.5 6 6.5
0
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0.1
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0.2

CD6
Exact

𝑥

𝐶

Figure 3: Comparison of analytical and CD6 solutions for transport
of one-dimensional Gaussian pulse.

distribution obtained using the CD6 solution as shown in
Figure 3. As can be seen in Table 4, the CD6 results in
Example 3 are far more accurate comparison to Crank-
Nicolson (CN) scheme [12] and third-order finite difference
(FD3) scheme [17]. In Table 5, a comparison of analytical
and CD6 solutions is carried out for various values of 𝑥 with
ℎ = 0.025, Δ𝑡 = 0.005, Cr = 0.16, and Pe = 4.

4. Conclusions

This paper deals with the advection-diffusion equation using
the CD6 scheme in space and the RK4 in time.The combined
method worked very well to give very reliable and accurate
solutions to these processes. The CD6 scheme provides an
efficient and alternative way for modeling the advection-
diffusion processes. The performance of the method for the
considered problems was tested by computing 𝐿

2
and 𝐿

∞

error norms. The method gives convergent approximations
for the advection-diffusion problems for Pe ≤ 5. Note
that numerical solution cannot obtained while Pe > 5 and
Cr > 1. To overcome these disadvantages, upwind compact
schemes and implicit time integration need to be used. For
further research, special attention can be paid on the use
of compact difference schemes in computational hydraulic
problems such as sediment transport in stream and lakes,
contaminant transport in groundwater, and flood routing in
river and modeling of shallow water waves.
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[34] I. Daǧ, D. Irk, and M. Tombul, “Least-squares finite element
method for the advection-diffusion equation,” Applied Mathe-
matics and Computation, vol. 173, no. 1, pp. 554–565, 2006.

[35] B. Servan-Camas and F. T. C. Tsai, “Lattice Boltzmann method
with two relaxation times for advection-diffusion equation:
third order analysis and stability analysis,” Advances in Water
Resources, vol. 31, no. 8, pp. 1113–1126, 2008.

[36] M. K. Kadalbajoo and P. Arora, “Taylor-Galerkin B-spline finite
element method for the one-dimensional advection-diffusion
equation,”Numerical Methods for Partial Differential Equations,
vol. 26, no. 5, pp. 1206–1223, 2010.



Mathematical Problems in Engineering 7

[37] M. Zerroukat, K. Djidjeli, and A. Charafi, “Explicit and implicit
meshless methods for linear advection-diffusion-type partial
differential equations,” International Journal for Numerical
Methods in Engineering, vol. 48, no. 1, pp. 19–35, 2000.

[38] J. Li, Y. Chen, and D. Pepper, “Radial basis function method
for 1-D and 2-D groundwater contaminant transportmodeling,”
Computational Mechanics, vol. 32, no. 1-2, pp. 10–15, 2003.

[39] Y. V. S. S. Sanyasiraju and V. Manjula, “Higher order semi
compact scheme to solve transient incompressible Navier-
Stokes equations,” Computational Mechanics, vol. 35, no. 6, pp.
441–448, 2005.

[40] Z. Tian and Y. Ge, “A fourth-order compact finite difference
scheme for the steady stream function-vorticity formulation of
the Navier-Stokes/Boussinesq equations,” International Journal
for NumericalMethods in Fluids, vol. 41, no. 5, pp. 495–518, 2003.

[41] Z. Tian, X. Liang, and P. Yu, “A higher order compact finite
difference algorithm for solving the incompressible Navier-
Stokes equations,” International Journal for Numerical Methods
in Engineering, vol. 88, no. 6, pp. 511–532, 2011.

[42] M. Sari and G. Gürarslan, “A sixth-order compact finite differ-
ence scheme to the numerical solutions of Burgers’ equation,”
Applied Mathematics and Computation, vol. 208, no. 2, pp. 475–
483, 2009.

[43] M. Sari, G. Gürarslan, and I. Daǧ, “A compact finite difference
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