
Applied Mathematical Modelling 37 (2013) 3894–3902
Contents lists available at SciVerse ScienceDirect

Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm
Haar wavelet approximation for magnetohydrodynamic flow equations
_Ibrahim Çelik ⇑
Faculty of Arts and Sciences, Department of Mathematics, Pamukkale University, Denizli, Turkey

a r t i c l e i n f o
Article history:
Received 21 July 2011
Received in revised form 10 June 2012
Accepted 5 July 2012
Available online 12 September 2012

Keywords:
Haar wavelets
Partial differential equations
Approximate solution
Magnetohydrodynamic flow
0307-904X/$ - see front matter � 2012 Elsevier Inc
http://dx.doi.org/10.1016/j.apm.2012.07.048

⇑ Tel.: +90 2582963619; fax: +90 2582963535.
E-mail address: icelik@pau.edu.tr
a b s t r a c t

This study proposes Haar wavelet (HW) approximation method for solving magnetohydro-
dynamic flow equations in a rectangular duct in presence of transverse external oblique
magnetic field. The method is based on approximating the truncated double Haar wavelets
series. Numerical solution of velocity and induced magnetic field is obtained for steady-
state, fully developed, incompressible flow for a conducting fluid inside the duct. The cal-
culations show that the accuracy of the Haar wavelet solutions is quite good even in the
case of a small number of grid points. The HW approximation method may be used in a
wide variety of high-order linear partial differential equations. Application of the HW
approximation method showed that it is reliable, simple, fast, least computation at costs
and flexible.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Many approximate methods have so far been developed for solving differential equations. The usual approximate meth-
ods for partial differential equations (PDEs) are weighted residual techniques, the finite difference, the finite element and the
boundary element methods [1]. Recently, various approximate methods such as spectral, pseudo-spectral, Adomian decom-
position, differential transform, and Chebyshev collocation methods are discussed in the literature [2–19]. Some of the meth-
ods, previously in the literature, obtain the approximate solutions at a selected point such as finite difference and the finite
element methods but, some of them such as Chebyshev collocation method use basis-functions to represent the implicit
form of the approximate solutions of the problems.

Chen and Hsiao [20] derived an operational matrix of integration based on the HW method for solving ordinary differen-
tial equations (ODEs). By using the HW method, Lepik [21,22] solved higher order as well as nonlinear ODEs and some non-
linear evolution equations. Lepik [23] also used HW method to solve Burgers and sine–Gordon equations. Hariharan et al.
[24,25] introduced the HW method for solving both Fisher’s and FitzHugh–Nagumo equations. Çelik [26] solved Generalized
Burgers–Huxley equation with HW method.

This study presents a HW method for approximately solving the linear second order PDEs with variable coefficients given
in the following form:
A1ðx; yÞ
@2u
@x2 þ A2ðx; yÞ

@2u
@x@y

þ A3ðx; yÞ
@2u
@y2 þ A4ðx; yÞ

@u
@x
þ A5ðx; yÞ

@u
@y
þ A6ðx; yÞu ¼ Gðx; yÞ ð1Þ
where A1,A2,A3,A4,A5,A6 and G are functions of x and y defined in the interval of a 6 x; y 6 b. Any range a 6 z; t 6 b can be
transformed into the basic range 0 6 x; y 6 1 with the change of variables z = (b � a)x + a and t = (b � a)y + a.

This method consists of reducing the problem to a set of algebraic equations by expanding the term that has maximum
derivative given in Eq. (1) as Haar functions with unknown coefficients. The operational matrix of integration and product
. All rights reserved.
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operational matrix are utilized to evaluate the coefficients of the Haar functions. Identification and optimization procedures
of the solutions are reduced and simplified. Since the integration of the Haar functions vector is a continuous function, the
solutions obtained are continuous. In the HW approximate method, a few sparse matrixes may be obtained and there are no
complex integrals or methodology. Thus, the HW method is useful for obtaining the approximate solution of PDE’s, minimiz-
ing round off errors and reduction to the necessity of large computer memory. Illustrative example is given to demonstrate
the application of the HW method.

2. Fundamental relations

Haar wavelet is the simplest wavelet. The Haar wavelet transform, proposed in 1909 by Alfred Haar, is the first known
wavelet. Haar wavelet transform has been used as an earliest example for orthonormal wavelet transform with compact sup-
port. The Haar wavelet family for x2[0, 1] is defined as follows:
hiðxÞ ¼
1 for x 2 ½n1;n2Þ;
�1 for x 2 ½n2; n3�;
0 elsewhere;

8><
>: ð2Þ
where n1 ¼ k
m, n2 ¼ kþ0:5

m and n3 ¼ kþ1
m . In these formulae; integer m = 2j, j ¼ 0;1; . . . ; J indicates the level of the wavelet;

k ¼ 0;1; . . . ;m� 1 is the translation parameter. Maximal level of resolution is J and 2J is denoted as M = 2J. The index i in
Eq. (2) is calculated from the formula i = m + k + 1; in the case of minimal values m = 1, k = 0, we have i = 2. The maximal va-
lue of i is i = 2M = 2J+1. It is assumed that the value i = 1 corresponds to the scaling function for which h1(x) = 1 in ½0;1�. A set of
first eight Haar functions is shown in Fig. 1, where i ¼ 1;2; . . . ;8:

It must be noticed that all the Haar wavelets are orthogonal to each other:
Z 1

0
hiðxÞhlðxÞdx ¼ 2�j i ¼ l ¼ 2j þ k

0 i – l:

(
ð3Þ
Therefore, Haar functions construct a very good transform basis. Any function y(x), which is square integrable in the inter-
val ½0;1Þ, namely

R 1
0 y2ðxÞdx is finite, can be expanded in a Haar series with an infinite number of terms as:
yðxÞ ¼
X1
i¼1

cihiðxÞ i ¼ 2j þ k; j P 0;0 6 k 6 2j; x 2 ½0;1Þ; ð4Þ
Fig. 1. First eight Haar functions and their integrals.
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where the Haar coefficients,
ci ¼ 2j
Z 1

0
yðxÞhiðxÞdx;
are determined in such a way that the integral square error
E ¼
Z 1

0
yðxÞ �

X2M

i¼1

cihiðxÞ
" #2

dx ð5Þ
is minimized.
In general, the series expansion of y(x) contains infinite terms. If y(x) is a piecewise constant or may be approximated as a

piecewise constant during each subinterval, then y(x) will be terminated at finite terms, that is
yðxÞ ffi
X2M

i¼1

cihiðxÞ ¼ cT H2MðxÞ; ð6Þ
where the coefficient and the Haar function vectors are defined as:
cT ¼ ½c1; c2; . . . ; c2M�;H2MðxÞ ¼ ½h1ðxÞ; h2ðxÞ; . . . ; h2MðxÞ�T
respectively and x2[0, 1).
The integrals of Haar function hi(x) can be evaluated as:
pi;1ðxÞ ¼
Z x

0
hiðxÞdx ð7Þ
pi;tðxÞ ¼
Z x

0
pi;t�1ðxÞdx; t ¼ 2; 3; . . . : ð8Þ
Carrying out these integrations using Eq. (2), it is found that
pi;1ðxÞ ¼
x� n1 for x 2 ½n1; n2�;
n3 � x for x 2 ½n2; n3�;
0 elsewhere;

8><
>: ð9Þ

pi;2ðxÞ ¼

0 for x 2 ½0; n1�;
ðx�n1Þ2

2 for x 2 ½n1; n2�;
1

4m2 � ðn3�xÞ2
2 for x 2 ½n2; n3�;

1
4m2 for x 2 ½n3;1�;

8>>>>><
>>>>>:

ð10Þ

pi;3ðxÞ ¼

0 for x 2 ½0; n1�;
ðx�n1Þ3

6 for x 2 ½n1; n2�;
x�n2
4m2 � ðn3�xÞ3

6 for x 2 ½n2; n3�;
x�n2
4m2 for x 2 ½n3;1�;

8>>>>><
>>>>>:

ð11Þ

pi;4ðxÞ ¼

0 for x 2 ½0; n1�;
ðx�n1Þ4

24 for x 2 ½n1; n2�;
ðx�n2Þ2

8m2 � ðn3�xÞ4
24 þ 1

192m4 for x 2 ½n2; n3�;
ðx�n2Þ2

8m2 þ 1
192m4 for x 2 ½n3;1�:

8>>>>><
>>>>>:

ð12Þ
Let us define the collocation points xl ¼ ðl� 0:5Þ=ð2MÞ; l ¼ 1;2; . . . ;2M: By these collocation points, a discretizised form of
the Haar function hi(x) can be obtained. Hence, the matrix H(i, l) = (hi(xl)), which has the dimension 2M � 2M, is achieved. The
operational matrices of integrations Pt, which are 2M square matrices, are defined by the equation Pt(i, l) = pi,t(xl), where t
shows the order of integration.

3. Haar wavelet method with two variable

Consider Eq. (1) with boundary conditions
uð0; yÞ ¼ g0ðyÞ;uð1; yÞ ¼ g1ðyÞ;uðx;0Þ ¼ f0ðxÞ;uðx;1Þ ¼ f1ðxÞ: ð13Þ
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It is assumed that u(2,2)(x, y) can be expanded in terms of two-variable truncated Haar wavelet series as
uð2;2Þðx; yÞ ¼
X2M

r¼1

X2M

s¼1

ar;shrðxÞhsðyÞ; ð14Þ
where ar,s’s are Haar coefficients and ht(x) and hs(y) are Haar functions.
The series in (14) can be expressed in the matrix form as
uð2;2Þðx; yÞ ¼ HT
x AHy;
where HT
x ¼ ½h0ðxÞh1ðxÞ . . . h2MðxÞ�, Hy ¼ ½h0ðyÞh1ðyÞ . . . h2MðyÞ�T and
A ¼

a00 a01 � � � a02M

a10 a11 � � � a12M

..

. ..
. ..

.

a2M0 a2M1 � � � a2M2M:

2
66664

3
77775
By integrating Eq. (14) twice with respect to x from 0 to x and twice with respect to y from 0 to y, and by using the bound-
ary conditions, following equations are obtained
uð2;2Þðx; yÞ ¼ HT
x AHy; ð15Þ

uð1;2Þðx; yÞ ¼ PT
1ðr; xÞAHy þ uð1;2Þð0; yÞ; ð16Þ

uð0;2Þðx; yÞ ¼ PT
2ðr; xÞAHy þ xuð1;2Þð0; yÞ þ g000ðyÞ; ð17Þ

uð2;1Þðx; yÞ ¼ HT
x AP1ðs; yÞ þ uð2;1Þðx;0Þ; ð18Þ

uð1;1Þðx; yÞ ¼ PT
1ðr; xÞAP1ðs; yÞ þ uð1;1Þðx; 0Þ � uð1;1Þð0;0Þ þ uð1;1Þð0; yÞ; ð19Þ

uð0;1Þðx; yÞ ¼ PT
2ðr; xÞAP1ðs; yÞ þ uð0;1Þðx; 0Þ � xuð1;1Þð0;0Þ þ xuð1;1Þð0; yÞ þ g00ðyÞ � g00ð0Þ; ð20Þ

uð2;0Þðx; yÞ ¼ HT
x AP2ðs; yÞ þ yuð2;1Þðx;0Þ þ f 000 ðxÞ; ð21Þ

uð1;0Þðx; yÞ ¼ PT
1ðr; xÞAP2ðs; yÞ þ uð1;0Þð0; yÞ � yuð1;1Þð0; 0Þ þ yuð1;1Þðx;0Þ þ f 00ðxÞ � f 00ð0Þ; ð22Þ

uð0;0Þðx; yÞ ¼ PT
2ðr; xÞAP2ðs; yÞ þ x½uð1;0Þð0; yÞ � f 00ðxÞ� þ y½uð1;1Þðx;0Þ � g00ð0Þ � xuð1;1Þð0;0Þ� þ f0ðxÞ � f0ð0Þ þ g0ðyÞ; ð23Þ
where PT
1ðr; xÞ ¼

R x
0 HT

x dx, PT
x ðr; xÞ ¼

R x
0

R x
0 HT

x dxdx, P1ðs; yÞ ¼
R y

0 Hydy and P2ðs; yÞ ¼
R y

0

R y
0 Hydydy.

Putting x = 1 and y = 1in formulae (23) respectively, the following formulas can be obtained.
uð1;1Þð0;0Þ ¼ PT
2ðr;1ÞAP2ðs;1Þ þ g0ð1Þ � g00ð0Þ þ g01ð0Þ þ f0ð1Þ � f0ð0Þ � f 00ð0Þ þ f 01ð0Þ � f1ð1Þ; ð24Þ

uð1;0Þð0; yÞ ¼ y½PT
22
ðr;1ÞAP2ðs;1Þ þ g0ð1Þ þ f0ð1Þ � f0ð0Þ � f 00ð0Þ þ f 01ð0Þ � f1ð1Þ� � PT

2ðr;1ÞAP2ðs; yÞ � g0ðyÞ þ g1ðyÞ
� f0ð1Þ þ f0ð0Þ þ f 00ð0Þ; ð25Þ

uð0;1Þðx;0Þ ¼ x½PT
2ðr;1ÞAP2ðs;1Þ þ g0ð1Þ � g00ð0Þ þ g01ð0Þ þ f0ð1Þ � f0ð0Þ � f1ð1Þ� � PT

2ðr; xÞAP2ðs;1Þ � g0ðyÞ þ g1ðyÞ
� f0ð1Þ þ f0ð0Þ þ f 00ð0Þ: ð26Þ
Putting x = 1 in formulae (20) and y = 1 in formulae (22), the formulas given as:
uð1;1Þð0; yÞ ¼ PT
2ðr;1ÞAP2ðs;1Þ � PT

2ðr;1ÞAP1ðs; yÞ � g00ðyÞ þ g01ðyÞ þ f0ð1Þ � f0ð0Þ � f 00ð0Þ � f1ð1Þ þ f 01ð0Þ; ð27Þ

uð1;1Þðx;0Þ ¼ PT
2ðr;1ÞAP2ðs;1Þ � PT

1ðr; xÞAP2ðs;1Þ þ g0ð1Þ � g00ð0Þ þ g01ð0Þ � g1ð1Þ � f 00ðxÞ þ f0ð1Þ � f0ð0Þ þ f 01ðxÞ ð28Þ
can be obtained respectively.
Also putting x = 1 in formulae (17) and y = 1 in formulae (21), we have the following expressions are obtained

respectively.
uð1;2Þð0; yÞ ¼ �PT
2ðr;1ÞAHy � g000ðyÞ þ g001ðyÞ; ð29Þ

uð2;1Þðx;0Þ ¼ �HT
x AP2ðs;1Þ � f 000 ðxÞ þ f 001 ðxÞ: ð30Þ
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When substituting Eqs. (17), (19), (20)–(30) into Eq. (1), equation including matrix representation like as PT
2ðr;1ÞAHy,

PT
2ðr;1ÞAP2ðs;1Þ; PT

2ðr;1ÞAP1ðs; yÞ; . . . etc. can be obtained.
Matrix equation like as WAY can be transformed into a new matrix equation XC by using
x1;ðj�1ÞNþk ¼ w1;jyk;1; j; k ¼ 1;2; . . . ;2M; ð31Þ
where
C ¼ ½a00a01 � � � a02Ma10a11 � � � a12M � � � a2M0a2M1 � � � a2M2M�T ; X ¼ bx1;qc q ¼ 1;2;3; . . . ;2M:
Thus, by summing matrixes in the form XC, Eq. (1) can be written as:
~WC ¼ Gðx; yÞ; ð32Þ
where ~W ¼ ½~w1;q�; q ¼ 1;2;3; . . . ;2M and ~wi;q is also a function of x and y.
Let us define the collocation points
xl ¼ ðl� 0:5Þ=ð2MÞ; yl ¼ ðl� 0:5Þ=ð2MÞ l ¼ 1;2; . . . ;2M:
By substituting the collocation points in Eq. (32), the following algebraic equation systems can be constructed as
UC ¼ Gðxi; yjÞ i; j ¼ 1;2; . . . ;2M; ð33Þ
where U is a 2M � 2M dimensional matrix.
By solving algebraic equation systems (33) subject to boundary conditions (13), we can find the coefficients of the Haar

wavelet series. Substituting Haar wavelet coefficients into Eq. (23), we have the approximate solution of the PDE (1) with
boundary conditions (13).

4. Application of the HW method to magnetohydrodynamic flow problem

Basic equations of fluid mechanics and Maxwell equations of electromagnetism are well known as coupled system of
equations for velocity and magnetic field. In a rectangular duct X � R2, for the equations of steady, laminar, fully developed
flow of viscous, incompressible and electrically conducting fluid are subjected to a constant and uniform applied magnetic
field. They can be put in non-dimensional form [27] as
r2V þ Hax�
@B
@x� þ Hay�

@B
@y� ¼ �1

r2Bþ Hax�
@V
@x� þ Hay�

@V
@y� ¼ 0

inX ð34Þ
with the boundary conditions
V ¼ B ¼ 0 on @X: ð35Þ
Vðx�; y�Þ and Bðx�; y�Þ in Eq. (34) are velocity and induced magnetic field, respectively. The boundaries of the duct are as-
sumed to be insulated. Hartmann number Ha is the norm of the vector Ha ¼ ðHax� ;Hay� Þ.

The fluid is driven down the duct by means of a constant pressure gradient and Vðx�; y�Þ , Bðx�; y�Þ are parallel to z⁄ axis
which is the axis of the duct. When the applied magnetic field intensity B0 acts in a direction lying in the x⁄y⁄ plane but form-
ing an angle a with the y-axis, the following can be obtained:
Hax� ¼ Ha sina; Hay� ¼ Ha cos a; Ha ¼ H2
ax� þ H2

ay�

� �1
2
:

With two new variables U1 ¼ V þ B; U2 ¼ V � B, Eq. (34) can be transformed into the following set of equations:
r2U1 þ Hax�
@U1
@x� þ Hay�

@U1
@y� ¼ �1

r2U2 � Hax�
@U2
@x� � Hay�

@U2
@y� ¼ �1

in� 1 6 x�; y� 6 1 ð36Þ
with the boundary conditions U1 ¼ U2 ¼ 0 on @X. If U1 is solved as U1ðHax� ;Hay� Þ from Eq. (36), then U2 ¼ U1ð�Hax� ;�Hay� Þ
can directly be obtained. Solution of Eq. (34) can be obtained by substituting V ¼ U1þU2

2 ; B ¼ U1�U2
2 .

By transforming the range �1 6 x�; y� 6 1 into the basic range 0 6 x; y 6 1 then Eq. (36) can be written as
r2U1 þ 2Hax
@U1
@x þ 2Hay

@U1
@y ¼ �4

r2U2 � 2Hax
@U2
@x � 2Hay

@U2
@y ¼ �4

in 0 < x; y < 1 ð37Þ
with the boundary conditions U1(x, 0) = 0, U1(x, 1) = 0 U1(0, y) = 0, U1(1, y) = 0 and U2(x, 0) = 0, U2(x, 1) = 0 U2(0, y) = 0,
U2(1, y) = 0
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It is assumed that u(2,2)(x, y), maximum derivative term of Eq. (37), can be expanded in terms of two-variable truncated
Haar wavelets series as
uð2;2Þðx; yÞ ¼
X2M

r¼1

X2M

s¼1

ar;shrðxÞhsðyÞ:
By integrating Haar wavelets series twice with respect to x from 0 to x and twice with respect to y from 0 to y, and by
using the boundary conditions following equations are obtained
uð2;2Þðx; yÞ ¼ HT
x AHy;

uð1;2Þðx; yÞ ¼ PT
1ðr; xÞAHy þ uð1;2Þð0; yÞ;

uð0;2Þðx; yÞ ¼ PT
2ðr; xÞAHy þ xuð1;2Þð0; yÞ;

uð2;1Þðx; yÞ ¼ HT
x AP1ðs; yÞ þ uð2;1Þðx;0Þ;

uð1;1Þðx; yÞ ¼ PT
1ðr; xÞAP1ðs; yÞ þ uð1;1Þðx; 0Þ � uð1;1Þð0;0Þ þ uð1;1Þð0; yÞ;

uð0;1Þðx; yÞ ¼ PT
2ðr; xÞAP1ðs; yÞ þ uð0;1Þðx; 0Þ � xuð1;1Þð0;0Þ þ xuð1;1Þð0; yÞ;

uð2;0Þðx; yÞ ¼ HT
x AP2ðs; yÞ þ yuð2;1Þðx;0Þ;

uð1;0Þðx; yÞ ¼ PT
1ðr; xÞAP2ðs; yÞ þ uð1;0Þð0; yÞ � yuð1;1Þð0; 0Þ þ yuð1;1Þðx;0Þ;

uð0;0Þðx; yÞ ¼ PT
2ðr; xÞAP2ðs; yÞ þ xuð1;0Þð0; yÞ þ y½uð1;1Þðx;0Þ � xuð1;1Þð0;0Þ�;

uð1;1Þð0;0Þ ¼ PT
2ðr;1ÞAP2ðs;1Þ;

uð1;0Þð0; yÞ ¼ yPT
2ðr;1ÞAP2ðs;1Þ � PT

2ðr;1ÞAP2ðs; yÞ;

uð0;1Þðx;0Þ ¼ xPT
2ðr;1ÞAP2ðs;1Þ � PT

2ðr; xÞAP2ðs;1Þ;

uð1;1Þð0; yÞ ¼ PT
2ðr;1ÞAP2ðs;1Þ � PT

2ðr;1ÞAP1ðs; yÞ;

uð1;1Þðx;0Þ ¼ PT
2ðr;1ÞAP2ðs;1Þ � PT

1ðr; xÞAP2ðs;1Þ;

uð1;2Þð0; yÞ ¼ �PT
2ðr;1ÞAHy;

uð2;1Þðx;0Þ ¼ �HT
x AP2ðs;1Þ:
By substituting these equations in the first Equation of (37), the following equation can be obtained:
HT
x AP2ðs; yÞ � yHT

x AP2ðs;1Þ þ PT
2ðr; xÞAHy � xPT

2ðr;1ÞAHy

þ2Hax½PT
1ðr; xÞAP2ðs; yÞ þ yPT

2ðr;1ÞAP2ðs;1Þ � PT
2ðr;1ÞAP2ðs; yÞ � yPT

1ðr; xÞAP2ðs;1Þ�
þ2Hay½PT

2ðr; xÞAP1ðs; yÞ � PT
2ðr; xÞAP2ðs;1Þ þ xP1

2ðr;1ÞAP2ðs;1Þ � xPT
2ðr;1ÞAP1ðs; yÞ� ¼ �4:

ð38Þ
Matrix equation like as WAY can be transformed into a new matrix equation XC by using
x1; ðj�1ÞNþk ¼ w1;jyk;1; j; k ¼ 1;2; . . . ;2M:
By summing matrixes in the form XC, Eq. (32) can be obtained
By substituting the collocation points, defined as
xl ¼ ðl� 0:5Þ=ð2MÞ; yl ¼ ðl� 0:5Þ=ð2MÞ l ¼ 1;2; . . . ;2M
into Eq. (32), the algebraic equation systems Eq. (33) can be constructed. If we solve the equation systems, we can find the
coefficients of the Haar wavelet series. By substituting Haar wavelet coefficients into the equation
uð0;0Þðx; yÞ ¼ PT
2ðr; xÞAP2ðs; yÞ þ xuð1;0Þð0; yÞ þ y½uð1;1Þðx;0Þ � xuð1;1Þð0;0Þ�;
we have the approximate solution of the first equation of (37) with the boundary conditions U1(x, 0) = 0, U1(x, 1) = 0
U1(0, y) = 0, U1(1, y) = 0.



Fig. 2. Fig. 1 Velocity, Ha = 10, M = 8.

Fig. 3. Magnetic field, Ha = 10, M = 8.
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5. Numerical results

The Haar wavelet method is applied to solve the equation for a = p/2
r2U1 þ 2Ha
@U1

@x
¼ �4in 0 < x; y < 1
with the boundary conditions U1(x, 0) = 0, U1(x, 1) = 0, U1(0, y) = 0, U1(1, y) = 0, U1 ¼ 0 on @X. Solution U2 can be obtained
from solution U1 as U2 = U1( � Ha), which also satisfies U2 ¼ 0 on @X.

Solution of resulting algebraic linear system of equations, which was constructed by applying the Haar wavelet method in
Eq. (38), was obtained by the MATLAB. The solutions were obtained for values of M and Hartmann number Ha for the case
that the applied magnetic field is parallel to the x axis (a = p/2). Solutions of the Haar wavelet method which are shown by
solid line (—) were compared with Sherciliff’s [28] exact solutions for a = p/2 which are shown by dash-dotted line (– –) in
figures.

Figs. 2 and 3 present velocity and induced magnetic field contours comparing with the exact solution for Ha = 10 and
M = 8. Similarly, Figs. 4 and 5 show the results for Ha = 50 and M = 32. As can be seen in Figs. 2–5, the computed and actual
values are overlapped. One can notice that when Ha is increased, the velocity and induced magnetic field become uniform at



Fig. 4. Velocity, Ha = 50, M = 32.

Fig. 5. Magnetic field, Ha = 50, M = 32.

_I. Çelik / Applied Mathematical Modelling 37 (2013) 3894–3902 3901
the center of the duct and flow becomes stagnant. The boundary layer formation close to the walls for both velocity and in-
duced magnetic field is well observed for high Hartmann number. These are the well-known characteristics of magnetohy-
drodynamic flow and are in agreement with our results.
6. Conclusion

This paper proposes two-dimensional Haar wavelet approach for the magnetohydrodynamic flow equations. Approxi-
mate solutions of the magnetohydrodynamic flow equations in a rectangular duct in the presence of transverse external ob-
lique magnetic field, obtained by computer simulation, are compared with exact solutions. These calculations demonstrate
that the accuracy of the Haar wavelet solutions is quite high even in the case of a small number of grid points. In proposed
HW method, there are no complex integrals or methodology except a few construction of spars transform matrix. Applica-
tions of HW method are quite simple and it also gives the implicit form of the approximate solutions of the problems. These
are the main advantages of the HW method except exponential increase of computer memory. This method is also very con-
venient for solving the boundary value problems, since the boundary conditions in the solution are automatically taken into
account.
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