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Abstract
Regulation of gene expression in cells is mediated by protein-protein, DNA-protein and receptor-
ligand interactions. PDZ (PSD-95/Discs-large/ZO-1) domains are protein–protein interaction
modules. PDZ-containing proteins function in the organization of multi-protein complexes
controlling spatial and temporal fidelity of intracellular signaling pathways. In general, PDZ
proteins possess multiple domains facilitating distinct interactions. The human Glutaminase
Interacting Protein (hGIP) is an unusual PDZ protein comprising entirely of a single PDZ domain
and plays pivotal roles in many cellular processes through its interaction with the C-terminus of
partner proteins. Here, we report the identification by yeast two-hybrid screening of two new
hGIP-interacting partners, DTX1 and STAU1. Both proteins lack the typical C-terminal PDZ
recognition motif but contain a novel internal hGIP recognition motif recently identified in a
phage display library screen. Fluorescence resonance energy transfer and confocal microscopy
analysis confirmed the in vivo association of hGIP with DTX1 and STAU1 in mammalian cells
validating the previous discovery of S/T-X-V/L-D as a consensus internal motif for hGIP
recognition. Similar to hGIP, DTX1 and STAU1 have been implicated in neuronal function.
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Identification of these new interacting partners furthers our understanding of GIP-regulated
signaling cascades and these interactions may represent potential new drug targets in humans.
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1. Introduction
Protein-protein interactions are important in almost all cellular processes including cell
growth, death, and intra- and intercellular communication. These interactions are mediated
by distinct protein modules, of which the PDZ (PSD-95, DlgA, ZO-1) domains are a
signficant class [1]. PDZ domain interactions are involved in numerous essential functions
such as protein targeting, clustering of ion channels, membrane expression of receptors, cell
polarity, and cell-cell communications [2]. PDZ domains typically recognize the C-terminus
of their target proteins [3,4]; however, in a few cases recognition of an internal motif has
also been reported [5– 7]. Because PDZ domains mediate protein-protein interactions
involved in various signal transduction pathways, unravelling the complete network of
interacting partners of a PDZ domain-containing protein is crucial for successful design of
drugs specifically targeting its PDZ domain [8].

Human glutaminase interacting protein (hGIP) [9], also known as tax interacting protein 1
(TIP-1), is an important multifunctional protein containing a single PDZ domain. Besides
the unstructured N and C-termini, the hGIP protein consists solely of the PDZ domain [10].
hGIP contains a canonical Class-I PDZ domain binding site that interacts with the C-
terminus of different proteins, typical of the promiscuous target protein recognition of PDZ
domains [11]. Human GIP plays an important role in cell signaling, cancer, ion transport,
cell polarity and transcription through its interaction with diverse target proteins. Some of
the GIP target proteins include glutaminase L [9–10], β-catenin [12], FAS [13], brain-
specific angiogenesis inhibitor 2 [14], rho activator rhotekin [15], ARHGEF16 [16],
potassium channel Kir2.3 [17], HPV16 E6 [18], and HTLV-1 Tax [19]. Recent findings
show that GIP is involved in human invasive breast cancer [20], accelerates tumor-driven
angiogenesis, and stimulates tumor formation of human glioblastoma cell lines in nude mice
[21]. Since GIP is involved in various cancerous pathways and consists solely of a single
PDZ domain, it has received considerable attention as a possible target for anticancer
therapeutics [20–21]. We have been using various techniques including phage display
library screening [6] and yeast two-hybrid (Y2H) assays [14] to find novel GIP interactors.
Utilizing these techniques, we recently discovered that hGIP not only interacted via
recognition of a C-terminal motif, but also recognized an internal motif with the consensus
S/T-x-V/L-D sequence [6].

Here, we report the discovery through a Y2H screen of two new hGIP partner proteins
containing the novel internal GIP recognition motif. Using fluorescence resonance energy
transfer (FRET) and confocal microscopy, we were able to show co-localization of hGIP
and these novel proteins in human cells. Similar to hGIP, the newly identified interacting
proteins, DTX1 and STAU1, have been implicated in normal neuronal function. These
findings further advance our understanding of GIP-regulated signaling cascades and these
interactions may represent potential new targets for drugs modulating these pathways in
humans.
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2. Materials and Methods
2.1. Yeast strains and media

Two-hybrid reporter yeast strains used in this study were AH109 (MATα, trp1-901, leu2-3,
112, ura3-52, his3-200, gal4Δ, gal80Δ, LYS2::GAL1UAS GAL1TATA-HIS3, GAL2UAS-
GAL2TATA-ADE2, URA3::MEL1UAS-MEL1TATA-lacZ, MEL1) and Y187 (MATα,
ura3-52, his3-200, ade2-101, trp1-901, leu2-3, 112, gal4Δ, met, gal80Δ, MEL1,
URA3::GAL1UAS -GAL1TATA-lacZ) (Clontech Mountain View, CA). Yeast cells were
cultured at 30°C in YEPD + adenine (1% yeast extract, 2% bacto peptone, 2% dextrose, 1%
adenine) or SD medium (0.67% yeast nitrogen base without amino acids, 2% dextrose,
supplemented with appropriate amino acids and bases) [22]. Media were solidified with 2%
agar and 40 μg/mL X-alpha-gal was added for detection of alpha-galactosidase reporter
gene expression. All media reagents were obtained from DIFCO Laboratories or Sigma.

2.2. Yeast two-hybrid Screen
A yeast expression plasmid (pGBKT7-GIP) encoding hGIP fused to the carboxy terminus of
the yeast Gal4 transcription factor DNA-binding domain (Gal4BD-GIP), was used in a Y2H
screen as previously described [14]. Briefly, yeast strain Y187, pre-transformed with a
human fetal brain cDNA library in the Gal4 activation domain (AD) vector pGADT7-Rec
(Clontech, Mountain View, CA) was mated with yeast strain AH109 transformed with
pGBKT7-GIP and the diploids were screened for hGIP-interacting clones [14]. A total of
1.1×107 cells were screened with mating efficiency of 10.0% in the library having 2.3×108

cells.

Clones capable of activating integrated reporter genes, namely HIS3, ADE2, MEL1 and
LacZ under the control of the Gal4-responsive Upstream Activating Sequence (UAS) were
identified by plating transformants on SD solid medium lacking leucine and tryptophan to
select for the presence of pGBKT7-GIP and the LEU2 gene-containing library plasmid and
lacking adenine and histidine and containing X-α-gal (Clontech, Mountain View, CA) (SD/-
Ade/-His/-Leu/-Trp/X-α-gal). Transformants capable of growth and giving blue colonies
due to conversion of X-α-gal to a blue precipitate by the alpha-galactosidase expressed by
the MEL1 reporter gene, were subsequently checked for beta-galactosidase expression from
the lacZ reporter gene. Clones failing to grow under more stringent conditions in the
presence of 25 mM 3-aminotriazole (3-AT), a competitive inhibitor of the HIS3 gene
product (SD/-Ade/-His/-Trp/-Leu/X-α-Gal/3-AT) were discarded. Plasmids were isolated
from positive yeast clones and were transformed into E. coli. Plasmids from ampicillin-
resistant bacterial transformants were re-tested in yeast in order to confirm their ability to
activate the reporter genes when co-transformed with pGBKT7-GIP. GIP bait-dependent
reporter gene expression was confirmed by transforming two-hybrid reporter yeast with
plasmids expressing the putative GIP-interactors in the absence of other fusion proteins and
with other unrelated fusion proteins (data not shown). For positive clones, cDNA inserts
were characterized by restriction mapping, polymerase chain reaction (PCR) using
MatchMaker Insert Check PCR Mix (Clontech, Mountain View, CA) and sequencing. (J. P.
Robarts Research Institute, London, Ont.). A second independent cDNA library was used
for confirmation experiments (Clontech, Mountain View, CA).

2.3. Plasmid construction and co-localization analyses
For confocal microscopy analyses, fluorescent protein fusion constructs of hGIP and its
candidate interacting partners were created. A plasmid expressing GIP as a yellow
fluorescent protein (YFP) fusion protein was created by transferring the GIP-encoding
region from pGBKT7-GIP (an EcoRI-SalI fragment) into the vector pEYFP-C3 [23] that
had been digested with the BglII and SalI (EcoRI and BglII ends, respectively, on each DNA
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were filled in by incubation with Klenow before digestion with the second restriction
enzyme) to result in the final construct (YFP-hGIP). Plasmids expressing the candidate GIP-
interacting partner proteins fused to cyan fluorescent protein (CFP) were similarly
constructed by transferring fragments (XhoI filled-in and BglII) from the respective
pGADT7-Rec AD library plasmid encoding the partner protein and ligating with the vector
pECFP-C2 that had been digested with SmaI and BglII restriction enzymes to obtain the
final constructs (CFP-partners). The plasmids were verified by restriction endonuclease
digestions and sequencing. Plasmids expressing human Alteration/Deficiency in Activation
3 (hADA3) protein as a Gal4DB fusion protein in yeast (pGBTK7-ADA3) or as a CFP fusion
protein in human cells (CFP-ADA3) were used as negative controls and have been described
previously [23].

Human HeLa cells were transfected with CFP and YFP fusion protein-expression plasmids
using TurboFect transfection reagent (Fermentas, Lithuania) according to the manufacturer’s
instructions. Cells were incubated in 8-well coverslip-bottom chambers (Lab-Tek,
Campbell, CA) in a 5% CO2 incubator at 37 °C for 24 h before being analyzed using an
Olympus Fluoview FV1000 confocal laser scanning microscope (Olympus Life Science
Europa GmbH, Hamburg, Germany). The microscope was configured as follows: objective
lens UPLFLN 40x (water, NA 0.8) and 60x (oil, NA 1.3); sampling speed: 8μs/pixel;
scanning mode: sequential unidirectional; excitation: 458 nm (CFP) and 515 nm (YFP);
laser transmissivity: 30% and 10% were used for CFP and YFP, respectively; main dichroic
beamsplitter: DM458/515, intermediate dichroic beamsplitter: SDM 510; CFP was detected
between 470–520 nm and YFP was detected between 520–570 nm. Differential interference
contrast (DIC) or standard transmission images were captured with a 515 nm laser line.

FRET analyses were performed by an acceptor photobleaching method [24] Confocal
images of cotransfected cells were acquired with UPLFLN 40x Oil immersion objective.
CFP and YFP images were taken before and after photobleaching of the YFP image using
514nm laser at 100% transmissivity focused onto a rectangle covering the whole cell. Gray
level intensities of CFP images were pseudocolored using spec3 (heat map) lookup table of
Olympus Fluoview software: Blue, green, red and white colors represent lowest,
intermediate, high and highest level of gray level intensities. Using images pre- and post-
bleach, the increase in average CFP fluorescence was calculated after manual tracing of each
cell using the Olympus Fluoview software measurement and analysis tools. More than 10
cells were scored from each sample. Percentage increase and standard deviations of CFP
fluorescence intensities were plotted using Microsoft Excel software (Microsoft
Corporation, Redmond, WA).

3. Results and Discussion
3.1. Human fetal brain cDNA library screening resulted in the identification of novel GIP
interacting partners

Haploid yeast transformed with a plasmid expressing human GIP fused to the yeast Gal4
DNA-binding domain (Gal4BD-GIP) were mated to 1.1×107 yeast of the opposite mating
type pre-transformed with plasmids expressing human fetal brain cDNA-Gal4AD-fusion
proteins [14]. Screening of the mated cells gave rise to several diploid co-transformants that
were able to form colonies under conditions that required Gal4-responsive reporter gene
activation. The ability of these colonies to grow in the absence of adenine and histidine
suggested that they contained a library plasmid expressing a GIP-interacting protein. The
specificity of GIP interactions with prospective partners was tested by a second line of Y2H
experiments. For this pGBKT7-GIP and another plasmid, pGBKT7-ADA3, encoding
Gal4BD fused to the hADA3 protein were introduced independently into host cells in order
to compare their interaction with the newly identified putative GIP partners (Fig. 1A, left
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and right panels, respectively). The results of these tests indicated that the two GAL4 AD-
human fetal brain cDNA plasmids were capable of activating the reporter genes when co-
transformed with pGBTK7-GIP expressing Gal4BD-GIP, but not when co-transformed with
pGBKT7-ADA3. The library plasmids from these yeast transformants were isolated.
Sequence analyses of the cDNAs and comparisons with database sequences using BLAST
searches [25] revealed that the isolated cDNAs encoded different proteins, neither of which
had previously been identified as interacting with GIP.

The encoded proteins, Deltex homolog 1 (DTX1) and double-stranded RNA-binding protein
Staufen homolog 1 (STAU1), are multi-functional proteins. DTX1 was first identified in
Drosophila as a positive regulator of the Notch-signaling pathway and functions as an E3
ubiquitin ligase [26] with a possible role in negatively regulating neural-specific
transcription factor activity [27]. DTX1 has also been implicated in neurogenesis,
lymphogenesis and myogenesis, and may be involved in MZB (Marginal zone B) cell
differentiation [28]. STAU1 is known to be expressed in brain and in a number of other
tissues including pancreas, heart, skeletal muscles, liver, lung, kidney and placenta [29].
STAU1 association with double-stranded regions of RNA regulates mRNA stability [30],
transport [31], and translation [32] and has been shown to be critical in maintaining neuronal
function [33]. Our subsequent analyses focused on characterizing the interaction of these
two novel partners with GIP and determining whether the association occurs in mammalian
cells.

3.2. hGIP novel partner proteins lack a C-terminal PDZ domain-recognition motif but
contain a novel internal GIP-interaction motif

The single PDZ domain in hGIP is typical of other PDZ domains, small protein-protein
recognition modules that bind to well-defined C-terminal residues of a partner protein in a
sequence-specific manner [7]. To determine whether the potential GIP-interacting partner
proteins identified in the Y2H screen are recognized through classical C-terminal motif or
via the recently identified novel internal GIP-recognition motif [6], sequence analyses were
carried out and confirmed that the cDNAs for DTX1 and STAU1 inserted in the respective
pGADT7-Rec AD library plasmids were full-length. Western blotting analysis of protein
extracted from yeast transformed with the pGADT7-Rec AD library plasmids showed
Gal4AD-fusion proteins with mobilities consistent with those expected for expression of the
full-length interactor proteins indicating that the authentic C-terminus of each was likely to
be present on the respective fusion proteins (data not shown).

Analysis of the predicted amino acid sequence revealed that neither of the two new partner
proteins contained known PDZ domain-binding C-terminal recognition motifs [10–11].
However, the new partner proteins did contain an internal sequence (Fig. 1B) that matched
the S/T-X-V/L-D consensus of the internal motif we had previously identified through
phage display library screening [6].

3.3. Verification of hGIP interaction with newly identified partner proteins through co-
localization studies in mammalian cells

To determine whether the association of GIP with the newly identified potential partner
proteins could be detected in human cells, we constructed plasmids that would express hGIP
as a YFP fusion protein (YFP-hGIP) and interacting partner proteins as CFP-fusion proteins
(CFP-DTX1 and CFP-STAU1). Plasmids expressing the YFP and CFP-tagged fusion
proteins were first individually used to transfect HeLa cells to determine the localization of
each protein (Fig. 2, left panel). Plasmids expressing only CFP or YFP without fusion to any
protein were used as negative controls. HeLa cells transfected with individual plasmids
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expressing YFP-hGIP, CFP-DTX1 and CFP-STAU1 each displayed fluorescent signal both
in the nucleus and in the cytoplasm.

Next, to determine whether hGIP co-localized with the potential interacting partner proteins,
HeLa cells were co-transfected with two plasmids, one expressing YFP-hGIP and the other
CFP or a CFP-tagged hGIP partner protein (Fig. 2, right panel). The distribution of STAU1
and DTX1 proteins between the cytoplasm and the nucleus was not significantly altered by
co-expression with hGIP. The merged images of YFP-tagged hGIP with each of the CFP-
tagged fusion proteins showed substantial co-localization, supporting potential interaction
between hGIP and the newly identified proteins.

Taken together, the microscopy analysis demonstrates that hGIP co-localizes with both
newly identified partner proteins in human cells. The co-localization along with the
interactions detected in the Y2H assay suggested that these proteins might physically
interact with hGIP in vivo making these interactions biologically relevant.

3.4. FRET Analysis of GIP interactions
We used FRET and confocal laser scanning microscopy analysis of cells co-expressing
YFP-GIP (acceptor) and CFP-conjugated proteins (donor) to examine in vivo interactions
between GIP and its presumed partners at the subcellular level. Interaction between the
proteins was monitored by using an acceptor photobleaching FRET approach. In this method
the acceptor protein (YFP) is bleached with high laser intensity and the change in intensity
of the donor (CFP) fluorescence emission is recorded. Following bleaching of the acceptor,
an increase in donor fluorescence indicates that the two fluorescently-tagged fusion proteins
were close enough (within 1–10 nm of each other) for direct transfer of energy from the
donor to the acceptor, providing strong evidence for direct in vivo interaction of the
proposed protein-binding partners. During acceptor photobleaching experiments, however,
photoconversion of YFP into a CFP-like species can occur [34]. This potential non-specific
increase in CFP emission was monitored by co-transfecting cells with two plasmids, one
expressing CFP and the other YFP-GIP. CFP intensity images were color coded, which
showed that CFP emission in the cells was not significantly affected when the acceptor
protein (YFP-GIP) was bleached (Fig. 3A, CFP in the last row). To quantify the increase,
average CFP intensities were scored before and after bleaching of the acceptor using cell
tracing and intensity quantification tools of the Olympus Fluoview software. A mean
increase in CFP fluorescence of 1.035% (±0.86) was measured in control cells (Fig. 3).
Using identical detection and bleaching parameters, YFP-GIP photobleaching experiments
were performed on cells cotransfected with a plasmid expressing YFP-GIP and a second
plasmid expressing CFP-tagged with DTX1 or STAU1, respectively. The cells expressing
CFP-DTX1 (6.88 ± 4.44) and CFP-STAU1 (7.3 ± 4.2) showed nearly a seven-fold increase
in mean CFP fluorescence compared to control cells (Fig. 3B). This increase in intensity was
also clearly visible on intensity color-coded images of CFP-DTX1 and CFP-STAU1 (Fig.
3A). The increase in intensity was observed both in nuclear and cytoplasmic regions
suggesting that the interaction of GIP with DTX1 and with STAU1 occurs in both
compartments.

The FRET analysis confirmed in vivo association of hGIP with DTX1 and STAU1.
Furthermore, both DTX1 and STAU1 contain an internal motif that was previously
identified as an hGIP recognition motif in a phage display library screen [6]. The
demonstration of in vivo association of hGIP with partner proteins containing the same
motif validates the previous discovery of S/T-X-V/L-D as a consensus internal motif for GIP
recognition.
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Highlights

We identified two new human GIP partner proteins: DTX1 and STAU1.

DTX1 and STAU1 contain novel hGIP recognition motif.

DTX1 and STAU1 interact with hGIP in human mammalian cells

All the 3 proteins are involved in human neuronal function.

These interactions may represent potential new drug targets in humans.
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Fig. 1.
Potential partner proteins interact specifically with GIP in a yeast two-hybrid assay and
internal motifs in newly-identified hGIP partners. (A) The two-hybrid reporter yeast strain
AH109 was co-transformed with plasmids expressing the Gal4AD-fusion protein indicated at
left and either human GIP or ADA3 fused to Gal4BD. Representative co-transformants were
streaked on selective medium (SD/-Ade/-His/-Trp/-Leu/X-α-Gal) and incubated at 30°C.
Growth and expression of the alpha-galactosidase reporter gene (blue color) indicates
interaction of the co-expressed fusion proteins. (B) The carboxy-terminal sequence of the
two new protein partners with the potential internal GIP recognition motifs indicated by grey
boxes.
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Fig. 2.
Cellular localization and co-localization of hGIP and its potential partner proteins in human
cells. For single expression (left panel), HeLa cells were transfected with a plasmid
expressing YFP-hGIP or a potential hGIP-interacting partner, DTX1 or STAU1, as a CFP
fusion protein. Images were captured by confocal microscopy. DIC images of cells are
shown at left and the signal from the same cells for YFP-hGIP (GIP) (pseudo-colored green)
or for the CFP fusion proteins (in red) are to the right for each. Scale bar is 10μm. For co-
expression (right panel), HeLa cells were co-transfected with a plasmid expressing hGIP
fused to YFP (GIP) and a second plasmid expressing CFP or CFP fused to DTX1 or to
STAU1. Co-localization was analyzed by confocal microscopy. DIC images (left), CFP
signals (red, middle left) and YFP-hGIP signals (green, middle right), are shown for the
same cells. Yellow in the merged image at far right indicates co-localization. Scale bar is
10μm
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Fig. 3.
FRET between YFP-GIP and DTX1 or STAU1 CFP fusion proteins in human cells. HeLa
cells were co-transfected with a plasmid expressing hGIP fused to YFP (GIP) and a second
plasmid expressing CFP, or CFP fused to DTX1 or STAU1. (A) Pre-bleach and post-bleach
images of YFP-GIP and CFP chimeras (or CFP only) are shown in the first and second row,
respectively. YFP and CFP images are pseudo-colored green and red, respectively. Last row
indicates intensity color coding of the CFP images. Note the post-bleach increase in the CFP
intensity of CFP-DTX1 and CFP-STAU1. The intensity change in control sample (leftmost
panels for each) was almost undetectable. White thunder icons in YFP images mark the
bleached cells. Color coding scale and the scale bar (10μm) are shown at the lower right
corner. (B) CFP intensity from cells was measured before and after bleaching and the
increase in fluorescence in the bleached cells was plotted. More than 10 cells were scored
from each line and results represent the mean values with standard deviations.
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