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By means of fixed-point theorems, we investigate the existence of positive solutions for nonlinear
first-order m-point boundary value problem xΔ(t) + a(t)x(σ(t)) = f(t, x(σ(t))), t ∈ [t1, tm] ⊂ T,
x(t1) =

∑m−1
k=2 αkx(tk) + α1x(σ(tm)), where T is a time scale, 0 ≤ t1 < t2 < · · · < tm−1 < tm,

α1, α2, . . . , αm−1 ≥ 0 are given constants.

1. Introduction

The theory of time scales, which has recently received a lot of attention, was introduced by
Stefan Hilger in his Ph.D. thesis in 1988 (see [1]). The time scales calculus has a tremendous
potential for applications in some mathematical models of real processes and phenomena
studied in physics, chemical technology, population dynamics, biotechnology and economics,
neural networks, and social sciences; see the monographs of Aulbach and Hilger [2], Bohner
and Peterson [3, 4], and Lakshmikantham et al. [5] and the references therein.

A time scale T is an arbitrary nonempty closed subset of real numbers R. A book on
the subject of time scales by Bohner and Peterson [3] also summarizes and organizes much
of the time scale calculus. The closed interval in T is defined as

[a, b] = {t ∈ T : a ≤ t ≤ b}, (1.1)

where a, b ∈ T with a < ρ(b).
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In this study, we consider the nonlinear first-orderm-point boundary value problem

xΔ(t) + a(t)x(σ(t)) = f(t, x(σ(t))), t ∈ [t1, tm] ⊂ T,

x(t1) =
m−1∑

k=2

αkx(tk) + α1x(σ(tm)),
(1.2)

where T is a time scale, 0 ≤ t1 < t2 < · · · < tm−1 < tm, α1, α2, . . . , αm−1 ≥ 0 are given constants. a
is regressive and rd-continuous, and f : [t1, σ(tm)] × R

+ → R
+ is continuous.

In [6], Cabada studied the following first-order periodic boundary value problem on
time scales:

uΔ(t) = f(t, u(t)), t ∈ [a, b] ⊂ T,

u(a) = u(σ(b)).
(1.3)

He developed the monotone method in the presence of lower and upper solutions to obtain
the existence of extremal solutions. When α1 = 1, α2 = · · · = αm−1 = 0, and a(t) ≡ 0, BVP (1.2)
is reduced to (1.3).

In [7], Sun studied the first-order boundary value problem

xΔ(t) = f(x(σ(t))), t ∈ [0, T] ⊂ T,

x(0) = βx(σ(T)),
(1.4)

where 0 < β < 1. Some existence results for at least two positive solutions were established,
by using Avery-Henderson fixed-point theorem. When α2 = · · · = αm−1 = 0 and a(t) ≡ 0, BVP
(1.2) is reduced to (1.5).

In [8], Shu and Chunhua are concerned with the existence of three positive solutions
for the following nonlinear first-order boundary value problem on time scale:

xΔ(t) = f(x(σ(t))), t ∈ [0, T] ⊂ T,

x(0) = ηx(σ(T)),
(1.5)

where T > 0 is fixed, 0, T ∈ T, and f : [0,∞) → [0,∞) is continuous. When α2 = · · · = αm−1 = 0
and a(t) ≡ 0, BVP (1.2) is reduced to (1.5).

Sun and Li [9] studied the following first-order periodic boundary value problem on
time scales:

xΔ(t) + p(t)x(σ(t)) = g(t, x(σ(t))), t ∈ [0, T] ⊂ T,

x(0) = x(σ(T)).
(1.6)

Conditions for the existence of at least one solution were obtained by using novel inequalities
and the Schaefer fixed-point theorem. When α1 = 1 and α2 = · · · = αm−1 = 0, BVP (1.2) is
reduced to (1.6).
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In [10], Tian and Ge studied the existence and uniqueness results for first-order three-
point boundary value problem

xΔ(t) + p(t)x(σ(t)) = f(t, x(σ(t))), t ∈ [0, T] ⊂ T,

x(0) − αx(ξ) = βx(σ(T)),
(1.7)

by using several well-known fixed-point theorems. When α3 = · · · = αm−1 = 0, BVP (1.2) is
reduced to (1.7).

Motivated by [6–10], we establish some new andmore general results for the existence
of positive solutions for the problem (1.2) by applying fixed-point theorems in cones.

We have arranged the paper as follows. In Section 2, we give some lemmas which are
needed later. In Section 3, we apply the Krasnosel’skii fixed-point theorem, Avery-Henderson
fixed-point theorem, and Leggett-Williams fixed-point theorem to prove the existence of at
least one, two, and three positive solutions to BVP (1.2). In Section 4, as an application, the
examples are included to illustrate our results.

2. Preliminaries

Let B denote the Banach space C[t1, σ(tm)] with the norm ‖x‖ = supt∈[t1,σ(tm)]|x(t)|. For h ∈ B,
we consider the following linear boundary value problem:

xΔ(t) + p(t)x(σ(t)) = h(t), t ∈ [t1, tm] ⊂ T,

x(t1) =
m−1∑

k=2

αkx(tk) + α1x(σ(tm)).
(2.1)

Lemma 2.1. For h ∈ B, BVP (2.1) has the unique solution

x(t) =
1

ea(t, t1)

⎧
⎨

⎩
Γ

⎡

⎣
α1

∫σ(tm)
t1

ea(s, t1)h(s)Δs

ea(σ(tm), t1)
+
m−1∑

k=2

αk
∫ tk
t1
ea(s, t1)h(s)Δs

ea(tk, t1)

⎤

⎦

+
∫ t

t1

ea(s, t1)h(s)Δs

⎫
⎬

⎭
, t ∈ [t1, σ(tm)],

(2.2)

where Γ = [1 −∑m−1
k=2 (αk/ea(tk, t1)) − (α1/ea(σ(tm), t1))]

−1.

Proof. From xΔ(t) + a(t)x(σ(t)) = h(t), we have

x(t) =
1

ea(t, t1)

[

x(t1) +
∫ t

t1

ea(s, t1)h(s)Δs

]

. (2.3)
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By using the boundary condition, we get

[

1 − α1
ea(σ(tm), t1)

−
m−1∑

k=2

αk
ea(tk, t1)

]

x(t1) =
α1

∫σ(tm)
t1

ea(s, t1)h(s)Δs

ea(σ(tm), t1)

+
m−1∑

k=2

αk
∫ tk
t1
ea(s, t1)h(s)Δs

ea(tk, t1)
.

(2.4)

Thus, x satisfies (2.2).

Let G(t, s) be Green’s function for the boundary value problem

xΔ(t) + a(t)x(σ(t)) = h(t), t ∈ [t1, tm] ⊂ T,

x(t1) =
m−1∑

k=2

αkx(tk) + α1x(σ(tm)).
(2.5)

By Lemma 2.1, we obtain

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

G1(t, s), t1 ≤ s ≤ σ(s) ≤ t2,
G2(t, s), t2 ≤ s ≤ σ(s) ≤ t3,
...
Gm−2(t, s), tm−2 ≤ s ≤ σ(s) ≤ tm−1,

Gm−1(t, s), tm−1 ≤ s ≤ tm,

(2.6)

where

Gj(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ea(s, t1)
ea(t, t1)

⎧
⎨

⎩
Γ

⎡

⎣
α1

ea(σ(tm), t1)
+

m−1∑

k=j+1

αk
ea(tk, t1)

⎤

⎦ + 1

⎫
⎬

⎭
, σ(s) ≤ t,

Γea(s, t1)
ea(t, t1)

⎡

⎣
α1

ea(σ(tm), t1)
+

m−1∑

k=j+1

αk
ea(tk, t1)

⎤

⎦, t ≤ s,
(2.7)

for all j = 1, 2, . . . , m − 1.

Lemma 2.2. Green’s function G(t, s) in (2.6) has the following properties:

(i) G(t, s) ≥ 0 for (t, s) ∈ [t1, σ(tm)] × [t1, tm].

(ii) m ≤ G(t, s) ≤M, wherem = Γα1/(ea(σ(tm), t1))
2 andM = Γ

∑m−1
k=1 αk + ea(tm−1, t1).

(iii) G(t, s) ≥ (m/M)sup(t,s)∈[t1,σ(tm)]×[t1,tm]G(t, s) for (t, s) ∈ [t1, σ(tm)] × [t1, tm].

Let B denote the Banach space C[t1, σ(tm)] with the norm ‖x‖ = maxt∈[t1,σ(tm)]|x(t)|.
Define the cone P ⊂ B by

P =
{
x ∈ B : x(t) ≥ 0, x(t) ≥ m

M
‖x‖ on [t1, σ(tm)]

}
. (2.8)
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Equation (1.2) is equivalent to the nonlinear integral equation

x(t) =
∫σ(tm)

t1

G(t, s)f(s, x(σ(s)))Δs. (2.9)

We can define the operator A : P → B by

Ax(t) =
∫σ(tm)

t1

G(t, s)f(s, x(σ(s)))Δs. (2.10)

Therefore solving (2.9) in P is equivalent to finding fixed-points of the operator A.
From Lemma 2.2, Ax(t) ≥ 0 for t ∈ [t1, σ(tm)]. In addition, by using Lemma 2.2 we get

Ax(t) =
∫σ(tm)

t1

G(t, s)f(s, x(σ(s)))Δs

≥ m

M
sup

(t,s)∈[t1,σ(tm)]×[t1,tm]
G(t, s)

∫σ(tm)

t1

f(s, x(σ(s)))Δs

≥ m

M
sup

t∈[t1,σ(tm)]

∫σ(tm)

t1

G(t, s)f(s, x(σ(s)))Δs

=
m

M
‖Ax‖.

(2.11)

So, we have A : P → P .

3. Main Results

To prove the existence of at least one positive solution for the BVP (1.2), we will need the
following (Krasnosel’skii) fixed-point theorem.

Theorem 3.1 (Krasnosel’skii fixed-point theorem [11]). Let E be a Banach space, and let K ⊂ E

be a cone. Assume Ω1 and Ω2 are open bounded subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩
(
Ω2 \Ω1

)
−→ K (3.1)

be a completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2, or

(ii) ‖Au‖ ≥ ‖u‖ for u ∈ K ∩∂Ω1, ‖Au‖ ≤ ‖u‖ for u ∈ K ∩∂Ω2 hold. Then A has a fixed-point
in K ∩ (Ω2 \Ω1).
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Theorem 3.2. Let there exist numbers r, R satisfying 0 < r < R <∞ such that for t ∈ [t1, σ(tm)]

f(t, x) <
x

Mσ(tm)
for x ∈ [0, r], f(t, x) ≥ Mx

m2σ(tm)
for x ∈ [R,∞). (3.2)

Then BVP (1.2) has at least one positive solution x satisfying r ≤ x(t) ≤ RM/m, t ∈ [t1, σ(tm)].

Proof. It is easy to check by the Arzela-Ascoli theorem that the operator A : P → P is
completely continuous. Let us now define two bounded open sets as follows:

Ω1 = {x ∈ B : ‖x‖ < r}, Ω2 =
{

x ∈ B : ‖x‖ < RM

m

}

. (3.3)

Then Ω1 ⊂ Ω2. For x ∈ P ∩ ∂Ω1, we obtain

Ax(t) =
∫σ(tm)

t1

G(t, s)f(s, x(σ(s)))Δs

≤M
∫σ(tm)

t1

f(s, x(σ(s)))Δs

≤M
∫σ(tm)
t1

x(σ(s))Δs

Mσ(tm)
≤ r = ‖x‖.

(3.4)

Hence ‖Ax‖ ≤ ‖x‖ for x ∈ P ∩ ∂Ω1.
If x ∈ P ∩ ∂Ω2, then ‖x‖ = RM/m and x(t) ≥ (m/M)‖x‖ = R for t ∈ [t1, σ(tm)]. We

have

Ax(t) =
∫σ(tm)

t1

G(t, s)f(s, x(σ(s)))Δs

≥ m
∫σ(tm)

t1

f(s, x(σ(s)))Δs

≥ m
M

∫σ(tm)
t1

x(σ(s))Δs

m2σ(tm)

≥ RM

m
= ‖x‖.

(3.5)

Thus ‖Ax‖ ≥ ‖x‖ for x ∈ P ∩ ∂Ω2. By the first part of Theorem 3.1, A has a fixed-
point in P ∩ (Ω2 \ Ω1). Therefore, the BVP (1.2) has at least one positive solution satisfying
r ≤ x(t) ≤ RM/m, t ∈ [t1, σ(tm)].

Now, we will apply the following (Avery-Henderson) fixed-point theorem to prove
the existence of at least two positive solutions to BVP (1.2).
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Theorem 3.3 (see [12]). Let P be a cone in a real Banach space E. Set

P
(
φ, r

)
=
{
u ∈ P : φ(u) < r

}
. (3.6)

If η and φ are increasing, nonnegative continuous functionals on P , let θ be a nonnegative continuous
functional on P with θ(0) = 0 such that, for some positive constants r andM,

φ(u) ≤ θ(u) ≤ η(u), ‖u‖ ≤Mφ(u), (3.7)

for all u ∈ P(φ, r). Suppose that there exist positive numbers p < q < r such that

θ(λu) ≤ λθ(u), ∀ 0 ≤ λ ≤ 1, u ∈ ∂P(θ, q). (3.8)

If A : P(φ, r) → P is a completely continuous operator satisfying

(i) φ(Au) > r for all u ∈ ∂P(φ, r),
(ii) θ(Au) < q for all u ∈ ∂P(θ, q),
(iii) P(η, p)/= ∅ and η(Au) > p for all u ∈ ∂P(η, p),

then A has at least two fixed-points u1 and u2 such that

p < η(u1) with θ(u1) < q, q < θ(u2) with φ(u2) < r. (3.9)

Theorem 3.4. Suppose there exist numbers p, q, and r satisfying 0 < p < q < r such that the function
f satisfies the following conditions:

(i) f(t, x) > r/m for t ∈ [tm−1, σ(tm)] and x ∈ [r, rM/m(σ(tm) − tm−1)];

(ii) f(t, x) < q/Mσ(tm) for t ∈ [t1, σ(tm)] and x ∈ [0, qM/m];

(iii) f(t, x) > p/m(σ(tm) − tm−1) for t ∈ [tm−1, σ(tm)] and x ∈ [pm/M, p].

Then the BVP (1.2) has at least two positive solutions x1 and x2 such that

p < sup
t∈[t1,σ(tm)]

x1(t) with sup
t∈[tm−1,σ(tm)]

x1(t) < q,

q < sup
t∈[tm−1,σ(tm)]

x2(t) with inf
t∈[tm−1,σ(tm)]

x2(t) < r.
(3.10)

Proof . Let the nonnegative increasing continuous functionals φ, θ, and η be defined on the
cone P by

φ(x) = inf
t∈[tm−1,σ(tm)]

x(t), θ(x) = sup
t∈[tm−1,σ(tm)]

x(t), η(x) = sup
t∈[t1,σ(tm)]

x(t). (3.11)
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For each x ∈ P , we have φ(x) ≤ θ(x) ≤ η(x) and

x(t) =
∫σ(tm)

t1

G(t, s)f(s, x(σ(s)))Δs

≤ M

m
m

∫σ(tm)

t1

f(s, x(σ(s)))Δs

≤ M

m
inf

(t,s)∈[t1,σ(tm)]×[t1,tm]
G(t, s)

∫σ(tm)

t1

f(s, x(σ(s)))Δs

≤ M

m
inf

t∈[t1,σ(tm)]

∫σ(tm)

t1

G(t, s)f(s, x(σ(s)))Δs

=
M

m
φ(x).

(3.12)

Then ‖x‖ ≤ (M/m)φ(x). In addition, θ(0) = 0 and for all x ∈ P , λ ∈ [0, 1] we obtain θ(λx) =
λθ(x).

Now we will verify the remaining conditions of Theorem 3.3.

Claim 1. If x ∈ ∂P(φ, r), then φ(Ax) > r. Since x ∈ ∂P(φ, r), we have r =
inft∈[tm−1,σ(tm)]x(t) ≤ ‖x‖ ≤ rM/m for t ∈ [tm−1, σ(tm)]. Then, we get

φ(Ax) =
∫σ(tm)

t1

min
t∈[tm−1,σ(tm)]

G(t, s)f(s, x(σ(s)))Δs

≥ m
∫σ(tm)

tm−1
f(s, x(σ(s)))Δs

> r

(3.13)

by hypothesis (i).

Claim 2. If x ∈ ∂P(θ, q), then θ(Ax) < q. Since x ∈ ∂P(θ, q), 0 ≤ x(t) ≤ ‖x‖ ≤
(M/m)φ(x) ≤ (M/m)θ(x) = qM/m for t ∈ [t1, σ(tm)]. Thus, by hypothesis (ii) we have

θ(Ax) =
∫σ(tm)

t1

max
t∈[tm−1,σ(tm)]

G(t, s)f(s, x(σ(s)))Δs

≤M
∫σ(tm)

t1

f(s, x(σ(s)))Δs

< q.

(3.14)
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Claim 3. P(η, p)/= ∅ and η(Ax) > p for all x ∈ ∂P(η, p). Since 0 ∈ P and p > 0, P(η, p)/= ∅.
If x ∈ ∂P(η, p), we get (m/M)p ≤ φ(x) ≤ x(t) ≤ ‖x‖ = p for t ∈ [tm−1, σ(tm)]. Hence, we obtain

η(Ax) ≥
∫σ(tm)

t1

G(t, s)f(s, x(σ(s)))Δs

≥ m
∫σ(tm)

tm−1
f(s, x(σ(s)))Δs

> p

(3.15)

by hypothesis (iii). This completes the proof.

To prove the existence of at least three positive solutions for the BVP (1.2), we will
apply the following (Leggett-Williams) fixed-point theorem.

Theorem 3.5 (see [13]). Let P be a cone in the real Banach space E. Set

Pr := {x ∈ P : ‖x‖ < r},
P
(
ψ, a, b

)
:=

{
x ∈ P : a ≤ ψ(x), ‖x‖ ≤ b}.

(3.16)

SupposeA : Pr → Pr is a completely continuous operator and ψ is a nonnegative continuous concave
functional on P with ψ(u) ≤ ‖u‖ for all u ∈ Pr . If there exists 0 < p < q < l ≤ r such that the
following condition hold:

(i) {u ∈ P(ψ, q, l) : ψ(u) > q}/= ∅ and ψ(Au) > q for all u ∈ P(ψ, q, l);
(ii) ‖Au‖ < p for ‖u‖ ≤ p;
(iii) ψ(Au) > q for u ∈ P(ψ, q, r) with ‖Au‖ > l,

then A has at least three fixed-points u1, u2, and u3 in Pr satisfying

‖u1‖ < p, ψ(u2) > q, p < ‖u3‖ with ψ(u3) < q. (3.17)

Theorem 3.6. Suppose that there exist numbers p, q, and r satisfying 0 < p < q < qM/m ≤ r such
that for t ∈ [t1, σ(tm)] the function f satisfies the following conditions:

(i) f(t, x) ≤ r/Mσ(tm), x ∈ [0, r],

(ii) f(t, x) > q/mσ(tm), x ∈ [q, qM/m],

(iii) f(t, x) < p/Mσ(tm), x ∈ [0, p].

Then (1.2) has at least three positive solutions x1, x2, and x3 satisfying

sup
t∈[t1,σ(tm)]

x1(t) < p, q < inf
t∈[t1,σ(tm)]

x2(t),

p < sup
t∈[t1,σ(tm)]

x3(t) with inf
t∈[t1,σ(tm)]

x3(t) < q.
(3.18)
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Proof. Define the nonnegative continuous concave functional ψ : P → [0,∞) to be ψ(x) :=
inft∈[t1,σ(tm)]x(t) and the cone P as in (2.8). For all x ∈ P , we have ψ(x) ≤ ‖x‖. If x ∈ Pr , then
0 ≤ x ≤ r and f(t, x) ≤ r/Mσ(tm) from the hypothesis (i). Then we get

‖Ax‖ = sup
t∈[t1,σ(tm)]

∫σ(tm)

t1

G(t, s)f(s, x(σ(s)))Δs

≤M
∫σ(tm)

t1

f(s, x(σ(s)))Δs

≤ r

(3.19)

by Lemma 2.2. This proves that A : Pr → Pr . Similarly, by the hypothesis (iii), the condition
(ii) of Theorem 3.5 is satisfied.

Since qM/m ∈ P(ψ, q, qM/m) and ψ(qM/m) > q, {y ∈ P(ψ, q, qM/m) : ψ(x) > q}/= ∅.
For all x ∈ P(ψ, q, qM/m), we have q ≤ inft∈[t1,σ(tm)]x(t) ≤ ‖x‖ ≤ qM/m for t ∈ [t1, σ(tm)].
Using the hypothesis (ii) and Lemma 2.2, we find

ψ(Ax) =
∫σ(tm)

t1

inf
t∈[t1,σ(tm)]

G(t, s)f(s, x(σ(s)))Δs

≥ m
∫σ(tm)

t1

f(s, x(σ(s)))Δs

> q.

(3.20)

Hence, the condition (i) of Theorem 3.5 holds.
For the condition (iii) of Theorem 3.5, we suppose that x ∈ P(ψ, q, r) with ‖Ax‖ >

qM/m. Then, from Lemma 2.2 we obtain

ψ(Ax) = inf
t∈[t1,σ(tm)]

Ax(t) ≥ m

M
‖Ax‖ > q. (3.21)

This completes the proof.

4. Examples

Example 4.1. Let T = Z. We consider the first-order four-point BVP as follows:

xΔ(t) + x(σ(t)) =
x + 5
x4 + 1

, t ∈ [0, 5] ⊂ T,

x(0) = x(1) + x(2) + x(6).
(4.1)

Taking a(t) ≡ 1, t1 = 0, t2 = 1, t3 = 2, t4 = 5, and α1 = α2 = α3 = 1, we have Γ = 64/15, m =
1/960, andM = 384/5. If we take p = 0.001, q = 0.01, and r = 0.02; then all the assumptions
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in Theorem 3.4 are satisfied. Finally, BVP (4.1) has at least two positive solutions x1 and x2
such that

0.001 < sup
t∈[0,6]

x1(t) with sup
t∈[2,6]

x1(t) < 0.01,

0.01 < sup
t∈[2,6]

x2(t) with inf
t∈[2,6]

x2(t) < 0.02.
(4.2)

Example 4.2. Let T = N
2
0. We consider the first-order four-point BVP as follows:

xΔ(t) + x(σ(t)) = f(t, x(σ(t))), t ∈ [0, 9] ⊂ T,

x(0) = x(1) + x(4) + x(16),
(4.3)

where a(t) ≡ 1, t1 = 0, t2 = 1, t3 = 4, t4 = 9, α1 = α2 = α3 = 1, and

f(t, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x

400
, (t, x) ∈ [0, 16] × [0, 1],

(

6870 − 1
400

)

x +
2

400
− 6870, (t, x) ∈ [0, 16] × [1, 2],

15x
882434

+ 6870 − 15
441217

, (t, x) ∈ [0, 16] × [2,∞).

(4.4)

Hence, we obtain Γ = 384/143, m = 1/54912, andM = 2296/143. If we take p = 1, q = 2, and
r = 1764870; then all the assumptions in Theorem 3.6 are satisfied. Finally, BVP (4.3) has at
least three positive solutions x1, x2, and x3 such that

sup
t∈[0,16]

x1(t) < 1, 2 < inf
t∈[0,16]

x2(t),

1 < sup
t∈[0,16]

x3(t) with inf
t∈[0,16]

x3(t) < 2.
(4.5)
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