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(1.3), and so extends some well-known results.
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1. Introduction

Let


xv be a given infinite series with partial sums (sn), and let T be an infinitematrix with complex numbers. By (Tn(s))
we denote the T -transform of the sequence s = (sn), i.e.,

Tn(s) =

∞
v=0

tnvsv, n, v = 0, 1, 2, . . . . (1.1)

The series


av is then said to be k-absolutely summable by T for k ≥ 1, written by |T |k, if

∞
n=1

nk−1
|1Tn−1(s)|k < ∞ (1.2)

where ∆ is the forward difference operator defined by 1Tn−1(s) = Tn−1(s) − Tn(s), [1].
A matrix T is said to be a bounded linear operator from Ak to Ar , denoted by T ∈ B(Ak, Ar), if T : Ak → Ar , where

Ak =


(Sv) :

∞
v=1

vk−1
|1Sv−1|

k < ∞


. (1.3)

In 1970, Das [2] defined a matrix T to be absolutely k-th power conservative for k ≥ 1, denoted by B(Ak), i.e., if (Tn(s)) ∈ Ak
for every sequence (sn) ∈ Ak, and also proved that every conservative Hausdorff matrix H ∈ B(Ak, Ak), i.e., H ∈ B(Ak).

Let (C, α) denote the Cesáromatrix of order α > −1, σ α
n its n-th transform of a sequence (sn). Using Tn(s) = σ α

n , Flett [3]
proved that, if a series


xn is summable |C, α|k, then it is also summable |C, β|r for each r ≥ k > 1 and β ≥ α+1/k−1/r ,

or r ≥ k ≥ 1 and β > α + 1/k − 1/r . Setting α = 0 gives an inclusion type theorem for Cesáro matrices.
Recently, Savaş and Şevli [4] have proved the following theorem dealing with an extension of Flett’s result. Some authors

have also attributed to generalize the result of Flett. For example [5], see.
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Theorem 1.1. Let r ≥ k ≥ 1.

(i) It holds (C, α) ∈ B(Ak, Ar) for each α > 1 − k/r.
(ii) If α = 1 − k/r and the condition


∞

n=1 n
k−1 log n|an|k = O(1) is satisfied, then (C, α) ∈ B(Ak, Ar).

(iii) If the condition


∞

n=1 n
k+(r/k)(1−α)−2

|an|k = O(1) is satisfied then (C, α) ∈ B(Ak, Ar) for each −k/r < α < 1 − k/r.

It should be noted that Part (i) of Theorem 1.1 is easily obtained from Flett’s result since α > 1 − k/r = (r − k)/r ≥

(r − k)/rk = 1/k − 1/r for r ≥ k ≥ 1. Also, Parts (ii) and (iii) are not correct. In fact, if −k/r < α < 1 − k/r , then
(r/k)(1 − α) − 1 > 0 and so

∞
n=1

nk−1
|an|k ≤

∞
n=1

nk+(r/k)(1−α)−2
|an|k < ∞

and also
∞
n=1

nk−1
|an|k ≤

∞
n=1

log nnk−1
|an|k < ∞.

This means that (C, α) maps a proper subset of Ak to Ar , and hence (C, α) ∉ B(Ak, Ar).
Motivated by Theorem 1.1, a natural problem is what the sufficient conditions are for T ∈ B(Ak, Ar), where T is any lower

triangular matrix and k, r ≥ 1.

2. Main results

The aim of this paper is to answer the above problem for r ≥ k ≥ 1 by establishing the following theorems which give
us more than we need, and also deduce various known results.

Given a lower triangular matrix T = (tnv), we can associate with T two matrices T = (tnv) andT = (tnv) defined by

tnv =

n
j=v

tnj, n, v = 0, 1, . . . ,t00 = t00 = t00, tnv = tnv − tn−1,v, n = 1, 2, . . . .

Then

Tn(s) =

n
v=0

tnvsv =

n
v=0

tnv
v

i=0

xi =

n
i=0

xi
n

v=i

tnv =

n
v=0

tnvxv

and

1Tn−1(s) =

n
v=0

tnvxv −

n−1
v=0

tn−1,vxv = −

n
v=0

tnvxv, (tn−1,n = 0). (2.1)

Thus, B(Ak, Ar) means that
∞
n=1

nk−1
|xn|k < ∞ ⇒

∞
n=1

nr−1
|1Tn−1(s)|r < ∞.

With these notations we have the following.

Theorem 2.1. Let T = (tnv) be a lower triangular matrix. Then T ∈ B(Ak, Ar) for r ≥ k ≥ 1 if

∞
n=v

nr−1dr/k
′

n |tnv|r/µ = O(1) (2.2)

and
∞
n=1

nr−1
|tn0|r < ∞, (2.3)

where µ = 1 + r/k′,

dn =

n
v=1

v−1
|tnv|k′/µ′

,

k′ and µ′ are the conjugates of k and µ.
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Proof. Let r ≥ k ≥ 1. By applying Hölder’s inequality in (2.1) we have

|1Tn−1(s)| ≤

n
v=0

|tnv| |xv|

= |tn0| |x0| +

n
v=1


v1/k′

|tnv|1/µ|xv|

 
v−1/k′

|tnv|1/µ′


≤ |tn0| |x0| +


n

v=1

|tnv|k/µvk−1
|xv|

k

1/k  n
v=1

v−1
|tnv|k′/µ′

1/k′

. (2.4)

The last factor on the right of (2.4) is to be omitted if k = 1. Further, since (xv) ∈ Ak, it follows from Hölder’s inequality with
indices r/k, r/(r − k) that

n
v=1

|tnv|k/µvk−1
|xv|

k
=

n
v=1


|tnv|k/µv

−k
r +

k2
r |xv|

k2
r


v

−(r−k)+k(r−k)
r |xv|

k(r−k)
r



≤


n

v=1

|tnv|r/µvk−1
|xv|

k

k/r  n
v=1

vk−1
|xv|

k

(r−k)/r

= O(1)


n

v=1

|tnv|r/µvk−1
|xv|

k

k/r

, (2.5)

which implies that

|1Tn−1(s)|r = O(1)


|tn0|r + dr/k

′

n

n
v=1

|tnv|r/µvk−1
|xv|

k


.

The second factor of (2.5) is to be omitted if r = k. Therefore by (2.2) and (2.3) we get

∞
n=1

nr−1
|1Tn−1(s)|r = O(1)


∞
n=1

nr−1
|tn0|r +

∞
n=1

nr−1dr/k
′

n

n
v=1

|tnv|r/µvk−1
|xv|

k



= O(1)


∞
n=1

nr−1
|tn0|r +

∞
v=1

vk−1
|xv|

k
∞
n=v

nr−1dr/k
′

n |tnv|r/µ < ∞

= O(1)


∞
n=1

nr−1
|tn0|r +

∞
v=1

vk−1
|xv|

k


< ∞,

which completes the proof. �

The following theorem establishes the necessary conditions for T ∈ B(Ak, Ar).

Theorem 2.2. Let T = (tnv) be a lower triangular matrix. If T ∈ B(Ak, Ar) for r ≥ k ≥ 1, then

∞
n=v

nr−1
|tnv|r = O(vr/k′) as v → ∞. (2.6)

Proof. It is routine to verify that Ak is a Banach space and also K -space (i.e., the coordinate functionals are continuous) if
normed by

∥s∥ =


|s0|k +

∞
v=1

vk−1
|1Sv−1|

k

1/k

=


|x0|k +

∞
v=1

vk−1
| xv|

k

1/k

.

Hence the map T : Ak → Ar is continuous, i.e., there exists a constantM > 0 such that ∥T (x)∥ ≤ M∥x∥, equivalently
|T0(s)|r +

∞
n=1

nr−1

 n
v=0

tnvxv


r1/r

≤ M


|x0|k +

∞
v=1

vk−1
|xv|

k

1/k

(2.7)
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for all x ∈ Ak. Taking any v ≥ 1, if we apply (2.1) with xv = 1, xn = 0(n ≠ v), then we obtain

1Tn−1(s) =


0, if n < v

−tnv, if n ≥ v


,

and so
∞
n=v

nr−1
|tnv|r1/r

≤ M(vk−1)1/k

by (2.7), which is equivalent to (2.6). �

Corollary 2.3. Let T = (tnv) be a lower triangular matrix. Then T ∈ B(A1, Ar) for r ≥ 1 if and only if

∞
n=v

nr−1
|tnv|r = O(1) as v → ∞. (2.8)

In order to justify the fact that results of Theorems 2.1 and 2.2 are significant, we give some applications.

Lemma 2.4 ([6]). Let 1 ≤ k < ∞, β > −1 and σ < β . For v ≥ 1, let Ev =


∞

n=v

|Aσ
n−v |

k

n(Aβ
n )k

. Then, if k = 1,

Ev =


O(v−β−1), if σ ≤ −1
O(v−β+σ ), if σ > −1


.

If 1 < k < ∞, then

Ev =

O(v−kβ−1), if σ < −1/k
O(v−kβ−1 log v), if σ = −1/k
O(v−kβ+kσ ), if σ > −1/k


we apply Theorems 2.1 and 2.2 to the Cesáro matrix of order α > −1 in which the matrix T is given by tnv = (Aα−1

n−v )/Aα
n . It is

well-known that (see [7]) tnv = Aα
n−v/A

α
n andtnv = vAα−1

n−v/(nAα
n ).

Thus, considering Lemma 2.4 and Theorem 2.1, we get the following result of Flett.

Corollary 2.5. (i) If r ≥ k ≥ 1 and α > 1/k − 1/r, then (C, α) ∈ B(Ak, Ar).
(ii) If r ≥ k ≥ 1 and −1 < α < 1/k − 1/r, then (C, α) ∉ B(Ak, Ar).
(iii) If r = k ≥ 1 and α = 1/k − 1/r, then (C, α) ∈ B(Ak, Ar).

Proof. (i) Letα > 1/k−1/r . If r ≥ k > 1, then it is seen thatµ/r = µ′/k′
= 1−1/k+1/r and r(α−1)/µ = k′(α−1)/µ′ >

−1. Thus it follows that

dn =

n
v=1

v−1

vAα−1
n−v

nAα
n


k′/µ′

= O(n−k′/µ′

),

and so

Ev =

∞
n=v

nr−1(dn)r/k
′

|tnv|r/µ = O(1)
∞
n=v

nr−1n−r/µ′

vAα−1
n−v

nAα
n


r/µ

= O(vr/µ)

∞
n=v

|Aα−1
n−v |

r/µ

n(Aα
n )

r/µ
= O(1) as v → ∞,

by Lemma 2.4. Hence, the proof of (i) is completed by Theorem 2.1.

(ii) If −1 < α < 1/k − 1/r , then v(1/k)−(1/r)tvv = v(1/k)−(1/r) Aα−1
0
Aα
v

∼= v(1/k)−(1/r)−α
≠ O(1), i.e., the condition (2.6) is not

satisfied, and so the result is seen from Theorem 2.2.
(iii) is clear from Lemma 2.4 and Theorem 2.1. �

A discrete generalized Cesáro matrix (see [8]) is a triangular matrix T with nonzero entries tnv = λn−v/(n + 1), where
0 ≤ λ ≤ 1.

Corollary 2.6. Let Cλ be a Rhaly discrete matrix. Then Cλ ∈ B(Ak, Ar) for 0 < λ < 1 and r ≥ k ≥ 1.
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Proof. In Theorem 2.1, take T = Cλ. If r ≥ k > 1, then k′/µ′
≥ 1. Now we have

|tnv| =

 1
n + 1

n
j=0

λn−j
−

1
n

n−1
j=0

λn−1−j
−

λn

n + 1

v−1
j=0


1
λ

j

+
λn−1

n

v−1
j=0


1
λ

j


=

 1
n + 1


1 − λn+1

1 − λ


−

1
n


1 − λn

1 − λ


+


λn−1

n
−

λn

n + 1


λ

1 − λ


1
λ

v
− 1


= O(1)


1
n2

+
λn−v

n


and so

dn =

n
v=1

1
v
|tnv|k′/µ′

= O(1)

 log n
n2k′/µ′

+
1

nk′/µ′

n
v=1


λk′/µ′

n−v

v

 = O(1)


1
nk′/µ′



which gives us

∞
n=v

nr−1dr/k
′

n |tnv|r/µ = O(1)
∞
n=v


1

n1+r/µ
+


λr/µ

n−v

n


= O(1).

Hence Cλ ∈ B(Ak, Ar). �

Lemma 2.7 ([9]). Suppose that k > 0 and pn > 0, Pn = p0 + p1 + · · · + pn → ∞ as n → ∞. Then there exist two (strictly)
positive constants M and N, depending only on k, for which

M
Pk

v−1
≤

∞
n=v

pn
PnPk

n−1
≤

N
Pk

v−1

for all v ≥ 1, where M and N are independent of (pn).

The p-Cesáro matrix defined in [10] is a triangular matrix Tp with nonzero entries tnv = 1/(n + 1)p for some p ≥ 1. The
case p = 1 is reduced to the Cesáro matrix of order one.

Corollary 2.8. Let Tp be the p-Cesáro matrix and p > 1. If r ≥ k ≥ 1, then Tp ∈ B(Ak, Ar).

Proof. In Theorem 2.1, take T = Tp. Then we have

|tnv| =

 1
np−1

−
1

(n + 1)p−1
− v


1
np

−
1

(n + 1)p

 = O(1)


1
(n + 1)np−1

+
v

(n + 1)np


= O


1
np


for v ≤ n, and so which gives us

∞
n=v

nr−1dr/k
′

n |tnv|r/µ = O(1)
∞
n=v

(log n)r/k
′ 1
n(p−1)r+1

= O(1),

for r ≥ k > 1 by Cauchy Condensation Test (see [11]). Therefore Tp ∈ B(Ak, Ar).
If T is the matrix of weighted mean (N, pn) (see [1]), then a few calculations reveal that

tnv =
pnPv−1

PnPn−1
and dn =


pn

PnPn−1

k′/µ′ n
v=1

1
v
Pk′/µ′

v−1 . �

Corollary 2.9. Let (pn) be a positive sequence and let r ≥ k ≥ 1. Then (N, pn) ∈ B(Ak, Ar) if

npn = O(Pn) (2.9)

and

Pn = O(npn). (2.10)
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Proof. dn = O(1)


pn
Pn

k′/µ′

for r ≥ k > 1, by (2.10). So, making use of Lemma 2.7, we get

∞
n=v

nr−1dr/k
′

n |tnv|r/µ = O(1)P r/µ
v−1

∞
n=v


npn
Pn

r−1 pn
PnP

r/µ
n−1

= O(1)

by (2.9). �

Now, using a different technique we give other applications.

Corollary 2.10. |N, pn| ⇒ |N, qn|k, (every series summable |N, pn| is also summable by |N, qn|k), k ≥ 1, if and only if

Qvpv

qvPv

= O(v−1/k′) (2.11)

and 
Qvpv

qv

− Pv

 ∞
n=v+1

nk−1


pn
PnPn−1

k
1/k

= O(1). (2.12)

Proof. In Corollary 2.3, take the matrix T = tnv as follows:

tnv =


(pv/qv − pv+1/qv+1)Qv/Pn, if 0 ≤ v ≤ n − 1
pnQn/Pnqn, if v = n
0, if v > n


where (pn) and (qn) are sequences of positive numbers such that Pn = p0 + · · · + pn → ∞ and Qn = q0 + · · · + qn → ∞.
If (Tn) and (tn) are sequences of (N, qn) and (N, pn) means of the series


xv , then

tn =

n
v=0

tnvTv.

On the other hand, it is easy to see that

tnv =


(pn/PnPn−1)(Pv − Qvpv/qv), if 0 ≤ v ≤ n − 1
pnQn/Pnqn, if v = n
0, if v > n


(2.13)

which implies
∞
n=v

nr−1
|tnv|r = vr−1(pvQv/Pvqv)

r
+ |Pv − Qvpv/qv|

r
∞

n=v+1

nr−1


pn
PnPn−1

r

.

Hence the proof is completed by Corollary 2.3. �

This result is the main result of [12].

Corollary 2.11. Let (pn) be a positive sequence and k > 1. Then |C, 1|k ⇔ |N, pn|k if and only if condition (2.9) and (2.10) is
satisfied.

Proof. Sufficiency. Let qn = 1 in (2.13) and k = r in Theorem 2.1. Then, since µ = k = r and

tnv =


(pn/PnPn−1)(Pv − (v + 1)pv), if 0 ≤ v ≤ n − 1
(v + 1)pv/Pv, if v = n
0, if v > n


(2.14)

and so by (2.9) and (2.10) we obtain

dn =

n
v=1

1
v
|tnv|k′/µ′

=
pn

PnPn−1

n−1
v=1

1
v
|Pv − (v + 1)pv| +

(n + 1)pn
nPn

= O

1
n


,

and so
∞
n=v

nr−1dr/k
′

n |tnv|r/µ =
(v + 1)pv

Pv

+ |Pv − (v + 1)pv|

∞
n=v+1

pn
PnPn−1

= O(1),
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which gives that |C, 1|k ⇒ |N, pn|k. Also, if pn = 1 and r = k, then we have

tnv =

1/n(n + 1)((v + 1) − Pv/pv), if 0 ≤ v ≤ n − 1
Pv/(v + 1)pv, if v = n
0, if v > n


. (2.15)

Thus it follows from condition (2.2) and (2.3) of Theorem 2.1 that |N, qn|k ⇒ |C, 1|k.
Necessity. In Theorem 2.1, take r = k. If |N, pn|k ⇒ |C, 1|k and |C, 1|k ⇒ |N, pn|k then it is seen from (2.14) and (2.15)

that
∞
n=v

nk−1
|tnv|k = vk−1


(v + 1)pv

Pv

k

|Pv − (v + 1)pv|
k

∞
n=v+1

nk−1


pn
PnPn−1

k

= O(vk−1)

and
∞
n=v

nk−1
|tnv|k = vk−1


Pv

(v + 1)pv

k v + 1 −
Pv

pv

k ∞
n=v+1

1
n(n + 1)k

= O(vk−1),

which gives us that (2.11) and (2.12), respectively. �

The sufficiency and necessity of this result are proven in [9,13], respectively.
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