Matrix operators on sequence A_{k}

Mehmet Ali Sarigöl

Department of Mathematics, University of Pamukkale, Denizli 20007, Turkey

ARTICLE INFO

Article history:

Received 1 March 2011
Received in revised form 5 November 2011
Accepted 7 November 2011

Keywords:

Bounded operator
Banach sequence space
Absolute summability

Abstract

This paper gives necessary or sufficient conditions for a triangular matrix T to be a bounded operator from A_{k} to A_{r}, i.e., $T \in B\left(A_{k}, A_{r}\right)$ for the case $r \geq k \geq 1$ where A_{k} is defined by (1.3), and so extends some well-known results. © 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let $\sum x_{v}$ be a given infinite series with partial sums $\left(s_{n}\right)$, and let T be an infinite matrix with complex numbers. By ($T_{n}(s)$) we denote the T-transform of the sequence $s=\left(s_{n}\right)$, i.e.,

$$
\begin{equation*}
T_{n}(s)=\sum_{v=0}^{\infty} t_{n v} s_{v}, \quad n, v=0,1,2, \ldots . \tag{1.1}
\end{equation*}
$$

The series $\sum a_{v}$ is then said to be k-absolutely summable by T for $k \geq 1$, written by $|T|_{k}$, if

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{k-1}\left|\Delta T_{n-1}(s)\right|^{k}<\infty \tag{1.2}
\end{equation*}
$$

where Δ is the forward difference operator defined by $\Delta T_{n-1}(s)=T_{n-1}(s)-T_{n}(s)$, [1].
A matrix T is said to be a bounded linear operator from A_{k} to A_{r}, denoted by $T \in B\left(A_{k}, A_{r}\right)$, if $T: A_{k} \rightarrow A_{r}$, where

$$
\begin{equation*}
A_{k}=\left\{\left(S_{v}\right): \sum_{v=1}^{\infty} v^{k-1}\left|\Delta S_{v-1}\right|^{k}<\infty\right\} . \tag{1.3}
\end{equation*}
$$

In 1970, Das [2] defined a matrix T to be absolutely k-th power conservative for $k \geq 1$, denoted by $B\left(A_{k}\right)$, i.e., if $\left(T_{n}(s)\right) \in A_{k}$ for every sequence $\left(s_{n}\right) \in A_{k}$, and also proved that every conservative Hausdorff matrix $H \in B\left(A_{k}, A_{k}\right)$, i.e., $H \in B\left(A_{k}\right)$.

Let (C, α) denote the Cesáro matrix of order $\alpha>-1, \sigma_{n}^{\alpha}$ its n-th transform of a sequence $\left(s_{n}\right)$. Using $T_{n}(s)=\sigma_{n}^{\alpha}$, Flett [3] proved that, if a series $\sum x_{n}$ is summable $|C, \alpha|_{k}$, then it is also summable $|C, \beta|_{r}$ for each $r \geq k>1$ and $\beta \geq \alpha+1 / k-1 / r$, or $r \geq k \geq 1$ and $\beta>\alpha+1 / k-1 / r$. Setting $\alpha=0$ gives an inclusion type theorem for Cesáro matrices.

Recently, Savaş and Şevli [4] have proved the following theorem dealing with an extension of Flett's result. Some authors have also attributed to generalize the result of Flett. For example [5], see.

[^0]Theorem 1.1. Let $r \geq k \geq 1$.
(i) It holds $(C, \alpha) \in B\left(A_{k}, A_{r}\right)$ for each $\alpha>1-k / r$.
(ii) If $\alpha=1-k / r$ and the condition $\sum_{n=1}^{\infty} n^{k-1} \log n\left|a_{n}\right|^{k}=O(1)$ is satisfied, then $(C, \alpha) \in B\left(A_{k}, A_{r}\right)$.
(iii) If the condition $\sum_{n=1}^{\infty} n^{k+(r / k)(1-\alpha)-2}\left|a_{n}\right|^{k}=O(1)$ is satisfied then $(C, \alpha) \in B\left(A_{k}, A_{r}\right)$ for each $-k / r<\alpha<1-k / r$.

It should be noted that Part (i) of Theorem 1.1 is easily obtained from Flett's result since $\alpha>1-k / r=(r-k) / r \geq$ $(r-k) / r k=1 / k-1 / r$ for $r \geq k \geq 1$. Also, Parts (ii) and (iii) are not correct. In fact, if $-k / r<\alpha<1-k / r$, then $(r / k)(1-\alpha)-1>0$ and so

$$
\sum_{n=1}^{\infty} n^{k-1}\left|a_{n}\right|^{k} \leq \sum_{n=1}^{\infty} n^{k+(r / k)(1-\alpha)-2}\left|a_{n}\right|^{k}<\infty
$$

and also

$$
\sum_{n=1}^{\infty} n^{k-1}\left|a_{n}\right|^{k} \leq \sum_{n=1}^{\infty} \log n n^{k-1}\left|a_{n}\right|^{k}<\infty
$$

This means that (C, α) maps a proper subset of A_{k} to A_{r}, and hence $(C, \alpha) \notin B\left(A_{k}, A_{r}\right)$.
Motivated by Theorem 1.1, a natural problem is what the sufficient conditions are for $T \in B\left(A_{k}, A_{r}\right)$, where T is any lower triangular matrix and $k, r \geq 1$.

2. Main results

The aim of this paper is to answer the above problem for $r \geq k \geq 1$ by establishing the following theorems which give us more than we need, and also deduce various known results.

Given a lower triangular matrix $T=\left(t_{n v}\right)$, we can associate with T two matrices $\bar{T}=\left(\bar{t}_{n v}\right)$ and $\widehat{T}=\left(\widehat{t}_{n v}\right)$ defined by

$$
\bar{t}_{n v}=\sum_{j=v}^{n} t_{n j}, \quad n, v=0,1, \ldots, \widehat{t}_{00}=\bar{t}_{00}=t_{00}, \quad \widehat{t}_{n v}=\bar{t}_{n v}-\bar{t}_{n-1, v}, \quad n=1,2, \ldots
$$

Then

$$
T_{n}(s)=\sum_{v=0}^{n} t_{n v} s_{v}=\sum_{v=0}^{n} t_{n v} \sum_{i=0}^{v} x_{i}=\sum_{i=0}^{n} x_{i} \sum_{v=i}^{n} t_{n v}=\sum_{v=0}^{n} \bar{t}_{n v} x_{v}
$$

and

$$
\begin{equation*}
\Delta T_{n-1}(s)=\sum_{v=0}^{n} \bar{t}_{n v} x_{v}-\sum_{v=0}^{n-1} \bar{t}_{n-1, v} x_{v}=-\sum_{v=0}^{n} \widehat{t}_{n v} x_{v}, \quad\left(\bar{t}_{n-1, n}=0\right) \tag{2.1}
\end{equation*}
$$

Thus, $B\left(A_{k}, A_{r}\right)$ means that

$$
\sum_{n=1}^{\infty} n^{k-1}\left|x_{n}\right|^{k}<\infty \Rightarrow \sum_{n=1}^{\infty} n^{r-1}\left|\Delta T_{n-1}(s)\right|^{r}<\infty
$$

With these notations we have the following.
Theorem 2.1. Let $T=\left(t_{n v}\right)$ be a lower triangular matrix. Then $T \in B\left(A_{k}, A_{r}\right)$ for $r \geq k \geq 1$ if

$$
\begin{equation*}
\sum_{n=v}^{\infty} n^{r-1} d_{n}^{r / k^{\prime}}\left|\hat{t}_{n v}\right|^{r / \mu}=O(1) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{r-1}\left|\widehat{t}_{n 0}\right|^{r}<\infty \tag{2.3}
\end{equation*}
$$

where $\mu=1+r / k^{\prime}$,

$$
d_{n}=\sum_{v=1}^{n} v^{-1}\left|\widehat{t}_{n v}\right|^{k^{\prime} / \mu^{\prime}}
$$

k^{\prime} and μ^{\prime} are the conjugates of k and μ.

Proof. Let $r \geq k \geq 1$. By applying Hölder's inequality in (2.1) we have

$$
\begin{align*}
\left|\Delta T_{n-1}(s)\right| & \leq \sum_{v=0}^{n}\left|\widehat{t}_{n v}\right|\left|x_{v}\right| \\
& =\left|\widehat{t}_{n 0}\right|\left|x_{0}\right|+\sum_{v=1}^{n}\left(v^{1 / k^{\prime}}\left|\widehat{t}_{n v}\right|^{1 / \mu}\left|x_{v}\right|\right)\left(v^{-1 / k^{\prime}}\left|\widehat{t}_{n v}\right|^{1 / \mu^{\prime}}\right) \\
& \leq\left|\widehat{t}_{n 0}\right|\left|x_{0}\right|+\left(\sum_{v=1}^{n}\left|\widehat{t}_{n v}\right|^{k / \mu} v^{k-1}\left|x_{v}\right|^{k}\right)^{1 / k}\left(\sum_{v=1}^{n} v^{-1}\left|\widehat{t}_{n v}\right|^{k^{\prime} / \mu^{\prime}}\right)^{1 / k^{\prime}} . \tag{2.4}
\end{align*}
$$

The last factor on the right of (2.4) is to be omitted if $k=1$. Further, since $\left(x_{v}\right) \in A_{k}$, it follows from Hölder's inequality with indices $r / k, r /(r-k)$ that

$$
\begin{align*}
\sum_{v=1}^{n}\left|\widehat{t}_{n v}\right|^{k / \mu} v^{k-1}\left|x_{v}\right|^{k} & =\sum_{v=1}^{n}\left\{\left|\widehat{t}_{n v}\right|^{k / \mu} v^{\frac{-k}{r}+\frac{k^{2}}{r}}\left|x_{v}\right|^{\frac{k^{2}}{r}}\right\}\left\{v^{\frac{-(r-k)+k(r-k)}{r}}\left|x_{v}\right|^{\frac{k(r-k)}{r}}\right\} \\
& \leq\left(\sum_{v=1}^{n}\left|\widehat{t}_{n v}\right|^{r / \mu} v^{k-1}\left|x_{v}\right|^{k}\right)^{k / r}\left(\sum_{v=1}^{n} v^{k-1}\left|x_{v}\right|^{k}\right)^{(r-k) / r} \\
& =O(1)\left(\sum_{v=1}^{n}\left|\widehat{t}_{n v}\right|^{r / \mu} v^{k-1}\left|x_{v}\right|^{k}\right)^{k / r}, \tag{2.5}
\end{align*}
$$

which implies that

$$
\left|\Delta T_{n-1}(s)\right|^{r}=O(1)\left(\left|\widehat{t}_{n}\right|^{r}+d_{n}^{r / k} \sum_{v=1}^{n}\left|\widehat{t}_{n v}\right|^{r / \mu} v^{k-1}\left|x_{v}\right|^{k}\right) .
$$

The second factor of (2.5) is to be omitted if $r=k$. Therefore by (2.2) and (2.3) we get

$$
\begin{aligned}
\sum_{n=1}^{\infty} n^{r-1}\left|\Delta T_{n-1}(s)\right|^{r} & =O(1)\left(\sum_{n=1}^{\infty} n^{r-1}\left|\widehat{t}_{n 0}\right|^{r}+\sum_{n=1}^{\infty} n^{r-1} d_{n}^{r / k^{\prime}} \sum_{v=1}^{n}\left|\widehat{t}_{n v}\right|^{r / \mu} v^{k-1}\left|x_{v}\right|^{k}\right) \\
& =O(1)\left(\sum_{n=1}^{\infty} n^{r-1}\left|\widehat{t}_{n 0}\right|^{r}+\sum_{v=1}^{\infty} v^{k-1}\left|x_{v}\right|^{k} \sum_{n=v}^{\infty} n^{r-1} d_{n}^{r / k^{\prime}}\left|\widehat{t}_{n v}\right|^{r / \mu}\right)<\infty \\
& =O(1)\left(\sum_{n=1}^{\infty} n^{r-1}\left|\widehat{t}_{n 0}\right|^{r}+\sum_{v=1}^{\infty} v^{k-1}\left|x_{v}\right|^{k}\right)<\infty,
\end{aligned}
$$

which completes the proof.
The following theorem establishes the necessary conditions for $T \in B\left(A_{k}, A_{r}\right)$.
Theorem 2.2. Let $T=\left(t_{n v}\right)$ be a lower triangular matrix. If $T \in B\left(A_{k}, A_{r}\right)$ for $r \geq k \geq 1$, then

$$
\begin{equation*}
\sum_{n=v}^{\infty} n^{r-1}\left|\widehat{t}_{n v}\right|^{r}=O\left(v^{r / k^{\prime}}\right) \text { as } v \rightarrow \infty . \tag{2.6}
\end{equation*}
$$

Proof. It is routine to verify that A_{k} is a Banach space and also K-space (i.e., the coordinate functionals are continuous) if normed by

$$
\|s\|=\left(\left|S_{0}\right|^{k}+\sum_{v=1}^{\infty} v^{k-1}\left|\Delta S_{v-1}\right|^{k}\right)^{1 / k}=\left(\left|x_{0}\right|^{k}+\sum_{v=1}^{\infty} v^{k-1}\left|x_{v}\right|^{k}\right)^{1 / k} .
$$

Hence the map $T: A_{k} \rightarrow A_{r}$ is continuous, i.e., there exists a constant $M>0$ such that $\|T(x)\| \leq M\|x\|$, equivalently

$$
\begin{equation*}
\left(\left|T_{0}(s)\right|^{r}+\sum_{n=1}^{\infty} n^{r-1}\left|\sum_{v=0}^{n} \widehat{t}_{n v} x_{v}\right|^{r}\right)^{1 / r} \leq M\left(\left|x_{0}\right|^{k}+\sum_{v=1}^{\infty} v^{k-1}\left|x_{v}\right|^{k}\right)^{1 / k} \tag{2.7}
\end{equation*}
$$

for all $x \in A_{k}$. Taking any $v \geq 1$, if we apply (2.1) with $x_{v}=1, x_{n}=0(n \neq v)$, then we obtain

$$
\Delta T_{n-1}(s)=\left\{\begin{array}{ll}
0, & \text { if } n<v \\
-\widehat{t}_{n v}, & \text { if } n \geq v
\end{array}\right\}
$$

and so

$$
\left(\sum_{n=v}^{\infty} n^{r-1}\left|\widehat{t}_{n v}\right|^{r}\right)^{1 / r} \leq M\left(v^{k-1}\right)^{1 / k}
$$

by (2.7), which is equivalent to (2.6).
Corollary 2.3. Let $T=\left(t_{n v}\right)$ be a lower triangular matrix. Then $T \in B\left(A_{1}, A_{r}\right)$ for $r \geq 1$ if and only if

$$
\begin{equation*}
\sum_{n=v}^{\infty} n^{r-1}\left|\widehat{t}_{n v}\right|^{r}=O(1) \quad \text { as } v \rightarrow \infty \tag{2.8}
\end{equation*}
$$

In order to justify the fact that results of Theorems 2.1 and 2.2 are significant, we give some applications.
Lemma 2.4 ([6]). Let $1 \leq k<\infty, \beta>-1$ and $\sigma<\beta$. For $v \geq 1$, let $E_{v}=\sum_{n=v}^{\infty} \frac{\left|A_{n-v}^{\sigma}\right|^{k}}{n\left(A_{n}^{\beta}\right)^{k}}$. Then, if $k=1$,

$$
E_{v}=\left\{\begin{array}{ll}
O\left(v^{-\beta-1}\right), & \text { if } \sigma \leq-1 \\
O\left(v^{-\beta+\sigma}\right), & \text { if } \sigma>-1
\end{array}\right\} .
$$

If $1<k<\infty$, then

$$
E_{v}=\left\{\begin{array}{ll}
O\left(v^{-k \beta-1}\right), & \text { if } \sigma<-1 / k \\
O\left(v^{-k \beta-1} \log v\right), & \text { if } \sigma=-1 / k \\
O\left(v^{-k \beta+k \sigma}\right), & \text { if } \sigma>-1 / k
\end{array}\right\}
$$

we apply Theorems 2.1 and 2.2 to the Cesáro matrix of order $\alpha>-1$ in which the matrix T is given by $t_{n v}=\left(A_{n-v}^{\alpha-1}\right) / A_{n}^{\alpha}$. It is well-known that (see [7]) $\bar{t}_{n v}=A_{n-v}^{\alpha} / A_{n}^{\alpha}$ and $\widehat{t}_{n v}=v A_{n-v}^{\alpha-1} /\left(n A_{n}^{\alpha}\right)$.

Thus, considering Lemma 2.4 and Theorem 2.1, we get the following result of Flett.
Corollary 2.5. (i) If $r \geq k \geq 1$ and $\alpha>1 / k-1 / r$, then $(C, \alpha) \in B\left(A_{k}, A_{r}\right)$.
(ii) If $r \geq k \geq 1$ and $-1<\alpha<1 / k-1 / r$, then $(C, \alpha) \notin B\left(A_{k}, A_{r}\right)$.
(iii) If $r=k \geq 1$ and $\alpha=1 / k-1 / r$, then $(C, \alpha) \in B\left(A_{k}, A_{r}\right)$.

Proof. (i) Let $\alpha>1 / k-1 / r$. If $r \geq k>1$, then it is seen that $\mu / r=\mu^{\prime} / k^{\prime}=1-1 / k+1 / r$ and $r(\alpha-1) / \mu=k^{\prime}(\alpha-1) / \mu^{\prime}>$ -1 . Thus it follows that

$$
d_{n}=\sum_{v=1}^{n} v^{-1}\left|\frac{v A_{n-v}^{\alpha-1}}{n A_{n}^{\alpha}}\right|^{k^{\prime} / \mu^{\prime}}=O\left(n^{-k^{\prime} / \mu^{\prime}}\right)
$$

and so

$$
\begin{aligned}
E_{v}=\sum_{n=v}^{\infty} n^{r-1}\left(d_{n}\right)^{r / k^{\prime}}\left|\widehat{t}_{n v}\right|^{r / \mu} & =O(1) \sum_{n=v}^{\infty} n^{r-1} n^{-r / \mu^{\prime}}\left|\frac{v A_{n-v}^{\alpha-1}}{n A_{n}^{\alpha}}\right|^{r / \mu} \\
& =O\left(v^{r / \mu}\right) \sum_{n=v}^{\infty} \frac{\left|A_{n-v}^{\alpha-1}\right|^{r / \mu}}{n\left(A_{n}^{\alpha}\right)^{r / \mu}}=O(1) \text { as } v \rightarrow \infty,
\end{aligned}
$$

by Lemma 2.4. Hence, the proof of (i) is completed by Theorem 2.1.
(ii) If $-1<\alpha<1 / k-1 / r$, then $v^{(1 / k)-(1 / r)} t_{v v}=v^{(1 / k)-(1 / r) \frac{A_{0}^{\alpha-1}}{A_{v}^{\alpha}} \cong v^{(1 / k)-(1 / r)-\alpha} \neq O(1) \text {, i.e., the condition (2.6) is not }}$ satisfied, and so the result is seen from Theorem 2.2.
(iii) is clear from Lemma 2.4 and Theorem 2.1.

A discrete generalized Cesáro matrix (see [8]) is a triangular matrix T with nonzero entries $t_{n v}=\lambda^{n-v} /(n+1)$, where $0 \leq \lambda \leq 1$.

Corollary 2.6. Let C_{λ} be a Rhaly discrete matrix. Then $C_{\lambda} \in B\left(A_{k}, A_{r}\right)$ for $0<\lambda<1$ and $r \geq k \geq 1$.

Proof. In Theorem 2.1, take $T=C_{\lambda}$. If $r \geq k>1$, then $k^{\prime} / \mu^{\prime} \geq 1$. Now we have

$$
\begin{aligned}
\left|\widehat{t}_{n v}\right| & =\left|\frac{1}{n+1} \sum_{j=0}^{n} \lambda^{n-j}-\frac{1}{n} \sum_{j=0}^{n-1} \lambda^{n-1-j}-\frac{\lambda^{n}}{n+1} \sum_{j=0}^{v-1}\left(\frac{1}{\lambda}\right)^{j}+\frac{\lambda^{n-1}}{n} \sum_{j=0}^{v-1}\left(\frac{1}{\lambda}\right)^{j}\right| \\
& =\left|\frac{1}{n+1}\left(\frac{1-\lambda^{n+1}}{1-\lambda}\right)-\frac{1}{n}\left(\frac{1-\lambda^{n}}{1-\lambda}\right)+\left(\frac{\lambda^{n-1}}{n}-\frac{\lambda^{n}}{n+1}\right) \frac{\lambda}{1-\lambda}\left(\left(\frac{1}{\lambda}\right)^{v}\right)-1\right| \\
& =O(1)\left(\frac{1}{n^{2}}+\frac{\lambda^{n-v}}{n}\right)
\end{aligned}
$$

and so

$$
d_{n}=\sum_{v=1}^{n} \frac{1}{v}\left|\widehat{t}_{n v}\right|^{k^{\prime} / \mu^{\prime}}=O(1)\left(\frac{\log n}{n^{2 k^{\prime} / \mu^{\prime}}}+\frac{1}{n^{k^{\prime} / \mu^{\prime}}} \sum_{v=1}^{n} \frac{\left(\lambda^{k^{\prime} / \mu^{\prime}}\right)^{n-v}}{v}\right)=O(1)\left(\frac{1}{n^{k^{\prime} / \mu^{\prime}}}\right)
$$

which gives us

$$
\sum_{n=v}^{\infty} n^{r-1} d_{n}^{r / k^{\prime}}\left|\widehat{t}_{n v}\right|^{r / \mu}=O(1) \sum_{n=v}^{\infty}\left(\frac{1}{n^{1+r / \mu}}+\frac{\left(\lambda^{r / \mu}\right)^{n-v}}{n}\right)=O(1)
$$

Hence $C_{\lambda} \in B\left(A_{k}, A_{r}\right)$.
Lemma 2.7 ([9]). Suppose that $k>0$ and $p_{n}>0, P_{n}=p_{0}+p_{1}+\cdots+p_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Then there exist two (strictly) positive constants M and N, depending only on k, for which

$$
\frac{M}{P_{v-1}^{k}} \leq \sum_{n=v}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}^{k}} \leq \frac{N}{P_{v-1}^{k}}
$$

for all $v \geq 1$, where M and N are independent of $\left(p_{n}\right)$.
The p-Cesáro matrix defined in [10] is a triangular matrix T_{p} with nonzero entries $t_{n v}=1 /(n+1)^{p}$ for some $p \geq 1$. The case $p=1$ is reduced to the Cesáro matrix of order one.

Corollary 2.8. Let T_{p} be the p-Cesáro matrix and $p>1$. If $r \geq k \geq 1$, then $T_{p} \in B\left(A_{k}, A_{r}\right)$.
Proof. In Theorem 2.1, take $T=T_{p}$. Then we have

$$
\left|\widehat{t}_{n v}\right|=\left|\frac{1}{n^{p-1}}-\frac{1}{(n+1)^{p-1}}-v\left(\frac{1}{n^{p}}-\frac{1}{(n+1)^{p}}\right)\right|=O(1)\left(\frac{1}{(n+1) n^{p-1}}+\frac{v}{(n+1) n^{p}}\right)=O\left(\frac{1}{n^{p}}\right)
$$

for $v \leq n$, and so which gives us

$$
\sum_{n=v}^{\infty} n^{r-1} d_{n}^{r / k^{\prime}}\left|\widehat{t}_{n v}\right|^{r / \mu}=O(1) \sum_{n=v}^{\infty}(\log n)^{r / k^{\prime}} \frac{1}{n^{(p-1) r+1}}=O(1)
$$

for $r \geq k>1$ by Cauchy Condensation Test (see [11]). Therefore $T_{p} \in B\left(A_{k}, A_{r}\right)$.
If T is the matrix of weighted mean $\left(\bar{N}, p_{n}\right)$ (see [1]), then a few calculations reveal that

$$
\widehat{t}_{n v}=\frac{p_{n} P_{v-1}}{P_{n} P_{n-1}} \quad \text { and } \quad d_{n}=\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k^{\prime} / \mu^{\prime}} \sum_{v=1}^{n} \frac{1}{v} P_{v-1}^{k^{\prime} / \mu^{\prime}}
$$

Corollary 2.9. Let $\left(p_{n}\right)$ be a positive sequence and let $r \geq k \geq 1$. Then $\left(\bar{N}, p_{n}\right) \in B\left(A_{k}, A_{r}\right)$ if

$$
\begin{equation*}
n p_{n}=O\left(P_{n}\right) \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n}=O\left(n p_{n}\right) . \tag{2.10}
\end{equation*}
$$

Proof. $d_{n}=O(1)\left(\frac{p_{n}}{P_{n}}\right)^{k^{\prime} / \mu^{\prime}}$ for $r \geq k>1$, by (2.10). So, making use of Lemma 2.7, we get

$$
\sum_{n=v}^{\infty} n^{r-1} d_{n}^{r / k^{\prime}}\left|\widehat{t}_{n v}\right|^{r / \mu}=O(1) P_{v-1}^{r / \mu} \sum_{n=v}^{\infty}\left(\frac{n p_{n}}{P_{n}}\right)^{r-1} \frac{p_{n}}{P_{n} P_{n-1}^{r / \mu}}=O(1)
$$

by (2.9).
Now, using a different technique we give other applications.
Corollary 2.10. $\left|\bar{N}, p_{n}\right| \Rightarrow\left|\bar{N}, q_{n}\right|_{k}$, (every series summable $\left|\bar{N}, p_{n}\right|$ is also summable by $\left.\left|\bar{N}, q_{n}\right|_{k}\right), k \geq 1$, if and only if

$$
\begin{equation*}
\frac{Q_{v} p_{v}}{q_{v} P_{v}}=O\left(v^{-1 / k^{\prime}}\right) \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{Q_{v} p_{v}}{q_{v}}-P_{v}\right)\left(\sum_{n=v+1}^{\infty} n^{k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}\right)^{1 / k}=O(1) \tag{2.12}
\end{equation*}
$$

Proof. In Corollary 2.3, take the matrix $T=t_{n v}$ as follows:

$$
t_{n v}=\left\{\begin{array}{ll}
\left(p_{v} / q_{v}-p_{v+1} / q_{v+1}\right) Q_{v} / P_{n}, & \text { if } 0 \leq v \leq n-1 \\
p_{n} Q_{n} / P_{n} q_{n}, & \text { if } v=n \\
0, & \text { if } v>n
\end{array}\right\}
$$

where $\left(p_{n}\right)$ and $\left(q_{n}\right)$ are sequences of positive numbers such that $P_{n}=p_{0}+\cdots+p_{n} \rightarrow \infty$ and $Q_{n}=q_{0}+\cdots+q_{n} \rightarrow \infty$. If $\left(T_{n}\right)$ and $\left(t_{n}\right)$ are sequences of $\left(\bar{N}, q_{n}\right)$ and $\left(\bar{N}, p_{n}\right)$ means of the series $\sum x_{v}$, then

$$
t_{n}=\sum_{v=0}^{n} t_{n v} T_{v}
$$

On the other hand, it is easy to see that

$$
\widehat{t}_{n v}=\left\{\begin{array}{ll}
\left(p_{n} / P_{n} P_{n-1}\right)\left(P_{v}-Q_{v} p_{v} / q_{v}\right), & \text { if } 0 \leq v \leq n-1 \tag{2.13}\\
p_{n} Q_{n} / P_{n} q_{n}, & \text { if } v=n \\
0, & \text { if } v>n
\end{array}\right\}
$$

which implies

$$
\sum_{n=v}^{\infty} n^{r-1}\left|\widehat{t}_{n v}\right|^{r}=v^{r-1}\left(p_{v} Q_{v} / P_{v} q_{v}\right)^{r}+\left|P_{v}-Q_{v} p_{v} / q_{v}\right|^{r} \sum_{n=v+1}^{\infty} n^{r-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{r}
$$

Hence the proof is completed by Corollary 2.3.
This result is the main result of [12].
Corollary 2.11. Let $\left(p_{n}\right)$ be a positive sequence and $k>1$. Then $|C, 1|_{k} \Leftrightarrow\left|\bar{N}, p_{n}\right|_{k}$ if and only if condition (2.9) and (2.10) is satisfied.

Proof. Sufficiency. Let $q_{n}=1$ in (2.13) and $k=r$ in Theorem 2.1. Then, since $\mu=k=r$ and

$$
\widehat{t}_{n v}=\left\{\begin{array}{ll}
\left(p_{n} / P_{n} P_{n-1}\right)\left(P_{v}-(v+1) p_{v}\right), & \text { if } 0 \leq v \leq n-1 \tag{2.14}\\
(v+1) p_{v} / P_{v}, & \text { if } v=n \\
0, & \text { if } v>n
\end{array}\right\}
$$

and so by (2.9) and (2.10) we obtain

$$
d_{n}=\sum_{v=1}^{n} \frac{1}{v}\left|\widehat{t}_{n v}\right|^{k^{\prime} / \mu^{\prime}}=\frac{p_{n}}{P_{n} P_{n-1}} \sum_{v=1}^{n-1} \frac{1}{v}\left|P_{v}-(v+1) p_{v}\right|+\frac{(n+1) p_{n}}{n P_{n}}=O\left(\frac{1}{n}\right)
$$

and so

$$
\sum_{n=v}^{\infty} n^{r-1} d_{n}^{r / k^{\prime}}\left|\widehat{t}_{n v}\right|^{r / \mu}=\frac{(v+1) p_{v}}{P_{v}}+\left|P_{v}-(v+1) p_{v}\right| \sum_{n=v+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}=O(1)
$$

which gives that $|C, 1|_{k} \Rightarrow\left|\bar{N}, p_{n}\right|_{k}$. Also, if $p_{n}=1$ and $r=k$, then we have

$$
\widehat{t}_{n v}=\left\{\begin{array}{ll}
1 / n(n+1)\left((v+1)-P_{v} / p_{v}\right), & \text { if } 0 \leq v \leq n-1 \tag{2.15}\\
P_{v} /(v+1) p_{v}, & \text { if } v=n \\
0, & \text { if } v>n
\end{array}\right\} .
$$

Thus it follows from condition (2.2) and (2.3) of Theorem 2.1 that $\left|\bar{N}, q_{n}\right|_{k} \Rightarrow|C, 1|_{k}$.
Necessity. In Theorem 2.1, take $r=k$. If $\left|\bar{N}, p_{n}\right|_{k} \Rightarrow|C, 1|_{k}$ and $|C, 1|_{k} \Rightarrow\left|\bar{N}, p_{n}\right|_{k}$ then it is seen from (2.14) and (2.15) that

$$
\sum_{n=v}^{\infty} n^{k-1}\left|\widehat{t}_{n v}\right|^{k}=v^{k-1}\left(\frac{(v+1) p_{v}}{P_{v}}\right)^{k}\left|P_{v}-(v+1) p_{v}\right|^{k} \sum_{n=v+1}^{\infty} n^{k-1}\left(\frac{p_{n}}{P_{n} P_{n-1}}\right)^{k}=O\left(v^{k-1}\right)
$$

and

$$
\sum_{n=v}^{\infty} n^{k-1}\left|\widehat{t}_{n v}\right|^{k}=v^{k-1}\left(\frac{P_{v}}{(v+1) p_{v}}\right)^{k}\left|v+1-\frac{P_{v}}{p_{v}}\right|^{k} \sum_{n=v+1}^{\infty} \frac{1}{n(n+1)^{k}}=O\left(v^{k-1}\right)
$$

which gives us that (2.11) and (2.12), respectively.
The sufficiency and necessity of this result are proven in [9,13], respectively.

References

[1] N. Tanović-Miller, On strong summability, Glas. Mat. 34 (1979) 87-97.
[2] G. Das, A Tauberian theorem for absolute summablity, Proc. Cambridge Philos. Soc. 67 (1970) 321-326.
[3] T.M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. Lond. Math. Soc. 7 (1957) 113-141.
[4] H. Şevli, E. Savaş, On absolute Cesáro summability, J. Inequal. Appl. (2009) 1-7.
[5] D. Yu, On a result of Flett for Cesáro matrices, Appl. Math. Lett. 22 (2009) 1803-1809.
[6] M.R. Mehdi, Summability factors for generalized absolute summability I, Proc. Lond. Math. Soc. 3 (10) (1960) 180-199.
[7] K. Knopp, G.G. Lorentz, Beitrage zur absoluten limitierung, Arch. Math. 2 (1949) 10-16.
[8] H.C. Rhaly Jr., Discrete generalized Cesáro operators, Proc. Amer. Math. Soc. 86 (1982) 405-409.
[9] M.A. Sarigol, Necessary and sufficient conditions for the equivalence of the summability methods $\left|\bar{N}, p_{n}\right|_{k}$ and $|C, 1|_{k}$, Indian J. Pure Appl. Math. Soc. 22 (6) (1991) 483-489.
[10] H.C. Rhaly Jr., p-Cesáro matrices, Houston J. Math. 15 (1989) 137-146.
[11] J.A. Fridy, Introductory Analysis, Academic Press, California, 2000.
[12] C. Orhan, M.A. Sarigol, On absolute weighted mean summability, Rocky Mountain J. Math. 23 (3) (1993) 1091-1097.
[13] H. Bor, A note on two summability methods, Proc. Amer. Math. Soc. 98 (1986) 81-84.

[^0]: E-mail addresses: msarigol@pau.edu.tr, msarigol@pamukkale.edu.tr.

