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1. Introduction

Let > x, be a given infinite series with partial sums (s,), and let T be an infinite matrix with complex numbers. By (T;(s))
we denote the T-transform of the sequence s = (s,), i.e.,

o0
Ta(s) =D twsy. mv=0,12,.... (1.1)
v=0

The series Y a,, is then said to be k-absolutely summable by T for k > 1, written by |T |, if

o0
> n AT, (9)F < 00 (1.2)

n=1

where A is the forward difference operator defined by AT,_1(s) = T,,—1(s) — T,(s), [1].
A matrix T is said to be a bounded linear operator from Ay, to A, denoted by T € B(Ay, A;), if T : A, — A;, where

o0
Ac=1(S): Y vAS, 4| < oot (1.3)

v=1

In 1970, Das [2] defined a matrix T to be absolutely k-th power conservative for k > 1, denoted by B(Ay), i.e., if (T;,(s)) € Ai
for every sequence (s,) € Ay, and also proved that every conservative Hausdorff matrix H € B(A, Ax), i.e., H € B(Ay).

Let (C, ov) denote the Cesaro matrix of order o« > —1, o its n-th transform of a sequence (s,,). Using T, (s) = o7, Flett[3]
proved that, if a series Y x, is summable |C, «|, then it is also summable |C, 8|, foreachr > k > 1Tand 8 > a4+ 1/k—1/r,
orr>k>1and B > o + 1/k — 1/r. Setting @ = 0 gives an inclusion type theorem for Cesaro matrices.

Recently, Savas and Sevli [4] have proved the following theorem dealing with an extension of Flett’s result. Some authors
have also attributed to generalize the result of Flett. For example [5], see.
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Theorem 1.1. Letr > k > 1.
(i) It holds (C, @) € B(A, Ar) foreacha > 1 — k/r.
(ii) If @ = 1 — k/r and the condition ) .-, n*""logn|a,|* = 0O(1) is satisfied, then (C, «) € B(Ay, A;).
(iii) If the condition Y oo nkt(/0(-0=21q k — (1) is satisfied then (C, «) € B(Ax, A;) for each —k/r < a < 1 —k/r.
It should be noted that Part (i) of Theorem 1.1 is easily obtained from Flett’s result sincea > 1 —k/r = (r — k)/r >

(r—k)/rk = 1/k — 1/r forr > k > 1. Also, Parts (ii) and (iii) are not correct. In fact, if —k/r < o < 1 — k/r, then
(r/k)(1 —a) — 1 > 0and so

o0 o0
an71|an|k < an+(r/k)(1fa)72|an|k < 00

n=1 n=1
and also
o0 o0
E n*a, |k < E log nn*ay|¥ < oo.
n=1 n=1

This means that (C, o) maps a proper subset of A, to A, and hence (C, «) & B(Ag, Ar).
Motivated by Theorem 1.1, a natural problem is what the sufficient conditions are for T € B(A, A;), where T is any lower
triangular matrix and k, r > 1.

2. Main results
The aim of this paper is to answer the above problem for r > k > 1 by establishing the following theorems which give

us more than we need, and also deduce various known results. _ R
Given a lower triangular matrix T = (t,), we can associate with T two matrices T = (t,,,) and T = (t,,) defined by

n
ty = Ztnja nv=0,1,...,to = too = too, th =ty —bnc1e, n=1,2,....
Jj=v

Then

n n v n n n
Ta(s) = Z thwSy = Z by in = in Z by = anvxv
v=0 v=0 v=i v=0

i=0 i=0

and

n n—1 n
ATn—1(5) = anvxv - an—l,vxv = - Z b Xy, (fn—l,n = O) (21)
v=0 v=0 v=0

Thus, B(Ag, A;) means that

o0 o0
D o x| <00 = Y 0 AT (5)]" < oo

n=1 n=1

With these notations we have the following.

Theorem 2.1. Let T = (t,,) be a lower triangular matrix. Then T € B(Ax, A;) forr >k > 1if

o0
> 0 Gl = o)) (2.2)
n=v

and
o0
> o0 il < oo, (2.3)
n=1

where u = 1+r/k,

n

1 K

dn=§ vty /M,
v=1

k' and u' are the conjugates of k and .
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Proof. Let r > k > 1. By applying Holder's inequality in (2.1) we have

n

IATa_1 ()] < D [l 12

v=0

n
o~ PN 1~ ’
= [l Ixol + Y (0" Tl sl ) (v )

v=1

n 1/k n 1/K
[tnol I%o| + (Z |?nu|"/“v“|xu|k) (Z v [t ¥ “‘) : (2.4)
v=1

v=1

IA

The last factor on the right of (2.4) is to be omitted if k = 1. Further, since (x,)) € Ay, it follows from Hélder’s inequality with
indices r /k, r/(r — k) that

n

n

—~ ~ —k K2 K2 —(r—k)+k(r—k) k(r—k)
> [0 e = ) {|tnv|"/“vr‘+r|xu|‘r}[vr %7 )
v=1

v=1

n k/r n
< (Z |?nu|f/“v"—1|xv|"> (Z v"—1|xv|")
v=1 v=1
n k/r
= 0(1) (Z mvr/ﬂvkwxm) : (25)

v=1

(r—k)/r

which implies that

n
|AT, 1 (s)|" = O(1) (mor +d/ Y mv|f/“v"—1|xv|"> :

v=1

The second factor of (2.5) is to be omitted if r = k. Therefore by (2.2) and (2.3) we get

o0 o0 n
Z nr71 |ATn_1(S)|r — O(l) ( nrfl |’t710|r 4 Z nrfld;/k Z mu'r/ﬂvkllxv|k>
1 n=1 v=1

n=1
o0 o0 ,
— O(l) nr71|tn0|r 4 Z vk71|xv|k an*]d;‘/k |tnv|r/u < 00

2

n

2

n=1 v=1 n=v
o0 o0

=0 (Y Mol + Y v ¥ ) < oo,
n=1 v=1

which completes the proof. O

The following theorem establishes the necessary conditions for T € B(Ay, A;).

Theorem 2.2. Let T = (t,,) be a lower triangular matrix. If T € B(Ay, A;) for r > k > 1, then

o0
D 1 il = 0w asv — oo, (2.6)
n=v

Proof. It is routine to verify that A, is a Banach space and also K-space (i.e., the coordinate functionals are continuous) if
normed by

o 1/k 0o 1/k
Isll = <|so|" + Zv"-lmsvn") = <|xo|’<+ ka—wm") :
v=1

v=1

Hence the map T : Ay — A, is continuous, i.e., there exists a constant M > 0 such that ||T(x)|| < M||x||, equivalently

00 n r\ 1/r 00 1/k
T+ > 0> T <M [ Ixol*+ )" |xv|"> (2.7)
n=1 v=0

v=1
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for all x € Ay. Taking any v > 1, if we apply (2.1) with x, = 1, x, = 0(n # v), then we obtain

ifn<vl

0,
ATy—1(s) = { ~t, ifn>wv

and so

00 1/r
(an—]mvr’) < M(vk—l)l/k

n=v

by (2.7), which is equivalent to (2.6). O

Corollary 2.3. Let T = (t,,) be a lower triangular matrix. Then T € B(A1, A;) for r > 1if and only if

o0
Zn”lﬁnvv =0(1) asv — oo. (2.8)

n=v
In order to justify the fact that results of Theorems 2.1 and 2.2 are significant, we give some applications.

Lemma 24 ([6]).let 1 <k <o0o,8 > —lando < B.Forv > 1,letE, = Y o0

n=v n(Aﬂ)"

ow™™M, ifo<-—-1
0w, ifo > —1|"

If 1 < k < o0, then

O(v "1, ifo <—1/k
E, = 0w logv), ifo=—-1/k
O(v kB +koy, ifo>—1/k

we apply Theorems 2.1 and 2.2 to the Cesdro matrix of order o« > —1 in which the matrix T is given by t,, = (A‘,’{:,} JAY. It is
well-known that (see [7]) tn, = AY_, /A% andty, = vA‘r’f:,}/(nA,‘f).

Thus, considering Lemma 2.4 and Theorem 2.1, we get the following result of Flett.
Corollary 2.5. (i) Ifr > k> 1lando > 1/k — 1/r, then (C, o) € B(Ai, A;).

(i) fr>k>1and —1 <o < 1/k— 1/r, then (C, @) & B(A, A;).
(iii) If r=k>1anda = 1/k — 1/r, then (C, a) € B(A, A;).

Proof. (i)Letow > 1/k—1/r.1fr > k > 1,thenitisseenthat u/r = u'/k' = 1—-1/k+1/randr(e¢—1)/u = k'(a—1)/u' >
—1. Thus it follows that

K /u
n a—1
_ -1 UAn—v _ —K /!
dn—Zv ye =0(n ¥/,
v=1 n
and so
ad PN o ’ 'UAa_l i
Ev — an—](dn)r/k |tm)|r/ﬂ — O(l) an—ln—r/u %;U
n=v n=v nAﬂ
Aa 1|r///,

= 0(v"/") Z (A =0(1) asv — o0,

by Lemma 2.4. Hence, the proof of (i) is completed by Theorem 2.1.

(i) If =1 < @ < 1/k — 1/r, then vV/O=/D¢ = u<1/’<>—<1/f>A§71
satisfied, and so the result is seen from Theorem 2.2. !
(iii) is clear from Lemma 2.4 and Theorem 2.1. O

= p(W/b=0/N-a —£ (1), i.e., the condition (2.6) is not

A discrete generalized Cesaro matrix (see [8]) is a triangular matrix T with nonzero entries t,, = A"""/(n 4+ 1), where
0<xr<1

Corollary 2.6. Let C; be a Rhaly discrete matrix. Then C;, € B(Ax, Ar) for O < A < landr >k > 1.
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Proof. In Theorem 2.1, take T = C,.Ifr > k > 1,thenk’/u’ > 1. Now we have

El = %Z —J_fzkn - ”21:( )i )\n1v212<)1\>1

j=0
1 1 — Antl 1— A" N A1 AT A 1\" ;
n+1 1—2 n\1—x n n+1)1=x\\x
‘l A‘"—U
=0+
n n

n—v
K/
1 logn 1 < ()‘ ) 1
:Z;Itnm/“ = 0(1) + > . —0(1>< )

n2k'/w nk'/w < K/
v=

and so

which gives us

l+r/u n

n=v

Hence C;, € B(A, Ar). O

Lemma 2.7 ([9]). Suppose that k > Oand p, > 0,P, = pg + p1 + - -+ + pn — 00 asn — o<. Then there exist two (strictly)
positive constants M and N, depending only on k, for which

=)
I
Pvfl n= P"Pnfl Pvfl

forallv > 1, where M and N are independent of (p;).

The p-Cesaro matrix defined in [10] is a triangular matrix T, with nonzero entries t,, = 1/(n + 1) for some p > 1. The
case p = 1isreduced to the Cesaro matrix of order one.

Corollary 2.8. Let T, be the p-Cesdro matrixandp > 1.If r > k > 1, then T, € B(A, Ar).

Proof. In Theorem 2.1, take T = T,. Then we have

1 1 3 1 1 ‘—O(l) 1 v _o 1
o aro e w220 (e o) =0 ()

for v < n, and so which gives us

~
|tnv| =

P 1
an 1a!f/k|t,w|f/“—0(1>Z(logn>’/" ot = 0,

n=v

forr > k > 1 by Cauchy Condensation Test (see [11]). Therefore T, € B(A, A;).
If T is the matrix of weighted mean (N, p,) (see [1]), then a few calculations reveal that

K/uw n

-~ P,_ 1 s

t,w:pnv ! and dn:< Pn ) E fPSf’f. O
PyPy—q | =Y

Corollary 2.9. Let (p,) be a positive sequence and let r > k > 1. Then (N, p,) € B(Ay, A,) if
np, = O(Py) (2.9)
and

P, = O(npy). (2.10)
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!yl

/
Proof. d, = 0(1) (g—:) forr > k > 1, by (2.10). So, making use of Lemma 2.7, we get

100 n r—1
> 7 = o]/ ( p”) D =0
n=v Pn PnPn,M]

n=v
by (29). O
Now, using a different technique we give other applications.
Corollary 2.10. |N, p,| = |N, qul (every series summable [N, p,| is also summable by [N, qa|x), k > 1, if and only if

Qupo
q'UPU

1/k
Qpy S ea (e \Y
( = P,,) (n_EMn <PnPH> ) = 0(1). (2.12)

Proof. In Corollary 2.3, take the matrix T = t;, as follows:

[(pv/QU — Pot+1/Qu+1)Qu/Pp,  If0 =<0 Sn_l}
by =

= 0@ %) (2.11)

and

PnQn/Pnqn, ifv=n
0, ifv>n

where (p,) and (q,) are sequences of positive numbers such that P, = pg +--- +p, — occand Q, = qo + - - - + g, — 00.
If (T,,) and (t,) are sequences of (N, q,) and (N, p,) means of the series D _ x,, then

n
ty = Z tnu Ty
v=0

On the other hand, it is easy to see that

. (pn/PnPn—1)(Py — Qupu/qv), ifof vn-1
try = { PnQn/Puln, ifv=n
0, ifv>n

(2.13)

which implies

o0 o0 p r
1 — — n
D o ol =0 (0yQu/Pudy)” F Py — Qupu/@l” Y A 1( ) :

n=v n=v+1 Pnpnfl

Hence the proof is completed by Corollary 2.3. O

This result is the main result of [12].

Corollary 2.11. Let (p,) be a positive sequence and k > 1. Then |C, 1|y < |N, palx if and only if condition (2.9) and (2.10) is
satisfied.
Proof. Sufficiency. Let g, = 1in(2.13) and k = r in Theorem 2.1. Then, since u© = k = r and

- (pn/PnPn—1)(P, — (v + 1)p,), f0<v=<n-1
thy = { (v + Dpy /Py, ifv=n
0, ifv>n

and so by (2.9) and (2.10) we obtain

(2.14)

n—1

Pn 1 (n+1)pn 1
= 7tvk/“ — ) —|P,—(+Dp,| + ——=0(-],
§=: [t pnpn,1;v'" v+ Dpy P -
and so

= / (v+Dp

Dol = P IR - 4 D > pop = 0.
n'n—1

n=v n=v+1
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which gives that |C, 1|y = |N, palx. Also, if p, = 1and r = k, then we have

N 1/an+ 1)((v+1) —P,/py), f0<v=<n-1
try = { Py/(v + D)py, ifv=n . (2.15)
0, ifv>n

\%

Thus it follows from condition (2.2) and (2.3) of Theorem 2.1 that IN, ulk = IC, 1.
Necessity. In Theorem 2.1, take r = k. If [N, p,y|x = |C, 1|x and |C, 1], = |N, pnlx then it is seen from (2.14) and (2.15)

that
= — v+ 1 k o0 k
an_lltnv|k = vk_l (ﬁ) |Pv - (U + 1)pv|k Z nk_l < P ) = O(vk_])
n=v P, n=v+1 PpPy_4
and
00 . ’ . P k k oo 1 )
—177 |k -1 v v —1
n tw| =v —_— v+1—— — =0 ,
; ! ((v + 1)pv> Pv ,,ZUZH n(n + 1)k @)

which gives us that (2.11) and (2.12), respectively. O

The sufficiency and necessity of this result are proven in [9,13], respectively.
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