
Applied Mathematical Modelling 36 (2012) 158–167
Contents lists available at ScienceDirect
Applied Mathematical Modelling

journal homepage: www.elsevier .com/locate /apm
Differential quadrature method (DQM) and Boubaker Polynomials
Expansion Scheme (BPES) for efficient computation of the eigenvalues
of fourth-order Sturm–Liouville problems
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The differential quadrature method (DQM) and the Boubaker Polynomials Expansion
Scheme (BPES) are applied in order to compute the eigenvalues of some regular fourth-
order Sturm–Liouville problems. Generally, these problems include fourth-order ordinary
differential equations together with four boundary conditions which are specified at two
boundary points. These problems concern mainly applied-physics models like the
steady-state Euler–Bernoulli beam equation and mechanicals non-linear systems identifi-
cation. The approach of directly substituting the boundary conditions into the discrete
governing equations is used in order to implement these boundary conditions within
DQM calculations. It is demonstrated through numerical examples that accurate results
for the first kth eigenvalues of the problem, where k = 1, 2, 3, . . . , can be obtained by using
minimally 2(k + 4) mesh points in the computational domain. The results of this work are
then compared with some relevant studies.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The Sturm–Liouville boundary value problems for ordinary differential equations play a very important role in both the-
ory and applications. These problems have been used in order to describe a large number of physical, biological and chemical
phenomena. One can cite the Sturm–Liouville analytical model of dirt transport in the industrial washing of wool, developed
by Caunce et al. [1], the one-dimensional heat and mass diffusion modelling software presented by Barouh and Mikhailov [2]
as well as a panoply of boundary valued models [3–7]. Most of these models have been based on expressing solutions as
linear combination of eigenvalues, extracted through appropriate methods like, among others, Rayleigh Iterative Scheme
(RIS), Optimal Monte Carlo (MAO) algorithm, Implicitly Shifted QR algorithm (ISQR), and Boundary Element Method
(BEM). In this context, Alibeigloo and Kani [3] used the differential quadrature method in order to develop an approach com-
bining the state space method and the differential quadrature method (DQM) for studying free vibrations in multilayered
shells with embedded piezoelectric layers. Similarly, Eftekhari and Khani [4] combined the finite element method and the
differential quadrature element method (DQEM), in order to solve a system of linear second-order ordinary differential equa-
tions in time, namely: a sample moving load problem, while Peng et al. [5] focused on a semi-analytic approach for studying
geometrically nonlinear vibration of circular plates. In this study [5], Linstedt–Poincaré perturbation method was carried out
. All rights reserved.
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in order to approximate solutions in the conjoint space- time domain. Several models of clamped and simply supported cir-
cular plates have ben successfully tested.

Recently, Yücel [6] considered a special kind of boundary value problem known as a Sturm–Liouville problem. It is equiv-
alent to a second-order ordinary differential equation of the form
�y00 þ qðxÞy ¼ ky; ð1Þ
with main boundary conditions of the type:
yð0Þ ¼ yðpÞ ¼ 0: ð2Þ
The differential quadrature method (DQM) [7] was used for determining the eigenvalues of this problem. It was shown that
the (DQM) produces highly accurate results for the eigenvalues of the problem (1) and (2) when compared with other pub-
lished results. For more details see [6] and references therein.

The present work is undertaken to explore the efficiency and accuracy of the BPES and DQM methods in the computation
of eigenvalues of fourth-order Sturm–Liouville problems. The problem at hand is more complicated than the second order
case in that there are four boundary conditions to be implemented. Having two boundary conditions at each boundary point
of the computational domain is a challenging problem in the application of the DQM.

We will apply the DQM and BPES for finding the eigenvalues of the following fourth-order non-singular Sturm–Liouville
problem:
yð4Þ � ðsðxÞy0Þ0 þ qðxÞy ¼ ky; a < x < b; ð3Þ
where the functions q(x), s(x), and s0(x) are in L1(a, b), and the interval (a, b) is finite. We consider the above equation with
four boundary conditions specified at both ends of the domain (a, b), two boundary conditions at the end x = a, and other two
boundary conditions at the end x = b. Basically, there are three types of boundary conditions commonly used with Eq. (3) in
applications. In this work, we will only consider the following two types of boundary conditions and their combinations:
y ¼ 0 and
dy
dx
¼ 0; ð4Þ
for the clamped end, and
y ¼ 0 and
d2y

dx2 ¼ 0; ð5Þ
for the simply supported end.
It is well known that the eigenvalues of the problem (3)–(5) are bounded from below. They can be ordered:

k0 6 k1 6 k2 6 � � � 6 kk 6 � � �, where kk !1 as k ?1, and where each eigenvalue has multiplicity at most 2. For a more
extensive exposition of the theory see [8,9].

Numerically, not much work was done on fourth-order problems compared to second-order. In 1997, Greenberg and
Marletta [10] released a software package, named SLEUTH (Sturm–Liouville Eigenvalues Using Theta Matrices), dealing with
the computation of eigenvalues of fourth-order Sturm–Liouville problems, which is the only code available in this regard.
This situation contrasts with the availability of many software packages dealing with the second-order case, like SLEIGN
[11], SLEIGN2 [12], and SLEGDGE [13].

There is a continued interest in the numerical solution of the fourth-order Sturm–Liouville problems with the aim to im-
prove convergence rates and ease of implementation of different algorithms. Chanane [14,15] introduced a novel series rep-
resentation for the boundary/characteristic function associated with fourth order Sturm–Liouville problems using the
concepts of Fliess series and iterated integrals. The fourth power of the zeros of this characteristic function are the eigen-
values of the problem. Few examples were provided and the results were in agreement with the output of SLEUTH [10]. Re-
cently, Attili and Lesnic [16] used the Adomian decomposition method (ADM) to solve fourth-order eigenvalue problems.
Syam and Siyyam [17] developed a numerical technique for finding the eigenvalues of fourth-order non-singular Sturm–
Liouville problems. More recently, Chanane [18] has enlarged the scope of the Extended Sampling Method [19] which
was devised initially for second-order Sturm–Liouville problems to fourth-order ones. Abbasbandy and Shirzadi [20] applied
the homotopy analysis method (HAM) to numerically approximate the eigenvalues of the second and fourth-order Sturm–
Liouville problems.

In the literature, to the best knowledge of the author of this paper, there is no study on the DQM applications to fourth-
order Sturm–Liouville problems. On the other hand, the DQM is an efficient discretization technique for obtaining accurate
numerical solutions using a considerably small number of grid points. Bellman et al. [21] introduced this method in the early
seventies for solving linear and nonlinear partial differential equations. Then the method was improved by [22–24]. DQM has
shown good performance in solving initial and boundary value problems [25–27].

In the DQM, derivatives of a function with respect to a coordinate direction are expressed as linear weighted sums of all
the functional values at all mesh (grid) points along that direction. These weighting coefficients are determined using test
functions. Among the different test functions, the Lagrange interpolation polynomial is widely employed since it has no grid
points limitation. This leads to polynomial-based differential quadrature (PDQ) which is suitable for most engineering
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problems. Concerning problems with periodic behaviours, polynomial approximation may not be the best choice for the true
solution. In contrast, Fourier series expansion can be the best approximation giving the Fourier expansion-based differential
quadrature (FDQ). The ease for computation of weighting coefficients in explicit formulations [7,23] for both cases, is based
on the analysis of function approximation and linear vector space.

In this paper, both the DQM and BPES methods are used for obtaining eigenvalues of the considered problem (3)–(5). The
paper is organized as follows. We summarize the DQM in Section 2. The Boubaker Polynomials Expansion Scheme is given in
Section 3. Application of DQM to the fourth order Sturm–Liouville problems is developed in Section 4. Several numerical
examples are discussed in Section 5 and some conclusions are drawn in Section 6.
2. Differential quadrature method

The DQM was presented for the first time [21] in the framework of solving differential equations. This method refers to
the quadrature method in deriving the derivatives of a function. It follows that the partial derivative of a function with re-
spect to a space variable can be approximated by a weighted linear combination of function values at some intermediate
points in that variable.

In order to show the mathematical representation of DQM, we consider a single variable function f(x) on the domain
a 6 x 6 b; then the nth order derivative of the function f(x) at an intermediate point (grid point) xi can be written as:
dnf
dxn

����
x¼xi

¼
XN

j¼1

wðnÞij f ðxjÞ i ¼ 1;2; . . . ;N; n ¼ 1;2; . . . ;N � 1; ð6Þ
where wðnÞij is the weighting coefficient of the nth derivative and N is the number of grid points in the whole domain
(a ¼ x1; x2; . . . ; xN ¼ b).

As it can be seen from (6), two important factors control the quality of the approximation resulting from the application of
DQM. These factors are the values of the weighting coefficients and the positions of the discrete variables. Once the weight-
ing coefficients are determined, the bridge to link the derivatives in the governing differential equation and the functional
values at the mesh points is established. In other words, with the weighting coefficients, one can easily use the functional
values to compute the derivatives. Note that for multi-dimensional problems each derivative is approximated in the respec-
tive direction similarly.

In order to determine the weighting coefficients in Eq. (6), f(x) must be approximated by some test functions. The primary
requirements for the choices of the test functions are of differentiability and smoothness.
2.1. Polynomial-based differential quadrature (PDQ)

If the test functions are chosen as the Lagrange interpolation polynomials, the weighting coefficients of the first- and
second-order derivatives in explicit formulations are available in [7], and they are given, respectively, by
wð1Þij ¼
Mð1ÞðxiÞ

ðxi � xjÞMð1ÞðxjÞ
; for i–j; i; j ¼ 1;2; . . . ;Nwð1Þii ¼ �

XN

j¼1
i–1

; ð7Þ
wð2Þij ¼ 2wð1Þij wð1Þii �
1

xi � xj

� �
; for j–i; i; j ¼ 1;2; . . . ;N

wð2Þii ¼ �
XN

j¼1
i–j

wð2Þij ; ð8Þ
where
Mð1ÞðxkÞ ¼
YN
m¼1
m–k

ðxk � xmÞ ð9Þ
and xi, i = 1, 2, . . ., N, are the coordinates of grid points which may be chosen arbitrarily. The weighting coefficients for the
third- and higher-order derivatives may be obtained by the matrix multiplication approach, described in detail in [7].
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2.2. Fourier expansion-based differential quadrature (FDQ)

When the function f(x) is approximated by a Fourier series expansion, the explicit formulae for computing the weighting
coefficients of the first- and second-order derivatives are available in [7], and they are given, respectively, by
wð1Þij ¼
p
2L

PðxiÞ
sin ðxi � xjÞ p

2L

� �
PðxjÞ

; for j–i; i; j ¼ 1;2; . . . ;N;

wð1Þii ¼ �
XN

j¼1
i–j

wð1Þij ; ð10Þ

wð2Þij ¼ wð1Þij 2wð1Þii �
p
L

cot ðxi � xjÞ
p
2L

h in o
; for j–i; i; j ¼ 1;2; . . . ;N;

wð2Þii ¼ �
XN

j¼1
i–j

wð2Þij ; ð11Þ
where L is the length of the interval (physical domain) and
PðxkÞ ¼
YN

m¼0
m–k

sin ðxk � xmÞ
p
2L

h i
: ð12Þ
For higher order derivatives we use the matrix multiplication approach to compute the weighting coefficients.

2.3. Choice of the grid point distributions

The selection of locations of the sampling points plays a significant role in the accuracy of the solution of the differential
equations. Using equally spaced points (uniform grid) can be considered to be a convenient and easy selection method. For a
domain specified by a 6 x 6 b and discretized by N points, then the coordinate of any point i can be evaluated by
xi ¼ aþ i� 1
N � 1

ðb� aÞ: ð13Þ
Quite frequently, the DQM delivers more accurate solutions with a set of unequally spaced points (non-uniform grid). The
so-called Chebyshev–Gauss–Lobatto points, which were first used by [23] and whose advantage has been discussed by [25],
are well accepted in the DQM as follows:
xi ¼ aþ 1
2

1� cos
i� 1
N � 1

p
� �� �

ðb� aÞ; ð14Þ
for a domain a 6 x 6 b again.

2.4. Implementation of boundary conditions

Proper implementation of the boundary conditions is also very important for the accurate numerical solution of differen-
tial equations. Essential and natural boundary conditions can be approximated by DQM. Using the DQM for solving differ-
ential equations, we actually satisfy the governing equations at each sampling point of the domain, so we have one equation
for each point, for each unknown. To satisfy the boundary conditions, at the boundary points, the boundary condition equa-
tions are satisfied instead of the governing equations. In other words, in the resulting system of algebraic equations from
DQM, each boundary condition replaces the corresponding field equation. This procedure is straightforward when there is
one boundary condition at each boundary and when we have distributed the sampling points so that there is one point
at each boundary.

Note that we have two boundary conditions specified at both ends given by Eqs. (4) and (5). The fact of imposing two
conditions at the same point is a big and real challenge for the DQM, because in the DQM we have only one quadrature equa-
tion at one point while two boundary conditions are to be implemented. To eliminate the difficulties in implementing two
conditions at a single boundary point, four approaches have been introduced. These are the d-technique, the modified
weighting coefficient matrix approach, the approach of directly substituting the boundary conditions into the discrete gov-
erning equations, and the general approach. The details of these approaches can be found in [7] and references therein.

In this work, we will use the approach of directly substituting the boundary conditions into the discrete governing equa-
tions. This approach was proposed by Shu and Du [26] to implement the simply supported, clamped conditions and their
combinations. The essence of the approach is that the Dirichlet condition is implemented at the boundary point while the
derivative condition is discretized by the DQM. This will be described in more detail in Section 4.
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3. Boubaker Polynomials Expansion Scheme method

The Boubaker polynomials are integer-coefficient polynomial sequences which have been associated to several applied
physics problems [28–37]. The first monomial definition of the Boubaker polynomials appeared in a physical study that
yielded an analytical solution to heat equation inside a spray pyrolysis model. This monomial definition is traduced by
BnðXÞ ¼
XnðnÞ
p¼0

ðn� 4pÞ
ðn� pÞ Cp

n�p

� �
:ð�1Þp � Xn�2p ð15Þ
where
nðnÞ ¼ n
2

j k
¼ 2nþ ðð�1Þn � 1Þ

4
ðThe symbol : b c designates the floor functionÞ:
The Boubaker polynomials have also a recursive relation:
BmðXÞ ¼ X � Bm�1ðXÞ � Bm�2ðXÞ; for m > 2;

B2ðXÞ ¼ X2 þ 2;

B1ðXÞ ¼ X;

B0ðXÞ ¼ 1:

8>>><
>>>:

ð16Þ
The characteristic differential equation of the Boubaker polynomials is:
Any00 þ Bny0 � Cny ¼ 0;

with :

An ¼ ðx2 � 1Þð3nx2 þ n� 2Þ;
Bn ¼ 3xðnx2 þ 3n� 2Þ;
Cn ¼ �nð3n2x2 þ n2 � 6nþ 8Þ;

8><
>:

8>>><
>>>:

ð17Þ
3.1. Application of the Boubaker Polynomials Expansion Scheme

Recently, it has been demonstrated [30–36] that each 4q-order Boubaker polynomial has got exactly 2q � 1 real positive
roots, which are contained exclusively in the domain ]0; 2[. The arithmetical properties of the minimal real positive root de-
noted an gave the fundaments of the Boubaker Polynomials Expansion Scheme (BPES), which was used in different applied
physics studies.

According to the BPES definition, for a complex function f (x) of a real argument x defined in the domain [�a; a], the 4n-
Boubaker Polynomials Expansion Scheme (BPES) is performed by applying the expression:
f ðxÞ ¼ 1
2N0

XN0

q¼1

nq � B4q x
aq

a

	 

; ð18Þ
where aq is 4q-Boubaker polynomial minimal root, N0 is a prefixed integer, and nq (q = 1, . . ., N0) are complex coefficients.
According to this formulation, a weak solution to the equation:
Iðf ðxÞÞ ¼ Z0; ð19Þ
where I is a known linear operator, Z0 is a given complex number, is obtained by calculating the set of complex coefficients
nn (n = 1, . . ., N0) which minimizes the real functional K(x):
KðxÞ ¼ I
1

2N0

XN0

q¼1

nq � B4q x
aq

a

	 
 !
� Z0

�����
�����: ð20Þ
While solving a Dirichlet–Newmann boundary-type differential equation, the advantage of the BPES lies in embedding the
exogenous boundary condition thanks to the 4q-Boubaker polynomials properties [28–30].

In order to show the mathematical representation of the BPES, we consider the expansion:
f ðxÞ ¼ 1
2N0

XN0

k¼1

nk � B4k x� rk

b� a

	 

; ð21Þ
where B4k are the 4k-order Boubaker polynomials, is the normalized time (x 2 [0, L]), rk are B4k minimal positive roots, N0 is a
prefixed integer, and nkjk¼1���N0

are unknown pondering real coefficients. Consequently, it comes for Eq. (3) that:
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1
2N0

rk

b� a

	 
4XN0

k¼1

nk �
d4B4k

dx4 x� rk

b� a

	 

� 1

2N0
s0ðxÞ �

XN0

k¼1

nk �
dB4k

dx
x� rk

b� a

	 


� 1
2N0

sðxÞ rk

b� a

	 
2XN0

k¼1

nk �
d2B4k

dx2 x� rk

b� a

	 

� ðqðxÞ � kÞ

XN0

k¼1

fk � B4k x� rk

b� a

	 

¼ 0: ð22Þ
Concerning the boundary conditions expressed through Eqs. (4) and (5), the BPES protocol ensures their validity regardless
main equation features. In fact, thanks to Boubaker polynomials first derivatives properties [28–30].

The BPES solution is obtained by determining the set of coefficients where ~nk

��
k¼1���N0

that minimizes the absolute differ-
ence DN0 :
DN0 ¼ 1
2N0

PN0

k¼1

~nk �Kk

� �
� 1

2N0

PN0

k¼1

~nk �K0k

� �����
����

with :

Kk ¼ rk
b�a

� �4 R b
a

dB4k

dx4 x� rk
b�a

� �
dx;

K0k ¼
R b

a ðs0ðxÞ �
dB4k

dx ðXÞ þ sðxÞ rk
b�a

� �2 d2B4k

dx2 ðXÞ þ ðqðxÞ � kÞ
PN0

k¼1
nk � B4kðXÞÞdx;

X ¼ x� rk
b�a :

8>>>>>>>>>>><
>>>>>>>>>>>:

ð23Þ
4. Application of the differential quadrature method

In this section, the DQM is applied to solve Eq. (3) with Eqs. (4) and (5). For the numerical computation, the continuous
solution is approximated by the functional values at discrete points. Now, we assume that the computational domain
a 6 x 6 b is divided into N � 1 intervals with coordinates of the grid points given as a ¼ x1; x2; . . . ; xN ¼ b. By applying the
PDQ or FDQ method, Eq. (3) can be discretized as
XN

k¼1

wð4Þik yk � si

XN

k¼1

wð2Þik yk � s0i
XN

k¼1

wð1Þik yk þ qiyi ¼ kyi; ð24Þ
where N is the number of grid points in the x-direction, wðnÞik , n = 1, 2, 4, the weighting coefficients of the nth order derivative,
and si, s01, qi, yi the functional values at the grid point xi. With the coordinates of mesh points given by Eq. (13) and (14), the
PDQ or FDQ weighting coefficients can be easily computed. When the PDQ method is used, wð1Þik and wð2Þik are computed by
Eqs. (7) and (8), while for the FDQ approach, the weighting coefficients wð1Þik , wð2Þik are computed by (10) and (11). The weight-
ing coefficients for the fourth order derivative wð4Þik are computed by matrix multiplication technique for both the PDQ and
FDQ.

For the proper implementation of the boundary conditions, we now describe the approach of directly substituting the
boundary conditions into the discrete governing equations. For any combination of Eqs. (4) and (5) at the two ends, the dis-
crete boundary conditions using DQM can be written as
y1 ¼ 0; ð25aÞ

XN

k¼1

wðn0Þ
1k yk ¼ 0; ð25bÞ

yN ¼ 0; ð25cÞ

XN

k¼1

wðn1Þ
Nk yk ¼ 0; ð25dÞ
where n0 and n1 may be taken as either 1 or 2. By choosing the values of n0 and n1, the above equations give us four sets of
boundary conditions. Eqs (25a) and (25c) can be easily substituted into Eq. (24). This is not the case for Eqs. (25b) and (25d).
However, one can couple these two equations together to give two solutions, y2 and yN�1, as
y2 ¼
1

AX

XN�2

k¼3

AX1kyk; ð26aÞ

yN�1 ¼
1

AX

XN�2

k¼3

AXNkyk; ð26bÞ
where
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AX ¼ wðn0Þ
1N�1wðn1Þ

N2 �wðn0Þ
12 wðn1Þ

NN�1; ð27aÞ

AX1k ¼ wðn0Þ
1k wðn1Þ

NN�1 �wðn0Þ
1N�1wðn1Þ

Nk ; ð27bÞ

AXNk ¼ wðn0Þ
12 wðn1Þ

Nk �wðn0Þ
1k wðn1Þ

N2 : ð27cÞ
According to Eqs. (26), y2 and yN�1 are expressed in terms of y3, y4, . . ., yN�2, and can be easily substituted into Eq. (24). We
should note that Eqs. (25) provides four boundary conditions. In total, we have N unknowns y1, . . ., yN. In order to close the
system, the discretized Eq. (24) has to be applied at (N � 4) mesh points. This can be achieved by applying Eq. (24) at the
interior grid points x3, x4, . . ., xN�2. Substituting Eqs. (25a), (25c), and (26) into Eq. (24) gives
XN�2

k¼3

C4
ikyk � si

XN�2

k¼3

C2
ikyk � s0i

XN�2

k¼3

C1
ikyk þ qiyi ¼ kyi for i ¼ 3;4; . . . ;N � 2; ð28Þ
where
C1
ik ¼ wð1Þik þ

wð1Þi2 AX1k þwð1ÞiN�1AXNk

AX
; ð29aÞ

C2
ik ¼ wð2Þik þ

wð2Þi2 AX1k þwð2ÞiN�1AXNk

AX
; ð29bÞ

C4
ik ¼ wð4Þik þ

wð4Þi2 AX1k þwð4ÞiN�1AXNk

AX
: ð29cÞ
It can be seen that Eq. (28) has (N � 4) equations with (N � 4) unknowns, which can be written in matrix form as
½A�fyg ¼ kfyg; ð30Þ
where [A] is a (N � 4) � (N � 4) matrix, {y} a vector of (N � 4) unknowns.
Equation (30) is an eigenvalue equation system. We can obtain the k values from the eigenvalues of matrix [A]. This can be

done by using various methods. In this work, we use a FORTRAN IMSL Routine called DEVLRG. Routine DEVLRG computes the
eigenvalues of a real matrix. The matrix is first balanced. Elementary or Gauss similarity transformations with partial piv-
oting are used to reduce this balanced matrix to a real upper Hessenberg matrix. A hybrid double-shifted LR-QR algorithm
is used to compute the eigenvalues of the Hessenberg matrix.

Note that it is necessary to analyze the error resulting from the approximation of a function and its derivatives. Shu [22]
has given a thorough error analysis in his PhD thesis. Therefore it will not be discussed here in this work.

We also note that the PDQ method is an extension of finite difference methods, and is actually the highest order finite
difference scheme [7]. Eq. (6) can be applied to both interior points and boundary points, and can also be applied to a uni-
form mesh or a non-uniform mesh. As the highest order finite difference scheme, the PDQ method is a global approximation
approach since it uses all the functional values in the whole computational domain.
5. Numerical results

In this section, to demonstrate the efficiency and accuracy of the BPES and DQM methods, as attempted earlier by
tempted by Malekzadeh [38], Yücel [6], Yildirim et al. [30] and Robati and Barani [39]. We will present three of our numerical
results of fourth-order Sturm–Liouville problems using the method outlined in the previous sections.

Example 4.1. We first consider the following sample fourth-order eigenvalue problem
yð4Þ ¼ ky; 0 < x < 1;
yð0Þ ¼ y0ð0Þ ¼ 0; yð1Þ ¼ y00ð1Þ ¼ 0;

(
ð31Þ
which corresponds to the case s(x) = q(x) = 0, a = 0, and b = 1 in Eq. (3). This problem has been considered by several authors
[16,17]. It has been also considered by [27], but with k2 instead of k on the right-hand side of the differential equation asso-
ciated in elasticity, to the steady-state Euler–Bernoulli beam equation for the deflection y of a vibrating beam. The exact
eigenvalues in the latter case can be obtained by solving
tanhð
ffiffiffi
k
p
Þ � tanð

ffiffiffi
k
p
Þ ¼ 0: ð32Þ
This analytical solution is commonly available in vibration textbooks (see for example [32]).



Table 1
Relative errors of the DQM results for several values of the number of grid points N.

k kk ek ðN ¼ 20Þ ek ðN ¼ 30Þ

Exact PDQ FDQ PDQ FDQ

1 237.72106753 7.59 � 10�9 1.47 � 10�5 7.59 � 10�9 3.24 � 10�9

2 2496.48743786 4.44 � 10�8 1.12 � 10�5 4.45 � 10�8 4.83 � 10�8

3 10867.58221698 1.94 � 10�9 1.43 � 10�5 1.71 � 10�8 2.21 � 10�8

4 31780.09645408 4.50 � 10�8 1.29 � 10�5 2.36 � 10�8 1.72 � 10�8

5 74000.849349156 3.97 � 10�5 2.21 � 10�5 2.99 � 10�8 1.86 � 10�8

6 148634.47728577 1.43 � 10�4 1.86 � 10�5 4.77 � 10�8 6.41 � 10�8

7 269123.43482664 4.08 � 10�3 4.15 � 10�5 9.61 � 10�10 2.24 � 10�8

8 451247.99471928 1.11 � 10�2 2.79 � 10�5 1.74 � 10�8 5.36 � 10�8

9 713126.24789600 9.02 � 10�2 4.86 � 10�5 3.16 � 10�6 8.40 � 10�8

10 1075214.10347396 2.06 � 10�2 3.15 � 10�4 9.31 � 10�6 1.17 � 10�7
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We apply here both the PDQ and FDQ methods with the grid point distribution given by Eq. (14) to compute the eigen-
values of the problem (31). Since we have clamped end condition on the left end and simply supported end condition on the
right end of the computational domain (0, 1), we take n0 = 1 and n1 = 2 in Eqs. (25b) and (25d), respectively. The performance
of the DQM is measured by the relative error ek which is defined as
Table 2
Compar

k

1
2
3
4
5
6

ek ¼
kk � kðDQMÞ

k

kk

�����
����� k ¼ 1;2;3; . . . ; ð33Þ
where kðDQMÞ
k indicates kth algebraic eigenvalues obtained by DQM and kk are the exact eigenvalues obtained by squaring the

solutions of Eq. (31). It should be noted that we use, here in this work, Maple 12 to obtain the solutions of the nonlinear equa-
tion (32).

Table 1 lists the relative errors of the DQM results with different number of mesh points N. It should be noted that since
the equation system to be solved has the dimension (N � 4) � (N � 4), the minimum number of grid points N to be used in
the calculations has to be five. Here, it is interesting to also note that in order to have good approximations to the first kth
eigenvalues, at least 2(k + 4) grid points have to be used. In other words, N = 2(k + 4). It can be observed from Table 1 that the
accuracy of the computed eigenvalues by the FDQ method is better than the PDQ approach for the eigenvalues of higher in-
dex. In both methods, the computed values for the lower eigenvalues have a better accuracy than those for the higher eigen-
values. As the number of grid points further increased, the accuracy of the DQM results, especially for the higher eigenvalues,
can be further improved as shown in Table 1.

We study two examples originally introduced in Chanane [19] and reproduced in Attili and Lesnic [16] and Syam and Siy-
yam [17], albeit without proper reference and in Chanane [18].

Example 4.2. We now consider the following fourth order eigenvalue problem related to mechanicals non-linear systems
identification [14]
yð4Þ � 0:02x2y00 � 0:04xy0 þ ð0:0001x4 � 0:02Þy ¼ ky; 0 < x < 5;
yð0Þ ¼ y00ð0Þ ¼ 0; yð5Þ ¼ y00ð5Þ ¼ 0;

(
ð34Þ
which corresponds to the case s(x) = 0.02x2, q(x) = 0.0001x4 � 0.02, a = 0, and b = 5 in Eq. (3). The PDQ and FDQ methods with
the grid point distribution given by Eq. (14) are applied to compute the eigenvalues of the problem (34), along with the BPES.
In this case, we have simply supported end conditions on both ends of the computational domain (0, 5). Therefore, we take
n0 = 2 and n1 = 2 in Eqs. (25b) and (25d), respectively.
ison of eigenvalues of Example 4.2.

kk

Attili and Lesnic [16] Syam and Siyyam [17] Chanane [18] PDQ N = 30 BPES N0 = 28 FDQ N = 30

0.21505086437 0.21505086437 0.21505086437 0.21505086437 0.2150534833 0.21505086264
2.75480993468 2.75480993468 2.75480993468 2.75480993468 2.7548119066 2.75480993579

13.2153515405 13.2153515406 13.2153515406 13.2153515406 13.215354539 13.2153515488
40.9508197591 40.9508197591 40.9508193487 40.9508197591 40.950824112 40.9508197584
99.0534781381 99.0534781381 – 99.0534780633 99.053483098 99.0534780408

204.354493489 204.354493489 – 204.355732256 204.35573676 204.355732287



Table 3
Comparison of eigenvalues of Example 4.3.

k kk

Attili and Lesnic [16] Chanane [18] PDQ
N = 30

BPES
N0 = 28

FDQ
N = 30

1 0.8669025023997106 0.866902502399465 0.866902502399437 0.866904356009764 0.866902502602292
2 6.357686448145815 6.357686448174460 6.357686448146623 6.357689457641119 6.357686448439836
3 23.992746850281375 23.99274697506674 23.99274685030316 23.99274982234511 23.99274686509660
4 64.97866759571622 64.97863591597007 64.97866759501693 64.97866711123549 64.97866761311830
5 144.28062803844648 – 144.2806269273482 144.2806276621998 144.2806272956158
6 280.58602048195377 – 280.6009632780809 280.600963292234 280.6009637443962
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Table 2 shows the comparison of our results obtained using N = 30, for the first six eigenvalues of the problem (34), with
the results of Attili and Lesnic [16], Syam and Siyyam [17], and Chanane [18]. It can be seen from Table 2 that the results of
BPES, PDQ and FDQ methods are in excellent egreement with the results of [16–18]. We should note here that only the first
four computed eigenvalues were reported in [18].

Example 4.3. Our second example is the following fourth order eigenvalue problem [14]
yð4Þ � 0:02x2y00 � 0:04xy0 þ ð0:0001x4 � 0:02Þy ¼ ky; 0 < x < 5;
yð0Þ ¼ y0ð0Þ ¼ 0; yð5Þ ¼ y0ð5Þ ¼ 0;

(
ð35Þ
which is the same as the problem given in Example 4.2, except the boundary conditions. Here, we have clamped end con-
ditions on both ends of the computational domain (0, 5) and therefore we take n0 = 1 and n1 = 1 in Eqs. (25b) and (25d),
respectively. We again apply both the PDQ and FDQ methods with the grid point distribution given by Eq. (14) to numerically
compute the eigenvalues of the problem (35) along with the BPES, by fixing a = 0 and b = 5. Table 3 lists the first six com-
puted eigenvalues using N = 30. We also have the results of Attili and Lesnic [16] and Chanane [18] on the second and third
column of Table 3, respectively. As shown in the table, there is excellent agreement between the results of this work and the
results of [16,18]. We should note again here that only the first four computed eigenvalues were reported in [18].

6. Conclusions

In this work, BPES, PDQ and FDQ methods have been applied in order to compute the eigenvalues of fourth-order Sturm–
Liouville applied physics problems. A particular attention in the DQM calculations has been given to the implementation of
the boundary conditions. Having two boundary conditions at a single boundary point of the computational domain (a, b) to
be implemented is a challenging problem for the DQM. To eliminate this difficulty, several approaches have been proposed in
the literature. Here, we have used the approach of direct substitution of boundary conditions into discrete governing equa-
tions. The dimension of the equation system using this approach is (N � 4) � (N � 4) where N is the number of grid points.

Through the test example which has exact solution, it was found that in order to obtain accurate numerical results using
the DQM for the first kth eigenvalues of the problem, where k = 1, 2, 3, . . ., the minimum number of grid points, N must be
equal to 2(k + 4). It was also found that as the number of grid points is further increased to above 2(k + 4), the accuracy of the
DQM results for both approaches can be further improved.

Computed eigenvalues obtained by using the BPES, PDQ and FDQ methods are also compared with other published works
in the literature. Excellent agreements are observed between the results of present work and the results of previously pub-
lished works [16–18]. Therefore, we conclude that the BPES and DQM produces accurate results for the eigenvalues of the
fourth-order Sturm–Liouville problems considered in this work. We also suggest the DQM and BPES approaches for the
numerical solution of the fourth-order problems since the latter methods gives the possibility of inherenting exogeneous
boundary conditions. Indeed, it will be interesting to see how the method works for the sixth-order Sturm–Liouville prob-
lems. This will be considered in a future work.
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