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A B S T R A C T

This paper proposes a simple panel stationarity test which takes into account structural shifts and cross-section
dependency. Structural shifts are modelled as gradual/smooth process with a Fourier approximation. The so-
called Fourier panel stationarity test has a standard normal distribution. The Monte Carlo simulations indicate
that (i) if the error terms are i.i.d, the test shows good size and power properties even in small samples; and (ii)
if the error terms are serially correlated, the test has reasonable size and high power. We re-examine the
behavior of the international commodity prices and find out an evidence on the persistence of shocks.

1. Introduction

The panel unit root tests during the last two decades have triggered
interest because incorporating time dimension with cross-sectional
dimension leads to increase in power of the tests. The early attempts go
back to Levin et al. (2002), Im et al. (2003), Maddala and Wu (1999),
and Choi (2001) in which cross-sections in a panel data are assumed to
be independent. Since the independency assumption is not likely to
hold in practice, the literature is extended by the second generation
unit root tests which account for cross-section dependency (among
others, Breuer et al., 2002; Smith et al., 2004; Bai and Ng, 2004,
Pesaran, 2007).

Given the importance of structural breaks in the behavior of
macroeconomic series, a special attention in the unit root analysis
has been paid to allow the existence of structural shifts. One important
question in the literature is how to account for breaks. The traditional
approach is to use dummy variables in which structural shifts are
assumed to occur instantaneously (for example, Perron, 1989; Zivot
and Andrews, 1992; Lee and Strazicich, 2003; Im et al., 2005). In
addition to the dummy variable approach, the smooth transition
approach is also used since structural changes in macroeconomic time
series are likely to be gradual (inter alia Leybourne at al., 1998;

Kapetanios et al., 2003). Both the dummy variables and the smooth
transition modelling assume a priori one or two structural shifts and
require to know dates, number, and functional form of breaks. Even
though the recent studies have focused on multiple structural breaks
(inter alia Carrion-i-Silvestre et al., 2009; Westerlund, 2012), the unit
root tests with many endogenous breaks are subject to determining
maximum number of breaks, estimating location of breaks, over
parametrization, and loss of power (Enders and Lee, 2012a;
Rodrigues and Taylor, 2012). To deal with these problems, Becker
et al. (2006), Enders and Lee (2012a, 2012b) and Rodrigues and Taylor
(2012) propose the testing procedures with a Fourier approximation
based on the variant of Flexible Fourier Form by Gallant (1981). The
Fourier approximation does not require to know a priori dates,
number, and/or form of breaks. This approach captures structural
break(s) by using frequency components. The specification problem of
selecting dates, number, and form of breaks is thereby transformed
into incorporating the appropriate Fourier frequency (Enders and Lee,
2012b). Since the developments in time-series analysis can easily be
extended to the panel framework, the unit root tests based on the
Fourier approximation in time series context have led to a new
direction in the panel unit root literature. Lee et al. (2015) in that
respect develop the panel version on the Fourier DF-type test by
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Enders and Lee (2012b) in order to allow for smoothing structural
changes in deterministic terms.

Developing testing procedures with the null hypothesis of statio-
narity1 has witnessed ongoing research in both the time series and the
panel data literature. The stationarity test developed by Kwiatkowski
et al. (1992) (the KPSS test) has attracted interest by practitioners and
widely used in the empirical studies. Lee et al. (1997) analyze the effect
a structural break on the KPSS test and show that it diverges from the
distribution under the null hypothesis if a structural break is ignored.
Their Monte Carlo analysis indicates that the KPSS test rejects the null
hypothesis too often in the case of a structural shift. In the panel data
literature, Hadri (2000) develops the panel stationarity test based on
the univariate KPSS statistics. Hadri and Kurozumi (2011, 2012)
propose the panel stationarity tests that allow for cross-section
dependency based on a factor structure. Since the presence of
structural breaks affects the limiting distribution of the individual
statistics under the null hypothesis, it is crucial to control for structural
breaks in the stationarity tests to deal with the size distortion problem.
The more recent panel data studies have focused on accounting for
structural breaks (inter alia, Carrion-i-Silvestre et al., 2005; Hadri and
Rao, 2008; Hadri et al., 2012). It is worthwhile emphasizing that all
these studies benefit from the dummy variable approach for modelling
structural shifts.

This paper proposes a simple panel stationarity test with gradual
structural shifts and cross-section dependency. The test also permits
the heterogeneity across cross-sections in a panel. The testing proce-
dure is a combination of the time series stationarity test developed by
Becker et al. (2006) in which structural shifts are modeled with a
Fourier approximation and the panel stationarity test proposed by
Hadri and Kurozumi (2011, 2012) in which cross-section dependency
is accounted with a common factor structure2. The distribution of the
individual statistic only depends on the Fourier frequency and the
panel statistic has a standard normal distribution. The small sample
properties of the panel stationarity test are investigated by Monte Carlo
simulations for the different data generating processes. We find that for
the independent and identically distributed errors the empirical size of
the test is close to the 5 percent nominal size irrespective of time (T)
and cross-section (N) dimensions. Besides there is a substantial
increase in the power as T or N or both increase3. The size and power
analysis for the serially correlated errors shows that the test has good
power as T increases and reasonable size properties.

The recent dynamics of international commodity prices have
attracted more interest in investigating the behavior of commodity
markets. Understanding the behavior of commodity prices has a long
theoretical and empirical debate. The Prebisch-Singer hypothesis on
the one side postulates a long term tendency with declining trends
(Prebisch, 1950 and Singer, 1950). The classical view on the other hand
argues that the real commodity prices show a positive trend in the long
term (Sarkar, 1986). The equilibrium price theory suggests that the
supply and demand forces will push commodity prices towards stable
equilibrium in the long-run. A serious research effort has been exerted
and the evidence on whether the shocks to international commodity
prices are transitory or permanent is not still clear cut. We re-analyze
whether international commodity prices are stationary by using the
Fourier panel stationarity test proposed in this paper. The results

support the evidence on that the null hypothesis of joint stationarity is
rejected and many of the real commodity prices follow the unit root
process, implying that the shocks to international commodity prices are
permanent. This finding contrasts with the results from the previous
panel data studies in which the structural breaks are taken into account
as sharp process. The new panel stationarity test hence provides a fresh
information regarding the nature of shocks to international commodity
prices.

The paper is organized as follows: the next section is devoted to
develop the Fourier panel stationarity test and to simply show its
asymptotic distribution. In Section 3, we conduct the Monte Carlo
analysis for the small sample properties. In Section 4, the nature of
shocks to international commodity prices is examined. Finally, Section
5 includes the conclusion.

2. Model, test statistic and asymptotic distribution

We consider the following data generating process (DGP):

y α t r λ F ε= ( ) + + +it i it i t it (1)

r r u= +it it it−1 (2)

where Ni = 1, …, cross-section dimension, Tt = 1, …, time dimen-
sion, rit is random walk process with initial values r =0i0 for all i, without
loss of generality as heterogeneous constant terms are included4. εit and
uit are mutually independent and identically distributed (i.i.d) across i
and over t with E ε E ε σ E u E u σ( ) = 0, ( ) = > 0, ( ) = 0, ( ) = ≥ 0it it εi it it ui

2 2 2 2 ,
and a finite fourth-order moment. Ft is unobserved common factor and
λi are the loading weights. Ft is stationary and serially uncorrelated with
E F( )=0t and E F σ( ) = >0t F

2 2 . εit, Ft , and λi are independently distributed
for all i. Finally, Ft is assumed to be known5.

The Eq. (1) describes the deterministic term as a time-dependent
function denoted by α t( )i . Any structural breaks or nonlinearity in the
deterministic term can be captured by a Fourier approximation which
mimics a variety of shifts regardless of date, number, and form of
breaks (Becker et al., 2006). If the intercept terms include any
structural shifts with unknown forms, the Fourier expansion with a
single frequency component6 is described as

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟α t a γ sin πkt

T
γ cos πkt

T
( ) = + 2 + 2

i i i i1 2 (3)

where γ i1 and γ i2 respectively measure the amplitude and displacement
of shifts and k denotes the Fourier frequency. The Eq. (3) allows one to
obtain time-varying intercept term by nonzero values of γ i1 and γ i2 to
capture smooth changes in the intercept. More generally both the
intercept and the slope of time trend may fluctuate over time. If the
trend function is nonlinear (either with breaks or other types of non-
linearity), it can be approximated by the Fourier expansion (Jones and
Enders, 2014)

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟α t a t γ sin πkt

T
γ cos πkt

T
( ) = + b + 2 + 2 .i i ii i 1 2 (4)

Introducing a time trend in a Fourier approximation removes the
restriction of same starting and ending values of the sinusoidal function.
The Eq. (4) thereby can capture any changes in the intercept and the slope
of deterministic trend by nonzero values of γ i1 and γ i2 which bring out
smoothly curving trend functions (Lee et al., 2015: 4). It is worthwhile
noting that the trend functions with sudden breaks are not nested within a
single frequency Fourier approximation. If yit has the linear trend with

1 The null hypothesis of stationarity would be more natural than the null of unit root
for many macroeconomic series (Carrion-i-Silvestre et al., 2005) and useful to confirm
results from the tests with the null hypothesis of unit root (Hadri, 2000; Becker et al.,
2006).

2 The econometric contribution of this paper hence is simple because the proposed test
is based on the existing procedures in the time series and panel data literature. However,
the testing procedure would be useful to better understand the nature of shocks by
comparing results with those from the panel stationarity tests in which structural shifts
are modelled as sharp process.

3 This result is consistent with the generally invoked powerfulness of the panel unit
root and stationarity tests (see Hadri, 2000).

4 For the importance of initial values in autoregressive models, see Abadir (1993) and
Abadir and Hadri (2006).

5 In practice the common factor is replaced by its estimates. We discuss this point in
Section 4.

6 We refer Becker et al. (2006) for a detailed discussion on using a single frequency
instead of cumulative frequencies.
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sharp breaks, then a Fourier approximation cannot capture the breaking
trends as accurately as the dummy variable approach (King and
Ramlogan-Dobson, 2014). A Fourier approximation also does not permit
us to analyze the changes in slope of time trend before and after breaks
(Tsong et al., 2016) because it accounts for structural shifts as a gradual/
smooth process. If structural shifts are assumed to be sharp, then one can
examine the behavior of yit by using the panel stationarity test developed
by Hadri and Rao (2008) or by Carrion-i-Silvestre et al. (2005). In
practice, it is a strict presupposition that all the cross-sections in a panel
data have deterministic trend with sharp changes. Even though a Fourier
approximation is not completely flexible to accommodate structural
breaks, it provides a flexibility to mimic a variety of breaks with unknown
forms that this flexibility appears to be useful for panel data analysis.

We are interested in testing the null hypothesis of stationarity
against the alternative hypothesis of unit root.7 The hypotheses are
given by for all i.

The alternative hypothesis allows σui
2 to differ across cross-sections

and also permits some of cross-sections to be stationary. The individual
statistic which is based on the KPSS test allowing the Fourier frequency
developed by Becker et al. (2006) is defined as

η k
T

S k

σ
( ) = 1 ∑ ( )

∼

∼

i
t
T

it

εi
2

=1
2

2 (5)

where S k ε( ) = ∑ ∼∼
it j

t
ij=1 is the partial sum process by using the OLS

residuals from Eq. (1), and σ∼εi
2 is an estimate of the long-run variance of

εit that is defined as

σ T E S= lim ( ).εi
T

it
2

→∞

−1 2
(6)

The panel statistic can be developed by the average of individual
statistics. The Fourier panel statistic FP k( ) is thus obtained as

∑FP k
N

η k( ) = 1 ( ).
i

N

i
=1 (7)

Following Becker et al. (2006), we show that the asymptotic distribution
of η k( )i asT → ∞ only depends on k and is invariant to other parameters in
the DGP.8 Only difference between our model and that of Becker at al.
(2006) is the common factor. As shown by Hadri and Kurozumi (2011,
2012), the common factor would not permanently accumulate in yit if it is
assumed to be stationary under the null hypothesis. The asymptotic
distribution of the panel statistic can be obtained as the average of limiting
distributions of individual statistics (Carrion-i-Silvestre et al., 2005;
Westerlund, 2012) when the common factor does not affect the individual

limiting distribution (Bai and Ng, 2004). It is easily seen by the Lindberg-
Levy central limit theorem under the null hypothesis as first T → ∞ and
then N → ∞, FP k( ) converges to the standard normal distribution with the
mean ξ k( ) and the variance ζ k( )2 :

FZ k N FP k ξ k
ζ k

N( ) = ( ( ) − ( )
( )

~ (0, 1)
(8)

Note that the second order moment of FP k( ) is finite for sufficiently
large T since εit is assumed to have a finite fourth-order moment. The
application of the Lindberg-Levy central limit theorem also requires
that T and k are the same for all cross-section units. If T and k differ
across cross-sections, it is required to carry out more simulations to get
critical values. The limiting distribution of the panel statistic is
obtained sequentially with T → ∞ followed by N → ∞.9 Under the
alternative hypothesis, as T N, → ∞, →0N

T and φ→ > 0N
N

1 the panel
stationarity test FZ k( ) diverges infinity and hence is consistent if the
fraction of cross-sections having a unit root is different from zero.10

In order to calculate the test statistic in Eq. (8), one needs to know
the numerical values of the mean ξ k( ) and the variance ζ k( )2 . One
standard way to obtain these values is to benefit from Monte Carlo
simulation of the limiting distribution of test statistic if no closed form
expression exists (Westerlund, 2012). Table 1 reports the simulated
asymptotic moments for T=1000 with 100,000 Monte Carlo replica-
tions11 for different values of k because the limiting distribution of test
statistic depends on the number of frequency. The moments are
simulated for the constant model and for the constant and trend
model since the Wiener process differs with the deterministic term
specification as shown in the supplement. It appears that the moments
converge as the Fourier frequency increases while they differ for small
number of frequency components.

Remark 1. Since the asymptotic distribution of the individual statistic
only depends on the frequency k, one can use the simulated critical
values by Becker et al. (2006) to draw inferences for each cross-section
in the panel.

Remark 2. We assume the homogenous Fourier frequency k across
cross-sections in order to obtain the asymptotic distribution of panel
statistic because an application of unit root or stationarity tests with the
standard limiting distribution is much easier than those with non-
conventional distributions (Hadri and Rao, 2008). Nevertheless, the
homogeneity assumption of k does not necessarily imply an identical
number and form of breaks for each individual (Lee et al., 2015).
Becker et al. (2006) illustrate that a series with various kind of breaks
can often be captured using a selected frequency component of a
Fourier approximation. Enders and Lee (2012a) further show the
ability of Fourier approximation in capturing a logistic smooth
transition or an exponential smooth transition autoregressive break.

Remark 3. The errors εit may not have the i.i.d. assumption in practice
and can have serial dependence and/or heteroscedasticity. In order to
allow quite general form of temporal dependence and heteroscedasticity

Table 1
Asymptotic moments.

Constant Constant and trend

k ξ k( ) ζ k( )2 ξ k( ) ζ k( )2

1 0.0658 0.0029 0.0295 0.00017
2 0.1410 0.0176 0.0523 0.00150
3 0.1550 0.0202 0.0601 0.00169
4 0.1600 0.0214 0.0633 0.00180
5 0.1630 0.0219 0.0642 0.00179

The DGP is given by y α t λF ε= ( )+ +t t t with F N~ (0,1)t and ε N α t~ (0,1). ( )t is generated by (3)

for the constant and (4) for the constant and trend model with a b γ γ λ, , , ,1 2 ~U[0,1] that

U[∙] denotes the uniform distribution.

7 We are grateful to an anonymous referee for pointing out that under the null
hypothesis it in fact would be more appropriate to use “stable” instead of “stationary”
because of time-varying mean in the model specifications. Nonetheless, we use the
stationary process with this caution in order to be consistent with Becker et al. (2006).

8 See the supplement for the asymptotic distribution of the test statistic in Eq. (5). It is
important to note that our proofs closely follow Becker et al. (2006) and only include a
few new propositions related to the common factor.

9 Phillips and Moon (1999) provide the joint asymptotic analysis of pooled estimators
and show that the sequential asymptotic results would be equivalent to the joint results
under rate condition N T/ → 0. Shin and Snell (2006) more formally prove this result for
the panel stationarity test based on mean group estimates. It appears that one can use the
results in theorem 1 in Shin and Snell (2006: 127) to also establish joint convergence
results of our panel stationarity test. However, such proofs are beyond the scope of the
current research and is left for future work.

10 In order to show the consistency of the test statistic in Eq. (8), we benefit from the
results in Shin and Snell (2006) who show the proof for the consistency of mean group
stationarity tests. Note that their model does not include any structural shift, however, it
can be extended to the model with Fourier frequency components. See the supplement
for the proofs. The Monte Carlo simulations also show that the power of the panel
statistic increases with the increase of the fraction of the cross-sections possessing a unit
root under the alternative hypothesis. The results are reported in the supplement (see
Table S1).

11 The simulations are conducted with GAUSS 15.
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over t, one may assume that εitsatisfy the strong mixing regularity
conditions defined by Phillips and Perron (1988).12 In this case it is
required to calculate η k( )i by the consistent long-run variance.

∑ ∑ ∑σ
T

ε
T

w s l ε ε= 1 + 2 ( , )∼ ∼ ∼∼
εi

t

T

it
s

l

t s

T

it it s
2

=1

2

=1 = +1
−

(9)

where w s l( , ) denotes the spectral window which can be estimated
through a non-parametric kernel approach such as Bartlett
(Kwiatkowski et al. 1992; Becker et al., 2006) or quadratic spectral
(Hobijn et al., 2004).13 Even though the choice of kernel does not play a
significant role and depends on the preference of practitioners (Carrion-
i-Silvestre and Sansó, 2006), the determination of truncating lag or
bandwidth/requires a careful treatment for size and power properties of
the stationarity tests (Lee, 1996). The different bandwidth selection
methods are proposed. Schwert (1989) uses a fixed value based on
sample size; Andrews (1991) conducts the data-driven selection; and
Andrews and Monahan (1992) propose the pre-whitening procedure.
The Monte Carlo simulations carried out by Lee (1996) for the small
sample properties of the KPSS test in the presence of AR(1) errors
support that while the fixed lags lead to serious size distortion, the data-
driven and the pre-whitening procedures provide less size distortion at
the expense of poor power. Moreover, the data-driven selection and the
pre-whitening procedure conduce toward the inconsistency of the
stationarity tests (Sul et al., 2005). In order to avoid inconsistency and
improve size and power properties, some boundary rules are proposed
(see Kurozumi, 2002; Sul et al., 2005).14

Kurozumi (2002) uses a simple data dependent bandwidth para-
meter for Bartlett kernel which is defined as

⎪

⎪

⎪

⎪

⎛

⎝
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⎧
⎨
⎩

⎫
⎬
⎭
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⎫⎬⎭

⎞

⎠

⎟⎟⎟l
ρ T

ρ ρ
c T

c c
= min 1.1447

4
(1 + ) (1 − )

, 1.1447
(1 + ) (1 − )

̂
i

i

i i

2

2 2

1
3 2

2 2

1
3

(10)

where ρi is the estimate for autoregressive parameter from
ε ρε v= +∼ ∼

it i it it−1 and c = 0.7 as in Carrion-i-Silvestre and Sansó
(2006). Sul et al. (2005) propose the pre-whitened heteroscedasticity
and autocorrelation consistent estimator for the long-run variance. An
autoregressive (AR) model defined as ε ρ ε ρ ε v= +…+ +∼ ∼ ∼

it i it pi it p it1 −1 − is
estimated in order to obtain the consistent long-run variance
σ σ ρ= / (1)∼ ∼ ∼

εi vi i
2 2 2 where ρ (1)∼

i is the autoregressive polynomial

ρ L ρ L ρ L( )=1− − …−∼ ∼ ∼
i i pi

p
1 and σ∼vi

2 denotes the long-run variance of the
residuals vit through using Bartlett kernel. Sul et al. (2005) suggest the
following boundary rule

σ min Tσ σ ρ= { , / (1) }.∼ ∼ ∼ ∼
εi vi vi i
2 2 2 2

(11)

This rule ensures that the long-run variance is bounded above by
Tσ∼vi

2 and hence the individual statistics under the alternative hypothesis
are now consistent (Carrion-i-Silvestre and Sansó, 2006).

3. Small sample properties

Monte Carlo simulations are carried out with 5000 replications at
the 5 percent level of significance (i.e., the critical value is 1.645) for
the joint hypothesis of stationarity. Following the time series
(Becker et al., 2006; Enders and Lee, 2012a, 2012b; Rodrigues
and Taylor 2012) and the panel data (Lee et al., 2015) studies in

which Fourier approximation is used to capture structural shifts, we
consider the DGP with the trigonometric shifts. The DGP is
y a γ sin πkt T γ cos πkt T λ F ε= + (2 / ) + (2 / ) + +it i i i i t it1 2 for the constant
model and y a b t γ sin πkt T γ cos πkt T λ F ε= + + (2 / )+ (2 / ) + +it i i i i i t it1 2 for the
constant and trend model with F N ε N~ (0,1), ~ (0,1)t it , and the para-
meters a b γ γ λ U, , , , ~ [0,1]i i i i i1 2 that U[∙] denotes the uniform distribu-
tion. We examine the small sample properties of FZ k( )for different
cases. In case 1, FZ k( )test is conducted with k frequency which is
equal to k in the DGP. In case 2, γ γ= =0i i1 2 in the DGP and this case
hence investigates the small sample properties of FZ k( ) test when
there are no structural shifts in the DGP. In cases 3–5, the DGP is
generated as in case 1. In case 3, we employ the panel stationarity test
developed by Hadri and Kurozumi (2012) and thereby examine
whether there is a size distortion and/or loss of power when the
existing breaks in the DGP are ignored. Cases 4 and 5 focus on the
testing with wrong number of Fourier frequency. As we discussed, our
test uses the homogenous Fourier frequency across cross-sections and
thereby it is important to examine the small sample properties if one
employs the frequency which is more or less than the correct one. In
both cases the DGP is generated with k frequency but FZ k( ) uses k+1
frequency in Case 4 and k-1 frequency in Case 5.

We first concentrate on the case of i.i.d errors. Table 2 summarizes
the empirical size under the different values of cross-section dimension
(N), time dimension (T), and Fourier frequency (k). In Case 1, it
appears that the empirical size of the test is close to the nominal size in
both the constant and the constant and trend models irrespective of
whether T(N) is larger than N(T). This implies that the Fourier panel
statistic has good size properties even in small samples. The test also
seems to have correct size regardless of the number of Fourier
frequency. In Case 2 where the DGP does not include Fourier terms
but the test is applied with Fourier terms, the size properties are similar
to those in Case 1. The results from Case 2 hence imply that the
rejection rate of the null hypothesis would be close to the nominal
significance level if one employs the Fourier panel stationarity test even
though the DGP does not include any Fourier terms. In Case 3,
however, the test has considerable size distortions and these distortions
do not disappear neither T nor N increases when the Fourier frequency
k is one. When the Fourier frequency increases (i.e, k=2 or k=3) the test
has less size distortion but it is not possible to say that the test has good
size properties. These results thereby indicate that ignoring Fourier
terms leads to size distortions. Finally, let us discuss the size properties
in the case of using the wrong number of Fourier frequency. On the one
hand, in Case 4, while the DGP has k Fourier frequency the test is
applied with one more (k+1) Fourier frequency. On the other hand, in
Case 5, while the DGP has k Fourier frequency the test is applied with
one less (k–1) Fourier frequency. In a nutshell, although the test is
undersized with small number of T given N and k, the empirical size
tends to increase and close to the nominal size as T grows.

Before proceeding with interpreting the results for power analysis,
it is important to clarify that the power of the test varies with different
values of σu

2 where σ =0u
2 means stationary and σ =∞u

2 implies a random
walk process (Becker et al., 2006). In order to save space, we only
report the empirical power for σ =0.01u

2 by assuming all the cross-
section possessing a unit root process. The results presented in Table 3
indicate in general that the power of the test increases as T or N or both
get larger for a given value of k in all cases but Case 3. In Case 3, we
indeed expect that the test would be less powerful because the omission
of Fourier components in the estimation would cause to power
reduction in small samples. Nonetheless, larger T leads to increase in
the empirical power of test when N and k are fixed.

It is known that the KPSS-type tests can suffer from considerable
size distortions in finite samples if there is a serial correlation in the
series (Caner and Kilian, 2001; Kurozumi and Tanaka, 2010). We
hence investigate the small sample properties of the Fourier panel
statistic with the serially correlated errors. In particular, yit is generated
as in Case 1 but the error process is defined as the AR(1) process by

12 The strong mixing regularity conditions in Phillips and Perron (1988) are generally
assumed in the literature (see among others Hadri, 2000; Carrion-i-Silvestre et al., 2005;
Hadri and Rao, 2008; Becker et al., 2006).

13 An interested reader is referred to Carrion-i-Silvestre and Sansó (2006) for a
detailed discussion on the consistent estimation methods of the long-run variance and
their comparisons for small samples.

14 We refer an interested reader to Carrion-i-Silvestre and Sansó (2006) for a detailed
survey and further discussion.
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Table 2
Size analysis for i.i.d. errors.

Constant Constant and trend

k N/T 20 30 50 100 150 200 20 30 50 100 150 200

Case 1: DGP with Fourier terms and Test with Fourier terms

1 10 0.047 0.047 0.051 0.044 0.049 0.049 0.043 0.052 0.050 0.054 0.054 0.048
20 0.052 0.050 0.048 0.052 0.058 0.051 0.046 0.054 0.050 0.049 0.046 0.057
30 0.047 0.052 0.043 0.044 0.046 0.046 0.047 0.049 0.047 0.050 0.051 0.049
50 0.055 0.054 0.050 0.047 0.050 0.053 0.047 0.049 0.050 0.051 0.048 0.052
100 0.053 0.048 0.050 0.047 0.048 0.054 0.049 0.047 0.050 0.052 0.047 0.054

2 10 0.047 0.054 0.052 0.042 0.050 0.051 0.051 0.052 0.045 0.052 0.046 0.051
20 0.044 0.041 0.052 0.049 0.047 0.044 0.051 0.050 0.048 0.055 0.054 0.049
30 0.052 0.048 0.052 0.048 0.051 0.049 0.049 0.052 0.048 0.050 0.050 0.049
50 0.058 0.043 0.050 0.046 0.049 0.053 0.051 0.052 0.046 0.052 0.054 0.046
100 0.050 0.049 0.048 0.050 0.050 0.051 0.049 0.050 0.054 0.044 0.048 0.054

3 10 0.047 0.052 0.051 0.047 0.051 0.050 0.053 0.051 0.045 0.055 0.044 0.051
20 0.054 0.053 0.051 0.049 0.055 0.052 0.048 0.047 0.051 0.053 0.052 0.044
30 0.054 0.046 0.057 0.050 0.052 0.047 0.049 0.052 0.051 0.051 0.054 0.053
50 0.053 0.048 0.048 0.049 0.053 0.049 0.047 0.054 0.053 0.054 0.052 0.049
100 0.056 0.049 0.051 0.051 0.053 0.054 0.055 0.045 0.049 0.047 0.044 0.045

Case 2: DGP without Fourier terms and Test with Fourier terms

1 10 0.047 0.048 0.056 0.051 0.050 0.049 0.054 0.045 0.052 0.048 0.053 0.046
20 0.053 0.054 0.050 0.051 0.047 0.050 0.050 0.045 0.054 0.047 0.046 0.050
30 0.053 0.052 0.051 0.048 0.049 0.049 0.052 0.049 0.049 0.048 0.048 0.050
50 0.053 0.053 0.049 0.048 0.048 0.049 0.054 0.055 0.046 0.044 0.054 0.051
100 0.047 0.049 0.051 0.051 0.048 0.047 0.044 0.055 0.050 0.046 0.047 0.051

2 10 0.051 0.048 0.057 0.048 0.049 0.049 0.053 0.052 0.047 0.055 0.047 0.050
20 0.050 0.050 0.049 0.052 0.050 0.051 0.048 0.048 0.048 0.051 0.054 0.052
30 0.049 0.049 0.048 0.052 0.052 0.053 0.052 0.050 0.050 0.050 0.048 0.044
50 0.047 0.050 0.047 0.055 0.049 0.048 0.051 0.053 0.053 0.050 0.056 0.054
100 0.051 0.045 0.051 0.052 0.047 0.048 0.052 0.047 0.049 0.055 0.052 0.051

3 10 0.050 0.052 0.052 0.047 0.048 0.049 0.051 0.049 0.052 0.049 0.049 0.048
20 0.050 0.051 0.050 0.048 0.042 0.049 0.046 0.051 0.050 0.048 0.051 0.055
30 0.055 0.046 0.047 0.051 0.047 0.047 0.047 0.045 0.053 0.043 0.049 0.054
50 0.053 0.048 0.044 0.049 0.049 0.047 0.043 0.050 0.049 0.053 0.059 0.053
100 0.054 0.043 0.045 0.048 0.048 0.046 0.048 0.053 0.048 0.053 0.048 0.047

Case 3: DGP with Fourier terms and Test without Fourier terms

1 10 0.017 0.021 0.006 0.001 0.002 0.000 0.090 0.044 0.037 0.083 0.737 0.014
20 0.081 0.072 0.275 0.061 0.008 0.065 0.052 0.018 0.026 0.015 0.002 0.000
30 0.039 0.052 0.086 0.002 0.000 0.034 0.035 0.004 0.003 0.025 0.000 0.009
50 0.050 0.074 0.125 0.004 0.011 0.000 0.087 0.091 0.033 0.003 0.133 0.213
100 0.106 0.029 0.044 0.000 0.051 0.020 0.051 0.069 0.020 0.010 0.366 0.000

2 10 0.050 0.070 0.060 0.023 0.069 0.086 0.053 0.045 0.032 0.055 0.006 0.063
20 0.046 0.038 0.058 0.064 0.005 0.010 0.041 0.038 0.050 0.041 0.014 0.182
30 0.047 0.053 0.048 0.037 0.032 0.040 0.066 0.060 0.040 0.013 0.016 0.029
50 0.066 0.053 0.071 0.048 0.101 0.020 0.053 0.036 0.025 0.007 0.005 0.001
100 0.056 0.050 0.062 0.097 0.058 0.132 0.055 0.050 0.074 0.066 0.031 0.114

3 10 0.050 0.054 0.051 0.046 0.045 0.037 0.055 0.048 0.043 0.043 0.024 0.010
20 0.049 0.052 0.050 0.079 0.050 0.045 0.050 0.048 0.048 0.036 0.032 0.027
30 0.048 0.050 0.046 0.035 0.083 0.050 0.049 0.047 0.043 0.040 0.035 0.027
50 0.045 0.048 0.052 0.072 0.091 0.086 0.048 0.047 0.056 0.034 0.021 0.017
100 0.047 0.049 0.052 0.039 0.047 0.030 0.053 0.051 0.041 0.032 0.051 0.111

Case 4: wrong number of Fourier term (k+1)

1 10 0.012 0.022 0.032 0.047 0.044 0.049 0.000 0.007 0.021 0.037 0.039 0.044
20 0.006 0.019 0.033 0.039 0.047 0.050 0.000 0.001 0.010 0.026 0.034 0.034
30 0.006 0.016 0.023 0.036 0.046 0.040 0.000 0.000 0.005 0.025 0.029 0.039
50 0.002 0.007 0.028 0.038 0.039 0.035 0.000 0.000 0.002 0.016 0.023 0.030
100 0.001 0.003 0.017 0.029 0.038 0.043 0.000 0.000 0.000 0.009 0.012 0.019

2 10 0.015 0.031 0.036 0.043 0.043 0.045 0.010 0.016 0.031 0.037 0.035 0.045
20 0.009 0.023 0.029 0.041 0.043 0.046 0.004 0.013 0.029 0.036 0.036 0.041
30 0.010 0.024 0.037 0.042 0.046 0.051 0.002 0.010 0.024 0.037 0.031 0.046
50 0.007 0.016 0.026 0.040 0.051 0.050 0.001 0.006 0.020 0.032 0.032 0.039
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ε ρε v= +it i it it−1 (12)

with v i i dN~ . . (0, 1)it , and ρ U~ [0.1,0.9]i . We assume that the autoregres-
sive parameter ρi differs across cross-sections from low persistence to
high persistence both under the null and alternative hypotheses. As
discussed in the Remark 3, the test statistic now requires the estimation
of the consistent long-run variance. The long-run variance is estimated
with Bartlett kernel under the boundary rule of Sul et al. (2005) and
Kurozumi (2002).15 As shown in Sul et al. (2005) and also emphasized in
Hadri and Rao (2008), the time dimension should be sufficiently large to
obtain precise estimation of the long-run variance. We therefore conduct
the Monte Carlo simulations for T=100, 150, and 200.

Table 4 reports the empirical size and size-adjusted power of the test
statistic for serially correlated errors. The test statistic based on Sul et al.
(2005) boundary rule appears to have substantial size distortions. The
model with constant and trend is more undersized than the model with
constant when k is one and T is 100. The size distortion in the constant
and trend model increases monotonically as T grows when the frequency
is one. The substantial size distortion fortunately appears to be
eliminated when the Kurozumi (2002) rule is applied in Eq. (10) which
provides good size properties. As expected the power of the test increases
when time dimension grows. It also improves with larger N when the
number of frequency holds fixed. This property in fact can be easily
attributed to the main advantage of panel data framework that adding
cross-section dimension to time dimension leads to power increases.

4. Empirical application

There is a huge and growing empirical literature on the trend
dynamics of commodity prices.16 The majority of empirical studies
conduct univariate unit root tests and there is no consensus about
whether the commodity prices are mean reverting or not.17 The use of
panel data approach during the recent years has attracted interest in

the commodity price literature, but this literature still appears to be
scant. Yang et al. (2012) and Nazlioglu (2014) employs the panel
stationarity test developed by Carrion-i-Silvestre et al. (2005); and
Iregui and Otero (2013) and Arezki et al. (2014) use the panel
stationarity test proposed by Hadri and Rao (2008).18 In all these
papers, the structural shifts in the commodity prices are modelled with
dummy variables and the common evidence is supported on the
stationarity of the commodity prices.

Using panel data framework not only increases the power of tests
but also allows incorporating the information contained in the cross
sectional dependence. The cross-section dependence arises from
positive and significant correlations between the commodity prices
(Arezki et al., 2014).19 The strong correlation between commodities is
referred to as “excess co- movement” (Pindyck and Rotemberg, 1990).
Otero and Iregui (2011) provide an alternative interpretation of using
the panel stationarity tests in order to examine an existence of the
excess co-movement. If the joint null hypothesis of stationarity cannot
be rejected, then commodity prices are jointly stationary which implies
that primary commodity and manufactured goods prices are linked by
a long-run equilibrium relationship and hence there is an evidence on
the definition of commodity price co-movement.

We re-investigate whether the international commodity prices are
stationary by applying the Fourier panel stationarity test in order to
examine whether modelling structural shifts with the Fourier approx-
imation instead of with dummy variables makes sense to better
understand the behavior of commodity prices. We employ the updated
Grilli and Yang (1988) data for 24 real international commodity prices
during the 1900–2011 period.20 Fig. 1 depicts the log of real
commodity prices. The behavior of the commodity prices does not
appear to be similar to each other and the prices have different trend
dynamics in different time spans. The nature of shifts is generally
unknown and there is no specific guide regarding number and date of

Table 2 (continued)

Constant Constant and trend

k N/T 20 30 50 100 150 200 20 30 50 100 150 200

100 0.003 0.010 0.026 0.032 0.050 0.049 0.000 0.003 0.015 0.031 0.037 0.038

3 10 0.013 0.023 0.031 0.045 0.044 0.053 0.004 0.013 0.026 0.032 0.033 0.038
20 0.013 0.020 0.027 0.033 0.042 0.044 0.002 0.009 0.019 0.036 0.034 0.040
30 0.005 0.019 0.024 0.039 0.043 0.047 0.000 0.008 0.014 0.034 0.029 0.031
50 0.005 0.014 0.026 0.037 0.045 0.041 0.000 0.003 0.013 0.027 0.035 0.032
100 0.001 0.012 0.017 0.038 0.039 0.039 0.000 0.001 0.011 0.022 0.030 0.026

Case 5: wrong number of Fourier term (k−1)

2 10 0.014 0.021 0.037 0.037 0.042 0.044 0.004 0.014 0.020 0.037 0.039 0.038
20 0.008 0.015 0.027 0.036 0.034 0.039 0.002 0.014 0.033 0.037 0.037 0.040
30 0.007 0.023 0.028 0.037 0.034 0.040 0.004 0.009 0.028 0.034 0.038 0.032
50 0.003 0.010 0.028 0.033 0.037 0.040 0.003 0.015 0.028 0.037 0.037 0.050
100 0.001 0.006 0.016 0.026 0.032 0.031 0.001 0.019 0.034 0.049 0.045 0.054

3 10 0.018 0.029 0.033 0.045 0.042 0.053 0.006 0.017 0.030 0.045 0.047 0.047
20 0.010 0.019 0.032 0.040 0.042 0.035 0.002 0.008 0.023 0.035 0.048 0.038
30 0.005 0.016 0.040 0.044 0.049 0.047 0.000 0.006 0.020 0.032 0.040 0.044
50 0.005 0.017 0.031 0.037 0.044 0.050 0.000 0.004 0.015 0.030 0.029 0.039
100 0.001 0.008 0.020 0.041 0.039 0.040 0.000 0.001 0.010 0.027 0.027 0.039

15 The estimation of the long-run variance either with Bartlett or with quadratic
spectral window does not considerably change the results. In order to save space, Table 4
does not report the results with quadratic spectral window which are available in the
supplement (see Table S2).

16 The commodity prices mean the real prices which are defined as primary
commodity prices relative to manufactured goods prices.

17 An interested reader is referred to Ghoshray (2011) and Nazlioglu (2014) for the
detailed literature reviews.

18 In order to save space, we do not pay attention to discuss the differences between
the panel stationarity tests proposed by Carrion-i-Silvestre et al. (2005) and Hadri and
Rao (2008). An interested reader is referred to Hadri and Rao (2008: 246) for a detailed
discussion.

19 The correlation matrix supports the evidence on the positive and high cross-
sectional correlations between the commodity prices. To save space, the correlation
coefficients are reported in the supplement (see Table S3).

20 See Pfaffenzeller et al. (2007) for a detailed description of the series. The data is
available at http://www.stephan-pfaffenzeller.com/cpi.html.
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Table 3
Power analysis for i.i.d errors.

Constant Constant and trend

k N/T 20 30 50 100 150 200 20 30 50 100 150 200

Case 1: DGP with Fourier terms and Test with Fourier terms

1 10 0.158 0.234 0.593 0.848 1.000 1.000 0.207 0.258 0.267 0.748 0.931 0.985
20 0.303 0.196 0.598 0.997 1.000 1.000 0.378 0.394 0.303 0.689 0.984 1.000
30 0.323 0.368 0.830 1.000 1.000 1.000 0.431 0.520 0.420 0.793 1.000 1.000
50 0.443 0.482 0.929 0.999 1.000 1.000 0.766 0.747 0.597 0.954 1.000 1.000
100 0.703 0.883 0.996 1.000 1.000 1.000 0.996 0.955 0.865 0.999 1.000 1.000

2 10 0.427 0.277 0.918 1.000 1.000 1.000 0.166 0.167 0.293 0.960 1.000 1.000
20 0.351 0.667 0.969 1.000 1.000 1.000 0.217 0.282 0.545 0.916 1.000 1.000
30 0.692 0.771 0.988 1.000 1.000 1.000 0.350 0.473 0.602 0.998 1.000 1.000
50 0.699 0.824 0.994 1.000 1.000 1.000 0.527 0.604 0.804 1.000 1.000 1.000
100 0.873 0.937 1.000 1.000 1.000 1.000 0.897 0.886 0.956 1.000 1.000 1.000

3 10 0.320 0.505 0.721 0.997 1.000 1.000 0.218 0.246 0.313 0.724 0.997 1.000
20 0.333 0.769 0.988 1.000 1.000 1.000 0.282 0.353 0.549 0.994 1.000 1.000
30 0.544 0.853 1.000 1.000 1.000 1.000 0.439 0.467 0.725 1.000 1.000 1.000
50 0.749 0.966 1.000 1.000 1.000 1.000 0.586 0.645 0.934 1.000 1.000 1.000
100 0.914 0.988 1.000 1.000 1.000 1.000 0.835 0.893 0.995 1.000 1.000 1.000

Case 2: DGP without Fourier terms and Test with Fourier terms

1 10 0.353 0.439 0.505 1.000 0.999 1.000 0.405 0.561 0.280 0.552 0.719 0.996
20 0.511 0.407 0.625 0.987 1.000 1.000 0.594 0.793 0.515 0.639 0.986 1.000
30 0.655 0.525 0.921 1.000 1.000 1.000 0.899 0.914 0.665 0.903 1.000 1.000
50 0.788 0.782 0.979 1.000 1.000 1.000 0.949 0.984 0.836 0.977 1.000 1.000
100 0.947 0.932 0.988 1.000 1.000 1.000 1.000 1.000 0.972 1.000 1.000 1.000

2 10 0.463 0.598 0.575 1.000 1.000 1.000 0.326 0.411 0.311 0.991 0.998 1.000
20 0.696 0.560 0.979 1.000 1.000 1.000 0.438 0.435 0.705 0.919 1.000 1.000
30 0.748 0.775 0.955 1.000 1.000 1.000 0.650 0.701 0.763 1.000 1.000 1.000
50 0.866 0.933 0.999 1.000 1.000 1.000 0.838 0.848 0.883 1.000 1.000 1.000
100 0.907 0.944 1.000 1.000 1.000 1.000 0.889 0.951 0.996 1.000 1.000 1.000

3 10 0.416 0.342 0.850 1.000 1.000 1.000 0.350 0.358 0.700 0.978 1.000 1.000
20 0.703 0.665 0.894 1.000 1.000 1.000 0.585 0.641 0.859 0.999 1.000 1.000
30 0.732 0.823 0.999 1.000 1.000 1.000 0.668 0.690 0.831 1.000 1.000 1.000
50 0.806 0.983 0.999 1.000 1.000 1.000 0.876 0.908 0.962 1.000 1.000 1.000
100 0.979 0.997 1.000 1.000 1.000 1.000 0.897 0.987 0.995 1.000 1.000 1.000

Case 3: DGP with Fourier terms and Test without Fourier terms

1 10 0.060 0.013 0.624 1.000 1.000 1.000 0.017 0.006 0.011 0.437 0.980 1.000
20 0.008 0.013 0.144 1.000 1.000 1.000 0.008 0.002 0.002 0.983 0.956 1.000
30 0.033 0.037 0.576 1.000 1.000 1.000 0.010 0.000 0.066 0.195 1.000 1.000
50 0.000 0.075 0.540 1.000 1.000 1.000 0.002 0.000 0.000 0.910 1.000 1.000
100 0.000 0.010 0.999 1.000 1.000 1.000 0.000 0.000 0.000 0.867 1.000 1.000

2 10 0.105 0.161 0.599 1.000 1.000 1.000 0.298 0.100 0.167 0.425 1.000 1.000
20 0.204 0.243 0.946 1.000 1.000 1.000 0.557 0.179 0.280 0.996 1.000 1.000
30 0.150 0.195 0.982 1.000 1.000 1.000 0.690 0.265 0.273 1.000 1.000 1.000
50 0.362 0.666 0.999 1.000 1.000 1.000 0.889 0.315 0.587 0.999 1.000 1.000
100 0.483 0.769 1.000 1.000 1.000 1.000 0.998 0.454 0.662 1.000 1.000 1.000

3 10 0.096 0.155 0.317 1.000 1.000 1.000 0.419 0.180 0.148 0.939 0.999 1.000
20 0.269 0.265 0.904 1.000 1.000 1.000 0.758 0.295 0.529 0.911 1.000 1.000
30 0.377 0.271 0.929 1.000 1.000 1.000 0.945 0.475 0.427 0.994 1.000 1.000
50 0.489 0.563 0.995 1.000 1.000 1.000 0.998 0.705 0.735 1.000 1.000 1.000
100 0.869 0.939 1.000 1.000 1.000 1.000 1.000 0.979 0.795 1.000 1.000 1.000

Case 4: wrong number of Fourier term (k+1)

1 10 0.068 0.704 0.367 0.982 1.000 1.000 0.011 0.186 0.034 0.859 1.000 1.000
20 0.374 0.723 1.000 1.000 1.000 1.000 0.008 0.028 0.090 0.072 1.000 1.000
30 0.599 0.598 0.999 1.000 1.000 1.000 0.002 0.024 0.006 0.831 1.000 1.000
50 0.873 0.660 1.000 1.000 1.000 1.000 0.000 0.000 0.002 0.330 0.987 1.000
100 0.577 0.969 1.000 1.000 1.000 1.000 0.000 0.000 0.000 0.091 1.000 1.000

2 10 0.497 0.365 0.821 1.000 1.000 1.000 0.307 0.408 0.518 1.000 0.981 1.000
20 0.549 0.725 0.996 1.000 1.000 1.000 0.432 0.536 0.791 1.000 1.000 1.000
30 0.607 0.900 0.997 1.000 1.000 1.000 0.559 0.394 0.666 1.000 1.000 1.000
50 0.766 0.976 1.000 1.000 1.000 1.000 0.792 0.633 0.963 1.000 1.000 1.000
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Table 3 (continued)

Constant Constant and trend

k N/T 20 30 50 100 150 200 20 30 50 100 150 200

100 0.964 0.997 1.000 1.000 1.000 1.000 0.963 0.874 0.999 1.000 1.000 1.000

3 10 0.455 0.394 0.934 1.000 1.000 1.000 0.345 0.328 0.386 0.996 1.000 1.000
20 0.431 0.743 0.888 1.000 1.000 1.000 0.523 0.431 0.773 1.000 1.000 1.000
30 0.630 0.838 1.000 1.000 1.000 1.000 0.662 0.517 0.700 1.000 1.000 1.000
50 0.786 0.994 1.000 1.000 1.000 1.000 0.877 0.763 0.979 1.000 1.000 1.000
100 0.981 1.000 1.000 1.000 1.000 1.000 0.990 0.938 0.998 1.000 1.000 1.000

Case 5: wrong number of Fourier term (k−1)

2 10 0.287 0.456 0.900 0.854 1.000 1.000 0.284 0.286 0.415 0.884 0.943 1.000
20 0.384 0.469 0.979 0.994 1.000 1.000 0.193 0.105 0.760 0.550 1.000 1.000
30 0.339 0.659 0.854 1.000 1.000 1.000 0.155 0.084 0.664 0.951 1.000 1.000
50 0.606 0.743 1.000 1.000 1.000 1.000 0.261 0.447 0.422 0.998 1.000 1.000
100 0.860 0.980 0.999 1.000 1.000 1.000 0.402 0.134 0.955 1.000 1.000 1.000

3 10 0.251 0.305 0.740 1.000 1.000 1.000 0.281 0.372 0.323 0.977 0.914 1.000
20 0.552 0.706 0.966 1.000 1.000 1.000 0.451 0.394 0.618 0.999 1.000 1.000
30 0.503 0.862 0.994 1.000 1.000 1.000 0.604 0.481 0.723 1.000 1.000 1.000
50 0.793 0.967 1.000 1.000 1.000 1.000 0.805 0.679 0.992 1.000 1.000 1.000
100 0.960 0.997 1.000 1.000 1.000 1.000 0.964 0.936 0.999 1.000 1.000 1.000

Table 4
Size and power analysis for serially correlated errors.

Size Size-adjusted power

Constant Constant and trend Constant Constant and trend

k N/T 100 150 200 100 150 200 100 150 200 100 150 200

Sul et al. (2005)

1 10 0.128 0.102 0.133 0.081 0.098 0.244 0.261 0.799 0.855 0.162 0.121 0.451
20 0.111 0.177 0.167 0.019 0.104 0.377 0.890 0.977 1.000 0.119 0.619 0.667
30 0.082 0.132 0.176 0.014 0.083 0.079 0.916 0.995 1.000 0.216 0.700 0.970
50 0.103 0.311 0.173 0.039 0.147 0.380 0.853 0.999 1.000 0.190 0.715 0.975
100 0.141 0.229 0.468 0.046 0.093 0.626 0.976 1.000 1.000 0.192 0.995 0.998

2 10 0.158 0.198 0.096 0.378 0.093 0.113 0.595 0.998 1.000 0.696 0.810 0.857
20 0.170 0.446 0.238 0.175 0.285 0.190 0.979 0.999 1.000 0.618 0.998 1.000
30 0.304 0.334 0.419 0.331 0.307 0.270 0.999 1.000 1.000 0.919 0.988 1.000
50 0.384 0.328 0.252 0.401 0.220 0.587 0.997 1.000 1.000 0.779 1.000 1.000
100 0.627 0.510 0.584 0.586 0.536 0.634 1.000 1.000 1.000 0.983 0.999 1.000

3 10 0.102 0.240 0.205 0.301 0.102 0.134 0.757 0.915 1.000 0.587 0.722 0.999
20 0.201 0.217 0.307 0.147 0.232 0.493 0.996 1.000 1.000 0.819 0.991 0.915
30 0.299 0.152 0.259 0.311 0.237 0.342 0.992 1.000 1.000 0.791 1.000 1.000
50 0.291 0.278 0.454 0.392 0.578 0.558 0.997 1.000 1.000 0.961 0.999 1.000
100 0.527 0.657 0.549 0.585 0.669 0.609 0.997 1.000 1.000 0.987 1.000 1.000

Kurozumi (2002)

1 10 0.058 0.049 0.054 0.039 0.040 0.049 0.385 0.967 0.906 0.819 0.881 0.996
20 0.049 0.046 0.055 0.036 0.047 0.062 0.997 0.999 1.000 0.937 0.991 1.000
30 0.041 0.046 0.061 0.060 0.047 0.055 0.953 1.000 1.000 0.997 0.995 1.000
50 0.060 0.053 0.053 0.058 0.045 0.056 0.999 1.000 1.000 1.000 1.000 1.000
100 0.057 0.047 0.044 0.038 0.040 0.052 1.000 0.999 1.000 1.000 1.000 1.000

2 10 0.046 0.056 0.043 0.037 0.041 0.053 0.928 0.993 1.000 0.825 0.893 0.999
20 0.038 0.042 0.060 0.039 0.059 0.043 0.912 1.000 1.000 0.916 0.987 1.000
30 0.060 0.047 0.048 0.056 0.044 0.044 1.000 1.000 1.000 0.994 1.000 1.000
50 0.062 0.048 0.053 0.050 0.041 0.047 0.999 1.000 1.000 0.998 1.000 1.000
100 0.035 0.046 0.063 0.052 0.056 0.060 1.000 1.000 1.000 1.000 1.000 1.000

3 10 0.042 0.053 0.043 0.050 0.044 0.060 0.941 0.988 1.000 0.711 0.933 0.986
20 0.050 0.046 0.062 0.043 0.036 0.051 1.000 1.000 1.000 0.981 1.000 1.000
30 0.060 0.040 0.062 0.051 0.046 0.047 1.000 1.000 1.000 0.998 1.000 1.000
50 0.059 0.054 0.051 0.055 0.039 0.044 1.000 1.000 1.000 1.000 1.000 1.000
100 0.041 0.038 0.060 0.056 0.043 0.042 1.000 1.000 1.000 1.000 1.000 1.000
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breaks. The Fig. 1 also shows the Fourier approximations of the series
which signal the long swings in real commodity prices.

Before proceed to the implementation of the Fourier panel statio-
narity test, a preliminary analysis is required. One assumption to be
tested is whether there is a cross-section dependency among the
commodity prices. We employ two tests proposed by Breusch and
Pagan (1980) and Pesaran et al. (2008) to test for the null hypothesis of
no cross-sectional dependence - H :Cov ε ε( , )=0it jt0 for all t and i j≠ -
against the alternative of dependency - H :Cov ε ε( , )≠0it jt1 - for at least
one pair of i j≠ . We first estimate the models with one frequency for
the sake of simplicity and obtain the residuals. Then the pair-wise
correlations ρ i j( , ≠ )ij among the residuals are calculated. The LM
statistic by Breusch and Pagan (1980) is defined as

∑ ∑LM T ρ χ= ~
i

N

j i

N

ij N N
=1

−1

= +1

2
( −1)/2

2

(13)

Pesaran et al. (2008) propose a modified version of the LM test by
using the exact mean and variance. The bias-adjusted LM test is

⎛
⎝⎜

⎞
⎠⎟ ∑ ∑LM

N N

T m ρ μ

v
N= 2

( −1)

( − ) −
~ (0, 1)adj

i

N

j i

N
ij Tij

Tij=1

−1

= +1

2

2
(14)

where m is the number of explanatory variables, and μTij and vTij
2 are

respectively the mean and the variance (Pesaran et al., 2008: 108). The
results in Table 5 indicate that the null hypothesis is strongly rejected,
supporting the evidence on cross-section dependency. The dependence
among commodity markets can be explained by the stylized facts.
Adams and Glück (2015) show that the commodity markets financia-
lization has led to change the behavior and dependence structure
between commodities. Kagraoka (2016) find that the commodity prices
during the last two decades are driven by the common factors which are
the U.S. inflation rate, the word industrial production index, the world
stock index, and the crude oil prices. The dependence also can be
attributed to the high degree of integration of the commodity futures
and spot markets. Narayan et al. (2013) find out that commodity
futures play a crucial role in predicting commodity spot prices.

Even though we find out the existence of cross-section dependency,
the common factor Ft is unknown in practice and thereby to be
replaced by an estimate.21 Pesaran (2007) proposes a simple approach
by taking a cross-sectional average of the model. Let
Z sin πkt T cos πkt T=[1, (2 / ), (2 / )]′t or Z t sin πkt T cos πkt T=[1, , (2 / ), (2 / )]′t for
the notational simplicity, the cross-sectional average of yit is

y Z δ r λF ε= ′ + + +t t t t t (15)

Fig. 1. The dynamics of real commodity prices and their Fourier approximations.

Table 5
Results from the cross-section dependency tests.

Constant Constant and trend

Test Statistic p-value Statistic p-value

LM 5976.802*** 0.000 4138.296*** 0.000
LMadj 122.793*** 0.000 122.990*** 0.000

*** Denotes the statistical significance at 1 percent level.

21 We refer to Breitung and Pesaran (2008) and Pesaran (2007) for a detailed review
of the methods to estimate common factor.
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where y N y δ N δ= ∑ , = ∑t i
N

it i
N

i
−1

=1
−1

=1 that δ a γ γ= ( , , )′i i i i1 2 or

δ a b γ γ=( , , , )′,i i i i i1 2 r N r λ N λ= ∑ , = ∑ ,t i
N

it i
N

i
−1

=1
−1

=1 and

ε N ε= ∑t i
N

it
−1

=1 . By assuming λ ≠0 for a fixed N as N→∞, solving Eq. (15)
for Ft gives F y Z δ r ε λ=( − ′ − − )/t t t t t . By using this solution, we obtain

y Z δ λ y e= ′ + +∼ ∼
it t i i t it (16)

where δ δ δλ= − ,∼ ∼
i i i λ λ λ= /∼

i i , and e r λ r ε λ ε= − + −∼ ∼
it it i t it i t that rt and εt

tend to zero under the null hypothesis. This solution hence shows that
common factor Ft can be replaced by the cross-section averages of yit y( )t and
allows us to regress yit on Zt and yt for each cross-section.

Given the long-time period which covers the twentieth century, we
apply the test up to three frequencies in order to capture long-swings
and more cycles in the commodity prices. The commodity prices are
likely to contain a substantial amount of persistence because of ability
to carry inventories through time (Tomek, 2000). We find an evidence
on the first order serial correlation in e∼it and use Bartlett kernel based
on Kurozumi (2002) rule to account for the serial dependence.22 We
also conduct the panel stationarity test by Carrion-i-Silvestre et al.
(2005) which assumes sharp shifts that are modelled with the dummy
variables and uses bootstrapping distribution to account for cross-
section dependency. Therefore, the Fourier panel stationarity test has
differences for modelling both structural shifts and cross-section
dependency. The results are reported in Table 6.

The panel stationarity test with sharp breaks shows that the null
hypothesis cannot be rejected for none of the commodity prices

irrespective of whether the commodity prices include the level or trend
breaks.23 Because all the commodity prices are found to be stationary,
the panel statistic indicates that the null hypothesis of joint stationarity
cannot be rejected. The panel stationarity testing procedure with sharp
breaks supports the evidence on that the shocks to international
commodity prices are temporary. This finding is line with the results
from the previous studies (Yang et al., 2012; Iregui and Otero, 2013;
Arezki et al., 2014, Nazlioglu, 2014) which accounts the structural
shifts in the commodity prices as sharp process by the use of dummy
variables. The eye looks at the dynamics of commodity prices in Fig. 1
clearly shows that finding all the commodity prices as stationary may
be misleading because the commodity prices are likely to be character-
ized with stochastic trend behavior (Myers, 1994).

The results from the Fourier panel stationarity test indicate that the null
hypothesis of joint stationarity is rejected at the 1 percent level of
significance. The rejection of the null hypothesis does not mean that all
commodity prices are characterized by a unit process because some of the
cross-sections are allowed to be stationary under the alternative hypothesis.
Therefore, it would be insightful to look at the individual results to better
understand the fraction of stationary and non-stationary cross-sections. For
the level stationary (constant) model, five out of twenty-four commodities
(coffee, cacao, tea, jute, and copper) are stationary when the Fourier
frequency is one. When the frequency is two, two out of these five
commodities (cacao, and jute) and banana and lead are found to be
stationary. Six commodities (cacao, tea, banana, jute, copper, and lead) are
stationary when the frequency is three. For the trend stationary (constant

Table 6
Results from the panel stationarity tests.

Constant Constant and trend

Commodity Sharpshifts Gradual/smooth shifts Sharp shifts Gradual/smooth shifts

k=1 k=2 k=3 k=1 k=2 k=3

Coffee 0.050 0.067 0.477 0.518 0.046 0.036 0.128 0.138
Cocoa 0.075 0.122 0.268 0.305 0.038 0.041 0.086 0.120
Tea 0.080 0.126 0.333 0.298 0.023 0.053 0.200 0.189
Rice 0.033 0.310 0.807 0.845 0.036 0.032 0.100 0.099
Wheat 0.050 0.136 0.691 0.691 0.040 0.034 0.093 0.109
Maize 0.056 0.229 0.823 0.673 0.096 0.032 0.151 0.197
Sugar 0.088 0.160 0.427 0.423 0.070 0.028 0.066 0.088
Beef 0.119 0.207 0.836 0.756 0.027 0.045 0.050 0.089
Lamb 0.151 0.268 0.775 0.845 0.042 0.045 0.039 0.050
Banana 0.127 0.183 0.183 0.190 0.040 0.035 0.146 0.168
Palm oil 0.160 0.178 0.746 0.671 0.078 0.032 0.107 0.134
Cotton 0.056 0.280 0.688 0.738 0.048 0.037 0.196 0.236
Jute 0.085 0.059 0.219 0.268 0.056 0.044 0.190 0.237
Wool 0.073 0.392 0.844 0.731 0.056 0.031 0.181 0.194
Hides 0.083 0.149 0.573 0.583 0.058 0.054 0.154 0.184
Tobacco 0.073 0.346 0.619 0.592 0.030 0.062 0.250 0.245
Rubber 0.089 0.273 0.678 0.623 0.053 0.065 0.246 0.220
Timber 0.056 0.351 0.856 0.886 0.036 0.039 0.052 0.072
Copper 0.080 0.110 0.481 0.332 0.043 0.058 0.229 0.203
Aluminum 0.053 0.326 0.723 0.725 0.034 0.035 0.195 0.202
Tin 0.113 0.206 0.785 0.779 0.074 0.056 0.073 0.110
Silver 0.060 0.162 0.574 0.484 0.026 0.050 0.220 0.213
Lead 0.116 0.178 0.141 0.125 0.030 0.063 0.068 0.088
Zinc 0.188 0.255 0.613 0.671 0.058 0.047 0.207 0.218

Panel statistic 2.098 13.224 16.582 14.405 4.217 5.420 12.188 10.034
p-value 0.000 0.000 0.000 0.000 0.000 0.000

Sharp shift: Panel stationarity test with sharp breaks (dummy variables) by Carrion-i-Silvestre et al. (2005).
Gradual/smoot shift: Fourier panel stationarity test developed in this paper.
Bold numbers: The null hypothesis of stationarity cannot be rejected at least at the 10 percent level of significance.
The statistics are constructed using the Bartlett kernel with the Kurozumi (2002) rule. The p-values are for a one-sided test based on the normal distribution. The constant model critical
values for individual statistics are 0.1318 (10%), 0.1720 (5%), 0.2699 (1%) for k=1; 0.3150 (10%), 0.4152 (5%), 0.6671 (1%) for k=2; 0.3393 (10%), 0.4480 (5%), 0.7182 (1%) for k=3.
The constant and trend model critical values for individual statistics are 0.0471 (10%), 0.0546 (5%), 0.0716 (1%) for k=1; 0.1034 (10%), 0.1321 (5%), 0.2022 (1%) for k=2; 0.1141
(10%), 0.1423 (5%), 0.2103 (1%) for k=3. (see, Becker et al. (2006, p.389)).

22 The results from the serial correlation test are reported in the supplement (see
Table S4).

23 See Table A1 in the appendix for the detailed results from the panel stationarity test
by Carrion-i-Silvestre et al. (2005).
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and trend) model, the null hypothesis of stationarity is rejected for eight
commodity prices if the frequency is one. When we use two (three)
frequencies, fifteen (sixteen) commodity prices are found to be non-
stationary. The individual analysis thereby shows that the dynamics of
many of the international commodity prices are not consistent with the
equilibrium price theory as observed in Fig. 1. This finding is contrast with
the previous evidence in the literature. The new testing procedure proposed
in this paper provides fresh information regarding the nature of shocks to
international commodity prices which enables us to discuss policy infer-
ences from a different perspective. If the shocks to commodity prices are
temporary, then there is no need to put into effect price stabilization
policies. On the other hand, if the shocks to commodity prices are
permanent then there would be a room for policy makers to implement
stabilization policies. While the previous panel data studies support the
evidence in favor of the first policy implication, this study supports the
evidence in favor of the second policy implication for many of the
international commodity prices.

5. Conclusion

This paper proposes a simple panel stationarity test with gradual/
smooth structural shifts, cross-section dependency, and cross-sectional
heterogeneity. To account for structural shifts, we employ a Fourier
approximation which does not require a priori knowledge on date,
number, and form of breaks. The asymptotic distribution of the
individual statistics under the null hypothesis only depends on the
Fourier frequency and the panel statistic has a standard normal
distribution after the standardization with the asymptotic moments.

We investigate the small sample properties by Monte Carlo simulations
for the different data generating processes. The findings for the size and

power properties can be summarized as: (i) if the error terms are i.i.d. and
the number of Fourier frequency is correctly specified then the Fourier
panel statistic shows good size and power even when N is larger than T
irrespective of the number of Fourier terms, (ii) if the error terms are i.i.d.
but the number of Fourier frequency is wrongly specified in testing
procedure, even though there is a size distortion and power reduction in
the panel data sets where T is equal to or smaller than 50, fortunately the
size distortions disappear as T increase and the power increases with larger
T or N or both, (iii) if the error terms are serially correlated, the Fourier
panel stationarity test has reasonable size and keeps its good power
properties.

Understanding the behavior of commodity prices has the long
theoretical and empirical debate. In the literature, the panel studies
which assume sharp structural changes support the evidence on that the
shocks to commodity prices are temporary. We re-investigate whether
the shock to international commodity prices are temporary or perma-
nent by means of the Fourier panel stationarity test. The empirical
results indicate that the null hypothesis of joint stationarity is rejected.
This finding does not coincide with the previous evidence from the panel
data studies. The new testing procedure provides fresh information
regarding the nature of shocks to international commodity prices.
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Appendix. A

See Table A1.

Table A1
Results from panel stationarity test with sharp breaks.

Breaks in constant Breaks in constant and trend

Bootstrap critical values Bootstrap critical values

Commodity KPSStest 0.9 0.95 0.99 # ofbreaks KPSStest 0.9 0.95 0.99 # ofbreaks

Coffee 0.050 0.559 0.591 0.675 2 0.046 0.057 0.064 0.079 1
Cocoa 0.075 0.244 0.258 0.286 3 0.038 0.037 0.042 0.051 3
Tea 0.080 1.342 1.380 1.452 3 0.023 0.034 0.038 0.046 3
Rice 0.033 1.944 1.972 2.024 2 0.036 0.076 0.091 0.120 1
Wheat 0.050 2.031 2.063 2.111 2 0.040 0.081 0.097 0.130 1
Maize 0.056 1.973 1.999 2.046 2 0.096 0.080 0.095 0.127 1
Sugar 0.088 1.880 1.921 1.994 2 0.070 0.082 0.099 0.134 0
Beef 0.119 1.958 1.983 2.031 1 0.027 0.046 0.051 0.061 2
Lamb 0.151 1.827 1.858 1.908 3 0.042 0.046 0.052 0.066 2
Banana 0.127 0.706 0.743 0.830 2 0.040 0.049 0.056 0.074 3
Palm oil 0.160 1.753 1.790 1.852 2 0.078 0.055 0.065 0.082 2
Cotton 0.056 1.907 1.929 1.970 2 0.048 0.051 0.061 0.076 2
Jute 0.085 1.125 1.182 1.286 2 0.056 0.064 0.075 0.096 1
Wool 0.073 2.051 2.071 2.103 2 0.056 0.043 0.048 0.058 2
Hides 0.083 1.955 1.984 2.042 2 0.058 0.050 0.057 0.071 2
Tobacco 0.073 1.428 1.454 1.503 3 0.030 0.059 0.068 0.087 2
Rubber 0.089 1.851 1.878 1.927 2 0.053 0.071 0.084 0.110 2
Timber 0.056 2.120 2.139 2.168 3 0.036 0.066 0.079 0.101 2
Copper 0.080 0.351 0.383 0.467 2 0.043 0.046 0.052 0.063 2
Aluminum 0.053 2.051 2.069 2.094 3 0.034 0.042 0.047 0.057 2
Tin 0.113 0.437 0.475 0.575 2 0.074 0.070 0.083 0.109 2
Silver 0.060 1.046 1.104 1.212 2 0.026 0.036 0.039 0.047 3
Lead 0.116 1.422 1.489 1.602 1 0.030 0.044 0.049 0.059 2
Zinc 0.188 0.346 0.447 0.649 0 0.058 0.091 0.108 0.147 1

Panel test 2.098 124.03 124.98 126.549 4.217 3.294 3.783 4.948

The maximum number of breaks is set to 3 and the number of breaks is selected using the LWZ information criterion. Panel test is computed under the heterogeneity assumption of long
run variance. The long-run variance was estimated using Bartlett kernel with the bandwidth of 4(T/100)2/9. Bootstrap critical values are based on 5000 replications.
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Appendix B. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.econmod.2016.12.003.
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