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Abstract: In this paper, a novel online least squares support vector machine approach is
proposed for classification and regression problems. Gaussian kernel function is used due to its
strong generalization capability. The contribution of the paper is twofold. As the first novelty,
all parameters of the SVM including the kernel width parameter σ are trained simultaneously
when a new sample arrives. Unscented Kalman filter is adopted to train the parameters since it
avoids the sub-optimal solutions caused by linearization in contrast to extended Kalman filter.
The second novelty is the variable size moving window by an intelligent update strategy for the
support vector set. This provides that SVM model captures the dynamics of data quickly while
not letting it become clumsy due to the big amount of useless or out-of-date support vector
data. Simultaneous training of the kernel parameter by unscented Kalman filter and intelligent
update of support vector set provide significant performance using small amount of support
vector data for both classification and system identification application results.
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1. INTRODUCTION

The conventional SVM model is constructed based on the
quadratic programming (QP), Vapnik (1995), that mini-
mizes a convex cost function with inequality constraints.
As an alternative to conventional QP-based SVM, Suykens
and Vandewalle (1999) proposed least squares SVM (LS-
SVM) which is based on a set of linear equations with
equality constraints. In this paper, LS-SVM is adopted
to work online due to its straightforward structure with
a rather simple algebraic expression which is solved opti-
mally by least squares.

Choosing the optimal kernel parameter has been a critical
problem since it has a huge effect on classification or re-
gression performance of the SVM. Some authors developed
solutions to this. Lin et al. (2006) proposed an adaptive
fuzzy kernel function for offline classification. Training
consists of three phases and after the initial fuzzy rules
are derived, SVM is employed using that fuzzy kernel.
Chapelle et al. (2002) proposed a minimax approach such
that after the margin hyperplane is maximized by SVM
training, an estimate of the generalization error is mini-
mized over the set of kernel parameters which is performed
using gradient descent optimization. Mu and Nandi (2006)
tuned the kernel parameters by EKF with k-fold cross
validation, which means k-sub-SVM classifiers. Once the
pre-determined stopping criteria is met, final SVM model
is employed for the classification task. Wang et al. (2003)
calculated the optimal σ value for Gaussian kernel by pre-
analysis of data. Then, that optimal parameter is adopted
in the kernel function while SVM is trained. Different
pre-analysis approaches were proposed for classification

and regression separately. Once SVM is trained, kernel is
modified and SVM is retrained using the modified ker-
nel for classification. Kernels using local correlations were
proposed to incorporate prior knowledge in SVM learning
by Scholkopf et al. (1998). Forecasting performance of ε-
insensitive support vector regressor (SVR) is improved
by a hybrid algorithm called chaotic genetic algorithm
(CGA) by Hong et al. (2013). C, σ and ε parameters
are determined optimally via CGA. In addition, same
parameters are optimally tuned via chaotic particle swarm
optimization (CPSO) by Hong (2009).

The solutions mentioned above consist of pre-analysis of
data, additional model for kernel evaluation or sequential
optimization to improve the kernel function. No such study
exists that it adjusts all the SVM parameters including the
ones corresponding to the kernel function simultaneously.
First novelty proposed in this paper arises as a solution to
fullfill this need in the literature. α, b and the Gaussian
kernel width parameter σ in the LS-SVM are trained by
UKF as a multi-input multi-output (MIMO) optimization
problem simultaneously at each time instant when a new
sample arrives. Sparseness in the online LS-SVM is main-
tained by an intelligent incremental/decremental update
of the support vector set, which is the second novelty
proposed in this paper.

The remainder of paper is organized as follows. Section 2
reviews the LS-SVM model for classification and regres-
sion, unscented Kalman filter (UKF), UKF based SVM
training and adaptive windowing algorithm. Section 3 ap-
plies online LS-SVM to classification and system identifi-
cation. Finally, Section 4 summarizes this paper.
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2. ONLINE SUPPORT VECTOR MACHINE

This section introduces the details of UKF based online
LS-SVM model. In Section 2.1 batch LS-SVM is briefly
presented for classification and regression. UKF algorithm
is given in Section 2.2. The novel UKF training of LS-
SVM for both classification and regression cases is given
in Section 2.3. And novel intelligent update strategy for
the support vector set is given in Section 2.4.

2.1 Batch LS-SVM

Batch LS-SVM is well-known in the literature. It will be
briefly given for classification and regression from Suykens
et al. (2002).

LS-SVM Classification Consider we have N data pairs
{xk, yk}Nk=1 where xk ∈ Rd and yk ∈ {−1,+1}. Equality
constraint based QP problem is given by

min L =
w,b,e

1

2
wTw+ λ

1

2

N∑
k=1

e2k

Const. : yk[w
Tϕ(xk) + b] = 1− ek, k = 1, . . . , N.

(1)

In (1), ek is the error variable and λ is the regularization
parameter which penalizes the error. ϕ(.) is a nonlinear
mapping from the input space to a higher dimensional
feature space.w is the weighting vector in the dimension of
feature space and b is the bias term. Lagrangian equation
is obtained as follows.

£(w, b, e,α) = L(w, b, e)−
N∑

k=1

αk{yk[wTϕ(xk) + b]− 1 + ek} (2)

In (2) αk are the Lagrange multipliers. The Karush-Kuhn-
Tucker conditions for optimality are as follows.



£
w

= 0,w =
∑N

k=1
αkykϕ(xk)

£
b
= 0,

∑N

k=1
αkyk = 0

£
ek

= 0, αk = λek, k = 1, . . . , N
£
αk

= 0, yk[w
Tϕ(xk) + b]− 1 + ek = 0, k = 1, . . . , N

(3)

Combining (2) and (3), a set of linear equations is obtained
as in (4). [

0 YT

Y Υ+ λ−1I

] [
b
α

]
=

[
0
1

]
(4)

where Y = [y1 y2 . . . yN ]T and

Υkl = ykylK(xk,xl) (5)

K(xk,xl) = ϕ(xk)
Tϕ(xl) (6)

In (6), K(.,.) is a kernel function which is an alternative to
the inner product of the mapping function ϕ(.). It aviods
the necessity of exact knowledge about ϕ(.). Several kernel
functions exist, e.g. Gauss, polynomial. They must satisfy
the Mercer conditions, they must be positive semi-definite.
Their success depend on the data processed. α ve b, are
the LS solution to (4) and LS-SVM classifier output is
obtained as follows.

y(x) =
N∑

k=1

αkykK(xk,x) + b (7)

LS-SVM Regression For the regression case, equality
constraint based QP problem is given by

min L =
w,b,e

1

2
wTw+ λ

1

2

N∑
k=1

e2k

Const. : yk = wTϕ(xk) + b+ ek, k = 1, . . . , N.

(8)

ek, λ, ϕ(.), w and b are the same as given in (1). La-
grangian equation is obtained similar to (2). And the
Karush-Kuhn-Tucker conditions for optimality are ob-
tained similar to (3). When the Lagrangian equation and
optimality conditions are combined, a set of linear equa-
tions is obtained as in (9).[

0 1T

1 Υ+ λ−1I

] [
b
α

]
=

[
0
Y

]
(9)

where Y = [y1 y2 . . . yN ]T and

Υkl = K(xk,xl) (10)

K(.,.) is the kernel function in (6). α and b are the LS
solution to (9) and LS-SVM regressor output is obtained
as follows.

y(x) =

N∑
k=1

αkK(xk,x) + b (11)

2.2 UKF

UKF provides a solution to the sub-optimal estimations
of EKF due to linearization. For a random variable whose
first two moments (expected value and covariance) of its
probability distribution are known, sigma points generated
around the excpected value with same covariance can yield
the real values of first three moments via a nonlinear
transformation. This is called unscented transformation
(UT), Wan and Van Der Merwe (2000). Let us have
a random variable x ∈ Rd with expected value and
covariance x̂ and Px respectively. It is transformed via
a nonlinear transformation y = g(x) ∈ Rm. The statistics
of y are calculated by generating a matrix X ∈ R2d+1

consisting of Xi sigma vectors.

X0 = x̂

Xi = x̂+ (
√

(d+ ψ)Px)i, i = 1, . . . , d

Xi = x̂− (
√

(d+ ψ)Px)i, i = d+ 1, . . . , 2d

Wm0 =
ψ

d+ ψ

Wc0 =
ψ

d+ ψ
+ 1− γ2 + θ

Wci = Wmi =
1

2(d+ ψ)
, i = 1, . . . , 2d

(12)

In (12) ψ = γ2(d + κ) − d is a scaling parameter. γ
determines the prorogation of sigma points around x̂
and is usually set to a small number. κ is the second
scaling parameter and is usually set to zero. θ is the a
priori information about distribution of random variable
x and its optimal value for Gaussian distribution is 2.
(
√
(d+ ψ)Px)i is the ith row of the matrix square root

(Cholesky factorization can be employed). Process and
observation covariance matrices, Pw and Pv, must be
involved to advance from UT to UKF as a recursive filter.
UKF equations are given in Algorithm 1, Jiang et al.
(2013). F and G are process and measurement functions
respectively. Pw and Pv process and measurement noise
covariance matrices.
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1. INTRODUCTION

The conventional SVM model is constructed based on the
quadratic programming (QP), Vapnik (1995), that mini-
mizes a convex cost function with inequality constraints.
As an alternative to conventional QP-based SVM, Suykens
and Vandewalle (1999) proposed least squares SVM (LS-
SVM) which is based on a set of linear equations with
equality constraints. In this paper, LS-SVM is adopted
to work online due to its straightforward structure with
a rather simple algebraic expression which is solved opti-
mally by least squares.

Choosing the optimal kernel parameter has been a critical
problem since it has a huge effect on classification or re-
gression performance of the SVM. Some authors developed
solutions to this. Lin et al. (2006) proposed an adaptive
fuzzy kernel function for offline classification. Training
consists of three phases and after the initial fuzzy rules
are derived, SVM is employed using that fuzzy kernel.
Chapelle et al. (2002) proposed a minimax approach such
that after the margin hyperplane is maximized by SVM
training, an estimate of the generalization error is mini-
mized over the set of kernel parameters which is performed
using gradient descent optimization. Mu and Nandi (2006)
tuned the kernel parameters by EKF with k-fold cross
validation, which means k-sub-SVM classifiers. Once the
pre-determined stopping criteria is met, final SVM model
is employed for the classification task. Wang et al. (2003)
calculated the optimal σ value for Gaussian kernel by pre-
analysis of data. Then, that optimal parameter is adopted
in the kernel function while SVM is trained. Different
pre-analysis approaches were proposed for classification

and regression separately. Once SVM is trained, kernel is
modified and SVM is retrained using the modified ker-
nel for classification. Kernels using local correlations were
proposed to incorporate prior knowledge in SVM learning
by Scholkopf et al. (1998). Forecasting performance of ε-
insensitive support vector regressor (SVR) is improved
by a hybrid algorithm called chaotic genetic algorithm
(CGA) by Hong et al. (2013). C, σ and ε parameters
are determined optimally via CGA. In addition, same
parameters are optimally tuned via chaotic particle swarm
optimization (CPSO) by Hong (2009).

The solutions mentioned above consist of pre-analysis of
data, additional model for kernel evaluation or sequential
optimization to improve the kernel function. No such study
exists that it adjusts all the SVM parameters including the
ones corresponding to the kernel function simultaneously.
First novelty proposed in this paper arises as a solution to
fullfill this need in the literature. α, b and the Gaussian
kernel width parameter σ in the LS-SVM are trained by
UKF as a multi-input multi-output (MIMO) optimization
problem simultaneously at each time instant when a new
sample arrives. Sparseness in the online LS-SVM is main-
tained by an intelligent incremental/decremental update
of the support vector set, which is the second novelty
proposed in this paper.

The remainder of paper is organized as follows. Section 2
reviews the LS-SVM model for classification and regres-
sion, unscented Kalman filter (UKF), UKF based SVM
training and adaptive windowing algorithm. Section 3 ap-
plies online LS-SVM to classification and system identifi-
cation. Finally, Section 4 summarizes this paper.
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2. ONLINE SUPPORT VECTOR MACHINE

This section introduces the details of UKF based online
LS-SVM model. In Section 2.1 batch LS-SVM is briefly
presented for classification and regression. UKF algorithm
is given in Section 2.2. The novel UKF training of LS-
SVM for both classification and regression cases is given
in Section 2.3. And novel intelligent update strategy for
the support vector set is given in Section 2.4.

2.1 Batch LS-SVM

Batch LS-SVM is well-known in the literature. It will be
briefly given for classification and regression from Suykens
et al. (2002).

LS-SVM Classification Consider we have N data pairs
{xk, yk}Nk=1 where xk ∈ Rd and yk ∈ {−1,+1}. Equality
constraint based QP problem is given by

min L =
w,b,e

1

2
wTw+ λ

1

2

N∑
k=1

e2k

Const. : yk[w
Tϕ(xk) + b] = 1− ek, k = 1, . . . , N.

(1)

In (1), ek is the error variable and λ is the regularization
parameter which penalizes the error. ϕ(.) is a nonlinear
mapping from the input space to a higher dimensional
feature space.w is the weighting vector in the dimension of
feature space and b is the bias term. Lagrangian equation
is obtained as follows.

£(w, b, e,α) = L(w, b, e)−
N∑

k=1

αk{yk[wTϕ(xk) + b]− 1 + ek} (2)

In (2) αk are the Lagrange multipliers. The Karush-Kuhn-
Tucker conditions for optimality are as follows.



£
w

= 0,w =
∑N

k=1
αkykϕ(xk)

£
b
= 0,

∑N

k=1
αkyk = 0

£
ek

= 0, αk = λek, k = 1, . . . , N
£
αk

= 0, yk[w
Tϕ(xk) + b]− 1 + ek = 0, k = 1, . . . , N

(3)

Combining (2) and (3), a set of linear equations is obtained
as in (4). [

0 YT

Y Υ+ λ−1I

] [
b
α

]
=

[
0
1

]
(4)

where Y = [y1 y2 . . . yN ]T and

Υkl = ykylK(xk,xl) (5)

K(xk,xl) = ϕ(xk)
Tϕ(xl) (6)

In (6), K(.,.) is a kernel function which is an alternative to
the inner product of the mapping function ϕ(.). It aviods
the necessity of exact knowledge about ϕ(.). Several kernel
functions exist, e.g. Gauss, polynomial. They must satisfy
the Mercer conditions, they must be positive semi-definite.
Their success depend on the data processed. α ve b, are
the LS solution to (4) and LS-SVM classifier output is
obtained as follows.

y(x) =
N∑

k=1

αkykK(xk,x) + b (7)

LS-SVM Regression For the regression case, equality
constraint based QP problem is given by

min L =
w,b,e

1

2
wTw+ λ

1

2

N∑
k=1

e2k

Const. : yk = wTϕ(xk) + b+ ek, k = 1, . . . , N.

(8)

ek, λ, ϕ(.), w and b are the same as given in (1). La-
grangian equation is obtained similar to (2). And the
Karush-Kuhn-Tucker conditions for optimality are ob-
tained similar to (3). When the Lagrangian equation and
optimality conditions are combined, a set of linear equa-
tions is obtained as in (9).[

0 1T

1 Υ+ λ−1I

] [
b
α

]
=

[
0
Y

]
(9)

where Y = [y1 y2 . . . yN ]T and

Υkl = K(xk,xl) (10)

K(.,.) is the kernel function in (6). α and b are the LS
solution to (9) and LS-SVM regressor output is obtained
as follows.

y(x) =

N∑
k=1

αkK(xk,x) + b (11)

2.2 UKF

UKF provides a solution to the sub-optimal estimations
of EKF due to linearization. For a random variable whose
first two moments (expected value and covariance) of its
probability distribution are known, sigma points generated
around the excpected value with same covariance can yield
the real values of first three moments via a nonlinear
transformation. This is called unscented transformation
(UT), Wan and Van Der Merwe (2000). Let us have
a random variable x ∈ Rd with expected value and
covariance x̂ and Px respectively. It is transformed via
a nonlinear transformation y = g(x) ∈ Rm. The statistics
of y are calculated by generating a matrix X ∈ R2d+1

consisting of Xi sigma vectors.

X0 = x̂

Xi = x̂+ (
√

(d+ ψ)Px)i, i = 1, . . . , d

Xi = x̂− (
√

(d+ ψ)Px)i, i = d+ 1, . . . , 2d

Wm0 =
ψ

d+ ψ

Wc0 =
ψ

d+ ψ
+ 1− γ2 + θ

Wci = Wmi =
1

2(d+ ψ)
, i = 1, . . . , 2d

(12)

In (12) ψ = γ2(d + κ) − d is a scaling parameter. γ
determines the prorogation of sigma points around x̂
and is usually set to a small number. κ is the second
scaling parameter and is usually set to zero. θ is the a
priori information about distribution of random variable
x and its optimal value for Gaussian distribution is 2.
(
√
(d+ ψ)Px)i is the ith row of the matrix square root

(Cholesky factorization can be employed). Process and
observation covariance matrices, Pw and Pv, must be
involved to advance from UT to UKF as a recursive filter.
UKF equations are given in Algorithm 1, Jiang et al.
(2013). F and G are process and measurement functions
respectively. Pw and Pv process and measurement noise
covariance matrices.
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Algorithm 1. UKF as a recursive filter.

% Intialization:

x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)T ]

% Sigma point generation:

Xk−1 = [x̂k−1 x̂k−1 ±
√

(d+ ψ)Pk−1]

% Time update:

Xk|k−1 = F(Xk−1)

x̂−
k

=
∑2d

i=0
WmiXi,k|k−1

P−
k

=
∑2d

i=0
Wci(Xi,k|k−1 − x̂−

k
)(Xi,k|k−1 − x̂−

k
)T +Pw

yk|k−1 = G(Xk|k−1)

ŷ−
k

=
∑2d

i=0
Wmiyi,k|k−1

% Measurement update:

Pykyk =
∑2d

i=0
Wci(yi,k|k−1 − ŷ−

k
)(yi,k|k−1 − ŷ−

k
)T +Pv

Pxkyk =
∑2d

i=0
Wci(Xi,k|k−1 − x̂−

k
)(yi,k|k−1 − ŷ−

k
)T

K = PxkykP
−1
ykyk

x̂k = x̂−
k

+K(yk − ŷ−
k
)

Pk = P−
k

−KPykykK
T

2.3 UKF-Based SVM

UKF-based SVM will be detailed for both classification
and regression.

UKF-Based SVM Classifier When we rearrange (4) and
write explicitly, we obtain the corresponding measurement
function of SVM.
YSVM = GSVM (XSV ,YSV , b,α, σ)




0

1

1
...

1


 =




∑n

k=1
αkyk

y1b + y2
1K(x1,x1)α1 + . . . + y1ynK(x1,xn)αn + λ−1α1

y2b + y2y1K(x2,x1)α1 + . . . + y2ynK(x2,xn)αn + λ−1α2

. . .

ynb + yny1K(xn,x1)α1 + . . . + y2
nK(xn,xn)αn + λ−1αn




(13)
In (13), XSV and YSV are input and output sample pairs
in the support vector set. They are observed variables.
b, α and σ parameters constitute a multi-dimensional
parameter vector, pSVM = [b α1 α2 . . . αn σ]T ∈
Rn+2. Output YSVM is also multi-dimensional so system
is MIMO (Multi-input Muti-output) type. (13) presents
the measurement function of SVM. Process function is
needed to estimate the parameters optimally by UKF and
it is identity transition matrix.

pSVM,k|k−1 = FSVM (pSVM,k−1)
FSVM = In+2×n+2

(14)

As the process and measurement noises are w and v, their
corresponding covariance matrices will be Q and R. They
have small value (e.g., 1e-6). (13) and (14) can be combined
implicitly considering the noises.

pSVM,k|k−1 = FSVM (pSVM,k−1) +wk

YSVM,k = GSVM (XSV ,YSV , bk,αk, σk) + vk
(15)

Now it turned to be a parameter estimation problem
and after the substitutions in (16) are done, parameter
estimation can be performed by UKF.

F ← FSVM , G ← GSVM , x ← pSVM

y ← YSVM , Pw ← Q, Pv ← R
(16)

UKF-Based SVM Regressor When we rearrange (9) and
write explicitly, we obtain the corresponding measurement
function of SVM.

YSVM = GSVM (XSV ,YSV , b,α, σ)




0

y1
y2
...
yn


 =




∑n

k=1
αk

b+K(x1,x1)α1 + . . .+K(x1,xn)αn + λ−1α1

b+K(x2,x1)α1 + . . .+K(x2,xn)αn + λ−1α2

. . .

b+K(xn,x1)α1 + . . .+K(xn,xn)αn + λ−1αn




(17)
In (17),XSV ,YSV and pSV M = [b α1 α2 . . . αn σ]T ∈
Rn+2 are the same as in classification case. Necessary
process function for UKF parameter estimation is the
identity transition matrix as in (14). As the process
and measurement noises are w and v, their corresponding
covariance matrices will be Q and R. They have small
value (e.g., 1e-6). (17) and (14) can be combined and
written implicitly as in (15). After the substitutions in
(16) are done, parameter estimation can be performed by
UKF.

2.4 Adaptive Update Strategy for the Support Vector Set

A strategy which is fast enough to capture the changing
dynamics of data while not getting clumsy due to useless
or out-of-date information is proposed. Generally in the
literature, first an incremental update in the support
vector set is done and then a decremental update if
necessary or vice versa. Such updates are sequential. In
this case, the set has an increasing or decreasing profile,
Yang et al. (2010); Tang et al. (2006); Liu et al. (2009).
But at some instants, it may be better to do only one of
these updates. The proposed strategy provides both single
update (only decremental or incremental) and sequential
updates. It can also determine whether there is no need for
any of these updates. Algorithm 2 presents the proposed
strategy for the classification case. Regression case is
different in two ways; first, the term e is determined
by e = yk − fSVM(rk, SV,pSVM,k). And the second
difference is, the term e is checked by if | e |> eps where
eps is a pre-set variable which determines the sensitivity
of regression. SV denotes the support vector set, nmax is
the maximum number of support vectors allowed, incupd
and decupd are incremental and decremental updates of
the parameter vector pSVM,k and parameter estimation
error covariance matrix Pk while the kth sample is being
processed. In incremental update of the SV set, new
sample is added to the top. How pSVM and P are updated
incrementally/decrementally are explained as follows.

• incupd: Let us have the current parameter vector as

pSVM =




b
α
σ



n+2×1

,α =



α1

...
αn



n×1

(18)

When a new sample is added, corresponding α pa-
rameter (initially 0) will be added to the top of the
parameters α.

α+ =

[
αnew = 0

α

]

n+1×1

,pSV M+
=

[
b

α+

σ

]

n+3×1

(19)

Let the current parameter estimation error covariance
matrix P ∈ Rn+2×n+2 be as follows.
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Algorithm 2. Pseudo code of proposed adaptive SV approach
for k=1:N do

Get the new sample rk = {xk, yk}
e = sign(yk) − sign(fSV M(rk, SV,pSV M,k))

% If classification is not correct

if e �= 0 then
e1 = 1

ptemp1 = pSV M,k
Ptemp1 = Pk

SVtemp1 = SV

% Scenario 1 - decremental + (if necessary) incremental update

% first decremental update

if #SV > 1 then
Select a sample r from SV by FLOO cross validation

SVtemp1 = SV − r

[ptemp1,Ptemp1] = decupd(pSV M,k,Pk)

Perform decremental learning by UKF

e1 = sign(yk) − sign(fSV M(rk, SVtemp1,ptemp1))

end

% then check whether incremental update is needed

if e1 �= 0 && #SVtemp1 < nmax then
SVtemp1 = SVtemp1 + rk
[ptemp1,Ptemp1] = incupd(ptemp1,Ptemp1)

Perform incremental learning by UKF

e1 = sign(yk) − sign(fSV M(rk, SVtemp1,ptemp1))

end

e2 = 1

ptemp2 = pSV M,k
Ptemp2 = Pk

SVtemp2 = SV

% Scenario 2 - incremental + (if necessary) decremental update

% first incremental update

if #SV < nmax then
SVtemp2 = SV + rk
[ptemp2,Ptemp2] = incupd(pSV M,k,Pk)

Perform incremental learning by UKF

e2 = sign(yk) − sign(fSV M(rk, SVtemp2,ptemp2))

end

% then check whether decremental update is needed

if e2 �= 0 && #SVtemp2 > 1 then
Select a sample r from SVtemp2 by FLOO cross validation

SVtemp2 = SVtemp2 − r

[ptemp2,Ptemp2] = decupd(ptemp2,Ptemp2)

Perform decremental learning by UKF

e2 = sign(yk) − sign(fSV M(rk, SVtemp2,ptemp2))

end

% pick the set with the smallest error

if abs(e1) < abs(e2) then
pSV M,k+1 = ptemp1
Pk+1 = Ptemp1

SV = SVtemp1

else
pSV M,k+1 = ptemp2
Pk+1 = Ptemp2

SV = SVtemp2

end

end

end

P =




P1,1 P1,2 . . . P1,n+1 P1,n+2

P2,1 P2,2 . . . P2,n+1 P2,n+2

...
...

. . .
...

...
Pn+1,1 Pn+1,2 . . . Pn+1,n+1 Pn+1,n+2

Pn+2,1 Pn+2,2 . . . Pn+2,n+1 Pn+2,n+2




(20)

Corresponding rows and columns to the new α pa-
rameter will be added (initially 1 on the diagonal and
0 other) and P+ ∈ Rn+3×n+3 will be obtained.

P+ =




P1,1 0 P1,2 . . . P1,n+1 P1,n+2

0 1 0 . . . 0 0
P2,1 0 P2,2 . . . P2,n+1 P2,n+2

...
...

...
. . .

...
...

Pn+1,1 0 Pn+1,2 . . . Pn+1,n+1 Pn+1,n+2

Pn+2,1 0 Pn+2,2 . . . Pn+2,n+1 Pn+2,n+2




(21)

• decupd: Removing the support vector with the small-
est α value or the oldest one may not yield good
results in every case. On the other hand, leave-one-

out (LOO) cross validation is proven to be a standard
criterion for comparing the generalization power of
the statistical models. Therefore, LOO is used to
determine which support vector to be removed from
the set. It is aimed to choose the support vector
which will provide the SVM model with the smallest
approximation error after its removal. Let us assume
the lth vector has been determined to be removed.
It will be pushed to the end of the SV set and then
will be deleted. Corresponding αl parameter will be
pushed to the end of pSVM and then will be deleted.
Corresponding row and column to the parameter αl

will be pushed to the last row and column in the
matrix P and then will be deleted.

3. SIMULATION RESULTS

Simulation results of online classification and regression
are presented.

3.1 Classification

Two data sets from UCI repository, uci (2016), are used
for online classification by UKF-based SVM. The first one
is the Iris data set and the second one is the heart disease
data set nmax = 5 is set as the maximum number of SV
allowed in both experiments. Table 1 shows the online
classification results. Figure 1 and 2 present change of

Table 1. Online classification results of Iris and
heart disease data by UKF-based SVM model.

Data (#Samples/#Attributes) #Error Elapsed time (s)

Iris data set (150/4) 0 0.2041
Heart disease data set (297/14) 0 2.3411

the parameters and #SV in the online classification of
Iris and heart disease data by UKF-based SVM model.
Table 1 shows that due to the proposed SV set update
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Fig. 1. Parameters a) b b) α c) σ and d) #SV in online
Iris data classification by UKF-based SVM model.

strategy, SV set can be kept small while successful UKF
training provides the SVM model with the performance
of 0 misclassified sample in online classification. Due to
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Algorithm 2. Pseudo code of proposed adaptive SV approach
for k=1:N do

Get the new sample rk = {xk, yk}
e = sign(yk) − sign(fSV M(rk, SV,pSV M,k))

% If classification is not correct

if e �= 0 then
e1 = 1

ptemp1 = pSV M,k
Ptemp1 = Pk

SVtemp1 = SV

% Scenario 1 - decremental + (if necessary) incremental update

% first decremental update

if #SV > 1 then
Select a sample r from SV by FLOO cross validation

SVtemp1 = SV − r

[ptemp1,Ptemp1] = decupd(pSV M,k,Pk)

Perform decremental learning by UKF

e1 = sign(yk) − sign(fSV M(rk, SVtemp1,ptemp1))

end

% then check whether incremental update is needed

if e1 �= 0 && #SVtemp1 < nmax then
SVtemp1 = SVtemp1 + rk
[ptemp1,Ptemp1] = incupd(ptemp1,Ptemp1)

Perform incremental learning by UKF

e1 = sign(yk) − sign(fSV M(rk, SVtemp1,ptemp1))

end

e2 = 1

ptemp2 = pSV M,k
Ptemp2 = Pk

SVtemp2 = SV

% Scenario 2 - incremental + (if necessary) decremental update

% first incremental update

if #SV < nmax then
SVtemp2 = SV + rk
[ptemp2,Ptemp2] = incupd(pSV M,k,Pk)

Perform incremental learning by UKF

e2 = sign(yk) − sign(fSV M(rk, SVtemp2,ptemp2))

end

% then check whether decremental update is needed

if e2 �= 0 && #SVtemp2 > 1 then
Select a sample r from SVtemp2 by FLOO cross validation

SVtemp2 = SVtemp2 − r

[ptemp2,Ptemp2] = decupd(ptemp2,Ptemp2)

Perform decremental learning by UKF

e2 = sign(yk) − sign(fSV M(rk, SVtemp2,ptemp2))

end

% pick the set with the smallest error

if abs(e1) < abs(e2) then
pSV M,k+1 = ptemp1
Pk+1 = Ptemp1

SV = SVtemp1

else
pSV M,k+1 = ptemp2
Pk+1 = Ptemp2

SV = SVtemp2

end

end

end

P =




P1,1 P1,2 . . . P1,n+1 P1,n+2

P2,1 P2,2 . . . P2,n+1 P2,n+2

...
...

. . .
...

...
Pn+1,1 Pn+1,2 . . . Pn+1,n+1 Pn+1,n+2

Pn+2,1 Pn+2,2 . . . Pn+2,n+1 Pn+2,n+2




(20)

Corresponding rows and columns to the new α pa-
rameter will be added (initially 1 on the diagonal and
0 other) and P+ ∈ Rn+3×n+3 will be obtained.

P+ =




P1,1 0 P1,2 . . . P1,n+1 P1,n+2

0 1 0 . . . 0 0
P2,1 0 P2,2 . . . P2,n+1 P2,n+2

...
...

...
. . .

...
...

Pn+1,1 0 Pn+1,2 . . . Pn+1,n+1 Pn+1,n+2

Pn+2,1 0 Pn+2,2 . . . Pn+2,n+1 Pn+2,n+2




(21)

• decupd: Removing the support vector with the small-
est α value or the oldest one may not yield good
results in every case. On the other hand, leave-one-

out (LOO) cross validation is proven to be a standard
criterion for comparing the generalization power of
the statistical models. Therefore, LOO is used to
determine which support vector to be removed from
the set. It is aimed to choose the support vector
which will provide the SVM model with the smallest
approximation error after its removal. Let us assume
the lth vector has been determined to be removed.
It will be pushed to the end of the SV set and then
will be deleted. Corresponding αl parameter will be
pushed to the end of pSVM and then will be deleted.
Corresponding row and column to the parameter αl

will be pushed to the last row and column in the
matrix P and then will be deleted.

3. SIMULATION RESULTS

Simulation results of online classification and regression
are presented.

3.1 Classification

Two data sets from UCI repository, uci (2016), are used
for online classification by UKF-based SVM. The first one
is the Iris data set and the second one is the heart disease
data set nmax = 5 is set as the maximum number of SV
allowed in both experiments. Table 1 shows the online
classification results. Figure 1 and 2 present change of

Table 1. Online classification results of Iris and
heart disease data by UKF-based SVM model.

Data (#Samples/#Attributes) #Error Elapsed time (s)

Iris data set (150/4) 0 0.2041
Heart disease data set (297/14) 0 2.3411

the parameters and #SV in the online classification of
Iris and heart disease data by UKF-based SVM model.
Table 1 shows that due to the proposed SV set update
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Iris data classification by UKF-based SVM model.

strategy, SV set can be kept small while successful UKF
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Fig. 2. Parameters a) b b) α c) σ and d) #SV in online
heart disease data classification by UKF-based SVM
model.

the posteriori update of the UKF based SVM, the output
shifts above or below the zero decision boundary, hence
leading to the true classification of the given inputs. Re-
sults demonstrate that proposed online LS-SVM approach
is both fast and have excellent classification performance.
Especially, Iris flower classification (see Figure 1) points
out the necessity to update kernel parameter simultane-
ously. This parameter has changed significantly over time,
that the initial value would not yield such a performance.

3.2 Regression

Two real time data sets are used for online system identi-
fication by UKF-based SVM. First one is the Box-Jenkins
gas furnace data widely used in the literature. It con-
sists of 296 input-output pairs. NARX (Nonlinear Auto-
Regressive eXogenous) model is constructed.

ŷk = f(uk, . . . , uk−nu
, yk−1, . . . , yk−ny

) (22)

uk and yk are the control input applied to the system
and corresponding system output at the time index k
respectively. nu and ny denote the past input and output
samples in the NARX model. Nonlinear system function
f is unknown. Second data set is collected from the real
time inverted pendulum system totally 700 samples. It is a
highly nonlinear and originally unstable system, Feedback
(2006). Its mathematical model is derived as follows.

ẋ1(t) =x2(t)

ẋ2(t) =
1

(m+M)
[F − bx2(t)−mlẋ4(t)cosx3(t)

+mlx2
4(t)sinx3(t)]

ẋ3(t) =x4(t)

ẋ4(t) =
1

(I +ml2)
[mglsinx3(t)−mlẋ2(t)cosx3(t)− dx4(t)].

(23)

x1 is the cart position, x2 is the cart velocity, x3 is the
rod angular position (output) and x4 is the rod angular
velocity. Control input and applied force are constrained as

u(t) ∈ [−2.5V,+2.5V ] Volt and F ∈ [−20,+20] Newton in
real time application. In both identification experiments,
nu = 5 and ny = 5 are set in the NARX model and
nmax = 5 is set as the maximum number of SV allowed.
Table 2 shows the online identification results in terms of
root-mean-squarred-error (RMSE). Figure 3 and 4 present

Table 2. Online identification RMSE results of Box-
Jenkins and inverted pendulum systems by UKF-based

SVM model.

System (#Samples) RMSE Elapsed time (s)

Box-Jenkins (296) 0.0120 2.7309
Inverted pendulum (700) 0.0595 10.0870

change of the parameters and #SV in the online identifi-
cation of Box-Jenkins and inverted pendulum system by
UKF-based SVM model. In Fgure 5, observed outputs
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Fig. 3. Parameters a) b b) α c) σ and d) #SV in online Box-Jenkins
system identification by UKF-based SVM model.
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and onse-step-ahead predictions by the online UKF-based
SVM model are compared for both systems. Figure 5
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Fig. 5. Measured output and one-step-ahead predictions
by the online UKF-based SVM model for Box-Jenkins
and inverted pendulum systems.

demonstrates the good performance of the proposed on-
line LS-SVM approach in regression where UKF plays
an important role. Also, simultaneous kernel parameter
adaptability has a significant effect in this performance,
easily seen by the change of the kernel parameter over
time in Figure 3 and 4. As Table 2 tells us, small identi-
fication RMSE is obtained using a small SV set which is
maintained by the proposed adaptive SV set windowing
approach.

4. CONLCUSION

In this paper, two novelty is introduced for online SVM
classification and regression. First, all SVM parameters
are trained simultaneously including the kernel parameter.
Neither additional model for kernel evaluation is used nor
sequential optimization is performed. Proposed approach,
which is based on the LS-SVM model, has a simple
framework indeed. Training is performed by UKF which
has excellent performance in parameter estimation due
to the unscented transformation adopted. And as the
second novelty, small SV set is maintained by an intelligent
variable size moving window strategy. Considering the
simulations performed, as the kernel parameter varies over
time, it is proved that there has been a realistic need
for a simultaneous kernel parameter adaptation in the
literature. And this need is full-filled by the proposed,
simple and fast, online LS-SVM approach.
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Fig. 5. Measured output and one-step-ahead predictions
by the online UKF-based SVM model for Box-Jenkins
and inverted pendulum systems.

demonstrates the good performance of the proposed on-
line LS-SVM approach in regression where UKF plays
an important role. Also, simultaneous kernel parameter
adaptability has a significant effect in this performance,
easily seen by the change of the kernel parameter over
time in Figure 3 and 4. As Table 2 tells us, small identi-
fication RMSE is obtained using a small SV set which is
maintained by the proposed adaptive SV set windowing
approach.

4. CONLCUSION

In this paper, two novelty is introduced for online SVM
classification and regression. First, all SVM parameters
are trained simultaneously including the kernel parameter.
Neither additional model for kernel evaluation is used nor
sequential optimization is performed. Proposed approach,
which is based on the LS-SVM model, has a simple
framework indeed. Training is performed by UKF which
has excellent performance in parameter estimation due
to the unscented transformation adopted. And as the
second novelty, small SV set is maintained by an intelligent
variable size moving window strategy. Considering the
simulations performed, as the kernel parameter varies over
time, it is proved that there has been a realistic need
for a simultaneous kernel parameter adaptation in the
literature. And this need is full-filled by the proposed,
simple and fast, online LS-SVM approach.
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