Fabrication of highly sensitive nitrite electrochemical sensor in foodstuff using nanostructure sensor

Vinod Kumar Gupta^{1,}, Mohammad A. Khalilzadeh^{2,*}, Ali Rudbaraki³, Shilpi Agarwal¹, Mehmet L. Yola⁴, Necip Atar⁵*

¹Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa ² Department of Chemistry, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran ³ Department of Food Science, Sari Branch, Islamic Azad University, Sari, Iran

⁴ Department of Metallurgical and Materials Engineering, Faculty of Engineering, Sinop University, Sinop, Turkey

⁵ Department of Chemical Engineering, Pamukkale University, Denizli, Turkey *E-mail: vinodfcy@gmail.com, khalilzadeh73@gmail.com

doi: 10.20964/2017.05.72

Received: 23 February 2017 / Accepted: 14 March 2017 / Published: 12 April 2017

In this research, we introduced a powerful electrochemical sensor (based carbon paste electrode) for analysis of nitrite in foodstuff, using CdO decorated single wall carbon nanotube incorporated with 1-methyl-3-butylimidazolium bromide (CdO/SWCNTs/1-3-MBIB/CPE). Our results revealed that CdO/SWCNTs/1-3-MBIB/CPE shows excellent electro-catalytic activity towards electro-oxidation of nitrite. The obtained data illustrated an irreversible oxidation peak current at 0.92 V, pointing to the oxidation of nitrite. The CdO/SWCNTs/1-3-MBIB/CPE exhibited a linear response from 0.1 μ M to 900.0 μ M of nitrite with no interfering from other food compounds. The CdO/SWCNTs/1-3-MBIB/CPE has been used for determination of nitrite in real samples.

Keywords: Nitrite determination, CdO/SWCNTs, Sensor, Food analysis

FULL TEXT

© 2017 The Authors. Published by ESG (<u>www.electrochemsci.org</u>). This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).