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Two variants of the Muskingum flood routing method formulated for accounting nonlinearity of the
channel routing process are investigated in this study. These variant methods are: (1) The three-
parameter conceptual Nonlinear Muskingum (NLM) method advocated by Gillin 1978, and (2) The
Variable Parameter McCarthy-Muskingum (VPMM) method recently proposed by Perumal and Price in
2013. The VPMM method does not require rigorous calibration and validation procedures as required
in the case of NLMmethod due to established relationships of its parameters with flow and channel char-
acteristics based on hydrodynamic principles. The parameters of the conceptual nonlinear storage equa-
tion used in the NLM method were calibrated using the Artificial Intelligence Application (AIA)
techniques, such as the Genetic Algorithm (GA), the Differential Evolution (DE), the Particle Swarm
Optimization (PSO) and the Harmony Search (HS). The calibration was carried out on a given set of hypo-
thetical flood events obtained by routing a given inflow hydrograph in a set of 40 km length prismatic
channel reaches using the Saint-Venant (SV) equations. The validation of the calibrated NLM method
was investigated using a different set of hypothetical flood hydrographs obtained in the same set of chan-
nel reaches used for calibration studies. Both the sets of solutions obtained in the calibration and valida-
tion cases using the NLMmethod were compared with the corresponding solutions of the VPMM method
based on some pertinent evaluation measures. The results of the study reveal that the physically based
VPMMmethod is capable of accounting for nonlinear characteristics of flood wave movement better than
the conceptually based NLM method which requires the use of tedious calibration and validation
procedures.

� 2017 Elsevier B.V. All rights reserved.
1. Introduction

The objective of channel flood routing is to track the movement
of flood wave while it propagates from an upstream section to a
downstream section in a channel reach. Flood routing analysis is
required for various purposes such as flood forecasting, design of
flood protection structures and for estimation of spillway design
flood. A variety of channel routing methods have been proposed
in the literature (Fread, 1993) and they can be broadly classified
into two major categories as (i) hydraulic routing and (ii) hydro-
logic routing. The hydraulic routing methods can be further classi-
fied as dynamic routing and simplified hydraulic routing. The
hydrologic routing method is widely used in field practices since
early thirties and they have been developed essentially to over-
come the tedious computations involved in the hydraulic routing
methods. This method treats the channel reach as a lumped system
and employs the lumped continuity equation, derived from the dis-
tributed continuity equation of the Saint-Venant (SV) equations
(Saint-Venant, 1871a, 1871b), and a storage equation formulated
by linking the reach storage with the inflow and outflow variables
of the routing reach. Among the many lumped hydrological routing
methods, the Muskingum method introduced by McCarthy (1938)
is well known in the literature (Chow et al., 1988). McCarthy
(1938) introduced this classical method as a linear storage routing
method wherein the reach storage at any instant of time is linearly
related to the linear weighted discharge expressed in terms of
inflow and outflow involving two parameters. Recognizing the
inability of the classical Muskingum method to account for nonlin-
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ear characteristics of flood wave movement in channels, Gill (1978)
advocated an approach of accounting nonlinearity in the channel
routing process by modifying the storage equation of the classical
Muskingum method in nonlinear form by expressing the linear
weighted discharge with a nonlinear exponent. Gill (1978) named
this method as the Nonlinear Muskingum (NLM) method to differ-
entiate it from the linear classical Muskingum method. Parallel to
the development of the NLM method, an alternate approach of
accounting nonlinearity by the Muskingum method was studied
by Ponce and Yevjevich (1978) resulting in the development of
Variable Parameter Muskingum-Cunge (VPMC) method. The VPMC
method is an extension of the Muskingum-Cunge (MC) method
developed by Cunge (1969) by relating the parameters of the
Muskingum method with flow and channel characteristics using
the matched diffusivity approach. Though both the NLM and VPMC
methods were developed with the objective of overcoming the
deficiency of the classical Muskingum method for its inability to
account for nonlinearity in the channel routing process, the
approach of accounting nonlinearity by these methods differ from
each other. In the case of NLM method, the structure of the storage
equation expressed in the nonlinear form of the linear weighted
discharge is universal, but the parameters of the storage equation
employed remain constant for the considered event which need
to be calibrated using site specific recorded inflow and the corre-
sponding outflow hydrographs. Though the NLM method charac-
terized by an additional parameter has increased the flexibility of
the method better than the classical Muskingummethod in closely
simulating the observed hydrograph of the calibration flood event,
the set of parameters calibrated may not be able to simulate other
flood events for lower or higher range of flow than the one used in
the calibration for the same channel reach. However, the VPMM
method does not exhibit such a deficiency as the parameters vary
nearly in a manner consistent with the variability built-in in the
flood wave propagation process. Following the studies of Gill
(1978), and Ponce and Yevjevich (1978) a number of studies have
been carried out by various researchers for accounting nonlinearity
in the routing process by these two variant Muskingum routing
methods. Most of the studies conducted on the NLM method relate
to various methods of parameter estimation based on a plethora of
optimization techniques such as those proposed by Tung (1985),
Yoon and Padmanabhan (1993), Mohan (1997), Geem (2006a)
and Karahan et al. (2013). But none of these studies ever followed
the conventional modelling protocol involving calibration and val-
idation of the method. Followed by the development of VPMC
method, a number of Variable Parameter Muskingum (VPM) meth-
ods have been proposed in the literature. These methods enable to
relate the Muskingum parameters in a manner more consistent
with the variability built-in the channel routing process better
than the approach advocated by Ponce and Yevjevich (1978). Fur-
ther these VPM methods have been also developed with the objec-
tive of overcoming the mass conservation problem associated with
the VPMC method (Perumal and Sahoo, 2008). Notable among
these methods are due to Todini (2007), Price (2009), and
Perumal and Price (2013). It may be pointed out that though a par-
allel development on these two approaches of accounting nonlin-
earity in the routing process by the Muskingum method have
been made, no investigation has been made so far to demonstrate
the comparative evaluation of the performances of the NLM
method and the VPM methods. Therefore, this study is made with
the following objectives: (1) to assess the performance of the NLM
method first by calibrating the parameters of the method using
some selected Artificial Intelligent Algorithm (AIA) techniques on
the given set of flood events and subsequently validating the
method by simulating the outflow hydrographs used for the cali-
bration of the method, and (2) to compare the performances of
the NLM and VPMM methods in reproducing the pertinent
characteristics of the benchmark hydrographs of the independent
set of flood events considered as the validation events. It may be
noted that the VPMM method does not require the calibration of
parameters as they have established relationships with channel
and flow characteristics. Further, it may also be pointed out that
any of the volume conservative variable parameter Muskingum
methods, such as the method proposed by Todini (2007), Price
(2009) and Perumal and Price (2013) could have been used as
the candidate method of the physically based variable parameter
Muskingummethod as all of these methods performwith the same
level of accuracy (Price, 2009; Perumal and Price, 2013). The VPMM
method is used in this study due to its familiarity with the authors.

This paper is organized as follows: Section 2 describes the clas-
sical and nonlinear Muskingum methods, and the variable param-
eter Muskingum method, specifically the VPMM method. Section 3
describes the calibration of the NLM method using some selected
AIA techniques, such as the Genetic Algorithm (GA), the Differen-
tial Evolution (DE), the Particle Swarm Optimization (PSO) and
the Harmony Search (HS). Section 4 gives the description of hypo-
thetical inflow hydrographs used for arriving at the routed hydro-
graphs, which are considered as benchmark solutions, required for
both calibration and validation studies in the considered channel
reaches. These set of hypothetical inflow and outflow hydrographs
are used for parameters calibration of the selected AIA techniques
employed in the NLM method and their subsequent validation.
These set of hydrographs are also employed for simulation using
the VPMM method for subsequent comparative evaluation with
the simulations of the NLM method. The hypothetical channel
reaches characterized by different channel configurations used in
the study are also described in this section. Section 5 gives the
details of the numerical experiments conducted for the study and
the strategy adopted for the comparative evaluation of the simula-
tion performances of the NLM and VPMM methods. Section 6 pre-
sents the results and discussion of the study based on the obtained
simulation results, and the conclusions of the study are presented
in Section 7.

2. Various forms of the Muskingum method

2.1. The classical Muskingum routing method

The classical Muskingum method (McCarthy, 1938) of flood
routing derived its name after its first application to the Musk-
ingum River, a tributary of the Ohio River in the USA, is a linear
storage routing method and it is widely used in practice (Chow
et al., 1988). This method models the flood storage of a given rout-
ing reach at any instant of time of the propagation of a flood event
as a combination of wedge and prism storage. This method combi-
nes the lumped continuity equation

dS
dt

¼ I � O ð1Þ

with a linear storage equation expressed as

S ¼ K½hI þ ð1� hÞO� ð2Þ
to arrive at the difference equation which on simplification leads to
the Muskingum routing equation as

Ojþ1 ¼ C1Ijþ1 þ C2Ij þ C3Oj ð3Þ
where S is the storage volume, I is the inflow discharge, O is the out-
flow discharge, K is the travel time, h is the weighting parameter,
the suffix j denotes the time jDt, where, Dt is the routing time step,
and the routing coefficients C1, C2, and C3 are expressed as

C1 ¼ �Khþ 0:5t
Kð1� hÞ þ 0:5t

; ð4aÞ
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Fig. 1. Definition sketch of the VPMM routing reach.
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C2 ¼ Khþ 0:5t
Kð1� hÞ þ 0:5t

; ð4bÞ

C3 ¼ Kð1� hÞ � 0:5t
Kð1� hÞ þ 0:5t

; ð4cÞ

where C1 + C2 + C3 = 1 which shows the mass conserving ability of
the classical Muskingum method. Given an inflow hydrograph, an
initial flow condition, a chosen time stepDt, and the routing param-
eters K and h, the routing coefficients can be calculated using Eq. (4)
and used subsequently to arrive at the outflow hydrograph using
Eq. (3). The routing parameters K and h are implicitly related to flow
and channel characteristics with K being interpreted as the travel
time of the flood wave from upstream end, where the inflow hydro-
graph is applied, to the downstream end of the routing reach. The
parameter h is the weighting parameter used for weighting the
prism and wedge storages to determine the equivalent prism stor-
age of the reach at any instant of time. To calculate the value of h,
the storage S is plotted against the corresponding weighted dis-
charge value [hI + (1 � h)O] in Eq. (2) for different trial values of h
resulting in various sizes of loops; and the value of h which gives
the narrowest loop of this plot is considered as the appropriate
one for its use in the method. The effect of storage is to reduce
the peak flow and spread the hydrograph over time and this effect
introduces diffusion of the propagating flood wave resulting in peak
attenuation. The successful application of the Muskingum method
for real life routing problems led the hydrologists to consider that
there exists some link between the parameters K and h, and the
channel and flow characteristics. Subsequently several attempts
have been made by various researchers (Dooge and Harley, 1967;
Cunge, 1969; Dooge et al., 1982) to link the routing parameters K
and h of the classical Muskingummethod with the flow and channel
characteristics based on the hydrodynamics principles to transform
it into a physically based method. Further, various attempts have
been made for the physical interpretation of the classical Musk-
ingum method by several researchers like Apollov et al. (1964),
Cunge (1969), Dooge (1973), Koussis (1976), Strupczewski and
Kundzewicz (1980), Dooge et al. (1982), Kundzewicz (1986),
Perumal (1992, 1994), and Ponce and Chaganti (1994).

2.2. Nonlinear Muskingum (NLM) method

Recognizing the inability of the classical Muskingum method
for modeling nonlinear behavior of flood wave movement in chan-
nels, Gill (1978) advocated an alternative approach of accounting
nonlinearity in the channel routing process by expressing the stor-
age equation of the classical Muskingummethod in nonlinear form
simply by raising the weighted discharge by an exponent ‘m’
expressed in the following form:

SðtÞ ¼ K½hIðtÞ þ ð1� hÞOðtÞ�m ð5Þ
In addition to the two parameters employed in the classical

Muskingum method, Gill’s storage equation employs a third
parameter in the form of nonlinear exponent m. Gill (1978) named
this method as the nonlinear Muskingum (NLM) method. When
m = 1, the storage equation of the NLMmethod reduces to the stor-
age equation of the classical Muskingum method.

It may be noted that an increase of one more parameter ‘m’
associated with the modified form of the storage equation of the
NLM method increases the flexibility of the method in closely sim-
ulating the observed outflow hydrograph of the calibration flood
event. However, the close reproduction of outflow hydrograph
achieved in the calibration mode does not guarantee the set of esti-
mated calibration parameters K, h and m to be universal or global
optimal parameters for the considered channel reach for simulat-
ing all the possible flood hydrographs that may be routed in that
channel reach. This is due to the reason that a set of calibrated
parameters estimated using one of the recorded set of flood events
in a routing reach is not only influenced by the channel character-
istics, but also by the inflow hydrograph characteristics such as the
shape, peak, its rate of rise and time to peak, besides the prevailing
initial flow in the channel reach. If a flood event of a higher or
lower magnitude with differing inflow hydrograph characteristics
and with a different prevailing initial flow in the reach, other than
that of the past calibrated event, is to be routed in the same chan-
nel reach, then the parameters calibrated from the past event may
not serve the intended purpose of successfully reproducing the
observed hydrograph by routing this new inflow hydrograph.
2.3. Variable Parameter McCarthy-Muskingum (VPMM) method

Perumal and Price (2013) recently proposed a physically based
variable parameter Muskingum method developed from SV equa-
tions. This method was developed with the objectives of account-
ing non-linearity in the routing process and for fully conserving
mass of the routed hydrograph. The development of the method
justifies the heuristic assumption used by McCarthy (1938) in the
classical Muskingum method that the reach storage consists of
prism and wedge storages. In a way of recognizing the contribution
of McCarthy (1938) for the development of the well-known Musk-
ingum method, Perumal and Price (2013) named this method as
the Variable Parameter McCarthy-Muskingum (VPMM) method.

The VPMM method uses the approximate form of the momen-
tum equation of the SV equations in expressing discharge at the
mid-section of the routing reach (see Fig. 1) as:

QM ¼ QoM 1� 1
So

@y
@x

1� 4
9
F2
M

P
B
dR
dy

� �2

M

" #( )1
2

ð6Þ

where PM, BM, FM and RM, respectively, denotes the wetted perime-
ter, top width, Froude number and hydraulic radius corresponding
to the flow depth yM.

The suffix ‘M’ and the suffix ‘oM’ attached to a variable refer to
that variable estimated at the mid-section of the sub-reach corre-
sponding to yM and its normal discharge, respectively. Accordingly,
the notation QM is the average discharge at the mid-section of the
reach at any time (see, Fig. 1) and QoM is the normal discharge at
the midsection corresponding to flow depth yM; (@y/ox) is the lon-
gitudinal water depth gradient; and So denotes the bed slope of the
channel or river. The Froude number FM is expressed as

FM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2

MBMÞ=ðgA3
MÞ

q
, where g denotes the acceleration due to
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gravity and AM denotes the flow area of cross-section at mid-
section of the reach or subreach.

Use of the approximate expression for the normal discharge,
QoM, obtained from the above equation using the binomial series
expansion and the direct use of the same in the one-dimensional
continuity equation of the SVequations applied at the centre point
of the box-grid scheme as shown in Fig. 2 results in the mass con-
servative routing equation of the VPMM method expressed as
(Perumal and Price, 2013):

Ojþ1 ¼ Dt � 2 � Kjþ1 � hjþ1

Dt þ 2 � Kjþ1 � ð1� hjþ1Þ � Ijþ1 þ Dt þ 2 � Kj � hj
Dt þ 2 � Kjþ1 � ð1� hjþ1Þ

� Ij þ �Dt þ 2 � Kj � ð1� hjÞ
Dt þ 2 � Kjþ1 � ð1� hjþ1Þ � Oj ð7Þ

The notation j denotes the time t = jDt and the notation Dt
denotes the routing time step.

The routing parameters, K and h at the time level (j + 1) are
expressed (Perumal and Price, 2013), respectively, as;

Kjþ1 ¼ Dx
VoM;jþ1

ð8Þ

hjþ1 ¼ 1
2
� QoM;jþ1

2 � S0 � BM;jþ1 � coM;jþ1 � Dx ð9Þ

where, V = flow velocity.
The discharge QoM,j+1 is estimated as:

QoM;jþ1 ¼ hjþ1Ijþ1 þ ð1� hjþ1ÞOjþ1 ð10Þ
During unsteady flow the normal discharge QoM,j+1 passes at

some section located downstream of the midsection of the Musk-
ingum reach and it is denoted as section-3 as shown in Fig. 1. It
may be noted that the VPMM method does not consider the con-
cept of matching the numerical diffusion with the physical diffu-
sion as in the case of the VPMC method. However, the same form
of the routing equation of the classical Muskingum method is used
by the VPMM method, except that the routing coefficients are esti-
mated using the physically based parameters K and hwhich vary at
every time step following the Eqs. (8) and (9), respectively. As the
parameters remain constant over the time step Dt, but vary at
every step, this method can be considered as a quasi-linear
method.

Perumal and Price (2013) inferred from the development of
VPMM method that it can be successfully applied for channel
and river routing problems when the inflow hydrograph is charac-
terized by the criterion jð1=SoÞð@y=@xÞj 6 0:5, where So denotes the
x
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Fig. 2. Numerical grid adopted for VPMM application in synchronization with
Fig. 1.
channel bed slope and ð@y=@xÞ denotes the longitudinal water
depth gradient.

3. Calibration of the NLM method

Ever since the introduction of the NLM method, a number of
techniques for its parameter estimation have been introduced.
Almost all of these parameter estimation techniques have been
introduced based on the criterion of close reproduction of the
observed hydrograph of the calibration event by the solution of
the NLM method, though the improvement achieved in the repro-
duction of the observed hydrograph of the considered calibration
event by the proposed AIA technique could be considered insignif-
icant over the reproductions of the same event by the methods
based on the other AIA techniques. Among these techniques, the
ones based on AIA techniques, such as the GA, DE, PSO and HS
are considered for their application in this study. It may be noted
that none of the researchers attempted to prove the claim of supe-
riority of their parameter estimation technique in the validation of
the calibrated model using independent set of inflow and outflow
hydrographs of the same channel reach.

Depending on the type of parameter estimation technique used,
such as GA, DE, PSO and HS, the parameters K, h and m of the NLM
method are calibrated by minimizing the residual sum of squares
between the benchmark solutions (Oobs,(t)) and the routing solu-
tion Or(t) obtained by the NLM method, expressed as:

MinSSQ ¼
X

½OobsðtÞ � OrðtÞ�2 ð11Þ

The calibration stage, in this study, involves the close reproduc-
tion of the benchmark solution by the NLM method. The bench-
mark solution (outflow hydrograph) is obtained by routing
inflow hydrograph in a channel. This is achieved by the solution
of St. Venant equations. During the calibration stage, while the
benchmark solution is reproduced by the NLM method, the opti-
mal values of the NLM method parameters (i.e.; K, h and m) are
obtained using the AIA methods. The validation stage, on the other
hand, involves the simulation of another event by the NLMmethod
using the parameter values obtained at the calibration stage.

3.1. Artificial Intelligence Application (AIA) techniques

3.1.1. GA method for parameter estimation
GA is an optimization algorithm which can make a nonlinear

search in a solution space such that the continuity (and conse-
quently the differentiability) of the underlying mathematical func-
tion is not necessary. Furthermore, it makes few assumptions and
therefore it is robust and it has general applicability (Liong et al.,
1995; Goldberg, 1999).

GA has four basic units: bit, gene, chromosome, and gene pool. Bit
is the basic element which is represented by a 1 (or) 0 digit. The
combination of bits forms a gene which represents a model param-
eter (or a decision variable). The attachment of genes forms a chro-
mosome which stands for a possible solution.

GA algorithm have four basic operations: generating initial gene
pool, obtaining fitness for each chromosome, selection of chromo-
somes, cross-overing chromosomes, and ‘mutuating chromo-
somes’. Uniform distribution (or a normal distribution) (Sen,
2004) can be employed to randomly generate initial chromosomes
for the gene pool. Fitness of each chromosome can be evaluated in
two steps: First, substituting each chromosome into objective
function to find their values; and then, obtaining their fitness by
Eq. (12) (Tayfur, 2012):

FðCiÞ ¼ f ðCiÞP
f ðCiÞ ð12Þ
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where Ci is chromosome i; f(Ci) is value of objective function for
chromosome i, and F(Ci) is fitness value for chromosome i.

Selection of chromosomes after the evaluation of their fitness
values can be performed randomly. There are methods available
for the selection process such as roulette wheel (Sen, 2004) and
ranking (Tayfur, 2012). After the selection process, pairs (parent
chromosomes) are first formed and they are then subjected to
the cross-over operation by interchanging the genes. The last oper-
ation in a single iteration is the mutation by which bits are
reversed (i.e., 1 to 0 or 0 to 1). By these operations, it is intended
to search the solution space thoroughly. As an example, Fig. 3
shows mutation and single cut cross-over operations. As seen,
the first two chromosomes (parent chromosomes I and II) are sub-
jected to the cross-over by the single cut from the third digit, yield-
ing new chromosomes (off-springs I and II) at the bottom. The
value of 189 becomes 61 after cross-over and then 253 (off-
spring chromosome III) after mutation, thus scanning a large por-
tion of solution space. One can find more details on GA in
(Goldberg, 1999; Sen, 2004; Tayfur, 2012).

This study employed Evolver (Palisade Corporation, 2013) soft-
ware package for estimating the parameters (K, h, m) of the nonlin-
ear Muskingum method. The parameters are first assigned random
values before initiating the iterations. Note that the initial assigned
values do not affect the final convergence of the results. 100 chro-
mosomes in the initial gene pool, 75% cross-over rate, 5% mutation
rate and 10000 iterations were employed.

The parameters were calibrated for each event in the consid-
ered channel reaches whose slope varied between 0.001 and
0.0001 with the same inflow hydrograph peak rate of 800 m3/s
(10 different events). The so-obtained optimal values of the param-
eters are summarized in Table 1. The NLMmethod calibrated based
on the GA technique was then verified using the independent sets
of inflow and the corresponding benchmark outflow events arrived
at in the respective channel systems used for calibration, but using
an inflow hydrograph nearly same as the one employed in the cal-
ibration exercise. The details of the inflow hydrographs used for
calibration and validation studies are described later.
3.1.2. DE method for parameter estimation
DE is an evolutionary optimization method which is simple,

fast, robust and powerful in finding global optimum (Storn and
Price, 1997). Like GA, it is a population based and uses similar
operations such as selection, crossover, and mutation. The basic
difference between GA and DE is that GA relies more on crossover
while DE on mutation, as a search mechanism. Selection operation
in DE is employed to direct the search towards the prospective
1

Parent 

1 

Parent 

Off-spring 
chromosome I 

Off-spring 
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Fig. 3. Example for single cut
regions in the solution space. Non-uniform crossover is used in
DE algorithm, by which child vector parameters are taken more
often from one parent. In DE, the population of NP solution vectors
is randomly created at the beginning and successfully improved by
applying mutation, crossover and selection operators (Karaboga
and Okdem, 2004). Normally, NP should be about 10 times the
number of parameters in a vector (Storn and Price, 1997;
Karahan, 2011).

A mutant vector can be produced by DE/rand/1/bin strategy for
each target vector Xi;j;G as follows (Storn and Price, 1997):

Vi;j;Gþ1 ¼ XR1;j;G þ FðXR2;j;G � XR3;j;GÞ: ð13Þ
where j 2 f1;2; . . . ;Dg; i;R1;R2;R3 2 f1;2; . . . ;NPg are randomly
chosen and must be different from each other, G is the generation
number. In Eq. (13), F is the mutation factor which has an effect
on the difference vector (XR2,j,G � XR3,j,G).

A trial vector can be produced by mixing the parent vector with
the mutated vector as:

Ui;j;Gþ1 ¼ Vi;j;Gþ1; if randj 6 CR or j 6 j rand

Xi;j;G; if randj > CR or j – j rand

�
ð14Þ

where j e {1, 2, . . ., D}; randj e [0, 1] is the random number; CR e
[0, 1] is crossover rate and jrand e {1, 2, . . ., D} is the randomly cho-
sen index.

All chromosomes in the population have the same chance for
being selected as parents, irrespective of their fitness values. The
child, produced after the mutation and crossover operations, is first
evaluated. Then, the better one is chosen after comparing the per-
formances of the child vector and its parent. If the parent is still
better, it is retained in the population by the following:

Xi;j;Gþ1 ¼ Ui;j;Gþ1; f ðUi;j;Gþ1Þ < f ðXi;j;Gþ1Þ
Xi;j;G; otherwise

�
ð15Þ

The details of DE can be obtained from the literature (Storn and
Price, 1997; Karaboga and Okdem, 2004; Karahan, 2011; Vasan and
Simonovic, 2010; Gurarslan, 2011). The parameters were cali-
brated by DE for each event (Table 1) and tested against other 10
events.

3.1.3. PSO method for parameter estimation
PSOmethod is also a population based evolutionary search opti-

mization method inspired from the movement of bird flock
(swarm) (Chau, 2007; Clerc and Kennedy, 2002). Although it is
similar to GA with respect to fitness concept and random popula-
tion initialization, the evolution of generations in such a system
occurs by cooperation and competition. The population responds
[189] 1 0 1
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1 1 1 0 1 [253] 
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Table 1
Optimal values of the parameters obtained during the calibration of each event.

Algorithm Slope K h m

DE 0.0010 0.004318 0.487796 2.165885
GA 0.004647 0.487890 2.154743
PSO 0.004318 0.487796 2.165885
HS 0.085311 0.481505 1.714803

DE 0.0009 0.004032 0.482011 2.190602
GA 0.004505 0.482154 2.173698
PSO 0.004032 0.482011 2.190602
HS 0.158553 0.472108 1.634182

DE 0.0008 0.003876 0.475115 2.212556
GA 0.004357 0.475282 2.194664
PSO 0.003876 0.475115 2.212556
HS 0.117525 0.468497 1.692981

DE 0.0007 0.003865 0.466692 2.230954
GA 0.004144 0.466793 2.220252
PSO 0.003865 0.466692 2.230954
HS 0.082987 0.462780 1.761629

DE 0.0006 0.004041 0.456075 2.244768
GA 0.004564 0.456252 2.225889
PSO 0.004041 0.456075 2.244768
HS 0.119946 0.451442 1.723416

DE 0.0005 0.004506 0.442133 2.252115
GA 0.005088 0.442299 2.233211
PSO 10.000000 0.387494 1.076287
HS 0.298910 0.431520 1.604230

DE 0.0004 0.005575 0.422769 2.248254
GA 0.005806 0.422810 2.241876
PSO 0.005575 0.422769 2.248254
HS 0.111444 0.419637 1.780662

DE 0.0003 0.008553 0.393609 2.218067
GA 0.008749 0.393615 2.214507
PSO 0.008553 0.393609 2.218067
HS 0.260847 0.387649 1.680191

DE 0.0002 0.025549 0.343669 2.094050
GA 0.025822 0.343659 2.092330
PSO 0.025549 0.343669 2.094050
HS 0.169356 0.340341 1.791981

DE 0.0001 2.934438 0.233319 1.402879
GA 2.658088 0.233634 1.418688
PSO 10.000000 0.228858 1.208638
HS 1.396758 0.235538 1.521868
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to the quality factors of the previous best individual and group val-
ues. It is adaptive corresponding to the change of the best group
value and fast convergent (Chau, 2007; Kumar and Reddy, 2007).

The basic idea in PSO is based on the assumption that potential
solutions are flown through hyperspace with acceleration towards
more optimum solutions. Each particle adjusts its flying according
to the experiences of both itself and its companions. During the
process; the overall best value attained by all the particles within
the group and the coordinates of each element in hyperspace asso-
ciated with its previous best fitness solution are recorded in the
memory (Chau, 2007; Kumar and Reddy, 2007). The important
advantage of PSO algorithm is its relatively simple coding and
low computational cost (Chau, 2007).

Mathematical statement of PSO algorithm can be given as fol-
lows (Kayhan et al., 2010):

Let f be the fitness function governing the problem, NP be the
number of particles in the swarm, D be the problem dimension
(e.g. number of decision variables), xi ¼ ½xi1; xi2; . . . ; xiD�T and

vi ¼ ½v i1;v i2; . . . ; v iD�T be the vectors for the current positions and
the velocities of the particles in each dimension, respectively,

and x̂i ¼ ½x̂i1; x̂i2; . . . ; x̂iD�T and ĝ ¼ ½g1; g2; . . . ; gD�T (where T is the
transpose operator) be the vectors for the current and global best
positions of each particle in each dimension
(8i ¼ 1;2; . . . ; NP and 8j ¼ 1;2; . . . ;D), respectively. The new
velocities of the particles can be calculated as follows:

vkþ1
i ¼ xvk

i þ c1r1ðx̂i � xk
i Þ þ c2r2ðĝ� xk

i Þ 8i ¼ 1;2; . . . ;NP ð16Þ

where k is iteration index, x is inertial constant, c1 and c2 are accel-
eration coefficients that are used to determine how much personal
and the global best of a particle influence its movement, and r1 and
r2 are uniform random numbers between 0 and 1. The values of x,
c1 and c2 control the impact of previous historical values of particle
velocities on its current one. A large value of x can lead to global
exploration whereas small ones can do a fine search within the
solution space. Therefore, suitable selection of x, c1 and c2 can pro-
vide a balance between the local and the global search processes.
c1r1ðx̂i � xk

i Þ and c2r2ðĝ� xk
i Þ in Eq. (16) are called cognition and

social terms, respectively. The cognition term takes into account
only the particle’s own experience, whereas the social one signifies
the interaction between the particles.

Velocities of a particle in a swarm are usually bounded by a
maximum velocity vmax ¼ ½vmax

1 ;vmax
2 ; . . . ;vmax

D �T , which is calcu-
lated as a fraction of the entire search space, as follows (Shi and
Eberhart, 1998):

vmax ¼ cðxmax � xminÞ ð17Þ
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where c is a fraction ð0 6 c < 1Þ , xmax ¼ ½xmax
1 ; xmax

2 ; . . . ; xmax
D �T and

xmin ¼ ½xmin
1 ; xmin

2 ; . . . ; xmin
D �T are vectors that stand for the upper and

lower bounds of the search space for each dimension, respectively.
After the velocity updating process is performed by Eqs. (16) and
(17), the new positions of the particles are calculated as follows:

xkþ1
i ¼ xk

i þ vkþ1
i 8i ¼ 1;2; . . . ;NP ð18Þ

After the calculation of Eq. (18), the corresponding fitness val-
ues are calculated based on the new positions of the particles.
Then, the values of x̂i and ĝ (8i ¼ 1;2; . . . ;NP) are updated. This
solution procedure is repeated until the given termination criterion
has been satisfied. The details of PSO can be obtained elsewhere
(Shi and Eberhart, 1998; Clerc and Kennedy, 2002; Chau, 2007;
Gurarslan and Karahan, 2011; Karahan, 2012). The parameters
were calibrated by PSO for each event (Table 1) and tested against
other 10 events.

3.1.4. HS method for parameter estimation
HS method proposed by Geem et al. (2001) is a stochastic ran-

dom search optimization algorithm, which is conceptualized as the
musical process searching for perfect state of harmony. Each musi-
cian, collection of notes in memories, harmonies, and improvisa-
tions are analogous to decision variable, values of decision
variables, optimization solution vector, and solution iterations,
respectively (Geem et al., 2001). HS searches optimal solution by
considering multiple solution vectors as in GA. However, reproduc-
tion process in HS is different than that of GA. That is; GA generates
a new offspring from two parents in the population wheras HS
generates it from all of the existing vectors stored in HM.

The HS algorithm is applied to various water resources engi-
neering optimization problems including river flood management
(Kim et al., 2001), optimum design of water distribution network
(Geem, 2006b), and aquifer parameter and zone structure identifi-
cation (Ayvaz, 2007). The algorithm has the following steps
(Karahan et al., 2013):

Step 1: Random vectors ðx1 . . . . . . xHMSÞ are generated as many as
HMS (harmony memory size), then they are stored in harmony
memory (HM). The HM has the following structure:

HM ¼

x11 x12 . . . x1N�1 x1N f ðx1Þ
x21 x22 . . . x2N�1 x2N f ðx2Þ
:

:

:

xHMS�1
1 xHMS�1

2 . . . xHMS�1
N�1 xHMS�1

N f ðxHMS�1Þ
xHMS
1 xHMS

2 . . . xHMS
N�1 xHMS

N f ðxHMSÞ

2
666666666664

3
777777777775
: ð19Þ

Step 2: New vector x0 is generated. For each component x0i,

� pick the stored value from HM, x0i ¼ xintðrandð0;1Þ�HMSÞþ1
i with prob-

ability HMCR (harmony memory considering rate),
� pick a random value within the allowed range, with probability
(1-HMCR).

Step 3: If the value in Step 2 comes from HM, then change x0i by
a small amount: x0i ¼ x0i þ bw � randð0;1Þ for continuous variable,
with probability PAR (pitch adjusting rate) or do nothing with
probability (1 � PAR).

Step 4: Replace xWorst with x0i if x
0
i is better than the worst vector

xWorst in HM,
Step 5: Repeat from Step 2 to Step 4 until termination criterion

(e.g. maximum iterations) is satisfied.
The details of HS can be obtained from the literature (Geem

et al., 2001; Ayvaz, 2007; Karahan et al., 2013). The parameters
were calibrated by HS for each event (Table 1) and tested against
other 10 events, like other soft computing methods, employed in
this study.
3.1.5. Routing procedure of the NLM method
In this study, AIA techniques are used in estimating outflow

hydrograph. Some of these techniques (GA, DE, PSO, and HS) need
a routing procedure. The routing procedure used by these tech-
niques involves the following steps (Karahan et al., 2013):

Step 1: Assign a candidate vector ðxÞ to the parameters of K, h,
and m.
Step 2: The storage is calculated by Eq. (5) where the initial out-
flow is the same as the initial inflow.
Step 3: Calculate the time rate of change of storage volume as
follows:

S0ðtÞ ¼ � 1
ð1� hÞ

� �
SðtÞ
K

� �1=m

þ 1
ð1� hÞ
� �

IðtÞ ð20Þ

Step 4: Estimate the next storage as:

Sðt þ 1Þ ¼ SðtÞ þ DtS0ðtÞ ð21Þ
If the next storage has a negative value, apply to penalty factor.

Step 5: Calculate the next routed outflow, Orðt þ 1Þ using;

Orðt þ 1Þ ¼ 1
ð1� hÞ
� �

� Sðt þ 1Þ
K

� �1=m

� h
ð1� hÞ
� �

Iðt þ 1Þ ð22Þ

If the next routed outflow has a negative value, apply to penalty
factor.

Step 6: Repeat steps 2 to 5 for all times.

4. Benchmark case study

4.1. Inflow hydrograph and benchmark solutions

In order to evaluate the efficacy of the considered two variants
of the Muskingum flood routing method, a hypothetical inflow
hydrograph is routed in a given channel of specified reach length
using the SV equations to arrive at the benchmark solutions against
which the simulated solutions of these two methods are compared.
For this purpose the inflow hydrograph and the hypothetical chan-
nel reaches as employed by Price (2009) have been adopted. The
inflow hydrograph is based on the form of a Pearson type-III distri-
bution expressed as:

IðtÞ ¼ Ib þ ðIp � IbÞ t
tp

� � 1
c�1

exp
1� t

tp

c� 1

 !
ð23Þ

where the initial discharge, Ib = 100 m3 s�1; peak discharge,
Ip = 800 m3 s�1; time to peak, tp = 24 h; and a shape factor,
c = 1.20. The inflow hydrograph with these parameters are
employed for routing in the considered hypothetical channels to
arrive at the benchmark solutions required for calibration of param-
eters of the NLM method.

The inflow hydrograph parameters are slightly modified with
Ip = 900 m3 s�1; time to peak, tp = 26 h; Ib = 120 m3 s�1, and
c = 1.22 to get a new hypothetical inflow hydrograph required for
routing in the same set of channel reaches of 40 km length to arrive
at the outflow hydrographs required for the purpose of validation
of the calibrated NLM method in the respective channel reaches.
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4.2. Channel reach details

The inflow hydrographs used in the calibration and validation
studies required for evaluating these two considered methods are
routed in ten prismatic channel reaches as employed by Price
(2009) with each characterized by a uniform cross-section and a
uniform bed gradient, So, ranging from 0.0001 to 0.001; half of this
symmetrical uniform cross-section is shown in Fig. 4 (see, Price,
2009 for the acronyms). This cross-section has a unique feature
in that the floodplain is connected with the main channel section
using a smooth transition which bears closer resemblance to a nat-
ural channel section. The length of the routing reach used in each
of the test runs is 40 km; each channel reach is characterized by
a uniform Manning’s roughness value of n = 0.035 for the main
channel and 0.075 for the floodplain channel.
5. Implementation of the method

5.1. Numerical experiments

Benchmark solutions are obtained for each of these channels by
routing the given inflow hydrograph for a reach length of 40 km by
numerically solving the SV equations based on the four-point
implicit finite difference scheme. The normal rating curve down-
stream boundary condition was assumed at a distance of 200 km
downstream of the inlet section. It is assumed that this boundary
condition would not impact the benchmark solution at 40 km
downstream of the inlet section which corresponds to the outlet
section of the routing reach considered for test runs of the numer-
ical experiments employed for the evaluation of the VPMM and
Acronyms of the semi cross-section of Price’s (2009) synthetic c

y = flow depth; B = semi-width,
tanh

tanh
t fl

fl
fl

B B
B     B

ky

the synthetic channel when flow depth y = 0; fly = depth of the

tanh curve;
tB  = semi-bed width for tan h curve when y = y

xy = depth of the synthetic channel where  the trapezoidal chann

at xy y ; bB = actual semi-bed width of the channel;
cB = s

surface width of the tanh curve synthetic channel. 

Fig. 4. Semi cross-section of Price’s
NLM routing methods. The space and time steps used for solving
the full SV equations are 1000 m and 300 s, respectively. The algo-
rithm used for arriving at the benchmark solution was supplied by
R.K. Price (Personal communication).

First set of benchmark solutions were obtained in the consid-
ered ten channel types by solving the SV equations for routing
the inflow hydrograph expressed by Eq. (23) with peak Ip = 800 -
m3 s�1 and its associated parameters as given in the previous sec-
tion and these solutions were used for the calibration of the
parameters K, h and m of the NLM method. The second set of
benchmark solutions of the SV equations were obtained by routing
the inflow hydrograph given by Eq. (23), but with the inflow
peak = 900 m3 s�1 and its associated inflow parameters as given
in the previous section, and these solutions were used for the val-
idation of the NLM method. Both the sets of benchmark solutions
obtained for the purpose of calibration and validation of the NLM
method are also used for the evaluation of the VPMM method for
the purpose of comparison with the NLM method simulations,
though it does not require any parameter calibration process.

For routing these two considered inflow hydrographs in these
corresponding test channel reaches of 40 km length, using the
NLM and VPMM methods, a spatial step of Dx = 1000 m and a tem-
poral step of Dt = 1800 s are used.
5.2. Performance evaluation measures

The routing capabilities of the NLM and VPMM methods are
evaluated mainly on the basis of the estimate of SSQ as given
by Eq. (11) in Section 3. The parameters of the NLM method
were estimated using different parameter estimation techniques
hannel reach: 

ky
, 

flB       B  when 0y ;
flB = semi-surface width of 

 synthetic channel; k  = parameter defining the shape of the 

fl ; bB = actual semi-bed width of the channel with 
b tB B ;

el and tan h curve intersect; xB = semi-width of the channel 

emi-surface width of th e trapezoidal channel;
fB = semi-

(2009) synthetic channel reach.



Table 2
Comparative evaluation of the performances of VPMM and AIA methods (calibration mode).

Channel type 1 2 3 4 5 6 7 8 9 10

Bed Slope 0.001 0.0009 0.0008 0.0007 0.0006 0.0005 0.0004 0.0003 0.0002 0.0001

(1/So)(@y/@x)max

0.00701 0.01403 0.03134 0.06813 0.08805 0.11795 0.16578 0.24739 0.39220 0.61293

VPMM
qper (%) 0.31 0.32 0.32 0.33 0.28 0.18 �0.14 �1.12 �4.26 �15.16
tqper (h) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 1.50 3.00
EVOL (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SSQ 355.94 403.06 477.85 641.79 1074.46 2317.59 6059.66 18239.19 63954.60 290606.14

GA
qper (%) �1.07 �1.33 �1.49 �1.95 �2.64 �3.04 �3.77 �4.44 �5.23 �6.53
tqper (h) 0.50 1.00 1.00 1.00 1.50 1.50 2.00 2.00 2.50 1.00
EVOL (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SSQ 27212.31 28367.83 34147.75 34806.17 40095.27 48619.06 59462.20 74383.60 94568.33 118941.60

DE
qper (%) �1.08 �1.32 �1.66 �2.05 �2.57 �3.15 �3.78 �4.42 �5.05 �6.50
tqper (h) 0.50 1.00 1.50 1.00 1.50 2.00 2.00 2.00 2.50 1.00
EVOL (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SSQ 27180.53 28118.32 30129.99 33729.22 39473.89 47905.54 59450.88 74378.83 94167.43 118903.78

PSO
qper (%) �1.08 �1.32 �0.59 �2.05 �2.57 �7.05 �3.78 �4.42 �5.05 �6.56
tqper (h) 0.50 1.00 0.50 1.00 1.50 �1.50 2.00 2.00 2.50 0.50
EVOL (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 �0.01
SSQ 27180.53 28118.32 86815.20 33729.22 39473.89 571431.40 59450.88 74378.83 94167.43 124405.52

HS
qper (%) �1.72 0.34 �2.74 �2.21 �4.13 56.44 58.56 �4.59 �5.08 28.55
tqper (h) �0.50 �4.00 0.50 �0.50 1.00 �6.00 �3.00 0.50 1.50 �9.50
EVOL (%) 0.00 0.00 0.00 0.00 0.00 2.26 2.90 0.00 0.00 0.00
SSQ 84410.60 1253598.65 131332.24 112047.26 203493.40 8378192.37 7077858.28 135773.62 115348.97 4350896.29

Table 3
Comparative evaluation of the performances of VPMM and AIA methods (validation mode).

Channel type 1 2 3 4 5 6 7 8 9 10

Bed Slope 0.001 0.0009 0.0008 0.0007 0.0006 0.0005 0.0004 0.0003 0.0002 0.0001

(1/So)(@y/@x)max

0.03252 0.03890 0.04736 0.05890 0.07529 0.09968 0.13835 0.20445 0.32693 0.55074

VPMM
qper (%) 0.19 0.21 0.22 0.25 0.28 0.29 0.19 �0.42 �2.91 �12.91
tqper (h) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 1.00 2.00
EVOL (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SSQ 267.72 289.01 328.15 442.03 807.58 1976.60 5747.21 18692.33 70416.04 351854.87

GA
qper (%) �1.97 �2.44 �3.03 �3.77 �4.72 �5.85 �7.22 �8.84 �10.69 �11.79
tqper (h) 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 6.50 4.50
EVOL (%) 0.89 1.29 1.30 0.73 1.20 1.14 0.35 0.19 0.07 �1.03
SSQ 136509.76 178839.57 229034.38 287023.26 365045.31 451370.40 536898.56 609242.88 603571.01 336587.62

DE
qper (%) �1.96 �2.42 �3.01 �3.75 �4.68 �5.82 �7.21 �8.85 �10.68 �11.61
tqper (h) 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50 6.50 4.50
EVOL (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
SSQ 133432.35 172876.77 222741.63 284587.67 359269.68 445397.76 535692.57 608225.39 603338.55 336298.87

PSO
qper (%) �1.96 �2.42 �3.01 �3.75 �4.68 �7.32 �7.21 �8.85 �10.68 �10.65
tqper (h) 3.00 3.50 4.00 4.50 5.00 0.00 6.00 6.50 6.50 3.50
EVOL (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 �0.01
SSQ 133432.35 172876.77 222741.64 284587.67 359269.69 485353.16 535692.56 608225.39 603338.54 260238.75

HS
qper (%) �2.31 �2.91 �3.27 �3.80 �4.59 �5.81 �6.64 �7.98 �9.92 �12.18
tqper (h) 1.50 1.50 2.00 2.50 3.00 2.50 4.00 4.00 5.00 5.00
EVOL (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
SSQ 77187.65 105725.49 117099.06 146273.93 183694.99 228488.81 297387.34 331604.34 428813.93 392777.19
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considered herein on the basis of minimum SSQ as the objective
function. However, this measure is simply assessed for the val-
idation cases of the NLM method and the VPMM method for
enabling comparative evaluations of the simulations with the
corresponding benchmark solutions. Apart from the measure of
SSQ, other measures which evaluate the reproduction of certain
pertinent characteristics of the benchmark solutions are also
used as given below:
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Fig. 5. Typical simulated hydrographs of the VPMM and AIA methods in both calibration and validation modes (So = 0.001).
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5.2.1. Error in peak reproduction
The percentage error in reproducing the peak discharge of

benchmark solution, qper, is expressed as:

qper ¼
Opc

Opo
� 1

� �
� 100 ð24Þ

where Opc = peak of the routed discharge-hydrograph obtained at
the outlet; and Opo = peak of the benchmark discharge-hydrograph
arrived at the outlet.
5.2.2. Error in time-to-peak reproduction
The error between the estimates of time to peak discharges of

the routed hydrograph obtained by the model and that of the
benchmark hydrograph, tpqer, is given as:

tpqer ¼ tqpc
tqpo

� 1
� �

ð25Þ

where tqpc = time corresponding to the routed peak of the
discharge-hydrograph at the outlet; and tqpo = time corresponding
to the peak of the benchmark discharge-hydrograph at the outlet.
5.2.3. Error in volume conservation
The percentage error in volume conservation, EVOL, is expressed

as:

EVOL ¼
PN

i¼1OciPN
i¼1Ii

� 1

 !X
100 ð26Þ

where Oci = ith ordinate of the routed discharge hydrograph at the
outlet of the reach; and Ii = ith ordinate of the inflow discharge
hydrograph.

6. Results and discussion

Tables 2 and 3, respectively, show the comparative performance
evaluations of the VPMM and AIA methods in reproducing the
benchmark solutions corresponding to calibration and validation
cases. Figs. 5–7, respectively, show the typical simulated discharge
hydrographs of the VPMM and AIA methods for the calibration and
validation cases of reproducing the respective benchmark solu-
tions in channel reaches characterized by bed slopes So = 0.001,
0.0003 and 0.0001.

It is seen from Tables 2 and 3 that the overall reproductions of
the benchmark solutions by the VPMM method is more accurate
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Fig. 6. Typical simulated hydrographs of the VPMM and AIA methods in both calibration and validation modes (So = 0.0003).
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than the corresponding reproductions by all the AIA methods stud-
ied in the calibration cases, but much more accurate in the valida-
tion cases, except for the case of routing in channel type-10 which
is characterized by a very small slope of So = 0.0001. The water sur-
face gradient (1/So) (@y/ox)max estimated for the inflow hydrograph
at the inlet section of this channel type-10 (So = 0.0001) routing is
0.6129 which is a case beyond the applicability limit of the VPMM
method specified by the criterion (1/So) (@y/ox)max 6 0.5 (Perumal
and Price, 2013). This inference is also evident from the poor repro-
duction of the peak discharge of the benchmark solution of the
considered small slope channel with an error of �15.16% which
is larger than that of the corresponding error estimates of the
AIA methods considered in the calibration case, except for the case
of the HS method, which estimated a peak discharge error of
28.55%. It is seen from Tables 2 and 3 that the VPMM is a fully mass
conservative for the channel types considered for routing floods
using both calibration and validation cases, as demonstrated by
Perumal and Price (2013) and Perumal et al. (2013).
It may be noted that all the AIA methods also conserve mass in
calibration and validation cases of simulations, except for the case
of simulations using GA method in the validation case. It is seen
from these tables that the error in time to peak estimates of the
simulated cases using the VPMM method ranges from 0.0 h to
1.5 h for the applicable cases and this inference is consistent for
both the calibration and validation cases of simulations. However,
the error in time to peak of all the simulations of the AIA methods
ranges from �6.0 h to 6.5 h, and these estimates are not consistent
even for the simulations in calibration and validation cases of the
same method.

Further, it can be inferred from Figs. 5–7, and Tables 2 and 3
that the VPMM method is able to reproduce the benchmark solu-
tions very closely from the perspective of overall reproduction
and peak reproduction of the benchmark hydrographs, both in cal-
ibration and validation cases, except for the cases of routing in
channel type-10 characterized by S0 = 0.0001 and this case falls
beyond the applicability limit of the VPMM method (Perumal
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Fig. 7. Typical simulated hydrographs of the VPMM and AIA methods in both calibration and validation modes (So = 0.0001).
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and Price, 2013); whereas, all the AIA methods are almost identical
in reproducing the benchmark solutions except in the case of HS
method which is inconsistent in reproducing the benchmark solu-
tions. PSO method and, especially, the HS method often fall in local
minimum while searching the solution space and thus resulting in
poor performance in producing the hydrographs. Based on the
above discussion of results it is inferred that the VPMM method
is performing better than all the AIA methods studied herein both
in the calibration and validation cases of simulations. Unlike the
NLMmethod, the VPMMmethod also enables to estimate the stage
hydrograph corresponding to the routed discharge hydrograph at
the outlet of the routing reach similar to that of the hydraulic rout-
ing method (Perumal and Price, 2013) which is a desirable feature
of a routing method required for operational purposes such as
flood forecasting and the design of flood protection structures. In
view of this development, it is argued that the sustained use of
storage equation as envisaged by Gill (1978) to model the nonlin-
ear characteristics of flood wave movement can no longer be justi-
fied and the methods developed so far in this context be retired
from the literature of the Muskingum method.
7. Conclusions

The study was undertaken with two objectives, viz., firstly, for
the inter-comparison of the efficacy of the performances of the
NLM method, which use some selected AIA techniques for param-
eters estimation, from the perspective of overall and specific fea-
tures reproduction of the benchmark hydrographs employed for
calibration and verifications of the method, and secondly for
inter-comparison of the performances of the NLM method and
the VPMM method from the perspective of overall and specific fea-
tures reproductions of the same benchmark hydrographs
employed in the calibration and validation studies of the NLM
method.

Based on the analysis of results of this study it is inferred that
the use of a physically based variable parameter Muskingum rout-
ing method, such as the VPMM method which is capable of
accounting for nonlinear behavior of flood wave movement pro-
cess without involving calibration process is more reliable, when
applied within its applicability limits for routing applications, than
the conceptual NLM method which performs very poorly in
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reproducing the benchmark hydrographs in the validation case of
the routing process.

It needs to be emphasized herein that the NLM method was
envisaged by Gill (1978) on the premises that the linear storage
weighted discharge relationship of the classical Muskingum
method is inadequate to model the nonlinear behavior of flood
wave propagation in rivers and channels. While this proposition
to extend the capability of the linear Muskingum method to cap-
ture the nonlinear behavior of the flood wave propagation could
be considered appropriate at that time when it was proposed,
but the same viewpoint cannot be sustained any longer as the sta-
ted deficiency of the linear Muskingum storage equation has been
effectively overcome by various physically based methods devel-
oped from 1978 which enabled the variation of the Muskingum
parameters at every routing step using the relationships estab-
lished with channel and flow characteristics by various theories.
These theories resulted in significant improved understanding of
the variable parameter Muskingum method which enables to
extend the capability of the Muskingummethod to model the non-
linear behavior of flood wave movement by varying the parameters
of the method at every routing time step, but retaining the form of
the classical Muskingum routing equation. Especially the develop-
ment of the VPMM method (Perumal and Price, 2013), which
derives the storage equation of the classical Muskingum method
from the momentum equation of the SV equations, justify he sus-
tained use of the form of linear storage equation of the Muskingum
method to model the nonlinear behavior of the flood wave move-
ment without resorting to its modification in the form of nonlinear
storage equation as envisaged by Gill (1978). Therefore, the sus-
tained use of storage equation as envisaged by Gill (1978) to model
the nonlinear characteristics of flood wave movement can no
longer be justified and the methods developed so far in this context
be retired from the literature of the Muskingum method.
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