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The integration of stem cell technology and cell sheet engineering improved the potential use of cell sheet products in regenerative
medicine. This review will discuss the use of mesenchymal stem cells (MSCs) in cell sheet-based tissue engineering. Besides their
adhesiveness to plastic surfaces and their extensive differentiation potential in vitro, MSCs are easily accessible, expandable
in vitro with acceptable genomic stability, and few ethical issues. With all these advantages, they are extremely well suited for
cell sheet-based tissue engineering. This review will focus on the use of MSC sheets in osteogenic tissue engineering. Potential
application techniques with or without scaffolds and/or grafts will be discussed. Finally, the importance of osteogenic induction
of these MSC sheets in orthopaedic applications will be demonstrated.

1. Introduction

Tissue engineering was emerged as a scientific field in the
late 1980s and early 1990s [1–3]. It is defined as “an interdis-
ciplinary field that applies the principles of engineering and
the life sciences toward the development of biological substi-
tutes that restore, maintain, or improve tissue function” [2].
Thus, it involves in vitro construction of tissues for implan-
tation into the body to restore, maintain, or improve the
form and/or function of a particular tissue and/or organ
[4, 5]. The necessities for tissue engineering are defined as
“the appropriate levels and sequencing of regulatory signals,
the presence and numbers of responsive progenitor cells, an
appropriate extracellular matrix, carrier, or scaffold, and an
adequate blood supply” [5].

2. Tissue Engineering and Cell
Sheet Technology

During the course of research in tissue engineering field,
direct transplantation of cell suspensions as a cell therapy
technique has been considered [6]. However, as reviewed
by Shimizu et al. [6], “it is difficult to control the shape,
size, and location of the grafted cells” with this technique.
In addition, since many cells are lost soon after transplan-
tation, this technique was insufficient to restore the form
and/or function of the defected and/or damaged tissue
[6–8]. Thus, one of the main research interests of the
tissue engineering field has long been the interaction of
cells with a variety of biomaterials such as biodegradable
polymer scaffolds.
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Scaffolds are considered as structures to seed and grow
the cells on them, which also serve as carriers for these
cells in the process of in vivo implantation [3]. Emerging
fields such as genomics, proteomics, drug and/or gene
delivery systems, stem cell technologies, biomaterial sci-
ences, nanotechnology, and so forth contributed to the
knowledge of interactions between cells and biomaterials.
However, the search for an ideal biodegradable biomaterial
for cell adhesion, proliferation, and extracellular matrix
production is still continuing. Some of the main problems
to overcome in this field include “insufficient biological
activity, immunogenicity and elevated inflammatory reac-
tions, fluctuating degradation rate, and uncontrollable cell-
biomaterial interactions” [9]. Additional problems include
“low efficiency of cell attachment and heterogeneous cellular
distribution” [9].

An alternative approach to scaffold-based tissue engi-
neering has been the scaffold-free cell sheet-based tissue
engineering [7, 8]. The idea of using cultured cells to
generate tissues suitable for transplantation goes back to
the late 1970s [10]. In the 1980s, cultured autologous
human epidermal cells were grown into epithelial skin
grafts and used to restore the defects in the epidermis
in cases such as severe burns [11], giant congenital nevi
[12], and skin ulcers [13]. Studies on the reconstruction of
human epidermis with cultured cell sheets continued later
on [14, 15].

The so-called “cell sheet” technique was based on cultur-
ing cells in hyperconfluency until they form extensive cell-to-
cell interactions and produce their own extracellular matrix
by which they gain the form of a cell sheet. Kwon and
coworkers highlighted in their work the importance of
“fabrication of functional tissue constructs using sandwiched
layers of cultured cells” and reported the discovery of a
temperature-responsive culture dish enabling the rapid
detachment and harvesting of cultured cell sheets [16]. The
advantages of these temperature-responsive culture surfaces
in comparison to enzymatic harvesting of cells from culture
dishes were three folds [17, 18]: (1) cell-to-cell connections
and extracellular matrix components of cell sheets were well
preserved by this technique, (2) adhesive proteins under-
neath the cell sheets, which play a critical role as an adhesive
agent in transferring cell sheets onto other biomaterials or
other cell sheets/surfaces/tissues were also well preserved by
this technique, and (3) high cell seeding efficacy was also an
important advantage of this technique.

In this context, a fabricated single cell sheet may be
used for skin, cornea, periodontal ligament, or bladder
reconstruction [18]. Several homotypic cell sheets may be
layered on top of each other to reconstruct homogenous
3D tissues such as myocardium [18]. Finally, several hetero-
typic cell sheets may be colayered to construct laminar
structures such as liver or kidney [18]. It has been reported
that several types of expandable cells are capable of forming
transplantable sheets in culture including keratinocytes,
retinal pigment epithelial cells, corneal epithelial cells, oral
mucosal epithelial cells, urothelial cells, periodontal liga-
ment cells, aortic endothelial cells, corneal endothelial cells,
cardiac myocytes, and kidney epithelial cells [19]. In

addition, the successful clinical use of cell sheet technology
in regenerative applications for the cornea, heart, blood ves-
sels, esophagus, periodontal membrane, functional tendon,
and cartilage has been reported [20–24].

The main limitation of cell sheet-based tissue engineering
seems to be the possible necrosis inside the cell sheet due to
the lack of vascularization [20]. Current work focuses mainly
on the construction of 3D vascularized tissues and organs by
cell sheet engineering [20].

3. Mesenchymal Stem Cells and Their Use in
Cell Sheet-Based Tissue Engineering

The integration of stem cell technology and cell sheet engi-
neering improved the potential use of cell sheet products in
regenerative medicine. Stem cells are defined as cells which
have the capacity to renew themselves and to differentiate
into multilineage cells [25]. Based on their origin, stem cells
can be classified into three main groups, that is, embryonic
stem cells (ESCs), adult stem cells (also named as tissue-
specific stem cells, TSSCs), and induced pluripotent stem
cells (iPSCs) [25]. The adult stem cells first defined by
Friedenstein and coworkers isolated from mouse bone
marrow [26] were later named as mesenchymal stem cells
(MSCs), in some cases also referred as mesenchymal stromal
cells. These multipotent cells have been isolated from almost
all tissues including perivascular area [27]. According to the
International Society for Cellular Therapy, minimal criteria
to define MSCs include the following [28]: (1) these cells
adhere to plastic surfaces, (2) in terms of cell surface markers,
these cells express CD73, CD90, and CD105, and they lack
expression of CD14, CD34, CD45, and HLA-DR, and (3)
these cells have the ability to differentiate in vitro into
adipocytes, chondrocytes, and osteoblasts. Today, it has
been well demonstrated that MSCs have the differentiation
potential beyond these three cell types. Ullah et al. have
reviewed that “human MSCs have the capacity to differen-
tiate into all the three lineages, that is, ectoderm, meso-
derm, and endoderm, with various potency by employing
suitable media and growth supplements which initiate lin-
eage differentiation” [25]. Besides their adhesiveness to
plastic surfaces and their extensive differentiation potential
in vitro, MSCs are also defined as cells that are “easily
accessible, culturally expandable in vitro with exceptional
genomic stability, and few ethical issues” [25]. With all
these advantages, they are extremely well suited for cell
sheet engineering.

The sources of MSCs include (but are not limited to)
bone marrow, bone tissue, adipose tissue, amniotic fluid,
amniotic membrane, dental tissues, endometrium, limb
bud, menstrual blood, peripheral blood, placenta and fetal
membranes, salivary gland, skin and foreskin, subamniotic
umbilical cord lining membrane, synovial fluid, and
Wharton’s jelly [25].

In terms of long-term culturing of MSCs, it has been
demonstrated that culture time and passage number
inversely correlate with their differentiation potential. Bonab
et al. have cultured human bone marrow-derived MSCs for a
mean long-term culture period of 118 days and passaged
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these cells up to 10 passages [29]. They reported that the
average number of population doubling and the mean
telomere length decreased with increasing passage number.
In addition, these cells started losing their differentiation
potential after 6th passage. They concluded that MSCs
utilized in regenerative clinical applications should be har-
vested at earlier passages with shorter in vitro differentiation
protocols. Taken into consideration that cell sheets of tissue-
derived MSCs can be constructed in an average in vitro
culture time of 2-3 weeks using MSCs at 2nd passage
[30, 31], it is almost safe to consider that human MSCs
can be cultured to form cell sheets in specific media with-
out any abnormalities. The study by See et al. [32], which
investigated the effects of the hyperconfluent culture con-
ditions on the multipotentiality of bone marrow-derived
MSCs, supports this idea. They have shown that these cell
sheets remained viable, they were rich with type I collagen,
and they retained their multipotentiality. In addition, there
have been studies to improve the formation and also the
stemness of stem cell sheets in the literature. Wei et al.
reported that Vitamin C treatment promotes in vitro
mesenchymal stem cell sheet formation and tissue regenera-
tion by elevating telomerase activity [33]. Jiang et al. reported
that methods for cell sheet harvesting include temperature-,
electricity-, magnetism-, and pH change-induced methods
and suggested a new strategy to obtain MSC sheets using
light-induced cell sheet technology [34]. Using this tech-
nology, intact MSC sheets were detached from TiO2
nanodot-coated quartz substrate after UV365 illumination.
Chuah et al. reported that different combinatorial substra-
tum properties, that is, stiffness, roughness, and wettabil-
ity, on which the MSCs were cultured, were able to
influence MSC behavior such as adhesion, spreading, and
proliferation during cell sheet formation [35]. Their study
concluded that collagen formation within the cell sheet
was enhanced on substrates with lower stiffness, whereas,
higher hydrophobicity and roughness further assisted the
induced chondrogenesis and osteogenesis, respectively.
Zhao et al. demonstrated that low oxygen tension and syn-
thetic nanogratings improve the uniformity and stemness
of human MSC sheets [36, 37]. In addition to all these appli-
cations, the use of oscillatory fluid shear stresses generated by
a simple rocking platform has shown to increase collagen
secretion of cultured MSCs and apparent collagen organiza-
tion in their extracellular matrix [38].

Within the last two decades, cell sheets of MSCs have
been used in tissue engineering/tissue regeneration of several
types of tissues and/or organs including (but are not limited
to) the cornea [39], skin [40, 41], cartilage [42, 43], meniscus
[44], bone [31, 45–53], tendons [53], cardiac tissue [54–62],
periodontal tissue [63, 64], nasal epithelium [65], tooth [66],
and blood vessel [67]. Cell sheets of MSCs have also been
used in conditions such as wound healing [41], oral ulcers
[68], digestive fistula [69], and spinal cord defects [70, 71].
It has also been demonstrated that MSC sheets can induce
angiogenesis in ischemic and/or wound tissues [41, 72].
For our purposes, this review will focus on the tissue engi-
neering/tissue regeneration/tissue repair of osteogenic tissue
with MSC sheets.

4. Mesenchymal StemCells and Their Use in Cell
Sheet-Based Osteogenic Tissue Engineering

Fractures with large bone defects and/or nonunion are devas-
tating clinical problems in orthopaedics and traumatology.
The overall risk of nonunion per fracture was reported as
1.9%; however, for certain fractures, that is, tibial and clavic-
ular fractures, in specific age groups, that is, in young and
middle-aged adults, this risk was reported as 9% [73]. Open
fractures and fractures with large segmental bone defects
increase the ratio of nonunion seen in orthopaedics [74].
Large segmental bone defects often occur also after osteo-
genic tumor removal.

Several techniques have been suggested to accelerate bone
healing process including electrical stimulation, mechanic
stimulation, and the use of ultrasound [74, 75]. Autologous,
allogenic, or synthetic bone grafts are known as the biological
accelerators of the bone healing process [76]. Autologous
bone marrow and/or applications of factors such as bone
morphogenetic proteins (BMPs) have been used to enhance
bone healing [76]. Autologous bone grafts are generally taken
from iliac crest and/or tibia. However, harvesting big
amounts of graft tissue from donor site causes morbidity
such as chronic pain and infection [77, 78]. As an alternative
approach, fresh frozen allogenic bone grafts can also be used;
however, they increase the risk of transmission of viral
diseases and/or induction of immunological reactions in
recipients [79, 80]. MSC sheet-based tissue engineering
might be a promising field of research for regenerative
medicine in terms of overcoming these disadvantages by
cell-based therapies.

5. The Use of MSC Sheets in Combination with
Scaffolds and/or Bone Grafts

Pioneer studies that used MSC sheets in the regeneration
of osteogenic tissue considered using these cell sheets like
an engineered periosteum tissue around cryopreserved
allogenic grafts lacking viable cells [53]. Ouyang et al.
assembled MSC sheets onto the demineralized bone grafts
by a wrapping technique [53]. They reported that “the
assembled structure was cultured for 3 weeks. The macro-
morphology, histology, and immunohistochemistry of the
grafts were evaluated. It was found that MSCs were able
to form coherent cellular sheets within 3 weeks. When
assembled with demineralized bone matrix, MSC sheets
were similar to in situ periosteum and were able to differ-
entiate into the osteochondral lineage.”

Chen et al. investigated the feasibility of bone tissue
engineering using a hybrid of MSC sheets and poly (DL-
lactic-co-glycolic acid) (PLGA) meshes [52]. They obtained
osteogenic sheets of porcine MSCs, which were wrapped
onto PLGA meshes resulting in tube-like constructs. These
constructs were cultured for 8 weeks in vitro and then
implanted to subcutaneous areas of nude rats. They
reported that “dense mineralized tissue was formed in sub-
cutaneous sites and the 8-week plants shared similar
micro-CT characteristics with native bone. The neotissue
demonstrated histological markers for both bone and
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cartilage, indicating that the bone formation pathway in
constructs was akin to endochondral ossification, with the
residues of PLGA having an effect on the neotissue organiza-
tion and formation”. A similar study by Gao et al., who used
bone marrow stromal cell sheets assembled with tubular
coral scaffolds for long bone regeneration in a mouse model,
supported these findings [51]. In addition, when a similar
wrapping technique was applied with MSC sheets to
structural allografts for segmental bone regeneration, it was
possible to repopulate the bone allografts with MSCs and
obtain a viable bone construct [46, 50, 81].

There are ongoing investigations to obtain the best results
in bone regeneration with MSC sheets. Some of the biomate-
rials and/or biological agents reported to be combined with
MSC sheets to enhance osteogenesis include coral particles
[47], ceramics [48], surface-modified titanium and zirco-
nia [82], simvastatin [83], β-tricalcium phosphate [84],
coumarin-like derivative osthole [85], CD34+ peripheral
blood cells [86], a complex of polyethylenimine-alginate
nanocomposites plus BMP2 gene [87], nonviral oligonucleo-
tide antimiR-138 delivery to MSC sheets [88], platelet-rich
fibrin [89, 90], vitamin C [91], poly(dimethylsiloxane) sur-
face silanization [92], stromal cell-derived factor-1 [93],
microRNA-21-loaded chitosan/hyaluronic acid nanopar-
ticles [94], hydroxyapatite particles [90, 95], and Notch
activation by Jagged1 in MSC sheet cultures [96].

6. Scaffold or Graft-Free Use of MSC Sheets in
Bone Regeneration

There have also been studies that utilized MSC sheets
without any scaffolds or grafts in bone fracture repair and/or
bone regeneration [9, 30, 31, 48, 49, 97].

One of the first studies that investigated the osteogenic
differentiation of cultured MSC sheets to obtain bone tissue
was reported by Akahane et al. [30]. They fabricated rat
bone marrow-derived MSC sheets induced towards the oste-
ogenic differentiation by culture medium supplemented with
dexamethasone, L-ascorbic acid phosphate (vitamin C), and
β-glycerophosphate. After harvesting these sheets, they indi-
vidually rolled them to obtain tube-like structures and trans-
planted them into subcutaneous sites on rat thighs without a
scaffold to assess whether the sheet could survive and form
bone tissue. They reported that X-ray photographs revealed
ectopic calcification in the thighs at 6 weeks after sheet
transplantation, and histological investigation of dissected
sheets after 6 weeks in vivo revealed bone formation. They
concluded that “MSCs can be cultured as sheet structures,
and the resulting sheets represent osteogenic implants that
can be used for hard tissue reconstruction” [30]. Later on,
the same group engineered “osteogenic MSC sheets trans-
planted via injection through a needle and that bone forma-
tion results in the injected areas” [49]. These findings were
confirmed by studies of Ma et al., who also performed the
mechanical testing of the obtained 3D bone tissue, and
reported that “the engineered bone exhibited enhanced
compressive strength” [9].

The functional use of these osteogenic MSC sheets
described previously [30] in a rat nonunion model was

reported by Nakamura et al. [31]. They investigated the
effects of cell sheets on the healing process after transplanting
them onto fractured femurs without a scaffold, that is, they
wrapped the sheets around the fracture site. They reported
that “X-ray photographs and histological sections showed
callus formation around the fracture site in the cell sheet-
transplanted group (sheet group). Bone union was obtained
in the sheet group at 8 weeks. By contrast, the control group
(without sheet transplantation) showed nonunion of the
femur” [31]. Thus, they concluded that “cell sheet transplan-
tation can contribute to hard tissue reconstruction in cases
involving nonunion, bone defects, and osteonecrosis” [31].

Another functional study utilizing injectable osteogenic
MSC sheet fragments in a rabbit distraction osteogenesis
model was reported by Ma et al. [97]. In this study, after
mandibular osteotomy, osteogenic MSC sheet fragments
were injected into the distraction areas and new bone for-
mation was evaluated in time. They reported that “injection
of bone marrow stromal cell sheet fragments promotes
bone formation in distraction osteogenesis and indicates a
promising approach to shorten the treatment period of
osteodistraction” [97].

7. Demonstration of the Importance of In Vitro
Osteogenic Induction of MSC Sheets in Bone
Regeneration Applications

As discussed so far in this review, the search to improve
the composition of the MSC sheets used in applications
for bone regeneration has not been concluded yet. In this
context, more than one parameter has been taken into
consideration such as in vitro culture period, the composi-
tion of the culture medium, effectiveness of the cell sheet
with or without scaffolds/grafts, and also the size of the
transplantable sheet in terms of handling the larger structural
bone defects.

It has beenwell accepted that “The standard procedure for
the osteogenic differentiation of multipotent stem cells is
treatment of a confluent monolayer with a cocktail of dexa-
methasone, ascorbic acid, and β-glycerophosphate” [98].
Thus, it has been reported that these MSC sheets are con-
structed with early passages of MSCs seeded at 1–5× 104
cells/cm2 onto 10 cm culture dishes and cultured under osteo-
genic conditions with media consisting of the basic medium
(MEM/DMEM with 10–15% fetal bovine serum, 100U/ml
penicillin, 100μg/ml streptomycin, and 2mM L-glutamine)
supplemented with 50μM L-ascorbic acid, 10mM β-glyc-
erophosphate, and 100 nM dexamethasone for 2-3 weeks
[9, 30, 31]. The individual mechanisms of effects of the
components of this triple osteogenic cocktail have also been
described [98]. In this context, Langenbach and Handschel
[98] have reported that “Dexamethasone induces Runx2
expression by FHL2/β-catenin-mediated transcriptional acti-
vation and that dexamethasone enhances Runx2 activity by
upregulation of TAZ and MKP1. Ascorbic acid leads to the
increased secretion of collagen type I (Col1), which in turn
leads to increased Col1/α2β1 integrin-mediated intracellular
signaling. The phosphate from β-glycerophosphate serves as
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a source for the phosphate in hydroxylapatite and in addition
influences intracellular signaling molecules.”

Based on this knowledge, a preliminary study by our
group investigated the effects of these osteogenic supple-
ments in different combinations within the culture medium
on the structure of the MSC sheets. The procedures used in
this study were approved by the Ethical Review Committee
of the Pamukkale University, School of Medicine, Denizli,
Turkey. Our group had experience with human [99, 100],
chicken [101], and rat [102] trabecular bone-derived MSCs.
Thus, stocks from the previously isolated and characterized
trabecular bone-derived rat MSCs [102] were used in this

study. Cell sheets from these MSCs were constructed under
the conditions described earlier [9, 30, 31].

It has been observed that MSC sheets cultured with
basic medium supplemented with only 50μM L-ascorbic
acid exhibited routinely a thicker and larger-surface cell
sheet (Figures 1(a) and 1(c)) in comparison to those cul-
tured with basic medium supplemented with all three
components of the standard osteogenic cocktail described
earlier (Figures 1(b) and 1(d)). MSC sheets maintained in
osteogenesis-stimulating medium supplemented with the tri-
ple cocktail for 21 days stained positive with Alizarin Red S
(Figure 2(b)), and they exhibited increased levels of collagen

(a) (b)

(c) (d)

(e) (f)

Figure 1: The gross and microscopic appearances of MSC sheets. MSC sheet induced with ascorbic acid before (a) and after (c) detachment
from the culture dish. MSC sheet induced with standard osteogenic cocktail before (b) and after (d) detachment from the culture dish.
Shrinkage in both groups of cell sheets was observed after complete detachment from the culture dish. The surface area of MSC sheet
induced with ascorbic acid was larger than that of MSC sheet in the osteogenic group. In addition, as seen in histological examination,
MSC sheet induced with ascorbic acid was thicker (e) than the MSC sheet in the osteogenic group (f). Scale bar = 2 cm for (a, b, c, d), scale
bar = 100μm for (e, f).
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Table 1: Primers for reverse transcription polymerase chain reaction (RT-PCR) analysis of gene expression.

Gene GeneBank Acc. number Primer sequence (5′-3′)

GAPDH NM_017008.3
F GGGCTCTCTGCTCCTCCCTGT

R CATGGGGGCATCAGCGGAAGG

Collagen type I, alpha 2 NM_053356.1
F AGCAGGTCCCCGAGGCAGAG

R GCAGGACCCGTTTGTCCGGG

Osteopontin AB001382.1
F TTGCCTGTTCGGCCTTGCCT

R ACGCTGGGCAACTGGGATGA

Alkaline phosphatase NM_013059.1
F CGGGTGAACCACGCCACTCC

R GGCCAGCAGTTCAGTGCGGT

Osteocalcin M25490.1
F TCCTGGGGTTTGGCTCCTGCT

R GGCGAAGGCCTGGAAGGGGA

F: forward primer; R: reverse primer.

(a) (b)

(c)

21
GAPDH

Col1a2

ALP

OC

OP

3

(d)

Figure 2: Analyses of the MSC sheets on the basis of Alizarin Red S staining and reverse transcription polymerase chain reaction (RT-PCR).
Mineralization of MSC sheets was analyzed on the basis of Alizarin Red S staining in all groups. Osteogenic gene expression profiles in all
groups of MSC sheets were analyzed on the basis of RT-PCR. MSC sheets maintained in osteogenesis-stimulating medium supplemented
with the triple cocktail for 21 days stained positive with Alizarin Red S (b) and they exhibited increased levels of collagen type I (Col1a2),
osteocalcin (OC), osteopontin (OP), and alkaline phosphatase (ALP) mRNA (d) in comparison to MSC sheets maintained in basal
medium supplemented with only ascorbic acid (a, d). MSC sheets maintained in basal medium supplemented with only ascorbic acid
showed slight osteogenic differentiation (a, d) when compared to the MSC sheets maintained in basal medium without any
supplementation (c, d); however, this differentiation was not as strong as seen in the triple cocktail supplemented group (b, d). Sequences
and sources of the primers used for the gene expression analyses were given in Table 1. (d) Lane 1: MSC sheets maintained in basal
medium supplemented with only ascorbic acid; lane 2: MSC sheets maintained in osteogenesis-stimulating medium; lane 3: MSC sheets
maintained in basal medium without any supplementation; GAPDH: glyceraldehyde 3-phosphate dehydrogenase (housekeeping gene used
as loading control in this experiment). Scale bar = 200 μm for (a, b, c).
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type I (Col1a2), osteocalcin (OC), osteopontin (OP), and
alkaline phosphatase (ALP) mRNA (Figure 2(d)) in compari-
son toMSC sheetsmaintained in basalmedium supplemented
with only ascorbic acid (Figures 2(a) and 2(d)). These findings
were in agreement with data from the literature [98].
MSC sheets maintained in basal medium supplemented with
only ascorbic acid showed slight osteogenic differentiation
(Figures 2(a) and 2(d)) when compared to the MSC sheets
maintained in basal medium without any supplementation
(Figures 2(c) and 2(d)); however, this differentiation was
not as strong as seen in triple cocktail supplemented group
(Figures 2(b) and 2(d)). Sequences and sources of the primers
used for the gene expression analyses were given in Table 1.
To be able to limit the unnecessary use of laboratory animals,
MSC sheets maintained in basal medium supplemented with
only ascorbic acid were considered as the control group for
the rest of the experiments.

Since transplantable sheet size may matter in terms of
repair of larger segmental bone defects, we tested the
effectiveness of these two different types of MSC sheets
in a rat femur fracture model described earlier [31]. As a

modification to this model, to be able to follow the fracture
healing process in time in all groups tested, we did not create
a nonunion, instead, only created a 1mm segmental bone
defect by transverse osteotomy on the femurs in this study
(Figure 3(a)). Loose internal fixation of the segmental bone
defect was provided by a 21-gauge needle inserted into the
intramedullary femoral shaft as described previously [31].
MSC sheets were wrapped around the fracture sites individ-
ually (Figures 3(b) and 3(c)), and incisions on hind limbs
were sutured. The groups studied included (1) the osteotomy
group without any sheets (sham group, n = 6), (2) the
osteotomy group with MSC sheets induced with ascorbic
acid only (control-sheet group, n = 6), and (3) the osteot-
omy group withMSC sheets induced with osteogenic cocktail
(osteogenic-sheet group, n = 6). Unprotected weight bearing
was allowed immediately after operation. Postoperative
control radiographs were taken after intramedullary fixation
of fractures (Figure 3(d)).

The biology of bone fracture healing has been described
elsewhere as “It involves an acute inflammatory response
including the production and release of several important

(a) (b)

Figure 4: The gross (a) and microscopic (b) appearances of osteotomy site in the osteogenic-sheet group at the end of the second week. Callus
formation was observed in the osteogenic-sheet group at the osteotomy site at the end of the second week (a). In microscopic examination, the
osteogenic-sheet group exhibited a mainly cartilaginous (arrows) but also at some locations bony elements (arrow heads) containing callus
formation at the end of the second week (b). Scale bar = 1mm for (b).

(a) (b)

(c) (d)

Figure 3: Application of MSC sheets onto the osteotomy sites in a rat fracture model. A 1mm segmental bone defect was created by
transverse osteotomy on rat femurs in this study (a). MSC sheets were wrapped around the fracture sites individually (b, c), and incisions
on hind limbs were sutured. Postoperative control radiographs were taken after intramedullary fixation of fractures (d).

7Stem Cells International



molecules, and the recruitment of mesenchymal stem cells in
order to generate a primary cartilaginous callus. This primary
callus later undergoes revascularization and calcification, and
is finally remodeled to fully restore a normal bone structure.”
[103]. Thus, the histological stages to follow in our experiment

can be summarized as inflammation followed by a primary
cartilaginous callus formation (soft callus stage), bony callus
formation (hard callus stage), and bone remodeling at the
fracture site. During the follow-up of the operated rats, radio-
graphs were taken every 2 weeks and 2 rats were sacrificed at

(a) (b) (c)

(d) (e) (f)

Figure 5: The gross (a, b, c) and microscopic (d, e, f) appearances of osteotomy sites in all three groups at the end of the fourth week. At the
end of the fourth week, both sham (a and d) and control-sheet groups (b and e) exhibited bony callus at the fracture site with a slightly
accelerated healing profile in the control group, that is, the callus size was smaller (e versus d) suggesting remodeling towards the healing
process. However, in both sham and control-sheet groups, fracture ends were still apart from each other (a, b). In the osteogenic-sheet
group (c, f), on the other hand, fracture site was already filled with bone tissue and fracture site entered to the bone remodeling stage.
Scale bar = 1mm for (a, b, c).
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each time point to examine the operated femurs in terms of
gross and microscopic appearance.

Results showed that the osteogenic group exhibited a
mainly cartilaginous but also at some locations bony
elements encompassing callus formation at the end of the
second week (Figures 4(a) and 4(b)). This finding suggested
that the primary cartilaginous callus was formed even earlier
in this group, and the examined callus at the end of the
second week reached already to a transition stage from carti-
laginous to bony callus. Callus formation in other two groups
was observed at later stages. At the end of the fourth week,
both sham (Figures 5(a) and 5(d)) and control groups
(Figures 5(b) and 5(e)) exhibited bony callus at the fracture
site with a slightly accelerated healing profile in the control
group, that is, the callus size was smaller (Figures 5(e) versus
5(d)) suggesting remodeling towards the healing process.
However, in both sham and control groups, fracture ends
were still apart from each other (Figures 5(a) and 5(b)). In
the osteogenic group, on the other hand, fracture site was
already filled with bone tissue and the fracture site entered
to the bone remodeling stage (Figures 5(c) and 5(f)). Radio-
graphs taken at the second and fourth weeks supported these
findings (Figure 6).

These preliminary findings indicate the importance of
osteogenic induction process of these MSC sheets in vitro.
Further studies are necessary to elucidate the best protocol
for this induction process.

8. Conclusion

Taken this information together, tissue-derived MSC sheets
can be used either in combination with various scaffolds/
grafts or in scaffold/graft-free applications to shorten the
treatment period in orthopaedics and traumatology cases
involving nonunion, bone defects, osteonecrosis, and so
forth. The in vitro osteogenic induction of these cell sheets
is a necessary step accelerating the healing process described
in bone tissue. The search for the best osteogenic induction
combination and/or the application technique will hopefully
continue for the years to come.
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